
Kämmerling, Nicolas; Kurtz, Jannis

Article — Published Version

Oracle-based algorithms for binary two-stage robust
optimization

Computational Optimization and Applications

Provided in Cooperation with:
Springer Nature

Suggested Citation: Kämmerling, Nicolas; Kurtz, Jannis (2020) : Oracle-based algorithms for binary
two-stage robust optimization, Computational Optimization and Applications, ISSN 1573-2894,
Springer US, New York, NY, Vol. 77, Iss. 2, pp. 539-569,
https://doi.org/10.1007/s10589-020-00207-w

This Version is available at:
https://hdl.handle.net/10419/288833

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10589-020-00207-w%0A
https://hdl.handle.net/10419/288833
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

Computational Optimization and Applications (2020) 77:539–569
https://doi.org/10.1007/s10589-020-00207-w

1 3

Oracle‑based algorithms for binary two‑stage robust
optimization

Nicolas Kämmerling1 · Jannis Kurtz2 

Received: 20 May 2019 / Published online: 23 June 2020
© The Author(s) 2020

Abstract
In this work we study binary two-stage robust optimization problems with objective
uncertainty. We present an algorithm to calculate efficiently lower bounds for the
binary two-stage robust problem by solving alternately the underlying deterministic
problem and an adversarial problem. For the deterministic problem any oracle can
be used which returns an optimal solution for every possible scenario. We show that
the latter lower bound can be implemented in a branch and bound procedure, where
the branching is performed only over the first-stage decision variables. All results
even hold for non-linear objective functions which are concave in the uncertain
parameters. As an alternative solution method we apply a column-and-constraint
generation algorithm to the binary two-stage robust problem with objective uncer-
tainty. We test both algorithms on benchmark instances of the uncapacitated single-
allocation hub-location problem and of the capital budgeting problem. Our results
show that the branch and bound procedure outperforms the column-and-constraint
generation algorithm.

Keywords  Two-stage robust optimization · Non-linear binary optimization · Branch
and bound algorithm

 *	 Jannis Kurtz
	 kurtz@mathc.rwth‑aachen.de

	 Nicolas Kämmerling
	 kaemmerling@itl.tu‑dortmund.de

1	 Institute of Transport Logistics, TU Dortmund University, Leonhard‑Euler‑Straße 2,
44227 Dortmund, Germany

2	 Chair for Mathematics of Information Processing, RWTH Aachen University, Pontdriesch
12‑14, 52062 Aachen, Germany

http://orcid.org/0000-0003-1570-7044
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00207-w&domain=pdf

540	 N. Kämmerling, J. Kurtz

1 3

1  Introduction

The concept of robust optimization was created to tackle optimization problems with
uncertain parameters. The basic idea behind this concept is to use uncertainty sets
instead of probability distributions to model uncertainty. More precisely it is assumed
that all realizations of the uncertain parameters, called scenarios, are contained in a
known uncertainty set. Instead of optimizing the expected objective value or a given
risk-measure as common in the field of stochastic optimization, in the robust optimiza-
tion framework we calculate solutions which are optimal in the worst case and which
are feasible for all scenarios in the uncertainty set.

The concept was first introduced in [67]. Later it was studied for combinatorial
optimization problems with discrete uncertainty sets in [53], for conic and ellipsoi-
dal uncertainty in [13, 14], for semi-definite and least-square problems in [39, 40]
and for budgeted uncertainty in [26, 27]. An overview of the robust optimization
literature can be found in [2, 10, 15, 32].

The so called robust counterpart is known to be NP-hard for most of the classical
combinatorial problems, although most of them can be solved in polynomial time in
its deterministic version; see [53]. Furthermore it is a well-known drawback of this
approach that the optimal solutions are often too conservative for practical issues
[27]. To obtain better and less-conservative solutions several new ideas have been
developed to improve the concept of robustness; see e.g. [1, 43, 53, 55, 63].

Inspired by the concept of two-stage stochastic programming a further extension
of the classical robust approach which attained increasing attention in the last decade
is the concept of two-stage robustness, or sometimes called adjustable robustness,
first introduced in [12]. The idea behind this approach is tailored for problems which
have two different kinds of decision variables, first-stage decisions which have to be
made here-and-now and second-stage decisions which can be determined after the
uncertain parameters are known, sometimes called wait-and-see decisions. As in the
classical robust framework it is assumed that all uncertain scenarios are contained in
a known uncertainty set and the worst-case objective value is optimized. The main
difference to the classical approach is that the second-stage decisions do not have
to be made in advance but can be chosen as the best reaction to a scenario after
it occured. This approach can be modeled by min–max–min problems in general.
Famous applications occur in the field of network design problems where in the first
stage a capacity on an edge must be bought such that, after the real costs on each
edge are known, a minimum cost flow is sent from a source to a sink which can only
use the bought capacities [21]. An overview of recent results for two-stage robust-
ness can be found in [72]. Several concepts closely related to the two-stage robust
concept were introduced in [1, 30, 55].

In this work we study binary two-stage robust optimization problems. We con-
sider underlying deterministic problems of the form

where f ∶ Z ×ℝ
m
→ ℝ , the set Z ⊆ {0, 1}n1+n2 contains all incidence vectors of

the feasible solutions and is assumed to be non-empty, c ∈ ℝ
m is a given parameter

(CP)min
(x,y)∈Z

f (x, y, c)

541

1 3

Oracle-based algorithms for binary two-stage robust…

vector and f (x, y, ⋅) is concave for each given (x, y) ∈ Z . The variables x are called
first-stage solutions and the variables y are called second-stage solutions. We assume
that the vector c is uncertain and all possible realizations c are contained in a convex
uncertainty set U ⊂ ℝ

m . The binary two-stage robust problem is then defined by

where X ⊂ {0, 1}n1 is the projection of Z onto the x-variables, i.e.

and Y(x) ∶= {y ∈ {0, 1}n2 | (x, y) ∈ Z} . Note that all results presented in this paper
are still valid, if the recourse variables are non-integer. We do not consider uncer-
tainty affecting the constraints of the problem which is a situation often occuring
in practice for most of the classical combinatorial optimization problems. Problem
(2RP) can be interpretated as follows: In the first stage, before knowing the precise
uncertain vector c, the decisions x ∈ X have to be made. Afterwards, when the cost-
vectors are known, we can choose the best feasible second-stage solution y ∈ Y(x)
for the given costs. As usual in robust optimization we measure the worst-case over
all possible scenarios in U. Note that by our definition of the set Y(x) and since the
uncertainty only affects the objective function, there always exists a feasible second-
stage solution y ∈ Y(x) for each first-stage solution x ∈ X.

Problem (2RP) has been already studied in the literature and several exact algo-
rithms as well as approximation algorithms have been proposed; see Sect. 1.1.
While several of the existing methods are able to handle uncertainty in the con-
straints it is often assumed that a polyhedral description of the sets X and Y(x)
is given. Besides the latter limitation most of the methods are based on dualiza-
tions or reformulations which destroy the structure of the original problem (CP).
Often the uncertainty set is even restricted to be a polyhedron. In this work we
derive the first oracle-based exact algorithm which solves Problem (2RP) for any
deterministic problem by solving alternately the deterministic Problem (CP) and
an adversarial problem presented later. For the deterministic problem any oracle
can be used which returns an optimal solution of (CP) for every possible sce-
nario in U. The advantage of the latter method is that the structure of the underly-
ing problem is preserved and any preliminary algorithms which were derived for
the underlying problem can be used. Furthermore our algorithm works for most
of the common convex uncertainty sets. Additionally we apply the column-and-
constraint generation algorithm (CCG) presented in [73] to Problem (2RP) and
compare it to our new method.

In Sect. 1.1 we will give an overview of the literature related to two-stage
robust optimization problems. In Sect. 2 we derive an oracle-based branch and
bound procedure to solve Problem (2RP). Furthermore we apply the results in
[73] to Problem (2RP). Finally in Sect. 3.1 we apply both methods to the unca-
pacitated singe-allocation hub-location problem and the capital budgeting prob-
lem and test it on classical benchmark instances from the literature.

Our main contributions:

(2RP)min
x∈X

max
c∈U

min
y∈Y(x)

f (x, y, c)

X ∶= {x ∈ {0, 1}n1 | ∃ y ∈ {0, 1}n2 ∶ (x, y) ∈ Z},

542	 N. Kämmerling, J. Kurtz

1 3

•	 We adapt the oracle-based algorithm derived in [29] and show that it can be used
to calculate a lower bound for Problem (2RP) which can be implemented in a
branch and bound procedure where the branching is performed over the first-
stage solutions. The calculation of the lower bound can be applied to the com-
mon convex uncertainty sets and is done by alternately calling an adversarial
problem over U and an oracle which returns an optimal solution of Problem (CP)
for a given scenario c ∈ U . Therefore any solution algorithm of the deterministic
problem can be used to calculate this lower bound.

•	 We apply the CCG algorithm presented in [73] to Problem (2RP) and show that
calculating the upper bound can also be done by the same oracle-based algo-
rithm as above.

•	 We apply the branch and bound procedure and the CCG algorithm to the unca-
pacitated single-allocation hub-location problem and the capital budgeting prob-
lem and show that the branch and bound procedure outperforms the CCG algo-
rithm.

1.1 � Related literature

Linear two-stage robust optimization or sometimes called adjustable robust optimi-
zation was first introduced in [12]. The authors show that the problem is NP-hard
even if X and Y are given by linear uncertain constraints and all variables are real;
see also [57]. In [12] the authors propose to approximate the problem by assuming
that the optimal values of the wait and see variables y are affine functions of the
uncertain parameters. These so called affine decision rules were studied in the robust
context in several articles for the case of real recourse; see e.g. [6, 11, 34, 37, 47, 54,
64, 71]. Furthermore in several works special cases are derived for which a decision
rule structure is known which is optimal; see [20, 22, 48]. Further non-linear deci-
sion rules are studied in [72].

Lower bounds for two-stage robust problems can be derived by considering a
finite subset of scenarios in U. Then for each selected scenario c a duplication of the
second-stage solution yc is added to the problem, see [7, 36, 45]. The authors in [24]
first dualize the inner minimization and maximization problem and then apply the
latter finite scenario approach to the dual problem to obtain stronger lower bounds.
Note that while the finite scenario approach can also be applied to the case when the
second-stage solutions are integers, for the dualization approach the second-stage
variables have to be relaxed to real variables. Unfortunately both lower bounds can
not be used in a branch and bound scheme since for a complete fixation of the first-
stage variables the bounds are not necessarily exact.

Exact methods for real recourse are based on the idea of Benders’ decomposition,
see [23, 44, 51, 70] or column-and-constraint generation [25, 73]. Note that for the
Benders’ decomposition approaches the second-stage solutions have to be real since
dualizations of the second-stage problem are used. In contrast to this the CCG algo-
rithm even works for integer recourse, see [74]. We will apply the latter method to
our problem in Sect. 2.2.

543

1 3

Oracle-based algorithms for binary two-stage robust…

For the case of integer recourse, i.e. the second-stage variables y are modeled as
integer variables, decision rules have been applied to Problem (2RP) in [18, 19] to
approximate the problem. Another approximation approach is called k-adaptability
and was introduced in [16]. The idea is to calculate k second-stage solutions in the
first-stage and allow to choose the best out of these solutions in the second-stage.
Clearly since the set of possible second-stage solutions is restricted compared to the
original problem, this idea leads to an approximation of the problem. Solution meth-
ods and the quality of this approximation were studied in [22, 46, 68]. In [46] it is
shown that the k-adaptability problem is exact if k is chosen larger than the dimen-
sion of the problem. The authors in [30, 31, 42] apply the k-adaptability concept to
one-stage combinatorial problems to calculate a set of solutions which is worst-case
optimal if for each scenario the best of these solutions can be chosen. They further-
more show that solving this problem can be done in polynomial time if an oracle for
the deterministic problem exists and if the number of calculated solutions is larger
or equal to the dimension of the problem. To solve the problem in the latter case
they present an oracle-based algorithm which we will use in Sect. 2. The k-adapt-
ability concept was also applied to the case that the uncertain parameters follow a
discrete probability distibution [33].

Besides the exact algorithm in [73, 74] approximation methods based on uncer-
tainty set splitting were derived in the literature to approximate two-stage robust
problems with integer recourse; see [17, 61].

For two-stage robust problems with non-linear robust constraints decision rules
have been applied in [58, 69]. The two-stage problem is studied for second order
conic optimization problems in [28]. In [9, 56] the authors derive robust counter-
parts of uncertain non-linear constraints. Note that all the latter results were devel-
oped for real second-stage solutions.

While this work was under peer review a similar approach to solve two-stage
robust optimization problems with uncertainty only affecting the objective func-
tion was published; see [5]. The authors study Problem (2RP) with linear objec-
tive functions and mixed-integer recourse variables, while the set Y(x) is modeled
by linear constraints. They study a relaxation of the lower bound presented in Sect. 2
which is implemented in a branch and bound procedure. In contrast to the algorithm
described in this work, the method in [5] is not based on the use of oracles for the
deterministic problem. Therefore it can not make use of fast solution methods for
(CP) as combinatorial algorithms or compact formulations with uncertain param-
eters appearing in the constraints; see Sect. 3.1.

2 � Binary two‑stage robustness

In this section we analyze the binary two-stage robust problem (2RP) with convex
uncertainty sets U and derive general lower bounds which can be calculated by an
oracle-based algorithm and which can be implemented in a branch and bound proce-
dure. The branching will be done over the first-stage solutions.

The classical approach to derive lower bounds in a branch and bound procedure
is relaxing the integrality and solving the relaxed problem. Applying this approach

544	 N. Kämmerling, J. Kurtz

1 3

to the second-stage decisions of problem (2RP) is not useful, since for a given x ∈ X
and c ∈ U an optimal solution of the relaxed second-stage problem may not be con-
tained in conv (Y(x)) , e.g. if the relaxation of Y(x) is a polytope which is not integral.
It may be even the case that a linear description of conv (Y(x)) is not known. There-
fore, even if all first-stage variables are fixed, the lower bound obtained by relaxing
the second-stage solution variables would not necessarily be exact and an optimal
solution can not be guaranteed using a branch and bound scheme. In the following
lemma we derive a lower bound for Problem (2RP) which is exact if all first-stage
solutions are fixed.

Lemma 1  Given U ⊂ ℝ
m , then

is a lower bound for Problem (2RP).

Proof  By changing the order of the outer minimum and the inner maximum in Prob-
lem (2RP) we obtain the inequality

Merging the two minimum expressions and using Z ⊆ conv (Z) yields

which proves the result. 	� ◻

Note that, since f is concave in c and since the pointwise minimum of concave
functions is always concave, we have to maximize a concave objective function in
Problem (LB). In [30] the authors analyze Problem (LB) for the case that f is a lin-
ear function in (x, y) and c. They prove that it can be solved in oracle-polynomial
time, i.e. by a polynomial time algorithm if solving the deterministic problem (CP)
is done by an oracle in constant time. Furthermore if we fix a solution x ∈ X , then
the bound (LB) is exact, which we prove in the following.

Proposition 1  If all first-stage variables are fixed then (LB) is equal to the exact
objective value of the fixed first-stage solution.

Proof  Let x̄ ∈ X be the fixed first-stage solution, then it holds

Clearly problem

is equivalent to

(LB)max
c∈U

min
(x,y)∈ conv (Z)

f (x, y, c)

min
x∈X

max
c∈U

min
y∈Y(x)

f (x, y, c) ≥ max
c∈U

min
x∈X

min
y∈Y(x)

f (x, y, c).

max
c∈U

min
x∈X

min
y∈Y(x)

f (x, y, c) ≥ max
c∈U

min
(x,y)∈ conv (Z)

f (x, y, c),

{(x, y) ∈ conv (Z) | x = x̄} = {x̄} × conv (Y(x̄)).

max
c∈U

min
(x,y)∈{x̄}× conv (Y(x̄))

f (x, y, c)

545

1 3

Oracle-based algorithms for binary two-stage robust…

which proves the result. 	� ◻

The result of Proposition 1 indicates that the lower bound (LB) can be integrated
in a branch and bound procedure.

In [30] it was proved that, given an oracle to solve the deterministic problem over
Y(x̄) for each given x̄ , if f is linear in (x, y) and c and under further mild assumptions,
Problem (1) can be solved in oracle-polynomial time. Together with Proposition 1
a direct consequence is that, if the dimension n1 of the first-stage solutions is fixed,
then we can enumerate over all possible first-stage solutions and compare the objec-
tive values in oracle-polynomial time. Hence, Problem (2RP) can be solved in poly-
nomial time given an oracle for the optimization problem over Y(x) for each x ∈ X.

The authors in [30] present a practical algorithm, based on the idea of column-
generation for the case that f is a linear function. Applied to the more general Prob-
lem (LB) the algorithm can be derived as follows: The algorithm starts with a subset
of solutions Z′ ⊂ Z , leading to problem

and then iteratively adds new solutions to Z′ until optimality can be ensured. The
solution which is added in each iteration is the one which has the largest impact on
the optimal value. To find this solution Problem (2) can be reformulated by applying
a level set transformation. The reformulation is given by

For an optimal solution (�∗, c∗) of the latter problem, we search for the solution
z ∈ Z which most violates the constraint f (z, c∗) ≥ �∗ , i.e. the solution with the larg-
est improvement on the optimal value of Problem (2). The latter task can be done
by minimizing the objective function f (z, c∗) over all z ∈ Z , i.e. solving the deter-
ministic problem (CP) under scenario c∗ by using any exact algorithm. If we can
find a z∗ ∈ Z such that f (z∗, c∗) < 𝜇∗ , then we add z∗ to Z′ and repeat the procedure.
If no such solution can be found, then f (z, c∗) ≥ �∗ holds for all z ∈ Z and there-
fore �∗ is the optimal value of (LB). The procedure described above is presented in
Algorithm 1.

(1)max
c∈U

min
y∈Y(x̄)

f (x̄, y, c)

(2)max
c∈U

min
z∈ conv (Z�)

f (z, c),

(3)

max �

s.t. f (z, c) ≥ � ∀z ∈ Z�

� ∈ ℝ, c ∈ U.

546	 N. Kämmerling, J. Kurtz

1 3

Note that the Problem in Step 3 depends on the uncertainty set U and on the proper-
ties of f. If f is a linear function in c, for polyhedral or ellipsoidal uncertainty sets this is
a continuous linear or quadratic problem, respectively. Both problems can be solved by
the latest versions of optimization software like CPLEX [49]. Therefore the algorithm
can be implemented for each deterministic problem by using any exact algorithm to
solve the deterministic problem in Step 4. The main advantage of this feature is that we
do not have to restrict to deterministic problems which can be modeled by a linear com-
pact formulation as it is the case in [5]. Instead we can use any combinatorial algorithm
or even mixed-integer formulations where the uncertain parameters appear in the con-
straints; see Sect. 3.1. We only require an arbitrary procedure which returns an optimal
solution for the given scenario. In [42] the authors applied the latter algorithm to the
min–max–min robust capacitated vehicle routing problem and showed that on classical
benchmark instances the number of iterations of Algorithm 1 is significantly smaller
than the dimension of Z in general.

Note that besides the optimal value of Problem (2RP) the algorithm returns a set
of feasible solutions Z′ ⊆ Z and not a solution in conv (Z) . By the correctness of the
algorithm the optimal solution in conv (Z) must be contained in conv

(
Z′
)
 and could be

calculated by finding the optimal convex combination of the solutions in Z′ which can
be done by solving the problem

for the given set Z′ . If f is continuous, quasi-convex in z and quasi-concave in c then
the latter problem is equivalent to

(4)

max
c∈U

min
𝜆 ≥ 0∑

z∈Z� 𝜆z = 1

z̃ =
∑

z∈Z� 𝜆zz

f (z̃, c)

min
𝜆 ≥ 0

z̃ =
∑

z∈Z� 𝜆zz

max
c∈U

f (z̃, c)

547

1 3

Oracle-based algorithms for binary two-stage robust…

by Sion’s theorem [65]. Dualizing the inner maximization problem over U (e.g. by
using the convex conjugate [9]) this is a continuous minimization problem. If f is a
linear function this problem is a linear or a quadratic problem for polyhedral or ellip-
soidal uncertainty, respectively. Nevertheless in our branch and bound procedure for
non-linear functions f the set Z′ is sufficient as we will see in Sect. 2.1. A practical
advantage of the set Z′ is that it contains a set of second-stage policies which can
be used in practical applications. Instead of solving the second-stage problem each
time after a scenario occured, which may be a computationally hard problem, we
can choose the best of the pre-calculated second-stage policies in Z′ for the actual
scenario. The latter task can be done by just comparing the objective values of all
solutions in Z′ for the given scenario. Note that the returned set of solutions need
not contain the optimal solution for each scenario. Nevertheless we will show in
Sect. 3.2.1 that the calculated solutions perform very well in average over random
scenarios in U.

2.1 � Oracle‑based branch and bound algorithm

Using the results of the previous section we can easily derive a classical branch
and bound procedure to solve Problem (2RP). The idea is to branch over the first-
stage solutions x ∈ X and to calculate the lower bound (LB) in each node of the
branch and bound tree to possibly prune the actual branch of nodes. All necessary
details needed to implement a branch and bound procedure are presented in the
following.

Handling fixations In each node of the branch and bound tree we have a given set of
fixations for the x-variables, i.e. a set of indices I0 ⊂ [n1] such that xi = 0 for each
i ∈ I0 and a given set of indices I1 ⊂ [n1] ⧵ I0 such that xi = 1 for each i ∈ I1 . All
indices in [n1] ⧵

(
I0 ∪ I1

)
 are free. Therefore in each node for the given fixations we

have to solve the problem

or to decide if the latter problem is infeasible. It is easy to see that the latter problem,
if it is feasible, can be solved by Algorithm 1 by including the given fixations into
the set Z. Note that here the oracle for the deterministic problem must be able to
handle variable-fixations. Nevertheless for most of the classical problems fixations
can easily be implemented in most algorithms.

Warm starts In each node of the branch and bound tree Algorithm 1 returns a set
Z′ ⊂ Z of feasible solutions satisfying the given fixations. For each possible child-
node we can select the set Z′′ ⊂ Z′ of solutions which satisfy the new fixations and
warm-start Algorithm 1 with the set Z′′ in the child node.

(5)

max
c∈U

min
(x, y) ∈ conv (Z)

xi = 0 ∀ i ∈ I0
xi = 1 ∀ i ∈ I1

f (x, y, c)

548	 N. Kämmerling, J. Kurtz

1 3

Branching strategy An easy branching strategy can be established as follows: For
the calculated set of solutions Z′ returned by Algorithm 1 we define the vector
x̄ ∈ [0, 1]n1 by

for all i ∈ [n1] , i.e. the value x̄i is the fraction of solutions in Z′ for which xi = 1
holds. We can then use any of the classical branching rules, e.g. we can decide to
branch on the index i for which the value x̄i is the closest to 0.5.

Another computationally more expensive approach is to calculate the optimal
convex combination of the solutions in Z′ , i.e. after calculating the optimal Z′ by
Algorithm 1 we calculate an optimal solution �∗ of Problem (4) and define

Now we can again use any classical branching-strategy on x̄ . Note that if a first-stage
variable has the same value in each of the solutions in Z′ then also the corresponding
entry of x̄ has this value.

When going over to the next open branch and bound node to be processed, we
choose the one with the smallest lower-bound.

Calculating feasible solutions In each node of the branch and bound tree we want
to find a feasible solution to update the upper bound on our optimal value. We do
this as follows: In each branch and bound node Algorithm 1 calculates a set Z′ ⊆ Z
of feasible solutions. If all of the generated solutions in Z′ have the same first-stage
solution x, then the optimal solution of (5) has binary first-stage variables and we
obtain a feasible solution x ∈ X which has the objective value �∗ returned by the
algorithm. If the first-stage variables are not the same for all z ∈ Z� then we can
either choose an arbitrary first-stage solution given by any z ∈ Z� or we can calculate
the objective value of all first-stage solutions in Z′ and choose the one with the best
objective value. To this end we have to solve

for any first-stage solution x̃ given in Z′ . Note that the latter problem again can be
solved by Algorithm 1 replacing the deterministic problem in Step 4 by

If X = {0, 1}n1 , as it is the case for the hub-location problem (see Sect. 3.2.1), then
calculating all objective values as above can be avoided and finding a good feasible
solution can be done by rounding each component of the vector x̄ calculated in the
latter paragraph.

(6)x̄i =
1

|Z�|
∑

(x,y)∈Z�

xi

(7)x̄ =
∑

z=(x,y)∈Z�

𝜆∗
z
x.

max
c∈U

min
y∈Y(x̃)

f (x̃, y, c),

min
y∈Y(x̃)

f (x̃, y, c∗).

549

1 3

Oracle-based algorithms for binary two-stage robust…

2.2 � Oracle‑based column‑and‑constraint algorithm

In [73] a column-and-constraint generation method (CCG) was introduced to solve
two-stage robust problems with real recourse variables. In [74] the authors show
how the algorithm can be applied to two-stage robust problems with mixed-integer
recourse variables. In both cases the algorithm is studied for problems with uncer-
tain constraints. In this section we will apply the algorithm to Problem (2RP), i.e.
to the special case of objective uncertainty, and show that we can again use Algo-
rithm 1 to solve one crucial step in the CCG. In the following we derive the CCG
algorithm for Problem (2RP). For more details see [73, 74].

Using a level set transformation Problem (2RP) can be reformulated by

If we choose any finite subset of scenarios
{
c1,… , cl

}
∈ U we obtain the lower

bound

which is equivalent to problem

The algorithm in [73] now iteratively calculates an optimal solution (x∗,�∗) of the
latter problem (8), which is a lower bound for Problem (2RP), and afterwards calcu-
lates a worst-case scenario cl+1 ∈ U by

The optimal value of Problem (9) is the objective value of solution x∗ ∈ X and
therefore an upper bound for Problem (2RP). Afterwards new variables yl+1 and the
constraint

are added to Problem (8) and we iterate the latter procedure until

min �

s.t. � ≥ max
c∈U

min
y∈Y(x)

f (x, y, c)

x ∈ X, � ∈ ℝ.

min �

s.t. � ≥ min
y∈Y(x)

f (x, y, ci) i = 1,… , l

x ∈ X, � ∈ ℝ,

(8)

min �

s.t. � ≥ f (x, yi, ci) i = 1,… , l

x ∈ X, � ∈ ℝ, yi ∈ Y(x) i = 1,… , l.

(9)cl+1 = argmax
c∈U

min
y∈Y(x∗)

f (x∗, y, c).

� ≥ f
(
x, yl+1, cl+1

)

�∗
≥ max

c∈U
min

y∈Y(x∗)
f (x∗, y, c).

550	 N. Kämmerling, J. Kurtz

1 3

Clearly a solution (x∗,�∗) fulfilling the latter condition is optimal for Problem (2RP).
Following the proof of Proposition 1 the worst-case scenario in (9) can be calculated
by Algorithm 1. This can be done since we do not consider uncertainty in the con-
straints, while in the more general framework in [73] this is not possible.

The main difference of the latter procedure to our branch and bound algorithm
is that in a branch and bound node only a subset of first-stage variables are fixed
while the rest are relaxed. Then we use Algorithm 1 to calculate a lower bound for
the given fixations. In the CCG procedure in each iteration a first-stage solution is
calculated by Problem (8) and therefore all variables are fixed when Algorithm 1
is applied to calculate the worst-case scenario. Nevertheless the number of con-
straints and the number of variables of Problem (8) increase iteratively, since each
second-stage variable has to be duplicated in each iteration, while in the branch and
bound procedure we always iterate over the same number of first-stage variables. In
Sect. 3.2.1 we will compare both algorithms on benchmark instances of the unca-
pacitated single-allocation hub location problem and the capital budgeting problem.

3 � Applications

3.1 � The uncapacitated single‑allocation hub location problem with uncertain
demands

In this section the oracle-based branch and bound algorithm is exemplarily applied
to the single-allocation hub location problem which can be naturally defined as a
two-stage problem. Furthermore due to its quadratic objective function it perfectly
fits into the non-linear framework.

Hub-location problems address the strategic planning of a transportation network
with many sources and sinks. In many applications sending all commodities over
direct connections would be too expensive in operation. Instead, some locations are
considered to serve as transshipment points and are then called hubs. Thus, strongly
consolidated transportation links are established. The bundling of shipments usually
outweighs the additional costs of hubs and detours. Important applications of this
problem arise in air freight [50], postal and parcel transport services [41], telecom-
munication networks [52] and public transport networks [59]. The recent surveys
of [3, 35] provide a comprehensive overview of the various variations and solution
approaches of the hub location problem.

The main source of uncertainty in single-allocation hub location problems are
demand fluctuations. Thus, it is important to include this uncertainty when deciding
hub locations and allocations of the nodes to the hubs. Installing a hub is a long-term
decision which lasts for many years or even for several decades. Nonetheless, the
allocation to the hub nodes are mid-to-short-term decisions as they can be changed
over time. In [62] the variable allocation variant for single-allocation hub location
problems under stochastic demand uncertainty is proposed.

We consider a directed graph G = (N,A) , where N = {1, 2,… , n} corresponds
to the set of nodes that denote the origins, destinations, and possible hub loca-
tions, and A is a set of arcs that indicate possible direct links between the different

551

1 3

Oracle-based algorithms for binary two-stage robust…

nodes. Let wij ≥ 0 be the amount of flow to be transported from node i to node j
and dij the distance between two nodes i and j. We denote by Oi =

∑
j∈N wij and

Di =
∑

j∈N wji the total outgoing flow from node i and the total incoming flow to
node i, respectively. For each k ∈ N , the value fk represents the fixed set-up cost
for locating a hub at node k. The cost per unit of flow for each path i − k − m − j
from an origin node i to a destination node j passing through hubs k and m respec-
tively, is �dik + �dkm + �dmj , where �, � , and � are the nonnegative collection,
transfer, and distribution costs respectively and dik , dkm , and dmj are the distances
between the given pairs of nodes. Typically � ≤ min {� , �} since otherwise using
a hub would not be beneficial. Note that if hub nodes are fully interconnected,
every path between an origin and a destination node will contain at least one and
at most two hubs. The SAHLP consists of selecting a subset of nodes as hubs
and assigning the remaining nodes to these hubs such that each spoke node is
assigned to exactly one hub with the objective of minimizing the overall costs of
the network.

To formulate the SAHLP, we follow the first formulation of this problem intro-
duced by O’Kelly [60]. Two types of decision variables are introduced. First, the

variables indicate whether a node is used as a hub in the transportation network.
Second, the

variables show how the nodes are allocated to the hub nodes. SAHLP can then be
formulated as the following binary quadratic program:

The objective is to minimize the total costs of the network which includes the costs
of setting up the hubs, the costs of collection and distribution of items between the
spoke nodes and the hubs, and the costs of transfer between the hubs. Constraints
(11) indicate that each node i is allocated to precisely one hub (i.e. single alloca-
tion) while Constraints (12) enforce that node i is allocated to a node k only if k is
selected as a hub node. The binary conditions are enforced by Constraints (13).

xk =

{
1 if node k is a hub node

0 otherwise.

yik =

{
1 if node i is allocated to a hub located at node k

0 otherwise.

(10)min
∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik +
∑

i,k,j,m∈N

� wijdkmyikyjm

(11)s.t.
∑

k∈N

yik = 1 i ∈ N

(12)yik ≤ xk i, k ∈ N

(13)yik ∈ {0, 1}, xk ∈ {0, 1} i, k ∈ N.

552	 N. Kämmerling, J. Kurtz

1 3

In order to solve SAHLP, many solution methods have been proposed in the
literature. The classical approach to obtain an exact solution is to linearize the
quadratic objective function. In [41, 66] two mixed-integer linear programming
(MILP) formulations for the problem have been proposed which are based on a
path and a flow representation, respectively. The path-based formulation in [66]
has O(|N|4) variables and O(|N|3) constraints and its linear programming (LP)
relaxation was shown to provide tight lower bounds. However, due to the large
number of variables and constraints, the path-based formulation can only be
solved for instances of relatively small sizes. Alternatively, the flow-based formu-
lation of [41] uses only O(|N|3) variables and O(|N|2) constraints to linearize the
problem. To formulate the flow-based SAHLP model (SAHLP-flow), new vari-
ables zikm are defined as the total amount of flow originating at node i and routed
via hubs located at nodes k then m, respectively. SAHLP-flow is formulated as

Similar to SAHLP, the objective function minimizes the hub setup costs, the costs
of collection and distribution, and the inter-hub transfer costs. Besides Constraints
(11), (12), (13) which are also used in SAHLP, Constraints (14) are flow balance
constraints while Constraints (15) ensure that a flow is possible from spoke i to hub
k only if node i is allocated to hub k; see [38]. Finally, Constraints (16) indicate the
non-negativity restriction on the variables z.

The presented flow-based formulation is typically regarded to be the most
effective linearized formulation in order to obtain exact solutions for the single-
allocation hub location problem. In our computations we use this simple solu-
tion method to solve Step 4 in Algorithm 1. Note that although in the flow-based
formulation the uncertain parameters wij appear in the constraints, we can use
this formulation as an oracle in our algorithm while other methods which require
linear programming formulations without uncertainty in the constraints can not
make use of it.

The SAHLP splits up naturally in first- and second-stage problems as the deci-
sion variables in the SAHLP are subject to different planning horizons as dis-
cussed above. Therefore, the two-stage robust SAHLP can be modeled as follows:

(14)

min
∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik +
∑

i∈N

∑

k∈N

∑

m∈N

� dkmzikm

s.t. (11), (12), (13)
∑

m∈N

zikm −
∑

m∈N

zimk = Oiyik −
∑

j∈N

wijyjk ∀i, k

(15)
∑

m∈N

zikm ≤ Oiyik ∀i, k

(16)zikm ≥ 0 ∀i, k,m.

553

1 3

Oracle-based algorithms for binary two-stage robust…

where

We assume that U ⊂ ℝ
n2

+
 is a convex uncertainty set. Note that this classical formula-

tion is a quadratic two-stage robust problem. To solve Problem (SAHLP-2RP) we
use the branch and bound procedure described in Sect. 2. To this end lower bounds
can be calculated by Algorithm 1 implementing the flow linearization SAHLP-
flow in CPLEX [49] to solve the oracle in Step 4. The variable fixations in each
node of the branch and bound tree can be added as constraints to the SAHLP-flow
formulation.

3.1.1 � Computational results

In this section we apply the branch and bound method derived in Sect. 2.1 and the
CCG method presented in Sect. 2.2 to the SAHLP. Both algorithms were imple-
mented in C++. For the branch and bound procedure we calculate the lower and
upper bounds by Algorithm 1 as discussed in the previous sections. The dual solu-
tion x̄ is calculated as presented in (6). The branching is performed on the variable x̄i
which is the closest to 0.5. A feasible solution is calculated by rounding the entries
of x̄ to the closest integer value. Note that by this rounding procedure we always
obtain a feasible first-stage solution for the SAHLP since we do not have restrictions
on the first-stage variables. For the selection of the next branch and bound node to
be processed we use the best-first strategy, i.e. the node with the smallest dual bound
is processed next.

For the CCG algorithm we implemented Problem (8) in CPLEX 12.8 while
Problem (9) is solved by Algorithm 1. In Algorithm 1 the dual problem in Step 3
is solved by CPLEX 12.8 [49]. As deterministic oracle in Step 4 we use the flow
linearization SAHLP-flow presented in Sect. 3.1 which was also implemented in
CPLEX 12.8. After termination of Algorithm 1 we delete all solutions z from the
calculated set Z′ which have a non-zero slack in the dual problem in Step 3, i.e. for
which f (z, c∗) > 𝜇∗ in the last iteration of Algorithm 1. By dualizing the dual prob-
lem in Step 3 it can be shown that the optimal value does not change by throwing
out all calculated solutions with non-zero slack.

Generation of random instances We generated random instances as follows: As
basis for our instances we use a selection of instances of the AP and the CAB data-
sets which were intensively studied in the hub location literature. The AP instances
are based on the mail flows of Australia Post and were introduced in [41]. The

(SAHLP-2RP)

min
x∈{0,1}N

max
w∈U

min
y∈Y(x)

∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik

+
∑

i,k,j,m∈N

� wijdkmyikyjm,

Y(x) =

{
y ∈ {0, 1}N×N ∶

∑

k∈N

yik = 1, yik ≤ xk ∀i, k ∈ N

}
.

554	 N. Kämmerling, J. Kurtz

1 3

CAB instances contain airline passenger interactions between 25 major cities in
the United States of America and were first studied in [60]. Both datasets can be
found in [8]. Since there is only one CAB instance available, we introduce three
additional instances (cab1 to cab3) by varying the demand values as follows: For
each node pair i, j ∈ N , the demand values are drawn randomly from the interval
[0.01w̄ij, 10w̄ij] , where w̄ij is the demand value of the original cab instance. The num-
ber of locations n together with its pairwise distances dij are given by the instance
data. The set-up costs for hub locations are also given by the instance data in case of
the AP instances. According to [4], the set-up cost at node k are set to 15 log(Ok) for
the CAB instances. The collection, transfer and distribution costs are set to � = 3 ,
� = 0.75 and � = 2 for the AP instances while for the CAB instances � = 1 , � = 1
and � is varied in {0.2, 1} . For each instance and each � ∈

{
0.02n2, 0.1n2

}
 , rounded

down if fractional, we generate 10 random budgeted uncertainty sets which are
defined by

Here w̄ are the flows given by the AP or CAB instances, respectively, while ŵij is
chosen randomly in [0, w̄ij] for each i, j ∈ N , i.e. the change in demand can be at most
100% of the given mean w̄ij.

Analysis of results The results for the branch and bound procedure are presented in
Tables 1 and 2. Each row shows the average over all 10 random instances of the fol-
lowing values from left to right: The instance name; the number of locations n for
the AP instances; the value � of the budgeted uncertainty set U� ; the value of � for
the CAB instances; the gap �det in %, i.e. the percental difference between the opti-
mal value of Problem (2RP) and the deterministic problem with weights w̄ ; the total
solution time t in seconds; the number of nodes solved in the branch and bound tree;
the percental difference �root of the upper bound and the lower bound calculated for
the root problem of the branch and bound tree; the total number of oracle calls; the
average number of iterations ilb of Algorithm 1 to calculate the lower bounds; the
average number of iterations iub of Algorithm 1 to calculate the upper bounds; the
number of solutions returned by the branch and bound method or the number of
iterations of the CCG, respectively; the average percental difference 𝛥 (over 10 ran-
dom scenarios in U� ) between the best solution in Z′ and the deterministic optimal
solution in each scenario. To be more precicely, to obtain the value 𝛥 we generate
10 random scenarios in U� by the following procedure: We first create n2 equally
distributed random numbers si in [0,�] and define s0 ∶= 0 . Assume the numbers are
given in increasing order. We then define �i ∶= si − si−1 . If � ≤ � is not true we start
the procedure again. The random scenario is then given by w with

U𝛤 =

{
w ∈ ℝ

n2 | wij = w̄ij + 𝛿ijŵij,
∑

i,j∈N

𝛿ij ≤ 𝛤 , 𝛿ij ∈ [0, 1]

}
.

wij = w̄ij + 𝛿in+jŵij.

555

1 3

Oracle-based algorithms for binary two-stage robust…

Table 1   Results of the branch and bound procedure for AP instances

Inst. n � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

10LL 10 2 3.4 0.9 2.2 2.5 8.4 2.3 1.6 1.0 0.0
10LL 10 10 10.8 1.8 3.6 4.5 15.2 2.8 1.4 1.0 0.0
20LL 20 8 5.0 3.4 1.0 0.0 3.0 2.0 1.0 1.0 0.0
20LL 20 40 14.5 10.4 2.4 9.4 8.8 2.4 1.0 1.0 0.0
25LL 25 12 4.4 10.1 1.0 0.0 4.0 2.0 2.0 1.0 0.0
25LL 25 62 13.3 11.7 1.0 0.0 4.4 2.2 2.2 1.2 0.0
40LL 40 32 5.9 150.5 1.2 26.6 3.9 2.1 1.0 1.0 0.0
40LL 40 160 15.1 223 1.6 5.6 6.0 2.6 1.1 1.0 0.0
50LL 50 50 7.0 530.3 1.4 10.7 5.6 2.3 1.9 1.0 0.0
50LL 50 250 17.1 1308.7 3.2 33.9 13.3 2.4 1.6 1.2 0.0
60LL 60 72 8.3 888.9 1.0 0.0 4.0 2 2.0 1.0 –
60LL 60 360 19.1 1001.3 1.0 0.0 4.0 2.0 2.0 1.0 –
70LL 70 98 7.9 1977.4 1.0 0.0 4.2 2.1 2.1 1.1 –
70LL 70 490 18.5 8632.2 3.2 11.6 17.0 3.0 2.1 1.0 –
75LL 75 112 8.5 5956.1 1.8 7.6 7.5 2.4 1.9 1.0 –
75LL 75 562 18.8 3349.2 1.0 0.0 4.0 2.0 2.0 1.0 –
90LL 90 162 9.8 7460.1 1.0 0.0 4.0 2.0 2.0 1.0 –
90LL 90 810 21.1 12,681.1 1.6 0.0 6.7 2.1 2.0 1.0 –
Average 48.9 182.9 11.6 2455.4 1.7 6.2 6.9 2.3 1.7 1.0 0.0

Table 2   Results of the branch and bound procedure for CAB instances

All instances have n = 25 locations

Inst. � � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

cab0 12 0.2 4.6 17.0 1.4 1.4 4.7 2.2 1.1 1.0 0.0
cab0 12 1.0 9.7 217.9 2.6 9.4 11.8 2.7 1.8 1.0 0.0
cab0 62 0.2 12.0 21.1 1.8 3.3 6.3 2.1 1.2 1.0 0.0
cab0 62 1.0 22.0 258.3 2.8 4.8 11.8 2.3 1.8 1.0 0.0
cab1 12 0.2 5.1 19.3 1.6 1.7 6.6 2.1 1.9 1.0 0.0
cab1 12 1.0 11.3 405.1 7.8 5.2 36.9 2.8 1.9 1.0 0.0
cab1 62 0.2 12.8 11.3 1.0 0.0 4.0 2.0 2.0 1.0 0.0
cab1 62 1.0 23.4 353.9 5.2 6.2 25.7 2.8 2.1 1.1 0.0
cab2 12 0.2 4.9 19.5 1.4 1.6 4.7 2.2 1.1 1.0 0.0
cab2 12 1.0 10.8 145.6 2.0 6.1 8.3 2.3 1.8 1.0 0.0
cab2 62 0.2 12.9 17.4 1.4 1.7 4.7 2.2 1.1 1.0 0.0
cab2 62 1.0 23.6 114.2 1.4 0.4 6.1 2.4 2.1 1.2 0.0
cab3 12 0.2 6.2 57.5 3.4 29.8 14.9 2.9 1.4 1.0 0.0
cab3 12 1.0 10.8 171.8 2.6 7.4 11.7 2.4 2.1 1.1 0.0
cab3 62 0.2 14.7 27.5 1.8 5.1 6.3 2.4 1.1 1.0 0.0
cab3 62 1.0 23.3 173.3 2.4 2.8 11.8 2.6 2.3 1.3 0.0
Average 37.0 0.6 13.0 126.9 2.5 5.4 11.0 2.4 1.7 1.0 0.0

556	 N. Kämmerling, J. Kurtz

1 3

After generating 10 random scenarios w1,…w10 , in each scenario we compare the
costs of the best solution in Z′ to the costs of the optimal solution in the scenario, i.e.
for the optimal first-stage solution x̄ we define

and set 𝛥 to the average of all �l . For the CCG algorithm we define Z′ as the set of
solutions calculated in the last iteration by Problem (8). Note that since the set of
optimal second-stage solutions in Z′ is not unique and especially may not be the
same for both algorithms, the value of 𝛥 can be different for the branch and bound
procedure and for the CCG.

The results for the AP instances are shown in Table 1. The gap �det increases
with � and with the dimension. The number of calculated nodes in the branch and
bound tree is in most cases close to 1 and seems to remain constant with increas-
ing dimension. Nevertheless the run-time increases with the dimension and with �
which is mainly due to the increasing run-time of Algorithm 1. Here with higher
dimension the calculation time of the deterministic problem increases, while with
increasing � the number of iterations of Algorithm 1 increases which was already
observed in [30, 42]. Another positive observation is that the root gap is very small
in general, mostly 0 and never larger than 34% . The number of iterations of Algo-
rithm 1 is larger for the calculations of the lower bound than for the upper bound,
which is because not all hub variables are fixed in the former case. Nevertheless the
number of iterations is very low and never larger than 2.2 for the lower bound and
1.2 for the upper bound. This leads to a very small number of policies calculated by
Algorithm 1 and to a very small number of oracle calls in total. Finally the values
of 𝛥 indicate that the returned second-stage solutions are optimal in most of the sce-
narios, as 𝛥 is 0 for most of the instances. Note that for larger dimensions due to the
time consuming computations we did not determine the 𝛥 values.

The computations for the CAB instances are presented in Table 2. The results
look similar to the results related to the AP instances. The gap �det is larger for larger
values of � and �  . The root gap is again very small for most of the instances and
never larger than 30% . The number of nodes in the branch and bound tree is very
low, but in general higher than that for the AP instances. Nevertheless it is never
larger than 8% in average. In contrast to the AP instances the total run-time does not
increase much with increasing �  . Instead the run-time increases significantly with
increasing � . The reason for this is the larger number of iterations performed by
Algorithm 1 to calculate the lower and the upper bounds. Comparing the calculated
solutions to the optimal values on random scenarios, the percental difference 𝛥 is
again very close to 0 for all of the instances.

All results for the CCG algorithm are presented in Tables 3 and 4. Each row
shows the average over all 10 random instances of the following values from left to
right: The instance name; the number of locations n for the AP instances; the value
� of the budgeted uncertainty set U� ; the value of � for the CAB instances; the total
solution time t in seconds; the average time tlb in seconds to solve the lower bound
Problem (8); the average time tub in seconds to solve the upper bound Problem (9);

𝛥l ∶=
min(x̄,y)∈Z� f (x̄, y,wl) −miny∈Y(x̄) f (x̄, y,w

l)

min(x̄,y)∈Z� f (x̄, y,wl)

557

1 3

Oracle-based algorithms for binary two-stage robust…

the number of solutions l calculated by Problem (8) which is equal to the number of
iterations of the CCG algorithm; the average percental difference 𝛥 (over 10 random
scenarios w̃ ∈ U𝛤 ) between the best of the solutions calculated in the last iteration
by Problem (8) and the deterministic optimal solution in each scenario w; see the
definition of 𝛥 above.

The results of the CCG algorithm are less convincing. We could solve AP
instances up to 50 locations in reasonable time, while for the branch and bound pro-
cedure we managed to solve instances with 90 locations. Furthermore the runtime

Table 3   Results of the CCG
algorithm for AP instances

Inst. n � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

10LL 10 2 1.8 0.4 0.1 3.7 0.0
10LL 10 10 5.9 1.1 0.1 4.3 0.0
20LL 20 8 9.1 2.3 0.4 3.0 0.0
20LL 20 40 73.6 14.6 0.4 3.8 0.0
25LL 25 12 31.1 8.5 1.1 3.0 0.0
25LL 25 62 37.3 10.5 1.1 3.0 0.0
40LL 40 32 4682.0 1093.9 5.3 3.9 0.0
40LL 40 160 2660.3 720.9 5.5 3.3 0.0
50LL 50 50 8606.9 2230.8 15.2 3.6 –
50LL 50 250 57,557.4 12,632.5 14.1 4.1 –
Average 29.0 62.6 7366.5 1671.6 4.3 3.6 0.0

Table 4   Results of the CCG
algorithm for CAB instances

All instances have n = 25 locations

Inst. � � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

cab 12 0.2 56.6 15.7 0.9 3.1 0.0
cab 12 1 4526.9 850.7 1.1 4.0 0.0
cab 62 0.2 78.8 19.8 0.9 3.4 0.0
cab 62 1 9663.3 1798.0 1.2 4.1 0.0
cab1 12 0.2 53.1 12.8 1.0 3.2 0.0
cab1 12 1 3131.2 660.4 1.0 4.6 0.0
cab1 62 0.2 32.2 8.8 1.0 3.0 0.0
cab1 62 1 10,760.1 1914.9 1.0 5.0 0.0
cab2 12 0.2 67.3 18.2 0.8 3.2 0.0
cab2 12 1 1616.5 402.0 1.0 3.6 0.0
cab2 62 0.2 63.0 16.2 0.8 3.3 0.0
cab2 62 1 1000.3 294.4 1.1 3.2 0.0
cab3 12 0.2 285.4 57.3 0.9 4.0 0.0
cab3 12 1 1382.1 366.1 1.0 3.5 0.0
cab3 62 0.2 121.4 30.9 0.8 3.5 0.0
cab3 62 1 1899.3 492.3 1.1 3.7 0.0
Average 37.0 0.6 2171.1 434.9 1.0 3.7 0.0

558	 N. Kämmerling, J. Kurtz

1 3

is at least three times as large as for the branch and bound method for most of the
instances and even larger for growing dimension. The same effect holds for the CAB
instances. Here the runtime is much higher for the instances with � = 1 . The large
runtime of the CCG is mainly caused by the lower bound problem (8). The calcula-
tions of the upper bound, solved by Algorithm 1, are less time consuming, at most
6 s in average. The number of calculated solutions, i.e., the number of iterations,
is slightly larger than that for the branch and bound procedure but still very small,
never larger than 5. A positive effect is that the performance 𝛥 of the calculated
solutions on random scenarios is very close to 0 for all instances.

In Fig. 1 we compare the runtimes in seconds of both algorithms. The results
show that the runtime of the CCG method increases rapidly for more than 25 loca-
tions and is always much larger than the runtime of the branch and bound method.
For the larger value of � the run-time of the CCG method explodes if n is larger
than 40.

Analysis of results for hard instances For the realistic instances calculated above
the number of nodes in the branch and bound tree, the number of iterations of the
CCG as well as the number of iterations of Algorithm 1 is very low. The same effect
occurs for most of the randomly generated instances we tested. To test the bound-
aries of our algorithm we generated further instances which are generated as the
instances above with the only difference that the values ŵij are randomly drawn in
[0, 10wij] , i.e. the uncertainty sets are much larger. Furthermore for the AP instances
we varied � ∈ {0.75, 1.5} . The results for the branch and bound procedure are pre-
sented in Table 5. For the CCG algorithm we could not even solve instances with 25
locations in reasonable time.

Fig. 1   Development of the runtime in seconds of both algorithms

559

1 3

Oracle-based algorithms for binary two-stage robust…

The results in Table 5 show that the number of nodes in the branch and bound
tree and the number of iterations of Algorithm 1 are larger than those for the realistic
instances above but still never get larger than 33 and 12 respectively. Both values are
larger for the CAB instances. The number of nodes decreases with increasing dimen-
sion and with increasing � . The same holds for the root gap which is lower than
that for the realistic instances for most of the instances. Clearly the gap �det is much
larger than for the smaller uncertainty sets. Similar to the results above the number
of iterations for the calculations of the lower and the upper bounds and therefore
the number of total oracle calls seem to be independent of the dimension. The same
holds for the number of calculated second-stage solutions. The performance of these
solutions over random scenarios is worse than for the realistic instances above, but
still very small and never larger than 0.3% . For the CAB instances it is larger for
� = 1 . For the CCG algorithm the results are not very convincing. Even for instances
with 20 locations finding an optimal solution took more than 16 hours in average
for � = 0.75 . Interestingly here the instances with smaller � were harder to solve
(Table 6).

In Fig. 2 we present the development of several problem parameters over � for the
20LL instance. All values are the average over 10 random uncertainty sets with ran-
dom deviations ŵij ∈ [0, 10w̄ij] . Cost parameters are defined as above by � = 3 and
� = 2 . Figure 2 shows that the number of nodes in the branch and bound tree rap-
idly decreases with increasing � . Furthermore the number of iterations performed
by Algorithm 1 to calculate the upper bounds and the number of returned policies

Table 5   Results of the branch and bound procedure for instances with large deviations and � = 0.1n2

Inst. n � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

10LL 10 0.75 62.2 14.3 21.4 5.5 165.8 5.7 1.9 1.1 0.0
10LL 10 1.5 97.9 8.8 11.4 2.9 90.7 5.7 2.5 2.2 0.0
20LL 20 0.75 107.9 152.1 13.4 6.8 113.2 6.6 2.0 1.3 0.0
20LL 20 1.5 145.8 192.0 10.0 5.6 101.5 6.1 3.4 2.6 0.1
25LL 25 0.75 105.8 403.3 17.8 3.9 135.6 5.5 1.9 1.1 0.0
25LL 25 1.5 142.0 726.5 15.4 6.0 167.4 7.5 3.3 2.6 0.1
40LL 40 0.75 128.2 4095.7 13.2 4.7 111.6 6.4 2.4 1.2 0.1
40LL 40 1.5 162.9 5671.4 6.8 1.5 72.2 6.6 3.8 2.3 0.1
50LL 50 0.75 134.2 2542.0 5.4 2.4 29.9 3.3 2.2 1.1 –
50LL 50 1.5 174.5 19,425.2 6.2 0.5 74.7 7.3 4.5 3.4 –
cab 25 0.2 100.6 884.8 32.8 3.2 313.9 7.4 1.8 1.4 0.0
cab 25 1.0 194.8 13,718.3 22.0 1.1 424.3 11.1 7.4 4.8 0.2
cab1 25 0.2 114.5 865.6 34.2 5.0 325.1 7.1 2.3 1.8 0.0
cab1 25 1.0 219.3 15,129.7 22.6 0.6 508.2 12.6 7.8 4.8 0.3
cab2 25 0.2 116.1 570.9 21.0 3.6 186.6 6.5 1.7 1.3 0.0
cab2 25 1.0 233.6 16,103.7 18.8 1.0 418.4 11.4 7.3 6.0 0.2
cab3 25 0.2 113.7 312.5 12.8 3.0 98.1 5.9 1.5 1.0 0.0
cab3 25 1.0 229.9 10,954.0 15.0 0.8 254.3 10.0 6.1 4.9 0.2
Average 27.2 0.9 143.6 5098.4 16.7 3.2 199.5 7.4 3.5 2.5 0.1

560	 N. Kämmerling, J. Kurtz

1 3

in Z′ increases until � = 2 and afterwards slowly decreases. The number of itera-
tions performed by Algorithm 1 to calculate the lower bounds is nearly constant and
slightly decreases. The root gap of the branch and bound procedure decreases with
increasing � and tends to 0. In contrast to this the performance of the returned poli-
cies in Z′ , indicated by 𝛥 , seems to get worse with increasing � , and seems to be
constant for � ≥ 2 . Nevertheless all 𝛥 values are very small and remain close to 0.2%
for � ≥ 2.

In summary the results show that the number of nodes of the branch and bound
procedure and the number of iterations of Algorithm 1 are very low for the real-
istic instances of the SAHLP. Hence we could solve instances with up to 90 loca-
tions in less than 4 h. Furthermore the number of calculated policies |Z′| is very low
for the hub location problem but they perform very well on random scenarios. For
the larger uncertainty sets, the number of nodes of the branch and bound procedure
and the number of iterations of Algorithm 1 is larger but is still very low compared
to the dimension of the problem. Furthermore the latter values seem to be nearly
constant with increasing dimension. The runtime and the number of iterations of
Algorithm 1 increase with increasing � while the number of nodes of the branch and
bound tree decreases.

An example of an optimal solution of a random instance with 20 locations and ŵij
randomly drawn in [0, 10w̄ij] is shown in Fig. 3. The figure shows the optimal solu-
tion of the nominal scenario w̄ and the three returned solutions in Z′ . The number

Table 6   Results of the CCG for
instances with large deviations
and � = 0.1n2

Inst. n � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

10LL 10 0.75 455.9 20.9 0.1 14.3 0.0
10LL 10 1.5 124.0 9.9 0.1 9.8 0.0
20LL 20 0.75 59,150.5 3471.2 0.6 15.5 0.0
20LL 20 1.5 8445.2 880.2 0.8 8.2 0.1
Average 15.0 1.1 17,043.9 1095.6 0.4 12.0 0.0

Fig. 2   Development of the parameters of the branch and bound procedure over � for the 20LL instance
with random deviations ŵ

ij
∈ [0, 10w̄

ij
] , � = 3 and � = 2 . The graphs in the right plot are presented in

logarithmic scale

561

1 3

Oracle-based algorithms for binary two-stage robust…

of hubs is larger in the two-stage robust solution than in the deterministic solution
since for flexible re-allocation after a scenario occured it can be beneficial to build
further hubs in advance. Furthermore the figure indicates that a hub which is used
by many locations in the deterministic solution may not be used by the second-stage
reactions of the two-stage solution.

3.2 � The capital budgeting problem

In this section the oracle-based branch and bound algorithm and the CCG algorithm
are exemplarily applied to the two-stage robust capital budgeting problem studied in
[5] which can be naturally defined as a two-stage problem.

The capital budgeting problem (CB) is an investment planning problem, where a
subset of n projects has to be selected. Each project i ∈ [n] has costs ci and an uncer-
tain profit p̃i which depends on a set of m risk factors 𝜉 ∈ U ⊂ ℝ

m . The profits are
given by p̃i(𝜉) = (1 +

1

2
Q⊤

i
𝜉)p̄i , where p̄i are the nominal profits and Qi is the i-th

row of the factor loading matrix. For each project the company can decide if it wants
to invest in the project here-and-now or if it wants to wait until the risk factors are
known. If an investment is postponed to the second stage the profit generated by the

Deterministic Solution Solution 1

Solution 2 Solution 3

(a) (b)

(c) (d)

Fig. 3   The optimal solution of the nominal scenario w̄ (top left) and the optimal two-stage robust solu-
tion presented by all 3 solutions in Z′ returned by Algorithm 1 in the optimal branch and bound node for
a 20LL instance with � = 1.5 and � = 40

562	 N. Kämmerling, J. Kurtz

1 3

project is f p̃i where 0 ≤ f < 1 . The costs of a project are the same in the first and the
second stage. The company has a given budget B for investing in projects and can
additionally take out a loan of volume C1 with costs � in the first stage and a loan of
volume C2 with costs �� in the second stage where 𝜇 > 1 . The aim is to maximize
the worst-case profit. This problem can be formulated as

where X =
{
(x, x0) ∈ {0, 1}n+1 | c⊤x ≤ B + C1x0

}
 is the set of feasible first-stage

solutions and

is the set of feasible second-stage solutions. For more details see [5].

3.2.1 � Computational results

In this section we apply the branch and bound method derived in Sect. 2 and the
CCG method presented in Sect. 2.2 to the capital budgeting problem. The imple-
mentation of both algorithms is the same as in Sect. 3.1. As deterministic oracle in
Step 4 of Algorithm 1 we implemented the deterministic version of the integer pro-
gramming formulation of Problem (17) in CPLEX 12.8. Note that since we consider
a maximization problem here the terms upper bound and lower bound are swapped.

We compare both variants of calculating a dual solution x̄ presented in (6) and (7)
which we denote by DualSol-Avg and DualSol-Opt, respectively. The branching is
performed on the variable which is the closest to 0.5. A feasible first-stage solution
is obtained by rounding the entries of x̄ to the closest integer value. If this solution is
not feasible we choose the first solution which was returned by Algorithm 1 after the
calculation of the upper bound.

For our tests we use the original instances studied in [5]. The authors generate
random instances with n ∈ {10, 20, 30, 40, 50, 100} projects and m ∈ {4, 6, 8} risk
factors. For each combination 20 instances are generated. The uncertainty set is
given by the box U = [−1, 1]m . For more details see [5].

Analysis of results The results for the branch and bound procedure are presented in
Tables 7 and 8. Each row in Table 7 shows the average over all 20 instances of the
following values from left to right: The number of projects n; the number of risk
factors m; the total number of nodes solved in the branch and bound tree; the total
number of oracle calls; the total time t in seconds to solve the instance to optimality;
the percentage of instances which could be solved to optimality during the timelimit
of 7200 s.

Each row in Table 8 shows the average over all 20 instances of the following
values from left to right: The number of projects n; the number of risk factors m;
the gap �det in %; the root-gap �root in %; the average number of iterations iub of
Algorithm 1 to calculate the upper bounds; the average number of iterations ilb of

(17)max
(x,x0)∈X

−𝜆x0 + p̄⊤(x + fy) +min
𝜉∈U

max
(y,y0)∈Y((x,x0))

n∑

i=1

1

2
Q⊤

i
𝜉p̄i(xi + fyi) − 𝜆𝜇y0

Y((x, x0)) =
{
(y, y0) ∈ {0, 1}n+1 | c⊤(x + y) ≤ B + C1x0 + C2y0, x + y ≤ 1

}

563

1 3

Oracle-based algorithms for binary two-stage robust…

Algorithm 1 to calculate the lower bounds; the number of solutions |Z′| Algorithm 1
returned for the optimal first-stage solution x; the average percental difference 𝛥
(over 10 random scenarios in U) between the best solution in Z′ and the determinis-
tic optimal solution in each scenario; see Sect. 3.1 for a precise definition. All values
are presented for both variants, DualSol-Avg and DualSol-Opt. The bold-faced val-
ues indicate which of the two variants is better.

The results in Table 7 indicate that the DualSol-Opt variant performs much better
on most of the instances. The larger computational effort which is made to calculate
the optimal dual solution does not have an impact on the total run-time since the
number of processed nodes in the branch and bound tree is much smaller. For both
variants the number of nodes processed in the branch and bound tree and the num-
ber of oracle calls are significantly larger than for the SAHLP; compare to Sect. 3.1.
Both values and therefore the run-time increase with increasing m. Interestingly the
instances with dimension n = 30 and n = 40 seem to be the hardest to solve. The
total run-time for the instances with m = 8 is very large. Nevertheless for most of the
configurations all instances could be solved during the timelimit.

In contrast to the latter results, the values in Table 8 are not much larger than
for the SAHLP. The root-gap is better for the DualSol-Opt variant for most of the
instances but is very small for both methods and at most 8% . The number of iter-
ations performed to calculate the upper and the lower bounds and the number of

Table 7   Results of the branch and bound procedure for both variants

The last row shows the average over all values of the corresponding column

n m DualSol-Avg DualSol-Opt

#Nodes #Oracle t (s) Opt (%) #Nodes #Oracle t (s) Opt (%)

10 4 36.6 175.4 1.8 100 31.0 131.2 1.5 100
10 6 28.5 135.8 1.4 100 20.5 85.5 1.0 100
10 8 27.1 140.2 1.6 100 21.3 105.3 1.3 100
20 4 341.7 3584.3 61.7 100 259.1 2591.7 50.3 100
20 6 130.8 1609.9 30.0 100 110.2 1185.0 25.6 100
20 8 233.3 3000.0 58.0 100 185.3 2177.3 48.0 100
30 4 1567.1 24,812.2 968.5 95 866.9 12,561.9 589.7 95
30 6 4883.5 98,070.3 2224.7 90 2613.3 49,107.6 1245.6 100
30 8 7551.5 165,807.6 3764.3 90 5587.5 118,041.0 2871.5 90
40 4 172.9 2454.8 101.4 100 79.1 991.7 47.8 100
40 6 1099.6 24,308.3 867.8 100 415.1 9053.3 390.5 100
40 8 82,702.4 2,521,663.0 78,876.8 70 56,771.4 1,696,806.5 61,148.2 70
50 4 229.4 2849.4 99.2 100 100.3 1169.7 48.7 100
50 6 268.8 5357.1 227.6 100 118.0 2160.7 137.0 100
50 8 2237.4 65,036.7 3530.1 80 439.9 11,883.3 717.9 100
100 4 1191.1 12,911.5 536.4 100 340.7 3410.8 147.4 100
100 6 4546.1 73,554.6 1977.5 90 543.3 9458.4 288.6 100
100 8 4289.7 93,770.2 2899.9 90 603.3 14,755.7 581.7 100
41.7 6.0 6196.5 172,180.1 5346.0 94.7 3839.2 107,537.6 3796.8 97.5

564	 N. Kämmerling, J. Kurtz

1 3

calculated solutions are slightly larger than for the SAHLP but still very small. All
values seem to be independent of the size of the dimension and the number of risk
factors. The gap 𝛥 is slightly larger than for the SAHLP but still at most 1%.

The results for the CCG are presented in Table 9. Each row shows the average
over all 20 instances of the following values from left to right: The number of pro-
jects n; the number of risk factors m; the percentage of instances which could be
solved to optimality during the timelimit of 7200 s, the optimality gap of the CCG
after 7200 s; the total solution time t in seconds (exceeding the timelimit is counted
as 7200 s); the average solution time tub to calculate the upper bounds; the average
solution time tlb to calculate the lower bounds; the total number of iterations; the
average percental difference 𝛥 (over 10 random scenarios in U) between the best
solution in Z′ and the deterministic optimal solution in each scenario. Here Z′ is the
set of solutions calculated by Algorithm 1 in the last iteration. Note that we stopped
the calculations for each instance after 7200 s, since for several instances the mem-
ory used by CPLEX was too large. Therefore the run-times can not be compared to
the run-times of the branch and bound method.

As for the SAHLP the results of the CCG algorithm are less convincing. The
number of instances solved to optimality during the timelimit is much smaller
than for the branch and bound method, sometimes smaller than 55% . Nevertheless
the optimality gap after the timelimit is very small, at most 3.6% . The number of

Table 8   Results of the branch and bound procedure for both variants

The last row shows the average over all values of the corresponding column

n m �
det

 (%) DualSol-Avg DualSol-Opt

�
root

 (%) i
ub

i
lb

#Sol. 𝛥 (%) �
root

 (%) i
ub

i
lb

#Sol. 𝛥 (%)

10 4 13.1 6.8 2.0 2.3 1.8 0.3 5.5 2.0 1.9 1.8 0.5
10 6 16.7 8.0 1.7 2.2 1.7 0.4 7.0 1.8 1.8 1.7 0.3
10 8 18.0 7.1 2.4 2.2 1.6 0.2 7.2 2.5 1.9 1.6 0.3
20 4 6.2 5.3 4.4 3.7 2.5 0.6 4.8 4.7 3.1 2.5 0.6
20 6 6.5 4.4 4.7 3.7 2.5 0.3 4.2 4.8 2.9 2.5 0.4
20 8 7.5 5.2 4.9 4.4 2.5 0.3 3.8 5.2 3.5 2.5 0.3
30 4 3.2 5.0 6.0 5.0 4.0 0.6 3.7 6.1 4.5 3.8 0.6
30 6 3.5 5.1 7.2 6.0 3.8 0.4 3.9 7.5 5.2 3.7 0.4
30 8 4.3 4.9 8.3 6.9 3.8 0.4 4.0 8.8 5.7 3.8 0.3
40 4 1.9 5.4 5.8 5.7 4.1 0.8 4.4 5.4 5.3 4.1 0.6
40 6 2.3 5.5 8.0 7.3 5.2 0.5 4.0 7.5 6.4 5.2 0.3
40 8 3.3 5.0 11.1 8.8 6.2 0.4 3.3 11.5 7.9 7.0 0.4
50 4 2.3 5.1 5.1 5.7 4.7 0.7 3.2 5.0 5.5 4.8 0.9
50 6 2.5 5.8 7.9 7.9 6.5 0.5 3.7 7.1 7.3 6.5 0.6
50 8 2.6 5.5 10.1 9.9 7.8 0.4 3.5 9.1 9.2 8.0 0.4
100 4 1.2 5.6 3.6 5.4 5.5 0.9 1.6 3.6 5.8 6.1 0.9
100 6 1.1 5.8 5.4 8.1 7.4 0.8 3.1 5.2 8.3 7.1 0.7
100 8 1.5 5.0 8.2 12.2 10.9 0.8 3.0 7.9 12.7 9.4 0.7
41.7 6.0 5.4 5.6 5.9 6.0 4.6 0.5 4.1 5.9 5.5 4.6 0.5

565

1 3

Oracle-based algorithms for binary two-stage robust…

iterations is small for most of the instances and seems to be independent of the size
of the dimension. It increases with increasing m. As for the SAHLP most of the run-
time is used to calculate the upper bound problem. The gap 𝛥 is smaller than 1% for
most of the instances, as it is the case for the branch and bound method.

To summarize, for the two-stage robust capital budgeting problem the number
of nodes processed in the branch and bound tree and the number of oracle calls is
significantly larger than for the SAHLP. Nevertheless since the deterministic prob-
lem can be solved much faster the total run-time is not larger for the instances with
small m. Although most of the instances could be solved during the timelimit by the
branch and bound method, the run-time for instances with m = 8 can be very large.
But still the branch and bound method solves significantly more instances to opti-
mality than the CCG. Nevertheless the optimality gap of the CCG after the timelimit
is very small.

4 � Conclusion

In this paper we derive a branch and bound procedure to solve robust binary two-
stage problems for a wide class of objective functions. We show that the oracle-
based column generation algorithm presented in [30] can be adapted to calculate
lower bounds which can be used in a classical branch and bound procedure. The

Table 9   Results of the CCG
algorithm

The last row shows the average over all values of the corresponding
column

n m Opt (%) Gap (%) t (s) t
ub

 (s) t
lb

 (s) #Iter. 𝛥 (%)

10 4 100 0.0 0.5 0.0 0.0 7.8 0.2
10 6 100 0.0 0.4 0.0 0.0 7.4 0.4
10 8 100 0.0 0.7 0.0 0.0 8.4 0.3
20 4 90 0.0 14.7 24.7 0.0 12.7 0.6
20 6 100 0.0 49.6 1.9 0.0 12.9 0.4
20 8 70 0.1 16.0 69.1 0.0 18.5 0.3
30 4 90 0.0 124.7 42.4 0.0 14.5 0.6
30 6 60 0.1 33.9 105.1 0.0 18.4 0.5
30 8 55 0.3 822.7 137.3 0.0 18.1 0.4
40 4 100 0.0 105.6 6.7 0.0 10.3 0.7
40 6 85 0.0 236.2 59.4 0.0 17.6 0.5
40 8 50 0.2 713.0 131.1 0.1 30.0 0.6
50 4 95 0.3 90.0 52.8 0.0 9.8 1.1
50 6 90 0.0 233.5 44.1 0.1 13.5 0.6
50 8 75 0.6 594.8 127.6 0.1 18.7 0.5
100 4 80 1.6 84.5 239.5 0.1 6.6 1.2
100 6 55 3.6 454.8 424.1 0.1 7.8 1.3
100 8 40 3.2 69.3 452.7 0.1 10.2 1.3
41.7 6.0 79.7 0.6 202.5 106.6 0.0 13.5 0.6

566	 N. Kämmerling, J. Kurtz

1 3

whole procedure can be implemented for any algorithm solving the underlying
deterministic problem. Furthermore we apply the column-and-constraint generation
algorithm studied in [73] to our problem and show that again the oracle-based algo-
rithm in [30] can be used to solve one step of the procedure. We test both algorithms
on classical benchmark instances of the single-allocation hub location problem and
on random instances of the capital budgeting problem. We show that the number of
nodes in the branch and bound tree, the number of iterations of the CCG algorithm
as well as the number of iterations of the column generation algorithm are very low
for the SAHLP while the number of branch and bound nodes increases significantly
for the capital budgeting problem. Nevertheless our branch and bound procedure is
much faster than the CCG algorithm and can solve larger instances in reasonable
time. Furthermore our computational results indicate that for both algorithms the
precalculated second-stage solutions perform very well on random scenarios.

Acknowledgements  Open Access funding provided by Projekt DEAL. We would like to thank the refer-
ees for their valuable comments which significantly improved the paper. Furthermore we thank Ayse Nur
Arslan and Boris Detienne for providing us their instances on the capital budgeting problem. This work
has been supported by the German Research Foundation (DFG) under Grant No. BU 2313/2 – CL 318/14.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Adjiashvili, D., Stiller, S., Zenklusen, R.: Bulk-robust combinatorial optimization. Math. Program.
149(1–2), 361–390 (2015)

	 2.	 Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial
optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)

	 3.	 Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res.
190(1), 1–21 (2008)

	 4.	 Alumur, S.A., Nickel, S., Saldanha-da Gama, F.: Hub location under uncertainty. Transp. Res. Part
B Methodol. 46(4), 529–543 (2012)

	 5.	 Arslan, A., Detienne, B.: Decomposition-based approaches for a class of two-stage robust binary
optimization problems. Technical Report (2019)

	 6.	 Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty.
Oper. Res. 55(4), 662–673 (2007)

	 7.	 Ayoub, J., Poss, M.: Decomposition for adjustable robust linear optimization subject to uncertainty
polytope. CMS 13(2), 219–239 (2016)

	 8.	 Beasley, J.E.: OR library (2012)
	 9.	 Ben-Tal, A., Den Hertog, D., Vial, J.P.: Deriving robust counterparts of nonlinear uncertain inequal-

ities. Math. Program. 149(1–2), 265–299 (2015)
	10.	 Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press,

Princeton (2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

567

1 3

Oracle-based algorithms for binary two-stage robust…

	11.	 Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.P.: Retailer-supplier flexible commitments con-
tracts: a robust optimization approach. Manuf. Serv. Oper. Manag. 7(3), 248–271 (2005)

	12.	 Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain
linear programs. Math. Program. 99(2), 351–376 (2004)

	13.	 Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)
	14.	 Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1),

1–13 (1999)
	15.	 Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM

Rev. 53(3), 464–501 (2011)
	16.	 Bertsimas, D., Caramanis, C.: Finite adaptability in multistage linear optimization. IEEE Trans.

Autom. Control 55(12), 2751–2766 (2010)
	17.	 Bertsimas, D., Dunning, I.: Multistage robust mixed-integer optimization with adaptive partitions.

Oper. Res. 64(4), 980–998 (2016)
	18.	 Bertsimas, D., Georghiou, A.: Binary decision rules for multistage adaptive mixed-integer optimization.

Math. Program. 167, 1–39 (2014)
	19.	 Bertsimas, D., Georghiou, A.: Design of near optimal decision rules in multistage adaptive mixed-inte-

ger optimization. Oper. Res. 63(3), 610–627 (2015)
	20.	 Bertsimas, D., Goyal, V.: On the power and limitations of affine policies in two-stage adaptive optimi-

zation. Math. Program. 134(2), 491–531 (2012)
	21.	 Bertsimas, D., Goyal, V.: On the approximability of adjustable robust convex optimization under uncer-

tainty. Math. Methods Oper. Res. 77(3), 323–343 (2013)
	22.	 Bertsimas, D., Iancu, D.A., Parrilo, P.A.: Optimality of affine policies in multistage robust optimization.

Math. Oper. Res. 35(2), 363–394 (2010)
	23.	 Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the secu-

rity constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)
	24.	 Bertsimas, D., de Ruiter, F.J.: Duality in two-stage adaptive linear optimization: faster computation and

stronger bounds. INFORMS J. Comput. 28(3), 500–511 (2016)
	25.	 Bertsimas, D., Shtern, S.: A scalable algorithm for two-stage adaptive linear optimization. Technical

Report (2018)
	26.	 Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3),

49–71 (2003)
	27.	 Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
	28.	 Boni, O., Ben-Tal, A.: Adjustable robust counterpart of conic quadratic problems. Math. Methods Oper.

Res. 68(2), 211 (2008)
	29.	 Buchheim, C., Kurtz, J.: Min–max–min robustness: a new approach to combinatorial optimization

under uncertainty based on multiple solutions. Electron. Notes Discrete Math. 52, 45–52 (2016)
	30.	 Buchheim, C., Kurtz, J.: Min–max–min robust combinatorial optimization. Math. Program. 163(1),

1–23 (2017)
	31.	 Buchheim, C., Kurtz, J.: Complexity of min–max–min robustness for combinatorial optimization under

discrete uncertainty. Discrete Optim. 28, 1–15 (2018)
	32.	 Buchheim, C., Kurtz, J.: Robust combinatorial optimization under convex and discrete cost uncertainty.

EURO J. Comput. Optim. 6(3), 211–238 (2018)
	33.	 Buchheim, C., Pruente, J.: K-adaptability in stochastic combinatorial optimization under objective

uncertainty. Eur. J. Oper. Res. 277, 953–963 (2019)
	34.	 Calafiore, G.C.: Multi-period portfolio optimization with linear control policies. Automatica 44(10),

2463–2473 (2008)
	35.	 Campbell, J.F., O’Kelly, M.E.: Twenty-five years of hub location research. Transp. Sci. 46(2), 153–169

(2012)
	36.	 Campi, M.C., Calafiore, G.: Decision making in an uncertain environment: the scenario-based optimi-

zation approach. In: Multiple Participant Decision Making, pp. 99–111. Advanced Knowledge Interna-
tional (2004)

	37.	 Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper.
Res. 57(6), 1469–1482 (2009)

	38.	 Correia, I., Nickel, S., Saldanha-da Gama, F.: Single-assignment hub location problems with multiple
capacity levels. Transp. Res. Part B Methodol. 44(8), 1047–1066 (2010)

	39.	 El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J.
Matrix Anal. Appl. 18(4), 1035–1064 (1997)

	40.	 El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J.
Optim. 9(1), 33–52 (1998)

568	 N. Kämmerling, J. Kurtz

1 3

	41.	 Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub
median problem. Locat. Sci. 4(3), 139–154 (1996)

	42.	 Eufinger, L., Kurtz, J., Buchheim, C., Clausen, U.: A robust approach to the capacitated vehicle routing
problem with uncertain costs. Technical Report (2018)

	43.	 Fischetti, M., Monaci, M.: Light robustness. In: Ahuja, R.K., et al. (eds.) Robust and Online Large-
Scale Optimization, pp. 61–84. Springer, Berlin (2009)

	44.	 Gabrel, V., Lacroix, M., Murat, C., Remli, N.: Robust location transportation problems under uncertain
demands. Discrete Appl. Math. 164, 100–111 (2014)

	45.	 Hadjiyiannis, M.J., Goulart, P.J., Kuhn, D.: A scenario approach for estimating the suboptimality of
linear decision rules in two-stage robust optimization. In: 2011 50th IEEE Conference on Decision and
Control and European Control Conference, pp. 7386–7391. IEEE (2011)

	46.	 Hanasusanto, G.A., Kuhn, D., Wiesemann, W.: K-adaptability in two-stage robust binary programming.
Oper. Res. 63(4), 877–891 (2015)

	47.	 Iancu, D.A.: Adaptive robust optimization with applications in inventory and revenue management.
Ph.D. Thesis, Massachusetts Institute of Technology (2010)

	48.	 Iancu, D.A., Sharma, M., Sviridenko, M.: Supermodularity and affine policies in dynamic robust opti-
mization. Oper. Res. 61(4), 941–956 (2013)

	49.	 IBM Corporation: IBM ILOG CPLEX Optimization Studio V12.8.0 (2017)
	50.	 Jaillet, P., Song, G., Yu, G.: Airline network design and hub location problems. Locat. Sci. 4(3), 195–

212 (1996)
	51.	 Jiang, R., Zhang, M., Li, G., Guan, Y.: Benders’ decomposition for the two-stage security constrained

robust unit commitment problem. In: IIE Annual Conference. Proceedings, p. 1. Institute of Industrial
and Systems Engineers (IISE) (2012)

	52.	 Klincewicz, J.G.: Hub location in backbone/tributary network design: a review. Locat. Sci. 6(1), 307–
335 (1998)

	53.	 Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Springer, Berlin (1996)
	54.	 Kuhn, D., Wiesemann, W., Georghiou, A.: Primal and dual linear decision rules in stochastic and robust

optimization. Math. Program. 130(1), 177–209 (2011)
	55.	 Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear pro-

gramming recovery, and railway applications. In: Ahuja, R.K., et al. (eds.) Robust and Online Large-
Scale Optimization, pp. 1–27. Springer, Berlin (2009)

	56.	 Marandi, A., Ben-Tal, A., den Hertog, D., Melenberg, B.: Extending the scope of robust quadratic opti-
mization. Technical Report (2017)

	57.	 Minoux, M.: On 2-stage robust lp with RHS uncertainty: complexity results and applications. J. Glob.
Optim. 49(3), 521–537 (2011)

	58.	 Nagy, Z.K., Braatz, R.D.: Robust nonlinear model predictive control of batch processes. AIChE J.
49(7), 1776–1786 (2003)

	59.	 Nickel, S., Schöbel, A., Sonneborn, T.: Hub location problems in urban traffic networks. In: Pursula,
M., Niittymäki, J. (eds.) Mathematical methods on optimization in transportation systems, pp. 95–107.
Springer, Boston (2001)

	60.	 O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper.
Res. 32(3), 393–404 (1987)

	61.	 Postek, K., den Hertog, D.: Multistage adjustable robust mixed-integer optimization via iterative split-
ting of the uncertainty set. INFORMS J. Comput. 28(3), 553–574 (2016)

	62.	 Rostami, B., Kämmerling, N., Buchheim, C., Naoum-Sawaya, J., Clausen, U.: Stochastic single-alloca-
tion hub location. Technical Report (2018)

	63.	 Schöbel, A.: Generalized light robustness and the trade-off between robustness and nominal quality. In:
Stein, O. (ed.) Mathematical Methods of Operations Research, pp. 1–31. Springer, Berlin (2014)

	64.	 Shapiro, A.: A dynamic programming approach to adjustable robust optimization. Oper. Res. Lett.
39(2), 83–87 (2011)

	65.	 Sion, M., et al.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)
	66.	 Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.: Tight linear programming relaxations of uncapaci-

tated p-hub median problems. Eur. J. Oper. Res. 94(3), 582–593 (1996)
	67.	 Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear

programming. Oper. Res. 21(5), 1154–1157 (1973)
	68.	 Subramanyam, A., Gounaris, C.E., Wiesemann, W.: K-adaptability in two-stage mixed-integer robust

optimization. Technical Report (2017)

569

1 3

Oracle-based algorithms for binary two-stage robust…

	69.	 Takeda, A., Taguchi, S., Tütüncü, R.H.: Adjustable robust optimization models for a nonlinear two-
period system. J. Optim. Theory Appl. 136(2), 275–295 (2008)

	70.	 Thiele, A., Terry, T., Epelman, M.: Robust linear optimization with recourse. Rapport Technique, pp.
4–37 (2009)

	71.	 Vayanos, P., Kuhn, D., Rustem, B.: A constraint sampling approach for multi-stage robust optimization.
Automatica 48(3), 459–471 (2012)

	72.	 Yanıkoğlu, İ., Gorissen, B., den Hertog, D.: Adjustable robust optimization—a survey and tutorial.
Available online at ResearchGate (2017)

	73.	 Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint gen-
eration method. Oper. Res. Lett. 41(5), 457–461 (2013)

	74.	 Zhao, L., Zeng, B.: An exact algorithm for two-stage robust optimization with mixed integer recourse
problems. submitted, available on Optimization-Online.org (2012)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Oracle-based algorithms for binary two-stage robust optimization
	Abstract
	1 Introduction
	1.1 Related literature

	2 Binary two-stage robustness
	2.1 Oracle-based branch and bound algorithm
	2.2 Oracle-based column-and-constraint algorithm

	3 Applications
	3.1 The uncapacitated single-allocation hub location problem with uncertain demands
	3.1.1 Computational results

	3.2 The capital budgeting problem
	3.2.1 Computational results

	4 Conclusion
	Acknowledgements
	References

