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Abstract
In this work we study binary two-stage robust optimization problems with objective 
uncertainty. We present an algorithm to calculate efficiently lower bounds for the 
binary two-stage robust problem by solving alternately the underlying deterministic 
problem and an adversarial problem. For the deterministic problem any oracle can 
be used which returns an optimal solution for every possible scenario. We show that 
the latter lower bound can be implemented in a branch and bound procedure, where 
the branching is performed only over the first-stage decision variables. All results 
even hold for non-linear objective functions which are concave in the uncertain 
parameters. As an alternative solution method we apply a column-and-constraint 
generation algorithm to the binary two-stage robust problem with objective uncer-
tainty. We test both algorithms on benchmark instances of the uncapacitated single-
allocation hub-location problem and of the capital budgeting problem. Our results 
show that the branch and bound procedure outperforms the column-and-constraint 
generation algorithm.
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1  Introduction

The concept of robust optimization was created to tackle optimization problems with 
uncertain parameters. The basic idea behind this concept is to use uncertainty sets 
instead of probability distributions to model uncertainty. More precisely it is assumed 
that all realizations of the uncertain parameters, called scenarios, are contained in a 
known uncertainty set. Instead of optimizing the expected objective value or a given 
risk-measure as common in the field of stochastic optimization, in the robust optimiza-
tion framework we calculate solutions which are optimal in the worst case and which 
are feasible for all scenarios in the uncertainty set.

The concept was first introduced in [67]. Later it was studied for combinatorial 
optimization problems with discrete uncertainty sets in [53], for conic and ellipsoi-
dal uncertainty in [13, 14], for semi-definite and least-square problems in [39, 40] 
and for budgeted uncertainty in [26, 27]. An overview of the robust optimization 
literature can be found in [2, 10, 15, 32].

The so called robust counterpart is known to be NP-hard for most of the classical 
combinatorial problems, although most of them can be solved in polynomial time in 
its deterministic version; see [53]. Furthermore it is a well-known drawback of this 
approach that the optimal solutions are often too conservative for practical issues 
[27]. To obtain better and less-conservative solutions several new ideas have been 
developed to improve the concept of robustness; see e.g. [1, 43, 53, 55, 63].

Inspired by the concept of two-stage stochastic programming a further extension 
of the classical robust approach which attained increasing attention in the last decade 
is the concept of two-stage robustness, or sometimes called adjustable robustness, 
first introduced in [12]. The idea behind this approach is tailored for problems which 
have two different kinds of decision variables, first-stage decisions which have to be 
made here-and-now and second-stage decisions which can be determined after the 
uncertain parameters are known, sometimes called wait-and-see decisions. As in the 
classical robust framework it is assumed that all uncertain scenarios are contained in 
a known uncertainty set and the worst-case objective value is optimized. The main 
difference to the classical approach is that the second-stage decisions do not have 
to be made in advance but can be chosen as the best reaction to a scenario after 
it occured. This approach can be modeled by min–max–min problems in general. 
Famous applications occur in the field of network design problems where in the first 
stage a capacity on an edge must be bought such that, after the real costs on each 
edge are known, a minimum cost flow is sent from a source to a sink which can only 
use the bought capacities [21]. An overview of recent results for two-stage robust-
ness can be found in [72]. Several concepts closely related to the two-stage robust 
concept were introduced in [1, 30, 55].

In this work we study binary two-stage robust optimization problems. We con-
sider underlying deterministic problems of the form

where f ∶ Z ×ℝ
m
→ ℝ , the set Z ⊆ {0, 1}n1+n2 contains all incidence vectors of 

the feasible solutions and is assumed to be non-empty, c ∈ ℝ
m is a given parameter 

(CP)min
(x,y)∈Z

f (x, y, c)
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vector and f (x, y, ⋅) is concave for each given (x, y) ∈ Z . The variables x are called 
first-stage solutions and the variables y are called second-stage solutions. We assume 
that the vector c is uncertain and all possible realizations c are contained in a convex 
uncertainty set U ⊂ ℝ

m . The binary two-stage robust problem is then defined by

where X ⊂ {0, 1}n1 is the projection of Z onto the x-variables, i.e.

and Y(x) ∶= {y ∈ {0, 1}n2 | (x, y) ∈ Z} . Note that all results presented in this paper 
are still valid, if the recourse variables are non-integer. We do not consider uncer-
tainty affecting the constraints of the problem which is a situation often occuring 
in practice for most of the classical combinatorial optimization problems. Problem 
(2RP) can be interpretated as follows: In the first stage, before knowing the precise 
uncertain vector c, the decisions x ∈ X have to be made. Afterwards, when the cost-
vectors are known, we can choose the best feasible second-stage solution y ∈ Y(x) 
for the given costs. As usual in robust optimization we measure the worst-case over 
all possible scenarios in U. Note that by our definition of the set Y(x) and since the 
uncertainty only affects the objective function, there always exists a feasible second-
stage solution y ∈ Y(x) for each first-stage solution x ∈ X.

Problem (2RP) has been already studied in the literature and several exact algo-
rithms as well as approximation algorithms have been proposed; see Sect.  1.1. 
While several of the existing methods are able to handle uncertainty in the con-
straints it is often assumed that a polyhedral description of the sets X and Y(x) 
is given. Besides the latter limitation most of the methods are based on dualiza-
tions or reformulations which destroy the structure of the original problem (CP). 
Often the uncertainty set is even restricted to be a polyhedron. In this work we 
derive the first oracle-based exact algorithm which solves Problem (2RP) for any 
deterministic problem by solving alternately the deterministic Problem (CP) and 
an adversarial problem presented later. For the deterministic problem any oracle 
can be used which returns an optimal solution of (CP) for every possible sce-
nario in U. The advantage of the latter method is that the structure of the underly-
ing problem is preserved and any preliminary algorithms which were derived for 
the underlying problem can be used. Furthermore our algorithm works for most 
of the common convex uncertainty sets. Additionally we apply the column-and-
constraint generation algorithm (CCG) presented in [73] to Problem (2RP) and 
compare it to our new method.

In Sect.  1.1 we will give an overview of the literature related to two-stage 
robust optimization problems. In Sect.  2 we derive an oracle-based branch and 
bound procedure to solve Problem (2RP). Furthermore we apply the results in 
[73] to Problem (2RP). Finally in Sect. 3.1 we apply both methods to the unca-
pacitated singe-allocation hub-location problem and the capital budgeting prob-
lem and test it on classical benchmark instances from the literature.

Our main contributions:

(2RP)min
x∈X

max
c∈U

min
y∈Y(x)

f (x, y, c)

X ∶= {x ∈ {0, 1}n1 | ∃ y ∈ {0, 1}n2 ∶ (x, y) ∈ Z},
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•	 We adapt the oracle-based algorithm derived in [29] and show that it can be used 
to calculate a lower bound for Problem (2RP) which can be implemented in a 
branch and bound procedure where the branching is performed over the first-
stage solutions. The calculation of the lower bound can be applied to the com-
mon convex uncertainty sets and is done by alternately calling an adversarial 
problem over U and an oracle which returns an optimal solution of Problem (CP) 
for a given scenario c ∈ U . Therefore any solution algorithm of the deterministic 
problem can be used to calculate this lower bound.

•	 We apply the CCG algorithm presented in [73] to Problem (2RP) and show that 
calculating the upper bound can also be done by the same oracle-based algo-
rithm as above.

•	 We apply the branch and bound procedure and the CCG algorithm to the unca-
pacitated single-allocation hub-location problem and the capital budgeting prob-
lem and show that the branch and bound procedure outperforms the CCG algo-
rithm.

1.1 � Related literature

Linear two-stage robust optimization or sometimes called adjustable robust optimi-
zation was first introduced in [12]. The authors show that the problem is NP-hard 
even if X and Y are given by linear uncertain constraints and all variables are real; 
see also [57]. In [12] the authors propose to approximate the problem by assuming 
that the optimal values of the wait and see variables y are affine functions of the 
uncertain parameters. These so called affine decision rules were studied in the robust 
context in several articles for the case of real recourse; see e.g. [6, 11, 34, 37, 47, 54, 
64, 71]. Furthermore in several works special cases are derived for which a decision 
rule structure is known which is optimal; see [20, 22, 48]. Further non-linear deci-
sion rules are studied in [72].

Lower bounds for two-stage robust problems can be derived by considering a 
finite subset of scenarios in U. Then for each selected scenario c a duplication of the 
second-stage solution yc is added to the problem, see [7, 36, 45]. The authors in [24] 
first dualize the inner minimization and maximization problem and then apply the 
latter finite scenario approach to the dual problem to obtain stronger lower bounds. 
Note that while the finite scenario approach can also be applied to the case when the 
second-stage solutions are integers, for the dualization approach the second-stage 
variables have to be relaxed to real variables. Unfortunately both lower bounds can 
not be used in a branch and bound scheme since for a complete fixation of the first-
stage variables the bounds are not necessarily exact.

Exact methods for real recourse are based on the idea of Benders’ decomposition, 
see [23, 44, 51, 70] or column-and-constraint generation [25, 73]. Note that for the 
Benders’ decomposition approaches the second-stage solutions have to be real since 
dualizations of the second-stage problem are used. In contrast to this the CCG algo-
rithm even works for integer recourse, see [74]. We will apply the latter method to 
our problem in Sect. 2.2.
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For the case of integer recourse, i.e. the second-stage variables y are modeled as 
integer variables, decision rules have been applied to Problem (2RP) in [18, 19] to 
approximate the problem. Another approximation approach is called k-adaptability 
and was introduced in [16]. The idea is to calculate k second-stage solutions in the 
first-stage and allow to choose the best out of these solutions in the second-stage. 
Clearly since the set of possible second-stage solutions is restricted compared to the 
original problem, this idea leads to an approximation of the problem. Solution meth-
ods and the quality of this approximation were studied in [22, 46, 68]. In [46] it is 
shown that the k-adaptability problem is exact if k is chosen larger than the dimen-
sion of the problem. The authors in [30, 31, 42] apply the k-adaptability concept to 
one-stage combinatorial problems to calculate a set of solutions which is worst-case 
optimal if for each scenario the best of these solutions can be chosen. They further-
more show that solving this problem can be done in polynomial time if an oracle for 
the deterministic problem exists and if the number of calculated solutions is larger 
or equal to the dimension of the problem. To solve the problem in the latter case 
they present an oracle-based algorithm which we will use in Sect. 2. The k-adapt-
ability concept was also applied to the case that the uncertain parameters follow a 
discrete probability distibution [33].

Besides the exact algorithm in [73, 74] approximation methods based on uncer-
tainty set splitting were derived in the literature to approximate two-stage robust 
problems with integer recourse; see [17, 61].

For two-stage robust problems with non-linear robust constraints decision rules 
have been applied in [58, 69]. The two-stage problem is studied for second order 
conic optimization problems in [28]. In [9, 56] the authors derive robust counter-
parts of uncertain non-linear constraints. Note that all the latter results were devel-
oped for real second-stage solutions.

While this work was under peer review a similar approach to solve two-stage 
robust optimization problems with uncertainty only affecting the objective func-
tion was published; see [5]. The authors study Problem (2RP) with linear objec-
tive functions and mixed-integer recourse variables, while the set Y(x) is modeled 
by linear constraints. They study a relaxation of the lower bound presented in Sect. 2 
which is implemented in a branch and bound procedure. In contrast to the algorithm 
described in this work, the method in [5] is not based on the use of oracles for the 
deterministic problem. Therefore it can not make use of fast solution methods for 
(CP) as combinatorial algorithms or compact formulations with uncertain param-
eters appearing in the constraints; see Sect. 3.1.

2 � Binary two‑stage robustness

In this section we analyze the binary two-stage robust problem (2RP) with convex 
uncertainty sets U and derive general lower bounds which can be calculated by an 
oracle-based algorithm and which can be implemented in a branch and bound proce-
dure. The branching will be done over the first-stage solutions.

The classical approach to derive lower bounds in a branch and bound procedure 
is relaxing the integrality and solving the relaxed problem. Applying this approach 
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to the second-stage decisions of problem (2RP) is not useful, since for a given x ∈ X 
and c ∈ U an optimal solution of the relaxed second-stage problem may not be con-
tained in conv (Y(x)) , e.g. if the relaxation of Y(x) is a polytope which is not integral. 
It may be even the case that a linear description of conv (Y(x)) is not known. There-
fore, even if all first-stage variables are fixed, the lower bound obtained by relaxing 
the second-stage solution variables would not necessarily be exact and an optimal 
solution can not be guaranteed using a branch and bound scheme. In the following 
lemma we derive a lower bound for Problem (2RP) which is exact if all first-stage 
solutions are fixed.

Lemma 1  Given U ⊂ ℝ
m , then

is a lower bound for Problem (2RP).

Proof  By changing the order of the outer minimum and the inner maximum in Prob-
lem (2RP) we obtain the inequality

Merging the two minimum expressions and using Z ⊆ conv (Z) yields

which proves the result. 	�  ◻

Note that, since f is concave in c and since the pointwise minimum of concave 
functions is always concave, we have to maximize a concave objective function in 
Problem (LB). In [30] the authors analyze Problem (LB) for the case that f is a lin-
ear function in (x, y) and c. They prove that it can be solved in oracle-polynomial 
time, i.e. by a polynomial time algorithm if solving the deterministic problem (CP) 
is done by an oracle in constant time. Furthermore if we fix a solution x ∈ X , then 
the bound (LB) is exact, which we prove in the following.

Proposition 1  If all first-stage variables are fixed then (LB) is equal to the exact 
objective value of the fixed first-stage solution.

Proof  Let x̄ ∈ X be the fixed first-stage solution, then it holds

Clearly problem

is equivalent to

(LB)max
c∈U

min
(x,y)∈ conv (Z)

f (x, y, c)

min
x∈X

max
c∈U

min
y∈Y(x)

f (x, y, c) ≥ max
c∈U

min
x∈X

min
y∈Y(x)

f (x, y, c).

max
c∈U

min
x∈X

min
y∈Y(x)

f (x, y, c) ≥ max
c∈U

min
(x,y)∈ conv (Z)

f (x, y, c),

{(x, y) ∈ conv (Z) | x = x̄} = {x̄} × conv (Y(x̄)).

max
c∈U

min
(x,y)∈{x̄}× conv (Y(x̄))

f (x, y, c)
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which proves the result. 	�  ◻

The result of Proposition 1 indicates that the lower bound (LB) can be integrated 
in a branch and bound procedure.

In [30] it was proved that, given an oracle to solve the deterministic problem over 
Y(x̄) for each given x̄ , if f is linear in (x, y) and c and under further mild assumptions, 
Problem (1) can be solved in oracle-polynomial time. Together with Proposition 1 
a direct consequence is that, if the dimension n1 of the first-stage solutions is fixed, 
then we can enumerate over all possible first-stage solutions and compare the objec-
tive values in oracle-polynomial time. Hence, Problem (2RP) can be solved in poly-
nomial time given an oracle for the optimization problem over Y(x) for each x ∈ X.

The authors in [30] present a practical algorithm, based on the idea of column-
generation for the case that f is a linear function. Applied to the more general Prob-
lem (LB) the algorithm can be derived as follows: The algorithm starts with a subset 
of solutions Z′ ⊂ Z , leading to problem

and then iteratively adds new solutions to Z′ until optimality can be ensured. The 
solution which is added in each iteration is the one which has the largest impact on 
the optimal value. To find this solution Problem (2) can be reformulated by applying 
a level set transformation. The reformulation is given by

For an optimal solution (�∗, c∗) of the latter problem, we search for the solution 
z ∈ Z which most violates the constraint f (z, c∗) ≥ �∗ , i.e. the solution with the larg-
est improvement on the optimal value of Problem (2). The latter task can be done 
by minimizing the objective function f (z, c∗) over all z ∈ Z , i.e. solving the deter-
ministic problem (CP) under scenario c∗ by using any exact algorithm. If we can 
find a z∗ ∈ Z such that f (z∗, c∗) < 𝜇∗ , then we add z∗ to Z′ and repeat the procedure. 
If no such solution can be found, then f (z, c∗) ≥ �∗ holds for all z ∈ Z and there-
fore �∗ is the optimal value of (LB). The procedure described above is presented in 
Algorithm 1.

(1)max
c∈U

min
y∈Y(x̄)

f (x̄, y, c)

(2)max
c∈U

min
z∈ conv (Z�)

f (z, c),

(3)

max �

s.t. f (z, c) ≥ � ∀z ∈ Z�

� ∈ ℝ, c ∈ U.
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Note that the Problem in Step 3 depends on the uncertainty set U and on the proper-
ties of f. If f is a linear function in c, for polyhedral or ellipsoidal uncertainty sets this is 
a continuous linear or quadratic problem, respectively. Both problems can be solved by 
the latest versions of optimization software like CPLEX [49]. Therefore the algorithm 
can be implemented for each deterministic problem by using any exact algorithm to 
solve the deterministic problem in Step 4. The main advantage of this feature is that we 
do not have to restrict to deterministic problems which can be modeled by a linear com-
pact formulation as it is the case in [5]. Instead we can use any combinatorial algorithm 
or even mixed-integer formulations where the uncertain parameters appear in the con-
straints; see Sect. 3.1. We only require an arbitrary procedure which returns an optimal 
solution for the given scenario. In [42] the authors applied the latter algorithm to the 
min–max–min robust capacitated vehicle routing problem and showed that on classical 
benchmark instances the number of iterations of Algorithm 1 is significantly smaller 
than the dimension of Z in general.

Note that besides the optimal value of Problem (2RP) the algorithm returns a set 
of feasible solutions Z′ ⊆ Z and not a solution in conv (Z) . By the correctness of the 
algorithm the optimal solution in conv (Z) must be contained in conv

(
Z′
)
 and could be 

calculated by finding the optimal convex combination of the solutions in Z′ which can 
be done by solving the problem

for the given set Z′ . If f is continuous, quasi-convex in z and quasi-concave in c then 
the latter problem is equivalent to

(4)

max
c∈U

min
𝜆 ≥ 0∑

z∈Z� 𝜆z = 1

z̃ =
∑

z∈Z� 𝜆zz

f (z̃, c)

min
𝜆 ≥ 0

z̃ =
∑

z∈Z� 𝜆zz

max
c∈U

f (z̃, c)
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by Sion’s theorem [65]. Dualizing the inner maximization problem over U (e.g. by 
using the convex conjugate [9]) this is a continuous minimization problem. If f is a 
linear function this problem is a linear or a quadratic problem for polyhedral or ellip-
soidal uncertainty, respectively. Nevertheless in our branch and bound procedure for 
non-linear functions f the set Z′ is sufficient as we will see in Sect. 2.1. A practical 
advantage of the set Z′ is that it contains a set of second-stage policies which can 
be used in practical applications. Instead of solving the second-stage problem each 
time after a scenario occured, which may be a computationally hard problem, we 
can choose the best of the pre-calculated second-stage policies in Z′ for the actual 
scenario. The latter task can be done by just comparing the objective values of all 
solutions in Z′ for the given scenario. Note that the returned set of solutions need 
not contain the optimal solution for each scenario. Nevertheless we will show in 
Sect. 3.2.1 that the calculated solutions perform very well in average over random 
scenarios in U.

2.1 � Oracle‑based branch and bound algorithm

Using the results of the previous section we can easily derive a classical branch 
and bound procedure to solve Problem (2RP). The idea is to branch over the first-
stage solutions x ∈ X and to calculate the lower bound (LB) in each node of the 
branch and bound tree to possibly prune the actual branch of nodes. All necessary 
details needed to implement a branch and bound procedure are presented in the 
following.

Handling fixations In each node of the branch and bound tree we have a given set of 
fixations for the x-variables, i.e. a set of indices I0 ⊂ [n1] such that xi = 0 for each 
i ∈ I0 and a given set of indices I1 ⊂ [n1] ⧵ I0 such that xi = 1 for each i ∈ I1 . All 
indices in [n1] ⧵

(
I0 ∪ I1

)
 are free. Therefore in each node for the given fixations we 

have to solve the problem

or to decide if the latter problem is infeasible. It is easy to see that the latter problem, 
if it is feasible, can be solved by Algorithm 1 by including the given fixations into 
the set Z. Note that here the oracle for the deterministic problem must be able to 
handle variable-fixations. Nevertheless for most of the classical problems fixations 
can easily be implemented in most algorithms.

Warm starts In each node of the branch and bound tree Algorithm 1 returns a set 
Z′ ⊂ Z of feasible solutions satisfying the given fixations. For each possible child-
node we can select the set Z′′ ⊂ Z′ of solutions which satisfy the new fixations and 
warm-start Algorithm 1 with the set Z′′ in the child node.

(5)

max
c∈U

min
(x, y) ∈ conv (Z)

xi = 0 ∀ i ∈ I0
xi = 1 ∀ i ∈ I1

f (x, y, c)
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Branching strategy An easy branching strategy can be established as follows: For 
the calculated set of solutions Z′ returned by Algorithm  1 we define the vector 
x̄ ∈ [0, 1]n1 by

for all i ∈ [n1] , i.e. the value x̄i is the fraction of solutions in Z′ for which xi = 1 
holds. We can then use any of the classical branching rules, e.g. we can decide to 
branch on the index i for which the value x̄i is the closest to 0.5.

Another computationally more expensive approach is to calculate the optimal 
convex combination of the solutions in Z′ , i.e. after calculating the optimal Z′ by 
Algorithm 1 we calculate an optimal solution �∗ of Problem (4) and define

Now we can again use any classical branching-strategy on x̄ . Note that if a first-stage 
variable has the same value in each of the solutions in Z′ then also the corresponding 
entry of x̄ has this value.

When going over to the next open branch and bound node to be processed, we 
choose the one with the smallest lower-bound.

Calculating feasible solutions In each node of the branch and bound tree we want 
to find a feasible solution to update the upper bound on our optimal value. We do 
this as follows: In each branch and bound node Algorithm 1 calculates a set Z′ ⊆ Z 
of feasible solutions. If all of the generated solutions in Z′ have the same first-stage 
solution x, then the optimal solution of (5) has binary first-stage variables and we 
obtain a feasible solution x ∈ X which has the objective value �∗ returned by the 
algorithm. If the first-stage variables are not the same for all z ∈ Z� then we can 
either choose an arbitrary first-stage solution given by any z ∈ Z� or we can calculate 
the objective value of all first-stage solutions in Z′ and choose the one with the best 
objective value. To this end we have to solve

for any first-stage solution x̃ given in Z′ . Note that the latter problem again can be 
solved by Algorithm 1 replacing the deterministic problem in Step 4 by

If X = {0, 1}n1 , as it is the case for the hub-location problem (see Sect. 3.2.1), then 
calculating all objective values as above can be avoided and finding a good feasible 
solution can be done by rounding each component of the vector x̄ calculated in the 
latter paragraph.

(6)x̄i =
1

|Z�|
∑

(x,y)∈Z�

xi

(7)x̄ =
∑

z=(x,y)∈Z�

𝜆∗
z
x.

max
c∈U

min
y∈Y(x̃)

f (x̃, y, c),

min
y∈Y(x̃)

f (x̃, y, c∗).
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2.2 � Oracle‑based column‑and‑constraint algorithm

In [73] a column-and-constraint generation method (CCG) was introduced to solve 
two-stage robust problems with real recourse variables. In [74] the authors show 
how the algorithm can be applied to two-stage robust problems with mixed-integer 
recourse variables. In both cases the algorithm is studied for problems with uncer-
tain constraints. In this section we will apply the algorithm to Problem (2RP), i.e. 
to the special case of objective uncertainty, and show that we can again use Algo-
rithm 1 to solve one crucial step in the CCG. In the following we derive the CCG 
algorithm for Problem (2RP). For more details see [73, 74].

Using a level set transformation Problem (2RP) can be reformulated by

If we choose any finite subset of scenarios 
{
c1,… , cl

}
∈ U we obtain the lower 

bound

which is equivalent to problem

The algorithm in [73] now iteratively calculates an optimal solution (x∗,�∗) of the 
latter problem (8), which is a lower bound for Problem (2RP), and afterwards calcu-
lates a worst-case scenario cl+1 ∈ U by

The optimal value of Problem (9) is the objective value of solution x∗ ∈ X and 
therefore an upper bound for Problem (2RP). Afterwards new variables yl+1 and the 
constraint

are added to Problem (8) and we iterate the latter procedure until

min �

s.t. � ≥ max
c∈U

min
y∈Y(x)

f (x, y, c)

x ∈ X, � ∈ ℝ.

min �

s.t. � ≥ min
y∈Y(x)

f (x, y, ci) i = 1,… , l

x ∈ X, � ∈ ℝ,

(8)

min �

s.t. � ≥ f (x, yi, ci) i = 1,… , l

x ∈ X, � ∈ ℝ, yi ∈ Y(x) i = 1,… , l.

(9)cl+1 = argmax
c∈U

min
y∈Y(x∗)

f (x∗, y, c).

� ≥ f
(
x, yl+1, cl+1

)

�∗
≥ max

c∈U
min

y∈Y(x∗)
f (x∗, y, c).
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Clearly a solution (x∗,�∗) fulfilling the latter condition is optimal for Problem (2RP). 
Following the proof of Proposition 1 the worst-case scenario in (9) can be calculated 
by Algorithm 1. This can be done since we do not consider uncertainty in the con-
straints, while in the more general framework in [73] this is not possible.

The main difference of the latter procedure to our branch and bound algorithm 
is that in a branch and bound node only a subset of first-stage variables are fixed 
while the rest are relaxed. Then we use Algorithm 1 to calculate a lower bound for 
the given fixations. In the CCG procedure in each iteration a first-stage solution is 
calculated by Problem (8) and therefore all variables are fixed when Algorithm 1 
is applied to calculate the worst-case scenario. Nevertheless the number of con-
straints and the number of variables of Problem (8) increase iteratively, since each 
second-stage variable has to be duplicated in each iteration, while in the branch and 
bound procedure we always iterate over the same number of first-stage variables. In 
Sect. 3.2.1 we will compare both algorithms on benchmark instances of the unca-
pacitated single-allocation hub location problem and the capital budgeting problem.

3 � Applications

3.1 � The uncapacitated single‑allocation hub location problem with uncertain 
demands

In this section the oracle-based branch and bound algorithm is exemplarily applied 
to the single-allocation hub location problem which can be naturally defined as a 
two-stage problem. Furthermore due to its quadratic objective function it perfectly 
fits into the non-linear framework.

Hub-location problems address the strategic planning of a transportation network 
with many sources and sinks. In many applications sending all commodities over 
direct connections would be too expensive in operation. Instead, some locations are 
considered to serve as transshipment points and are then called hubs. Thus, strongly 
consolidated transportation links are established. The bundling of shipments usually 
outweighs the additional costs of hubs and detours. Important applications of this 
problem arise in air freight [50], postal and parcel transport services [41], telecom-
munication networks [52] and public transport networks [59]. The recent surveys 
of [3, 35] provide a comprehensive overview of the various variations and solution 
approaches of the hub location problem.

The main source of uncertainty in single-allocation hub location problems are 
demand fluctuations. Thus, it is important to include this uncertainty when deciding 
hub locations and allocations of the nodes to the hubs. Installing a hub is a long-term 
decision which lasts for many years or even for several decades. Nonetheless, the 
allocation to the hub nodes are mid-to-short-term decisions as they can be changed 
over time. In [62] the variable allocation variant for single-allocation hub location 
problems under stochastic demand uncertainty is proposed.

We consider a directed graph G = (N,A) , where N = {1, 2,… , n} corresponds 
to the set of nodes that denote the origins, destinations, and possible hub loca-
tions, and A is a set of arcs that indicate possible direct links between the different 
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nodes. Let wij ≥ 0 be the amount of flow to be transported from node i to node j 
and dij the distance between two nodes i and j. We denote by Oi =

∑
j∈N wij and 

Di =
∑

j∈N wji the total outgoing flow from node i and the total incoming flow to 
node i, respectively. For each k ∈ N , the value fk represents the fixed set-up cost 
for locating a hub at node k. The cost per unit of flow for each path i − k − m − j 
from an origin node i to a destination node j passing through hubs k and m respec-
tively, is �dik + �dkm + �dmj , where �, � , and � are the nonnegative collection, 
transfer, and distribution costs respectively and dik , dkm , and dmj are the distances 
between the given pairs of nodes. Typically � ≤ min {� , �} since otherwise using 
a hub would not be beneficial. Note that if hub nodes are fully interconnected, 
every path between an origin and a destination node will contain at least one and 
at most two hubs. The SAHLP consists of selecting a subset of nodes as hubs 
and assigning the remaining nodes to these hubs such that each spoke node is 
assigned to exactly one hub with the objective of minimizing the overall costs of 
the network.

To formulate the SAHLP, we follow the first formulation of this problem intro-
duced by O’Kelly [60]. Two types of decision variables are introduced. First, the

variables indicate whether a node is used as a hub in the transportation network. 
Second, the

variables show how the nodes are allocated to the hub nodes. SAHLP can then be 
formulated as the following binary quadratic program:

The objective is to minimize the total costs of the network which includes the costs 
of setting up the hubs, the costs of collection and distribution of items between the 
spoke nodes and the hubs, and the costs of transfer between the hubs. Constraints 
(11) indicate that each node i is allocated to precisely one hub (i.e. single alloca-
tion) while Constraints (12) enforce that node i is allocated to a node k only if k is 
selected as a hub node. The binary conditions are enforced by Constraints (13).

xk =

{
1 if node k is a hub node

0 otherwise.

yik =

{
1 if node i is allocated to a hub located at node k

0 otherwise.

(10)min
∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik +
∑

i,k,j,m∈N

� wijdkmyikyjm

(11)s.t.
∑

k∈N

yik = 1 i ∈ N

(12)yik ≤ xk i, k ∈ N

(13)yik ∈ {0, 1}, xk ∈ {0, 1} i, k ∈ N.
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In order to solve SAHLP, many solution methods have been proposed in the 
literature. The classical approach to obtain an exact solution is to linearize the 
quadratic objective function. In [41, 66] two mixed-integer linear programming 
(MILP) formulations for the problem have been proposed which are based on a 
path and a flow representation, respectively. The path-based formulation in [66] 
has O(|N|4) variables and O(|N|3) constraints and its linear programming (LP) 
relaxation was shown to provide tight lower bounds. However, due to the large 
number of variables and constraints, the path-based formulation can only be 
solved for instances of relatively small sizes. Alternatively, the flow-based formu-
lation of [41] uses only O(|N|3) variables and O(|N|2) constraints to linearize the 
problem. To formulate the flow-based SAHLP model (SAHLP-flow), new vari-
ables zikm are defined as the total amount of flow originating at node i and routed 
via hubs located at nodes k then m, respectively. SAHLP-flow is formulated as

Similar to SAHLP, the objective function minimizes the hub setup costs, the costs 
of collection and distribution, and the inter-hub transfer costs. Besides Constraints 
(11), (12), (13) which are also used in SAHLP, Constraints  (14) are flow balance 
constraints while Constraints (15) ensure that a flow is possible from spoke i to hub 
k only if node i is allocated to hub k; see [38]. Finally, Constraints (16) indicate the 
non-negativity restriction on the variables z.

The presented flow-based formulation is typically regarded to be the most 
effective linearized formulation in order to obtain exact solutions for the single-
allocation hub location problem. In our computations we use this simple solu-
tion method to solve Step 4 in Algorithm 1. Note that although in the flow-based 
formulation the uncertain parameters wij appear in the constraints, we can use 
this formulation as an oracle in our algorithm while other methods which require 
linear programming formulations without uncertainty in the constraints can not 
make use of it.

The SAHLP splits up naturally in first- and second-stage problems as the deci-
sion variables in the SAHLP are subject to different planning horizons as dis-
cussed above. Therefore, the two-stage robust SAHLP can be modeled as follows:

(14)

min
∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik +
∑

i∈N

∑

k∈N

∑

m∈N

� dkmzikm

s.t. (11), (12), (13)
∑

m∈N

zikm −
∑

m∈N

zimk = Oiyik −
∑

j∈N

wijyjk ∀i, k

(15)
∑

m∈N

zikm ≤ Oiyik ∀i, k

(16)zikm ≥ 0 ∀i, k,m.
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where

We assume that U ⊂ ℝ
n2

+
 is a convex uncertainty set. Note that this classical formula-

tion is a quadratic two-stage robust problem. To solve Problem (SAHLP-2RP) we 
use the branch and bound procedure described in Sect. 2. To this end lower bounds 
can be calculated by Algorithm  1 implementing the flow linearization SAHLP-
flow in CPLEX [49] to solve the oracle in Step 4. The variable fixations in each 
node of the branch and bound tree can be added as constraints to the SAHLP-flow 
formulation.

3.1.1 � Computational results

In this section we apply the branch and bound method derived in Sect. 2.1 and the 
CCG method presented in Sect.  2.2 to the SAHLP. Both algorithms were imple-
mented in C++. For the branch and bound procedure we calculate the lower and 
upper bounds by Algorithm 1 as discussed in the previous sections. The dual solu-
tion x̄ is calculated as presented in (6). The branching is performed on the variable x̄i 
which is the closest to 0.5. A feasible solution is calculated by rounding the entries 
of x̄ to the closest integer value. Note that by this rounding procedure we always 
obtain a feasible first-stage solution for the SAHLP since we do not have restrictions 
on the first-stage variables. For the selection of the next branch and bound node to 
be processed we use the best-first strategy, i.e. the node with the smallest dual bound 
is processed next.

For the CCG algorithm we implemented Problem (8) in CPLEX 12.8 while 
Problem (9) is solved by Algorithm 1. In Algorithm 1 the dual problem in Step 3 
is solved by CPLEX 12.8 [49]. As deterministic oracle in Step 4 we use the flow 
linearization SAHLP-flow presented in Sect.  3.1 which was also implemented in 
CPLEX 12.8. After termination of Algorithm 1 we delete all solutions z from the 
calculated set Z′ which have a non-zero slack in the dual problem in Step 3, i.e. for 
which f (z, c∗) > 𝜇∗ in the last iteration of Algorithm 1. By dualizing the dual prob-
lem in Step 3 it can be shown that the optimal value does not change by throwing 
out all calculated solutions with non-zero slack.

Generation of random instances We generated random instances as follows: As 
basis for our instances we use a selection of instances of the AP and the CAB data-
sets which were intensively studied in the hub location literature. The AP instances 
are based on the mail flows of Australia Post and were introduced in [41]. The 

(SAHLP-2RP)

min
x∈{0,1}N

max
w∈U

min
y∈Y(x)

∑

k∈N

fkxk +
∑

i∈N

∑

k∈N

dik (� Oi + �Di) yik

+
∑

i,k,j,m∈N

� wijdkmyikyjm,

Y(x) =

{
y ∈ {0, 1}N×N ∶

∑

k∈N

yik = 1, yik ≤ xk ∀i, k ∈ N

}
.
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CAB instances contain airline passenger interactions between 25 major cities in 
the United States of America and were first studied in [60]. Both datasets can be 
found in [8]. Since there is only one CAB instance available, we introduce three 
additional instances (cab1 to cab3) by varying the demand values as follows: For 
each node pair i, j ∈ N , the demand values are drawn randomly from the interval 
[0.01w̄ij, 10w̄ij] , where w̄ij is the demand value of the original cab instance. The num-
ber of locations n together with its pairwise distances dij are given by the instance 
data. The set-up costs for hub locations are also given by the instance data in case of 
the AP instances. According to [4], the set-up cost at node k are set to 15 log(Ok) for 
the CAB instances. The collection, transfer and distribution costs are set to � = 3 , 
� = 0.75 and � = 2 for the AP instances while for the CAB instances � = 1 , � = 1 
and � is varied in {0.2, 1} . For each instance and each � ∈

{
0.02n2, 0.1n2

}
 , rounded 

down if fractional, we generate 10 random budgeted uncertainty sets which are 
defined by

Here w̄ are the flows given by the AP or CAB instances, respectively, while ŵij is 
chosen randomly in [0, w̄ij] for each i, j ∈ N , i.e. the change in demand can be at most 
100% of the given mean w̄ij.

Analysis of results The results for the branch and bound procedure are presented in 
Tables 1 and 2. Each row shows the average over all 10 random instances of the fol-
lowing values from left to right: The instance name; the number of locations n for 
the AP instances; the value �  of the budgeted uncertainty set U� ; the value of � for 
the CAB instances; the gap �det in %, i.e. the percental difference between the opti-
mal value of Problem (2RP) and the deterministic problem with weights w̄ ; the total 
solution time t in seconds; the number of nodes solved in the branch and bound tree; 
the percental difference �root of the upper bound and the lower bound calculated for 
the root problem of the branch and bound tree; the total number of oracle calls; the 
average number of iterations ilb of Algorithm 1 to calculate the lower bounds; the 
average number of iterations iub of Algorithm 1 to calculate the upper bounds; the 
number of solutions returned by the branch and bound method or the number of 
iterations of the CCG, respectively; the average percental difference 𝛥 (over 10 ran-
dom scenarios in U� ) between the best solution in Z′ and the deterministic optimal 
solution in each scenario. To be more precicely, to obtain the value 𝛥 we generate 
10 random scenarios in U� by the following procedure: We first create n2 equally 
distributed random numbers si in [0,� ] and define s0 ∶= 0 . Assume the numbers are 
given in increasing order. We then define �i ∶= si − si−1 . If � ≤ � is not true we start 
the procedure again. The random scenario is then given by w with

U𝛤 =

{
w ∈ ℝ

n2 | wij = w̄ij + 𝛿ijŵij,
∑

i,j∈N

𝛿ij ≤ 𝛤 , 𝛿ij ∈ [0, 1]

}
.

wij = w̄ij + 𝛿in+jŵij.
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Table 1   Results of the branch and bound procedure for AP instances

Inst. n � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

10LL 10 2 3.4 0.9 2.2 2.5 8.4 2.3 1.6 1.0 0.0
10LL 10 10 10.8 1.8 3.6 4.5 15.2 2.8 1.4 1.0 0.0
20LL 20 8 5.0 3.4 1.0 0.0 3.0 2.0 1.0 1.0 0.0
20LL 20 40 14.5 10.4 2.4 9.4 8.8 2.4 1.0 1.0 0.0
25LL 25 12 4.4 10.1 1.0 0.0 4.0 2.0 2.0 1.0 0.0
25LL 25 62 13.3 11.7 1.0 0.0 4.4 2.2 2.2 1.2 0.0
40LL 40 32 5.9 150.5 1.2 26.6 3.9 2.1 1.0 1.0 0.0
40LL 40 160 15.1 223 1.6 5.6 6.0 2.6 1.1 1.0 0.0
50LL 50 50 7.0 530.3 1.4 10.7 5.6 2.3 1.9 1.0 0.0
50LL 50 250 17.1 1308.7 3.2 33.9 13.3 2.4 1.6 1.2 0.0
60LL 60 72 8.3 888.9 1.0 0.0 4.0 2 2.0 1.0 –
60LL 60 360 19.1 1001.3 1.0 0.0 4.0 2.0 2.0 1.0 –
70LL 70 98 7.9 1977.4 1.0 0.0 4.2 2.1 2.1 1.1 –
70LL 70 490 18.5 8632.2 3.2 11.6 17.0 3.0 2.1 1.0 –
75LL 75 112 8.5 5956.1 1.8 7.6 7.5 2.4 1.9 1.0 –
75LL 75 562 18.8 3349.2 1.0 0.0 4.0 2.0 2.0 1.0 –
90LL 90 162 9.8 7460.1 1.0 0.0 4.0 2.0 2.0 1.0 –
90LL 90 810 21.1 12,681.1 1.6 0.0 6.7 2.1 2.0 1.0 –
Average 48.9 182.9 11.6 2455.4 1.7 6.2 6.9 2.3 1.7 1.0 0.0

Table 2   Results of the branch and bound procedure for CAB instances

All instances have n = 25 locations

Inst. � � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

cab0 12 0.2 4.6 17.0 1.4 1.4 4.7 2.2 1.1 1.0 0.0
cab0 12 1.0 9.7 217.9 2.6 9.4 11.8 2.7 1.8 1.0 0.0
cab0 62 0.2 12.0 21.1 1.8 3.3 6.3 2.1 1.2 1.0 0.0
cab0 62 1.0 22.0 258.3 2.8 4.8 11.8 2.3 1.8 1.0 0.0
cab1 12 0.2 5.1 19.3 1.6 1.7 6.6 2.1 1.9 1.0 0.0
cab1 12 1.0 11.3 405.1 7.8 5.2 36.9 2.8 1.9 1.0 0.0
cab1 62 0.2 12.8 11.3 1.0 0.0 4.0 2.0 2.0 1.0 0.0
cab1 62 1.0 23.4 353.9 5.2 6.2 25.7 2.8 2.1 1.1 0.0
cab2 12 0.2 4.9 19.5 1.4 1.6 4.7 2.2 1.1 1.0 0.0
cab2 12 1.0 10.8 145.6 2.0 6.1 8.3 2.3 1.8 1.0 0.0
cab2 62 0.2 12.9 17.4 1.4 1.7 4.7 2.2 1.1 1.0 0.0
cab2 62 1.0 23.6 114.2 1.4 0.4 6.1 2.4 2.1 1.2 0.0
cab3 12 0.2 6.2 57.5 3.4 29.8 14.9 2.9 1.4 1.0 0.0
cab3 12 1.0 10.8 171.8 2.6 7.4 11.7 2.4 2.1 1.1 0.0
cab3 62 0.2 14.7 27.5 1.8 5.1 6.3 2.4 1.1 1.0 0.0
cab3 62 1.0 23.3 173.3 2.4 2.8 11.8 2.6 2.3 1.3 0.0
Average 37.0 0.6 13.0 126.9 2.5 5.4 11.0 2.4 1.7 1.0 0.0
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After generating 10 random scenarios w1,…w10 , in each scenario we compare the 
costs of the best solution in Z′ to the costs of the optimal solution in the scenario, i.e. 
for the optimal first-stage solution x̄ we define

and set 𝛥 to the average of all �l . For the CCG algorithm we define Z′ as the set of 
solutions calculated in the last iteration by Problem (8). Note that since the set of 
optimal second-stage solutions in Z′ is not unique and especially may not be the 
same for both algorithms, the value of 𝛥 can be different for the branch and bound 
procedure and for the CCG.

The results for the AP instances are shown in Table  1. The gap �det increases 
with �  and with the dimension. The number of calculated nodes in the branch and 
bound tree is in most cases close to 1 and seems to remain constant with increas-
ing dimension. Nevertheless the run-time increases with the dimension and with �  
which is mainly due to the increasing run-time of Algorithm 1. Here with higher 
dimension the calculation time of the deterministic problem increases, while with 
increasing �  the number of iterations of Algorithm 1 increases which was already 
observed in [30, 42]. Another positive observation is that the root gap is very small 
in general, mostly 0 and never larger than 34% . The number of iterations of Algo-
rithm 1 is larger for the calculations of the lower bound than for the upper bound, 
which is because not all hub variables are fixed in the former case. Nevertheless the 
number of iterations is very low and never larger than 2.2 for the lower bound and 
1.2 for the upper bound. This leads to a very small number of policies calculated by 
Algorithm 1 and to a very small number of oracle calls in total. Finally the values 
of 𝛥 indicate that the returned second-stage solutions are optimal in most of the sce-
narios, as 𝛥 is 0 for most of the instances. Note that for larger dimensions due to the 
time consuming computations we did not determine the 𝛥 values.

The computations for the CAB instances are presented in Table  2. The results 
look similar to the results related to the AP instances. The gap �det is larger for larger 
values of � and �  . The root gap is again very small for most of the instances and 
never larger than 30% . The number of nodes in the branch and bound tree is very 
low, but in general higher than that for the AP instances. Nevertheless it is never 
larger than 8% in average. In contrast to the AP instances the total run-time does not 
increase much with increasing �  . Instead the run-time increases significantly with 
increasing � . The reason for this is the larger number of iterations performed by 
Algorithm 1 to calculate the lower and the upper bounds. Comparing the calculated 
solutions to the optimal values on random scenarios, the percental difference 𝛥 is 
again very close to 0 for all of the instances.

All results for the CCG algorithm are presented in Tables  3 and 4. Each row 
shows the average over all 10 random instances of the following values from left to 
right: The instance name; the number of locations n for the AP instances; the value 
�  of the budgeted uncertainty set U� ; the value of � for the CAB instances; the total 
solution time t in seconds; the average time tlb in seconds to solve the lower bound 
Problem (8); the average time tub in seconds to solve the upper bound Problem (9); 

𝛥l ∶=
min(x̄,y)∈Z� f (x̄, y,wl) −miny∈Y(x̄) f (x̄, y,w

l)

min(x̄,y)∈Z� f (x̄, y,wl)
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the number of solutions l calculated by Problem (8) which is equal to the number of 
iterations of the CCG algorithm; the average percental difference 𝛥 (over 10 random 
scenarios w̃ ∈ U𝛤 ) between the best of the solutions calculated in the last iteration 
by Problem (8) and the deterministic optimal solution in each scenario w; see the 
definition of 𝛥 above.

The results of the CCG algorithm are less convincing. We could solve AP 
instances up to 50 locations in reasonable time, while for the branch and bound pro-
cedure we managed to solve instances with 90 locations. Furthermore the runtime 

Table 3   Results of the CCG 
algorithm for AP instances

Inst. n � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

10LL 10 2 1.8 0.4 0.1 3.7 0.0
10LL 10 10 5.9 1.1 0.1 4.3 0.0
20LL 20 8 9.1 2.3 0.4 3.0 0.0
20LL 20 40 73.6 14.6 0.4 3.8 0.0
25LL 25 12 31.1 8.5 1.1 3.0 0.0
25LL 25 62 37.3 10.5 1.1 3.0 0.0
40LL 40 32 4682.0 1093.9 5.3 3.9 0.0
40LL 40 160 2660.3 720.9 5.5 3.3 0.0
50LL 50 50 8606.9 2230.8 15.2 3.6 –
50LL 50 250 57,557.4 12,632.5 14.1 4.1 –
Average 29.0 62.6 7366.5 1671.6 4.3 3.6 0.0

Table 4   Results of the CCG 
algorithm for CAB instances

All instances have n = 25 locations

Inst. � � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

cab 12 0.2 56.6 15.7 0.9 3.1 0.0
cab 12 1 4526.9 850.7 1.1 4.0 0.0
cab 62 0.2 78.8 19.8 0.9 3.4 0.0
cab 62 1 9663.3 1798.0 1.2 4.1 0.0
cab1 12 0.2 53.1 12.8 1.0 3.2 0.0
cab1 12 1 3131.2 660.4 1.0 4.6 0.0
cab1 62 0.2 32.2 8.8 1.0 3.0 0.0
cab1 62 1 10,760.1 1914.9 1.0 5.0 0.0
cab2 12 0.2 67.3 18.2 0.8 3.2 0.0
cab2 12 1 1616.5 402.0 1.0 3.6 0.0
cab2 62 0.2 63.0 16.2 0.8 3.3 0.0
cab2 62 1 1000.3 294.4 1.1 3.2 0.0
cab3 12 0.2 285.4 57.3 0.9 4.0 0.0
cab3 12 1 1382.1 366.1 1.0 3.5 0.0
cab3 62 0.2 121.4 30.9 0.8 3.5 0.0
cab3 62 1 1899.3 492.3 1.1 3.7 0.0
Average 37.0 0.6 2171.1 434.9 1.0 3.7 0.0
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is at least three times as large as for the branch and bound method for most of the 
instances and even larger for growing dimension. The same effect holds for the CAB 
instances. Here the runtime is much higher for the instances with � = 1 . The large 
runtime of the CCG is mainly caused by the lower bound problem (8). The calcula-
tions of the upper bound, solved by Algorithm 1, are less time consuming, at most 
6  s in average. The number of calculated solutions, i.e., the number of iterations, 
is slightly larger than that for the branch and bound procedure but still very small, 
never larger than 5. A positive effect is that the performance 𝛥 of the calculated 
solutions on random scenarios is very close to 0 for all instances.

In Fig.  1 we compare the runtimes in seconds of both algorithms. The results 
show that the runtime of the CCG method increases rapidly for more than 25 loca-
tions and is always much larger than the runtime of the branch and bound method. 
For the larger value of �  the run-time of the CCG method explodes if n is larger 
than 40.

Analysis of results for hard instances For the realistic instances calculated above 
the number of nodes in the branch and bound tree, the number of iterations of the 
CCG as well as the number of iterations of Algorithm 1 is very low. The same effect 
occurs for most of the randomly generated instances we tested. To test the bound-
aries of our algorithm we generated further instances which are generated as the 
instances above with the only difference that the values ŵij are randomly drawn in 
[0, 10wij] , i.e. the uncertainty sets are much larger. Furthermore for the AP instances 
we varied � ∈ {0.75, 1.5} . The results for the branch and bound procedure are pre-
sented in Table 5. For the CCG algorithm we could not even solve instances with 25 
locations in reasonable time.

Fig. 1   Development of the runtime in seconds of both algorithms
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The results in Table 5 show that the number of nodes in the branch and bound 
tree and the number of iterations of Algorithm 1 are larger than those for the realistic 
instances above but still never get larger than 33 and 12 respectively. Both values are 
larger for the CAB instances. The number of nodes decreases with increasing dimen-
sion and with increasing � . The same holds for the root gap which is lower than 
that for the realistic instances for most of the instances. Clearly the gap �det is much 
larger than for the smaller uncertainty sets. Similar to the results above the number 
of iterations for the calculations of the lower and the upper bounds and therefore 
the number of total oracle calls seem to be independent of the dimension. The same 
holds for the number of calculated second-stage solutions. The performance of these 
solutions over random scenarios is worse than for the realistic instances above, but 
still very small and never larger than 0.3% . For the CAB instances it is larger for 
� = 1 . For the CCG algorithm the results are not very convincing. Even for instances 
with 20 locations finding an optimal solution took more than 16 hours in average 
for � = 0.75 . Interestingly here the instances with smaller � were harder to solve 
(Table 6).

In Fig. 2 we present the development of several problem parameters over � for the 
20LL instance. All values are the average over 10 random uncertainty sets with ran-
dom deviations ŵij ∈ [0, 10w̄ij] . Cost parameters are defined as above by � = 3 and 
� = 2 . Figure 2 shows that the number of nodes in the branch and bound tree rap-
idly decreases with increasing � . Furthermore the number of iterations performed 
by Algorithm 1 to calculate the upper bounds and the number of returned policies 

Table 5   Results of the branch and bound procedure for instances with large deviations and � = 0.1n2

Inst. n � �
det

 (%) t (s) #Nodes �
root

 (%) #Oracle i
lb

i
ub

#Sol. 𝛥 (%)

10LL 10 0.75 62.2 14.3 21.4 5.5 165.8 5.7 1.9 1.1 0.0
10LL 10 1.5 97.9 8.8 11.4 2.9 90.7 5.7 2.5 2.2 0.0
20LL 20 0.75 107.9 152.1 13.4 6.8 113.2 6.6 2.0 1.3 0.0
20LL 20 1.5 145.8 192.0 10.0 5.6 101.5 6.1 3.4 2.6 0.1
25LL 25 0.75 105.8 403.3 17.8 3.9 135.6 5.5 1.9 1.1 0.0
25LL 25 1.5 142.0 726.5 15.4 6.0 167.4 7.5 3.3 2.6 0.1
40LL 40 0.75 128.2 4095.7 13.2 4.7 111.6 6.4 2.4 1.2 0.1
40LL 40 1.5 162.9 5671.4 6.8 1.5 72.2 6.6 3.8 2.3 0.1
50LL 50 0.75 134.2 2542.0 5.4 2.4 29.9 3.3 2.2 1.1 –
50LL 50 1.5 174.5 19,425.2 6.2 0.5 74.7 7.3 4.5 3.4 –
cab 25 0.2 100.6 884.8 32.8 3.2 313.9 7.4 1.8 1.4 0.0
cab 25 1.0 194.8 13,718.3 22.0 1.1 424.3 11.1 7.4 4.8 0.2
cab1 25 0.2 114.5 865.6 34.2 5.0 325.1 7.1 2.3 1.8 0.0
cab1 25 1.0 219.3 15,129.7 22.6 0.6 508.2 12.6 7.8 4.8 0.3
cab2 25 0.2 116.1 570.9 21.0 3.6 186.6 6.5 1.7 1.3 0.0
cab2 25 1.0 233.6 16,103.7 18.8 1.0 418.4 11.4 7.3 6.0 0.2
cab3 25 0.2 113.7 312.5 12.8 3.0 98.1 5.9 1.5 1.0 0.0
cab3 25 1.0 229.9 10,954.0 15.0 0.8 254.3 10.0 6.1 4.9 0.2
Average 27.2 0.9 143.6 5098.4 16.7 3.2 199.5 7.4 3.5 2.5 0.1
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in Z′ increases until � = 2 and afterwards slowly decreases. The number of itera-
tions performed by Algorithm 1 to calculate the lower bounds is nearly constant and 
slightly decreases. The root gap of the branch and bound procedure decreases with 
increasing � and tends to 0. In contrast to this the performance of the returned poli-
cies in Z′ , indicated by 𝛥 , seems to get worse with increasing � , and seems to be 
constant for � ≥ 2 . Nevertheless all 𝛥 values are very small and remain close to 0.2% 
for � ≥ 2.

In summary the results show that the number of nodes of the branch and bound 
procedure and the number of iterations of Algorithm  1 are very low for the real-
istic instances of the SAHLP. Hence we could solve instances with up to 90 loca-
tions in less than 4 h. Furthermore the number of calculated policies |Z′| is very low 
for the hub location problem but they perform very well on random scenarios. For 
the larger uncertainty sets, the number of nodes of the branch and bound procedure 
and the number of iterations of Algorithm 1 is larger but is still very low compared 
to the dimension of the problem. Furthermore the latter values seem to be nearly 
constant with increasing dimension. The runtime and the number of iterations of 
Algorithm 1 increase with increasing � while the number of nodes of the branch and 
bound tree decreases.

An example of an optimal solution of a random instance with 20 locations and ŵij 
randomly drawn in [0, 10w̄ij] is shown in Fig. 3. The figure shows the optimal solu-
tion of the nominal scenario w̄ and the three returned solutions in Z′ . The number 

Table 6   Results of the CCG for 
instances with large deviations 
and � = 0.1n2

Inst. n � t (s) t
lb

 (s) t
ub

 (s) #Iter. 𝛥 (%)

10LL 10 0.75 455.9 20.9 0.1 14.3 0.0
10LL 10 1.5 124.0 9.9 0.1 9.8 0.0
20LL 20 0.75 59,150.5 3471.2 0.6 15.5 0.0
20LL 20 1.5 8445.2 880.2 0.8 8.2 0.1
Average 15.0 1.1 17,043.9 1095.6 0.4 12.0 0.0

Fig. 2   Development of the parameters of the branch and bound procedure over � for the 20LL instance 
with random deviations ŵ

ij
∈ [0, 10w̄

ij
] , � = 3 and � = 2 . The graphs in the right plot are presented in 

logarithmic scale
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of hubs is larger in the two-stage robust solution than in the deterministic solution 
since for flexible re-allocation after a scenario occured it can be beneficial to build 
further hubs in advance. Furthermore the figure indicates that a hub which is used 
by many locations in the deterministic solution may not be used by the second-stage 
reactions of the two-stage solution.

3.2 � The capital budgeting problem

In this section the oracle-based branch and bound algorithm and the CCG algorithm 
are exemplarily applied to the two-stage robust capital budgeting problem studied in 
[5] which can be naturally defined as a two-stage problem.

The capital budgeting problem (CB) is an investment planning problem, where a 
subset of n projects has to be selected. Each project i ∈ [n] has costs ci and an uncer-
tain profit p̃i which depends on a set of m risk factors 𝜉 ∈ U ⊂ ℝ

m . The profits are 
given by p̃i(𝜉) = (1 +

1

2
Q⊤

i
𝜉)p̄i , where p̄i are the nominal profits and Qi is the i-th 

row of the factor loading matrix. For each project the company can decide if it wants 
to invest in the project here-and-now or if it wants to wait until the risk factors are 
known. If an investment is postponed to the second stage the profit generated by the 

Deterministic Solution Solution 1

Solution 2 Solution 3

(a) (b)

(c) (d)

Fig. 3   The optimal solution of the nominal scenario w̄ (top left) and the optimal two-stage robust solu-
tion presented by all 3 solutions in Z′ returned by Algorithm 1 in the optimal branch and bound node for 
a 20LL instance with � = 1.5 and � = 40
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project is f p̃i where 0 ≤ f < 1 . The costs of a project are the same in the first and the 
second stage. The company has a given budget B for investing in projects and can 
additionally take out a loan of volume C1 with costs � in the first stage and a loan of 
volume C2 with costs �� in the second stage where 𝜇 > 1 . The aim is to maximize 
the worst-case profit. This problem can be formulated as

where X =
{
(x, x0) ∈ {0, 1}n+1 | c⊤x ≤ B + C1x0

}
 is the set of feasible first-stage 

solutions and

is the set of feasible second-stage solutions. For more details see [5].

3.2.1 � Computational results

In this section we apply the branch and bound method derived in Sect. 2 and the 
CCG method presented in Sect.  2.2 to the capital budgeting problem. The imple-
mentation of both algorithms is the same as in Sect. 3.1. As deterministic oracle in 
Step 4 of Algorithm 1 we implemented the deterministic version of the integer pro-
gramming formulation of Problem (17) in CPLEX 12.8. Note that since we consider 
a maximization problem here the terms upper bound and lower bound are swapped.

We compare both variants of calculating a dual solution x̄ presented in (6) and (7) 
which we denote by DualSol-Avg and DualSol-Opt, respectively. The branching is 
performed on the variable which is the closest to 0.5. A feasible first-stage solution 
is obtained by rounding the entries of x̄ to the closest integer value. If this solution is 
not feasible we choose the first solution which was returned by Algorithm 1 after the 
calculation of the upper bound.

For our tests we use the original instances studied in [5]. The authors generate 
random instances with n ∈ {10, 20, 30, 40, 50, 100} projects and m ∈ {4, 6, 8} risk 
factors. For each combination 20 instances are generated. The uncertainty set is 
given by the box U = [−1, 1]m . For more details see [5].

Analysis of results The results for the branch and bound procedure are presented in 
Tables 7 and 8. Each row in Table 7 shows the average over all 20 instances of the 
following values from left to right: The number of projects n; the number of risk 
factors m; the total number of nodes solved in the branch and bound tree; the total 
number of oracle calls; the total time t in seconds to solve the instance to optimality; 
the percentage of instances which could be solved to optimality during the timelimit 
of 7200 s.

Each row in Table  8 shows the average over all 20 instances of the following 
values from left to right: The number of projects n; the number of risk factors m; 
the gap �det in %; the root-gap �root in %; the average number of iterations iub of 
Algorithm 1 to calculate the upper bounds; the average number of iterations ilb of 

(17)max
(x,x0)∈X

−𝜆x0 + p̄⊤(x + fy) +min
𝜉∈U

max
(y,y0)∈Y((x,x0))

n∑

i=1

1

2
Q⊤

i
𝜉p̄i(xi + fyi) − 𝜆𝜇y0

Y((x, x0)) =
{
(y, y0) ∈ {0, 1}n+1 | c⊤(x + y) ≤ B + C1x0 + C2y0, x + y ≤ 1

}
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Algorithm 1 to calculate the lower bounds; the number of solutions |Z′| Algorithm 1 
returned for the optimal first-stage solution x; the average percental difference 𝛥 
(over 10 random scenarios in U) between the best solution in Z′ and the determinis-
tic optimal solution in each scenario; see Sect. 3.1 for a precise definition. All values 
are presented for both variants, DualSol-Avg and DualSol-Opt. The bold-faced val-
ues indicate which of the two variants is better.

The results in Table 7 indicate that the DualSol-Opt variant performs much better 
on most of the instances. The larger computational effort which is made to calculate 
the optimal dual solution does not have an impact on the total run-time since the 
number of processed nodes in the branch and bound tree is much smaller. For both 
variants the number of nodes processed in the branch and bound tree and the num-
ber of oracle calls are significantly larger than for the SAHLP; compare to Sect. 3.1. 
Both values and therefore the run-time increase with increasing m. Interestingly the 
instances with dimension n = 30 and n = 40 seem to be the hardest to solve. The 
total run-time for the instances with m = 8 is very large. Nevertheless for most of the 
configurations all instances could be solved during the timelimit.

In contrast to the latter results, the values in Table  8 are not much larger than 
for the SAHLP. The root-gap is better for the DualSol-Opt variant for most of the 
instances but is very small for both methods and at most 8% . The number of iter-
ations performed to calculate the upper and the lower bounds and the number of 

Table 7   Results of the branch and bound procedure for both variants

The last row shows the average over all values of the corresponding column

n m DualSol-Avg DualSol-Opt

#Nodes #Oracle t (s) Opt (%) #Nodes #Oracle t (s) Opt (%)

10 4 36.6 175.4 1.8 100 31.0 131.2 1.5 100
10 6 28.5 135.8 1.4 100 20.5 85.5 1.0 100
10 8 27.1 140.2 1.6 100 21.3 105.3 1.3 100
20 4 341.7 3584.3 61.7 100 259.1 2591.7 50.3 100
20 6 130.8 1609.9 30.0 100 110.2 1185.0 25.6 100
20 8 233.3 3000.0 58.0 100 185.3 2177.3 48.0 100
30 4 1567.1 24,812.2 968.5 95 866.9 12,561.9 589.7 95
30 6 4883.5 98,070.3 2224.7 90 2613.3 49,107.6 1245.6 100
30 8 7551.5 165,807.6 3764.3 90 5587.5 118,041.0 2871.5 90
40 4 172.9 2454.8 101.4 100 79.1 991.7 47.8 100
40 6 1099.6 24,308.3 867.8 100 415.1 9053.3 390.5 100
40 8 82,702.4 2,521,663.0 78,876.8 70 56,771.4 1,696,806.5 61,148.2 70
50 4 229.4 2849.4 99.2 100 100.3 1169.7 48.7 100
50 6 268.8 5357.1 227.6 100 118.0 2160.7 137.0 100
50 8 2237.4 65,036.7 3530.1 80 439.9 11,883.3 717.9 100
100 4 1191.1 12,911.5 536.4 100 340.7 3410.8 147.4 100
100 6 4546.1 73,554.6 1977.5 90 543.3 9458.4 288.6 100
100 8 4289.7 93,770.2 2899.9 90 603.3 14,755.7 581.7 100
41.7 6.0 6196.5 172,180.1 5346.0 94.7 3839.2 107,537.6 3796.8 97.5
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calculated solutions are slightly larger than for the SAHLP but still very small. All 
values seem to be independent of the size of the dimension and the number of risk 
factors. The gap 𝛥 is slightly larger than for the SAHLP but still at most 1%.

The results for the CCG are presented in Table 9. Each row shows the average 
over all 20 instances of the following values from left to right: The number of pro-
jects n; the number of risk factors m; the percentage of instances which could be 
solved to optimality during the timelimit of 7200 s, the optimality gap of the CCG 
after 7200 s; the total solution time t in seconds (exceeding the timelimit is counted 
as 7200 s); the average solution time tub to calculate the upper bounds; the average 
solution time tlb to calculate the lower bounds; the total number of iterations; the 
average percental difference 𝛥 (over 10 random scenarios in U) between the best 
solution in Z′ and the deterministic optimal solution in each scenario. Here Z′ is the 
set of solutions calculated by Algorithm 1 in the last iteration. Note that we stopped 
the calculations for each instance after 7200 s, since for several instances the mem-
ory used by CPLEX was too large. Therefore the run-times can not be compared to 
the run-times of the branch and bound method.

As for the SAHLP the results of the CCG algorithm are less convincing. The 
number of instances solved to optimality during the timelimit is much smaller 
than for the branch and bound method, sometimes smaller than 55% . Nevertheless 
the optimality gap after the timelimit is very small, at most 3.6% . The number of 

Table 8   Results of the branch and bound procedure for both variants

The last row shows the average over all values of the corresponding column

n m �
det

 (%) DualSol-Avg DualSol-Opt

�
root

 (%) i
ub

i
lb

#Sol. 𝛥 (%) �
root

 (%) i
ub

i
lb

#Sol. 𝛥 (%)

10 4 13.1 6.8 2.0 2.3 1.8 0.3 5.5 2.0 1.9 1.8 0.5
10 6 16.7 8.0 1.7 2.2 1.7 0.4 7.0 1.8 1.8 1.7 0.3
10 8 18.0 7.1 2.4 2.2 1.6 0.2 7.2 2.5 1.9 1.6 0.3
20 4 6.2 5.3 4.4 3.7 2.5 0.6 4.8 4.7 3.1 2.5 0.6
20 6 6.5 4.4 4.7 3.7 2.5 0.3 4.2 4.8 2.9 2.5 0.4
20 8 7.5 5.2 4.9 4.4 2.5 0.3 3.8 5.2 3.5 2.5 0.3
30 4 3.2 5.0 6.0 5.0 4.0 0.6 3.7 6.1 4.5 3.8 0.6
30 6 3.5 5.1 7.2 6.0 3.8 0.4 3.9 7.5 5.2 3.7 0.4
30 8 4.3 4.9 8.3 6.9 3.8 0.4 4.0 8.8 5.7 3.8 0.3
40 4 1.9 5.4 5.8 5.7 4.1 0.8 4.4 5.4 5.3 4.1 0.6
40 6 2.3 5.5 8.0 7.3 5.2 0.5 4.0 7.5 6.4 5.2 0.3
40 8 3.3 5.0 11.1 8.8 6.2 0.4 3.3 11.5 7.9 7.0 0.4
50 4 2.3 5.1 5.1 5.7 4.7 0.7 3.2 5.0 5.5 4.8 0.9
50 6 2.5 5.8 7.9 7.9 6.5 0.5 3.7 7.1 7.3 6.5 0.6
50 8 2.6 5.5 10.1 9.9 7.8 0.4 3.5 9.1 9.2 8.0 0.4
100 4 1.2 5.6 3.6 5.4 5.5 0.9 1.6 3.6 5.8 6.1 0.9
100 6 1.1 5.8 5.4 8.1 7.4 0.8 3.1 5.2 8.3 7.1 0.7
100 8 1.5 5.0 8.2 12.2 10.9 0.8 3.0 7.9 12.7 9.4 0.7
41.7 6.0 5.4 5.6 5.9 6.0 4.6 0.5 4.1 5.9 5.5 4.6 0.5
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iterations is small for most of the instances and seems to be independent of the size 
of the dimension. It increases with increasing m. As for the SAHLP most of the run-
time is used to calculate the upper bound problem. The gap 𝛥 is smaller than 1% for 
most of the instances, as it is the case for the branch and bound method.

To summarize, for the two-stage robust capital budgeting problem the number 
of nodes processed in the branch and bound tree and the number of oracle calls is 
significantly larger than for the SAHLP. Nevertheless since the deterministic prob-
lem can be solved much faster the total run-time is not larger for the instances with 
small m. Although most of the instances could be solved during the timelimit by the 
branch and bound method, the run-time for instances with m = 8 can be very large. 
But still the branch and bound method solves significantly more instances to opti-
mality than the CCG. Nevertheless the optimality gap of the CCG after the timelimit 
is very small.

4 � Conclusion

In this paper we derive a branch and bound procedure to solve robust binary two-
stage problems for a wide class of objective functions. We show that the oracle-
based column generation algorithm presented in [30] can be adapted to calculate 
lower bounds which can be used in a classical branch and bound procedure. The 

Table 9   Results of the CCG 
algorithm

The last row shows the average over all values of the corresponding 
column

n m Opt (%) Gap (%) t (s) t
ub

 (s) t
lb

 (s) #Iter. 𝛥 (%)

10 4 100 0.0 0.5 0.0 0.0 7.8 0.2
10 6 100 0.0 0.4 0.0 0.0 7.4 0.4
10 8 100 0.0 0.7 0.0 0.0 8.4 0.3
20 4 90 0.0 14.7 24.7 0.0 12.7 0.6
20 6 100 0.0 49.6 1.9 0.0 12.9 0.4
20 8 70 0.1 16.0 69.1 0.0 18.5 0.3
30 4 90 0.0 124.7 42.4 0.0 14.5 0.6
30 6 60 0.1 33.9 105.1 0.0 18.4 0.5
30 8 55 0.3 822.7 137.3 0.0 18.1 0.4
40 4 100 0.0 105.6 6.7 0.0 10.3 0.7
40 6 85 0.0 236.2 59.4 0.0 17.6 0.5
40 8 50 0.2 713.0 131.1 0.1 30.0 0.6
50 4 95 0.3 90.0 52.8 0.0 9.8 1.1
50 6 90 0.0 233.5 44.1 0.1 13.5 0.6
50 8 75 0.6 594.8 127.6 0.1 18.7 0.5
100 4 80 1.6 84.5 239.5 0.1 6.6 1.2
100 6 55 3.6 454.8 424.1 0.1 7.8 1.3
100 8 40 3.2 69.3 452.7 0.1 10.2 1.3
41.7 6.0 79.7 0.6 202.5 106.6 0.0 13.5 0.6
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whole procedure can be implemented for any algorithm solving the underlying 
deterministic problem. Furthermore we apply the column-and-constraint generation 
algorithm studied in [73] to our problem and show that again the oracle-based algo-
rithm in [30] can be used to solve one step of the procedure. We test both algorithms 
on classical benchmark instances of the single-allocation hub location problem and 
on random instances of the capital budgeting problem. We show that the number of 
nodes in the branch and bound tree, the number of iterations of the CCG algorithm 
as well as the number of iterations of the column generation algorithm are very low 
for the SAHLP while the number of branch and bound nodes increases significantly 
for the capital budgeting problem. Nevertheless our branch and bound procedure is 
much faster than the CCG algorithm and can solve larger instances in reasonable 
time. Furthermore our computational results indicate that for both algorithms the 
precalculated second-stage solutions perform very well on random scenarios.
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