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Abstract
In this paper we prove that the symmetric Nash solution is a risk neutral von Neu‑
mann–Morgenstern utility function on the class of pure bargaining games. Our 
result corrects an error in Roth (Econometrica 46:587–594, 983, 1978) and general‑
izes Roth’s result to bargaining games with arbitrary status quo.

Keywords  Bargaining games · Nash solution · Risk neutrality

Mathematics Subject Classification  91A12 · 91A30

1  Introduction

In economic theory it is generally assumed that individuals can compare alterna‑
tives according to their desirability by some ordinal preference relation. These alter‑
natives can be commodity bundles, resource allocations, income distributions etc. 
Under well known axioms (von Neumann and Morgenstern 1944; Herstein and Mil‑
nor 1953) this ordinal preference relation is representable by a cardinal (expected) 
utility function, commonly called von Neumann–Morgenstern utility function.
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In our social and economic life we often face more complex prospects resulting 
from the interaction with others. Examples include starting a business, choosing an 
employer, collaborating in a research project and joining a political party, a sports 
club or a social network. In order to decide with whom to cooperate we have to 
evaluate these complex prospects and it is therefore natural to ask whether there 
exists an extension of the cardinal utility function on simple prospects to positions in 
games which are commonly used to model the interaction among individuals.

The focus of this paper is on bargaining games as introduced by Nash (1950).1 
A bargaining game is given by a set of feasible utility allocations available to 
some group of players and a status quo which is an element of the feasible set.2 
The players can either agree on some point in this set or else receive their status 
quo utilities. Roth (1978a, b) claims that the Nash solution (Nash 1950) is a von 
Neumann–Morgenstern utility function on positions in bargaining games, where the 
weight assigned to a position in a bargaining game is determined by the individ‑
ual’s attitude towards strategic risk. However, as shown in Gerber (1999), if there 
are more than two players, then the Nash solution violates one of the axioms that 
Roth imposes upon the preference relation over positions in bargaining games. This 
axiom is a considerably stronger version of Nash’s Independence of Irrelevant Alter-
natives. We will show that under a modified condition one can recover Roth’s result 
for the special case of a preference relation that reflects risk neutrality. It is an open 
question if a similar result holds for the case of a risk averse or risk loving individ‑
ual since the asymmetric Nash solution with appropriately chosen weights does not 
satisfy the modified condition. A characterization of asymmetric Nash solutions as 
expected utility functions can only be given on the class of two-person games and on 
the class of hyperplane games.

Apart from correcting Roth (1978a, b) the purpose of this paper is to extend the 
characterization of the Nash solution as a von Neumann–Morgenstern utility func‑
tion on positions in bargaining games to games with arbitrary status quo. To this end 
we have to impose some additional assumptions upon the preference relation. For 
example, we will require the preference relation to be translation invariant.

The outline of the paper is the following. Section 2 provides the basic notation 
and definitions and presents a characterization of symmetric and asymmetric Nash 
solutions. In Sect. 3 we introduce a preference relation on bargaining positions and 
present the axioms we impose upon this relation. A counterexample shows that the 
Nash solution violates one of the axioms in Roth (1978a). In Sect. 4 we state and 
prove our characterization results for symmetric and asymmetric Nash solutions as 
von Neumann–Morgenstern utility functions. We conclude with a discussion of our 
result in Sect. 5.

1  For the class of transferable utility (TU) games see Roth (1977b), who has shown that the Shapley 
value (Shapley 1953) is a von Neumann–Morgenstern utility function on positions in TU games under 
risk neutrality.
2  Note that we take a utilitarian approach and consider any two “physical” bargaining situations (e.g. two 
distribution problems) as equivalent if they generate the same set of feasible utility allocations and the 
same status quo.
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2 � The Nash Solution

We first introduce some notation. In the following ℕ will denote the set of positive 
integers and ℝ will denote the set of real numbers. By |A| we denote the cardinality 
of a set A. The set N = {1,… , n}, n ∈ ℕ, n ≥ 2 , will denote the player set. Let R be 
a nonempty subset of N. Later R will be the set of strategic positions, i.e. the set of 
relevant players in a bargaining game. ℝR denotes the cartesian product of |R| copies 
of ℝ , indexed by the elements of R and by ℝR

+
 and ℝR

++
 we denote the set of non‑

negative and strictly positive vectors in ℝR , respectively, i.e. ℝR
+
= {x ∈ ℝ

R | x ≥ 0} 
and ℝR

++
= {x ∈ ℝ

R | x ≫ 0}.3 Throughout the paper we will use the notation 
ℝ

n, ℝn
+
, ℝn

++
 , instead of ℝN , ℝN

+
, ℝN

++
 , respectively. For x ∈ ℝ

n and ∅ ≠ R ⊆ N let 
xR be the projection of x onto ℝR.

For A ⊆ ℝ
n let ch(A) = {x ∈ ℝ

n |∃y ∈ A, y ≥ x} denote the comprehen-
sive hull of A. The set A ⊆ ℝ

n is comprehensive if ch(A) = A . By cch{y1,… , yk} 
we denote the comprehensive and convex hull of the vectors y1,… , yk ∈ ℝ

n , i.e. 
x ∈ cch{y1,… , yk} if there exist �1,… , �k, 0 ≤ �i ≤ 1 (i = 1,… , k),

∑k

i=1
�i = 1 , 

such that 0 ≤ x ≤
∑k

i=1
�iy

i . A vector x is Pareto optimal in A ⊆ ℝ
n if x ∈ A and if 

there exists no vector y ∈ A such that y > x . By PO(A) we denote the set of Pareto 
optimal vectors in A ⊆ ℝ

n.
Let � ∶ N → N be a permutation. Then � induces a mapping 𝜋⋆ ∶ ℝ

n
→ ℝ

n 
given by

For A ⊆ ℝ
n let 𝜋⋆(A) = {𝜋⋆(x) | x ∈ A}.

Let ∗∶ ℝ
n ×ℝ

n
→ ℝ

n denote the element-wise multiplication of vectors in ℝn 
defined by

(ℝn
++

, ∗) is a group in the algebraic sense. For x ∈ ℝ
n
++

 we denote the inverse ele‑
ment with respect to ∗ by x−1 , i.e. x−1 =

(
1

x1
,… ,

1

xn

)
 . For A ⊆ ℝ

n and x ∈ ℝ
n let 

x ∗ A = {x ∗ y | y ∈ A} . Let a, b ∈ ℝ
n, a ≫ 0 . The mapping La,b ∶ ℝ

n
→ ℝ

n with 
La,b(x) = a ∗ x + b for all x ∈ ℝ

n is called a positive affine transformation. For 
A ⊆ ℝ

n let La,b(A) = {La,b(x) | x ∈ A}.
A bargaining game consist of a feasible set of utility allocations S measured in 

von Neumann–Morgenstern utility scales, and a status quo d ∈ S which is the out‑
come of the game if the players do not agree on a utility allocation in S.4 The follow‑
ing formal definition makes some additional assumptions on S and d.

Definition 2.1  An n-person (pure) bargaining game is a tuple (S, d), where 

(𝜋⋆(x))i = x𝜋−1(i) for i ∈ N and x ∈ ℝ
n.

x ∗ y = (x1y1,… , xnyn) for (x, y) ∈ ℝ
n ×ℝ

n.

3  The notation for vector inequalities is ≥, >,≫.
4  d is also called disagreement point or threatpoint.



90	 Homo Oeconomicus (2020) 37:87–104

1 3

1.	 S ⊆ ℝ
n is convex, closed and comprehensive.

2.	 d ∈ S.
3.	 {x ∈ S | x ≥ d} is bounded.

Thus, in contrast to Roth (1978a) we assume free disposability of utility (S is 
comprehensive) and consider bargaining games with arbitrary status quo.

Let

Definition 2.2  For (S, d) ∈ � the set of strategic positions is given by

Player i ∈ N is called a dummy for (S, d) ∈ � if i ∉ R(S,d).

R(S,d) is the set of relevant players in the bargaining game. These are those players 
who can achieve more than their status quo utility without making anyone worse off 
than in the status quo. Hence, these players are interested in getting an agreement 
with the other players. By contrast, for a dummy player it does not matter whether 
there is an agreement or not as long as the agreement does not leave her with less 
than the status quo utility. It is straightforward to see that if (S, d) ∈ � and R(S,d) ≠ � , 
then there exists x ∈ S, x ≥ d , such that xi > di for all i ∈ R(S,d) . That is, there exists 
an agreement that is acceptable for everyone ( x ≥ d ) and that is strictly better than 
the status quo for all relevant players. This follows from convexity of S and the fact 
that for each strategic position i ∈ R(S,d) there exists a feasible utility allocation x ≥ d 
with xi > di.

The following games will play an important role in the analysis. For ∅ ≠ R ⊆ N 
let

and note that (DR, 0) ∈ � . In any such game (DR, 0) the players in R are in strategic 
positions. They can achieve more than their status quo utility by distributing one 
unit among themselves. The remaining players are dummies who can achieve at 
most their status quo utility. For x ∈ ℝ

n let

and note that (Dx, d) ∈ � for all x, d ∈ ℝ
n with x ≥ d . For any such game (Dx, d) we 

would expect the players to agree on x, where each player gets the maximum pos‑
sible payoff in the game.

A solution assigns a feasible utility allocation to any bargaining game:

Definition 2.3  � ∶ � → ℝ
n is called a solution if

� = {(S, d) | (S, d) is an n-person bargaining game}.

R(S,d) = {i ∈ N | ∃x ∈ S, x ≥ d, such that xi > di}.

DR =

{
x ∈ ℝ

n
|||||
∑
i∈R

xi ≤ 1 and xj ≤ 0 for all j ∉ R

}

Dx = ch({x})
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We now introduce specific Nash-type solutions that will be characterized in the 
following. To this end let p =

(
(pR)�≠R⊆N

)
 be a collection of strictly positive vectors 

with pR ∈ ℝ
R
++

 and 
∑

i∈R p
R
i
= 1 for all ∅ ≠ R ⊆ N . The solution N(p) ∶ � → ℝ

n is 
then defined as follows. Let (S, d) ∈ � and let R = R(S,d) be the set of strategic posi‑
tions. Then

For q ∈ ℝ
n
++

 the weighted Nash solution with weights q, �q , is given by �q = N(p) , 
where p =

(
pR)�≠R⊆N

)
 is such that pR

i
= qi∕(

∑
i∈R qi) for all i ∈ R, � ≠ R ⊆ N . Note 

that the difference between the solutions N(p) and �q is that in the latter the relative 
weight of two players i and j is pR

i
∕pR

j
= qi∕qj independent of the bargaining game 

where both players have strategic positions. In contrast, for the solution N(p) the rela‑
tive weight of two players may vary with the bargaining game.

If qi = qj for all i, j ∈ N , then � = �q is independent of the particular choice of q 
and we call � symmetric Nash solution. The symmetric and asymmetric Nash solu‑
tions were introduced by Nash (1950) and Harsanyi and Selten (1972), respectively. 
Consider the following axioms on a solution � . 

(SIR)	� Strong individual rationality: For all (S, d) ∈ � and all 
i ∈ N,�i(S, d) ≥ di , with strict inequality whenever i ∈ R(S,d).

(COV)	� Covariance with respect to positive affine transformations: For all 
(S, d) ∈ � , if La,b ∶ ℝ

n
→ ℝ

n is a positive affine transformation, then 

(IIA)	� Independence of irrelevant alternatives: If (S, d), (S�, d) ∈ � with 
S ⊆ S′ and �(S�, d) ∈ S , then �(S, d) = �(S�, d).

(SY)	� Symmetry: If (S, d) ∈ � is such that 𝜋⋆(S) = S and 𝜋⋆(d) = d for all 
permutations � ∶ N → N with �

(
R(S,d)

)
= R(S,d) and �(i) = i for all 

i ∉ R(S,d) , then �i(S, d) = �j(S, d) for all i, j ∈ R(S,d).
(DCONT)	� Disagreement point continuity: For any sequence ((S, dm))m ⊂ � such 

that limm→∞ dm = d ∈ S we have limm→∞ �(S, dm) = �(S, d).

SIR is a natural requirement since no player would accept an outcome that 
gives her less utility than the status quo and no player in a strategic position will 
find it acceptable to receive only the status quo utility. COV requires that a posi‑
tive affine transformation of all feasible utility allocations implies that the solu‑
tion changes accordingly. Note that a positive affine transformation of the util‑
ity allocations corresponds to an equivalent representation of the players’ von 

�(S, d) ∈ S for all (S, d) ∈ �.

N(p)(S, d) =

⎧
⎪⎨⎪⎩

argmax

�∏
i∈R

(xi − di)
pR
i � x ∈ S, x ≥ d

�
if R ≠ �

d if R = �

.

�

(
La,b(S), La,b(d)

)
= La,b(�(S, d)).
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Neumann–Morgenstern (expected) utility functions. IIA demands that the solu‑
tion is invariant with respect to the deletion of “irrelevant” utility allocations 
which are different from the allocation that is chosen by the solution. SY requires 
the solution to treat all strategic players the same if they are symmetric. Finally, 
DCONT is a technical property requiring the solution to be continuous in the 
disagreement point.

Since we were not able to give a reference for the following characterization 
results on the domain � we present the theorem with a proof. The main ideas, of 
course, are due to Nash (1950) and Roth (1977a).

Theorem 2.4   

1.	 A solution � ∶ � → ℝ
n satisfies SIR,  COV and IIA if and only if there exists 

p =
(
(pR)�≠R⊆N

)
 with pR ∈ ℝ

R
++

 and 
∑

i∈R p
R
i
= 1 for all ∅ ≠ R ⊆ N  , such that 

� = N(p).
2.	 A solution � ∶ � → ℝ

n satisfies SIR,  COV, IIA and DCONT if and only if there 
exists q ∈ ℝ

n
++

 such that � = �q.
3.	 A solution � ∶ � → ℝ

n satisfies SIR, COV, IIA and SY if and only if � = �.

The proof is in the appendix, but let us provide some discussion and the basic 
ideas of the proof. First, the reader may wonder why we do not require the solution 
to satisfy Pareto optimality, i.e. �(S, d) ∈ PO(S) for all (S, d) ∈ � . The reason is that 
Pareto optimality is implied by SIR,  COV and IIA as we show in the proof of the 
first claim in Theorem 2.4. The basic idea is as follows (see also Roth 1977a). Sup‑
pose there is a bargaining game (S, d) whose solution �(S, d) is not Pareto optimal. 
Then one could shrink the feasible set by means of a positive affine transformation 
such that the utility allocation �(S, d) is still feasible and by IIA the solution of the 
new bargaining game must still be �(S, d) . However, by COV the solution is a posi‑
tive affine transformation of �(S, d) which is a contradiction. The remainder of the 
proof of part one follows the line of argument in Nash (1950) applied to bargaining 
games with strategic positions R.

The second part of the theorem provides a characterization of the weighted Nash 
solution �q . From part 1 we know that a solution that satisfies SIR,  COV and IIA 
must be equal to N(p) for some p. If the solution in addition satisfies DCONT, then 
it must be given by �q for some q. The idea is that any bargaining problem (S, d) 
can be approximated by a sequence of bargaining games ((S, dm))m which have no 
dummy players so that N(p)(S, dm) = �q(S, dm) for all m, where q = pN . Taking limits 
and using DCONT we then conclude that N(p)(S, d) = �q(S, d).

Finally, the third part of the theorem easily follows from part one because SY 
requires the solution to assign the same payoff to two players who are in symmetric 
strategic positions in a bargaining game. In particular, in any bargaining game 
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(DR, 0) for ∅ ≠ R ⊆ N all players in R must get the same payoff. For N(p) this is only 
possible if pR

i
= pR

j
 for all i, j ∈ R and hence N(p) = �.

For later usage we briefly review a result due to Herstein and Milnor (1953) con‑
cerning the representation of preferences over lotteries in the expected utility form.5

Definition 2.5  A set M is a mixture set if for any a, b ∈ M and any 0 ≤ p ≤ 1 we can 
associate an element of M denoted by [pa;(1 − p)b] which is called a lottery over a 
and b such that the following conditions are fulfilled: 

1.	 [1a;0b] = a for all a, b ∈ M.
2.	 [pa;(1 − p)b] = [(1 − p)b;pa] for all a, b ∈ M, 0 ≤ p ≤ 1.

3.	
[
q[pa;(1 − p)b];(1 − q)b

]
= [pqa;(1 − pq)b] for all a, b ∈ M, 0 ≤ p, q ≤ 1.

Let ≿ be a preference relation on M, i.e. a complete and transitive binary rela‑
tion on M. The corresponding strict preference relation and indifference relation are 
defined as usual and are denoted by ≻ and ∼ , respectively. The following axioms 
guarantee the existence of an expected utility function that represents ≿ . 

(A1)	� (Continuity) Let a, b, c ∈ M . Then the following sets are closed: 
{p | [pa;(1 − p)b] ≿ c} and {p | c ≿ [pa;(1 − p)b]}.

(A2)	� (Independence) Let a, a�, b ∈ M with a ∼ a�. Then 

Theorem 2.6  (Herstein and Milnor 1953) Let ≿ be a preference relation on M that 
fulfills A1 and A2. Then there exists a utility function u ∶ M → ℝ which represents 
≿ (i.e. a ≿ b ⟺ u(a) ≥ u(b) for all a, b ∈ M ) and which has the property that

for all a, b ∈ M, 0 ≤ p ≤ 1 . The utility function u is unique up to a positive affine 
transformation, i.e. if v ∶ M → ℝ also represents ≿ , then there exist 𝛼, 𝛽 ∈ ℝ, 𝛼 > 0, 
such that v(a) = �u(a) + � for all a ∈ M.

The expected utility function u is also called von Neumann–Morgenstern utility 
function.

[
1

2
a;
1

2
b
]
∼
[
1

2
a�;

1

2
b
]
.

u([pa;(1 − p)b]) = pu(a) + (1 − p)u(b)

5  The original treatment is due to von Neumann and Morgenstern (1944).
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3 � A Preference Relation over Bargaining Positions

Consider an individual (an “outside observer”) who has a preference relation over 
the set of positions in bargaining games N × � . That is, the individual can evalu‑
ate the prospect of being player i in game (S,  d) versus the prospect of being 
player j in game (S�, d�) . This includes the case where the individual evaluates 
the prospect of being in different positions i and j ≠ i in the same game (S, d). 
Hence, we implicitly assume that the utilities that define the bargaining games are 
derived from the von Neumann–Morgenstern utility function of the individual.

We also assume that the individual can evaluate the prospects of different lot‑
teries over the set of positions in bargaining games. Formally, let MN×� be the 
mixture set generated by N × � and let ≿ be a preference relation on MN×� which 
satisfies A1 and A2. In addition we assume that ≿ satisfies the following axioms. 

(A3)	� For all permutations � ∶ N → N and all i ∈ N , 

(A4)	� Let (S, d), (S�, d�) ∈ �, i ∈ N , and (i, (S, d)) ∼
(
i, (S�, d�)

)
. Let 

e = (1,… , 1) ∈ ℝ
n . Then, for all b ∈ ℝ

n

(A5)	� Let x, y, z ∈ ℝ
n, i ∈ N, and 0 ≤ p ≤ 1 , be such that xi = pyi + (1 − p)zi . 

Then 

(A6)	� Let (S, d) ∈ �, i ∈ N, a ∈ ℝ
n
++

, ai ≥ 1, and let S� = a ∗ S, d� = a ∗ d. Then 

(A7)	� (a) Let i ∈ N be a dummy in (S, 0) ∈ � . Then 

 (b) If i ∈ N is not a dummy in (S, 0) ∈ � then 

 (c) Let x, d, d� ∈ ℝ
n, be such that x ≥ d, x ≥ d′ , and let i ∈ N. Then 

 (d) Let i ∈ N and � ≠ R ⊆ N,R ≠ {i}. Then 

(i, (S, d)) ∼

(
𝜋(i),

(
𝜋⋆(S),𝜋⋆(d)

))
.

(
i, Le,b(S, d)

)
∼
(
i,

(
Le,b(S�), Le,b(d�)

))
.

(i, (Dx, x)) ∼
[
p
(
i, (Dy, y)

)
;(1 − p)

(
i, (Dz, z)

)]
.

(i, (S, d)) ∼

[
1

ai

(
i, (S�, d�)

)
;

(
1 −

1

ai

)(
i, (D0, 0)

)]
.

(i, (S, 0)) ∼ (i, (D0, 0)).

(i, (S, 0)) ≻ (i, (D0, 0)).

(i, (Dx, d)) ∼ (i, (Dx, d
�)).
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(A8)	� Let x ∈ ℝ
n
+
 and let (S, 0), (T , 0) ∈ � be such that Dx ⊆ S ⊆ T  , and (

i, (Dx, 0)
)
∼ (i, (T , 0)) for all i ∈ N . Then, for all i ∈ N , 

Let us give a short interpretation of the conditions keeping in mind that the desir‑
ability of a bargaining position will naturally be correlated with the individual’s 
expectation about the outcome of the bargaining game. A3 reflects the fact that 
the name of a bargaining position is irrelevant for its desirability. That is, the indi‑
vidual expects her utility payoff in a specific position to depend only on the struc‑
tural properties of the game and not the names (numbers) of the players. Axiom A4 
might be called translation invariance. Our individual remains indifferent between 
two bargaining positions if the feasible utility allocations are translated in the same 
way. Observe that in our framework the utilities that define the bargaining games 
are derived from the same von Neumann–Morgenstern utility function, namely 
from the outside observer’s one whose preference relation ≿ is analysed here. 
Thus, a change in the origin of the utilities cannot be done independently across 
the different positions and therefore axiom A4 does not follow from the fact that 
a von Neumann–Morgenstern utility function is unique only up to a positive affine 
transformation.

A5 and A6 are two different forms of neutrality towards ordinary risk (in contrast 
to the strategic risk of playing a certain position in a bargaining game). A5 requires 
the individual to be indifferent between a sure bargaining position and a specific 
lottery over two bargaining positions. Here all bargaining games are such that the 
status quo is the unique individually rational allocation in the feasible set and hence 
the status quo can reasonably be expected to be the outcome of the game. In that 
case A5 simply follows from the fact that the individual has an expected utility func‑
tion that defines the feasible sets in the bargaining games. A6 is similar, but now the 
bargaining games can be more general. If the individual expects that a rescaling of 
the utility values in a bargaining game only rescales her payoff accordingly, then A6 
again follows from the assumption that the individual has an expected utility func‑
tion on simple prospects.

A7 is self explaining and the assumptions are very natural. The only objection 
against A7c might be that in a situation where di > d′

i
 the higher status quo out‑

come for i in (Dx, d) should make the latter more desirable than (Dx, d
�) , even when 

the maximum payoff that can be achieved by i ( xi ) is the same. In general this is 
clearly true. In the situation of A7c, however, the final outcome x seems sure both 
for (Dx, d) and for (Dx, d

�) since no rational player will demand a different outcome 
(there is no “strategic risk”).

A8 is reminiscent of the axiom IIA and its rationale is as follows. If for all player 
positions the individual is indifferent between the game (Dx, 0) , where x is the only 
reasonable outcome, and the game (T, 0), which has a larger feasible set, then the 
individual reveals that she expects x to be the outcome in (T, 0). In other words, the 
individual considers all utility allocations in T different from x as irrelevant. In this 

(
i,
(
D{i}, 0

))
≻
(
i,
(
DR, 0

))
.

(
i, (Dx, 0)

)
∼ (i, (S, 0)).
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case the individual should also consider all utility allocations different from x in any 
subset S of T as irrelevant and hence be indifferent between (Dx, 0) and (S, 0) for all 
player positions whenever x ∈ S.

Assumptions A3,  A6 and A7 are mainly borrowed from Roth (1978a) and 
adopted to our domain � . Roth does not formulate a condition that is equivalent to 
A7b. However, this condition is crucial for establishing that the certainty equivalent 
of playing a bargaining game is strictly positive which we will show later.6 Instead 
of A8 Roth imposed the following assumption on ≿ . 

(A8′)	� Let x ∈ ℝ
n
+
 and let (S, 0), (T , 0) ∈ � be such that Dx ⊆ S ⊆ T  , and x is 

Pareto optimal in T. If 
(
i, (Dx, 0)

)
∼ (i, (T , 0)) for some i ∈ N , then 

Assumption A8′ is considerably stronger than A8, even though A8’ does not 
imply A8. Roth (1978a) claims that a preference relation which is represented by 
some Nash solution with weights q, �q , satisfies A8′ . The following example taken 
from Gerber (1999) shows that this statement and therefore Roth’s characterization 
result is wrong if n > 2 (we come back to the case n = 2 in Sect. 4). Our example 
refers to the case of the symmetric Nash solution � , i.e. let �̃  be an expected util‑
ity function on MN×� defined by �̃(i, (S, d)) = �i(S, d) for all (i, (S, d)) ∈ N × � . Of 
course, a similar example can be found for any �q.

Example: Let N = {1, 2, 3}, T = DN , x = (0, 2∕3, 1∕3) and let 
S = cch{(0, 2∕3, 1∕3), (1, 0, 0)} . Then Dx ⊆ S ⊆ T , x is Pareto opti‑
mal in T, �(T , 0) = (1∕3, 1∕3, 1∕3) and �(S, 0) = (1∕3, 4∕9, 2∕9) . Thus, 
�̃(3, (T , 0)) = �3(T , 0) = x3 = �3(Dx, 0) = �̃(3, (Dx, 0)) but �̃(3, (S, 0)) = �3(S, 0) ≠ x3 . 
Therefore, �̃  violates condition A8′.

We will now show that under our set of assumptions we can partly recover Roth’s 
characterization result and extend it to the domain N × � . To this end let ≿ be a pref‑
erence relation on MN×� that satisfies assumptions A1–A8. Then, by Theorem 2.6, 
there exists an expected utility function � that represents ≿ . Moreover, � is unique up 
to a positive affine transformation. We choose the following normalization which is 
admissible because of conditions A7b and A7c. Recall that e = (1,… , 1) ∈ ℝ

n . Let 
i0 ∈ N be arbitrary. Then

Axiom A3 directly implies that �
(
i, (De, e)

)
= 1 and �

(
i, (D0, 0)

)
= 0 for all i ∈ N.

The following lemmas are useful steps for proving the main characterization 
result. The first lemma deals with the game (Dx, d) , where x is the only reasonable 
outcome. It shows that the utility of being player i in this game is xi.

(
i, (Dx, 0)

)
∼ (i, (S, 0)).

�
(
i0, (De, e)

)
= 1 and

�
(
i0, (D0, 0)

)
= 0.

6  Assumption A7b can be substituted by the following slightly weaker condition which, in the context 
of bargaining games with status quo equal to 0, is due to Peters (1992): if (S, 0) ∈ � with R(S,0) ≠ � then 
there exists i ∈ R(S,0) such that (i, (S, 0)) ≻ (i, (D0, 0)).
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Lemma 3.1  Let x, d ∈ ℝ
n, x ≥ d, i ∈ N . Then

Proof  From axiom A7c we get �(i, (Dx, d)) = �(i, (Dx, x)). Therefore, it suffices to 
prove the claim for the case d = x.

Case 1: 0 ≤ xi ≤ 1.
Let p = xi . Then xi = p ⋅ 1 + (1 − p) ⋅ 0 and axiom A5 implies

Case 2: xi > 1.

Let p =
1

xi
. Then 1 = p ⋅ xi + (1 − p) ⋅ 0 and axiom A5 implies

Case 3: xi < 0.

Let p =
1

1−xi
. Then 0 = p ⋅ xi + (1 − p) ⋅ 1 and axiom A5 implies

	�  ◻

Since any prospect which gives rise to the utility allocation x ∈ ℝ
n can be 

identified with the bargaining game (Dx, d) ∈ � for any d ∈ ℝ
n, x ≥ d , Lemma 3.1 

shows that � is indeed an extension of the observer’s utility function that defines 
the bargaining games.

The following lemma shows that the utility of a dummy player position in any 
bargaining game is equal to the status quo utility.

Lemma 3.2  Let i ∈ N be a dummy in (S, d) ∈ � . Then

Proof  For d = 0 the claim is true by virtue of axiom A7a. For d ≠ 0 player i is a 

dummy in 
(
Le,−d(S), Le,−d(d)

)
=

(
Le,−d(S), 0

)
 as well. Therefore, 

�(i, (Dx, d)) = xi.

�(i, (Dx, x)) = p �(i, (De, e)) + (1 − p) �(i, (D0, 0))

= p ⋅ 1 + (1 − p) ⋅ 0

= p

= xi.

�(i, (De, e)) = p �(i, (Dx, x)) + (1 − p) �(i, (D0, 0))

⟺ 1 = p �(i, (Dx, x)) + (1 − p) ⋅ 0

⇒ �(i, (Dx, x)) =
1

p
= xi.

�(i, (D0, 0)) = p � (i, (Dx, x)) + (1 − p) �(i, (De, e))

⟺ 0 = p � (i, (Dx, x)) + 1 − p

⇒ �(i, (Dx, x)) =
p − 1

p
= xi.

�(i, (S, d)) = di.
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�
(
i,

(
Le,−d(S), Le,−d(d)

))
= 0 = �(i, (D0, 0)) . Finally, axiom A4 and Lemma 3.1 

imply that �(i, (S, d)) = �(i, (Dd, d)) = di. 	�  ◻

Next we show that the utility function � is covariant with respect to positive 
affine transformations of the utility allocations in a bargaining game.

Lemma 3.3  Let (S, d) ∈ � and let La,b ∶ ℝ
n
→ ℝ

n be a positive affine transforma-
tion. Then, for S� = La,b(S), d� = La,b(d) and all i ∈ N,

Proof  Case 1: b = 0.
Let i ∈ N . If ai ≥ 1 , then axiom A6 implies

If ai < 1 , then 1∕ai > 1 and by the above we conclude that

Case 2: b ≠ 0.
Define x ∈ ℝ

n by xi = �(i, (S, d)) for all i ∈ N . By Case 1, 

�
(
i,

(
La,0(S), La,0(d)

))
= aixi , i.e. 

(
i,

(
La,0(S), La,0(d)

))
∼ (i, (Da∗x, a ∗ x)) for all 

i ∈ N by Lemma 3.1. Then, axiom A4 implies that (i, (S�, d�)) ∼ (i, (DLa,b(x), L
a,b(x)) 

and therefore, by Lemma 3.1 �(i, (S�, d�)) = aixi + bi for all i ∈ N . 	�  ◻

For r = 1… , n , define the certainty equivalent f(r) for a strategic position in 
the game (DR, 0), � ≠ R ⊆ N, |R | = r , by

f(r) is well defined because of the continuity axiom A1 and axioms A3,   A7b and 
A7d. In particular, note that A3 implies that the certainty equivalent only depends 
on the number of strategic positions, r, in the game (DR, 0) and not on the identity 
of the players j ∈ R, j ≠ i . Also, by A3 the certainty equivalent is the same for all 
i ∈ R . From A7b we get that f (r) > 0 for all r and from axiom A7d it follows that 
f (r) < 1 for r > 1 . f (1) = 1 is trivial. The preference relation ≿ reflects neutrality 
towards strategic risk if f (r) = 1∕r , it reflects risk aversion if f (r) < 1∕r and risk 
preference if f (r) > 1∕r for all r = 1,… , n.

Let ei ∈ ℝ
n denote the ith unit vector. Then �

(
i,
(
DR, 0

))
= f (r) since 

D{i} = Dei
, ch

(
f (r)D{i}

)
= f (r)D{i} for f (r) > 0 and Lemmas 3.1 and 3.3 apply.

We first derive the utility function � on the domain of transferable utility bar‑
gaining games which have a Pareto frontier that is given by a hyperplane. We call 
these games hyperplane games.

�(i, (S�, d�)) = ai�(i, (S, d)) + bi.

�(i, (S, d)) =
1

ai
�(i, (S�, d�)) +

(
1 −

1

ai

)
�(i, (D0, 0))
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=0

.

�(i, (S�, d�)) = ai�(i, (S, d)).

(
i,
(
DR, 0

))
∼
(
i,
(
ch
(
f (r)D{i}

)
, 0
))

for i ∈ R.
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Definition 3.4  Let (S, d) ∈ � and let R = R(S,d) be the set of strategic positions. Then 
(S, d) is called hyperplane game if there exist c ∈ ℝ

R
++

 and k ∈ ℝ such that

Let �H be the set of hyperplane games.

Lemma 3.5  Let (S, d) ∈ �
H be given by

where c ∈ ℝ
R
++

, k ∈ ℝ, k >
∑

i∈R cidi . Then, for all i ∈ R,

Proof  Let (S, d) ∈ �
H be given as in the statement of the lemma. Define a ∈ ℝ

n
++

 by

Then (S, d) =
(
La,d(DR), La,d(0)

)
 and Lemma 3.3 implies that for all i ∈ R,

by definition of f(r). 	�  ◻

4 � The Main Result

We are now ready to prove our main result that the Nash solution � is a risk neutral 
von Neumann–Morgenstern utility function on positions in bargaining games.

Theorem  4.1  Let ≿ be a preference relation on MN×� that satisfies A1–A8. Let � 
be the expected utility function which represents ≿ and fulfills �(i, (De, e)) = 1 and 
�(i, (D0, 0)) = 0 for all i ∈ N . If f (r) = 1∕r for all r = 1… , n , then for all (S, d) ∈ � 
and all i ∈ N, �(i, (S, d)) = �i(S, d).

Proof  It is clear that the expected utility function �̃  defined by �̃(i, (S, d)) = �i(S, d) 
for all (i, (S, d)) ∈ N × � satisfies conditions A1–A8. It remains to be shown that 

S =

{
x ∈ ℝ

n
|||||
∑
i∈R

cixi ≤ k and xj ≤ dj for all j ∉ R

}
.

S =

{
x ∈ ℝ

n
|||||
∑
i∈R

cixi ≤ k and xj ≤ dj for all j ∉ R

}
,

�(i, (S, d)) =
k −

∑
i∈R cidi

ci
f (r) + di.

ai =

�
k−

∑
i∈R cidi

ci
if i ∈ R

1 if i ∉ R
.

�(i, (S, d)) = ai�(i, (D
R, 0)) + di =

k −
∑

i∈R cidi

ci
f (r) + di
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� = �̃  . To this end let (S, d) ∈ � and let R = R(S,d) be the set of strategic positions. If 
R = � we are done by Lemma 3.2. Thus, let R ≠ ∅ and r = |R|.

Case 1: d = 0.

Let x = �(S, 0) , i.e. c =
∏

i∈R x
1

r

i
>
∏

i∈R y
1

r

i
≥ 0 for all y ∈ S, y ≥ 0, y ≠ x , and let 

E = {y ∈ ℝ
n
+
�∏i∈R y

1

r

i
≥ c} = {y ∈ ℝ

n
+
�∑i∈R

1

r
log yi ≥ log c}. The sets E and S 

are convex with intersection x. Therefore, there exists a plane H that separates E and 
S. As H is tangent to E in x, H is given by

Let

Then clearly S ⊆ T  since H separates E and S and

for all i ∈ R by Lemmas 3.1 and 3.5. If j ∉ R then �j(T , 0) = 0 = xj by Lemma 3.2. 
Therefore, (i, (T , 0)) ∼

(
i,
(
Dx, 0

))
 for all i ∈ N and by condition A8 we conclude 

that 
(
i,
(
Dx, 0

))
∼ (i, (S, 0)) for all i ∈ N , i.e. �(i, (S, 0)) = xi = �i(S, 0) for all i ∈ N.

Case 2: d ≠ 0.

Let x = �(S, d) . Then x − d = �(Le,−d(S), 0) and Case 1 implies

i.e. 
(
i,

(
Le,−d(S), Le,−d(d)

))
∼
(
i,
(
Dx−d, 0

))
 for all i ∈ N . By axiom A4 this implies

and from Lemma 3.1 we conclude that

for all i ∈ N . This proves the theorem. 	�  ◻

It is not straightforward to see whether there exists an equivalent to Theorem 4.1 
for the case of a preference relation ≿ reflecting risk aversion or risk preference. In 
view of the definition of the certainty equivalent f(r) and Lemma 3.5 a natural candi‑
date for a cardinal utility function �̃  representing ≿ would be defined by asymmetric 
Nash solutions �q in the following way (see Roth 1978a, b). Let (i, (S, d)) ∈ N × � 
and let R = R(S,d) be the set of strategic positions. If i ∉ R define

H =

{
z ∈ ℝ

n
|||||
∑
i∈R

1

rxi
zi = 1

}
.

T =

{
z ∈ ℝ

n
|||||
∑
i∈R

1

rxi
zi ≤ 1, zj ≤ 0 (j ∉ R)

}
.

�(i, (T , 0)) = f (r)rxi = xi = �
(
i,
(
Dx, 0

))

�
(
i,
(
Le,−d(S), 0

))
= xi − di,

(i, (S, d)) ∼
(
i, (Dx, 0)

)
,

�(i, (S, d)) = �
(
i,
(
Dx, d

))
= xi

�̃(i, (S, d)) = di.
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Otherwise, let q ∈ ℝ
n
++

 be such that qi = f (r),
∑

j∈R qj = 1 and qj = qk for all 
j, k ∈ R ⧵ {i} . Then, let

Thus, each coordinate �̃(i, (S, d)) of �̃, i ∈ R , belongs to a different asymmetric Nash 
solution �q unless f (r) = 1∕r . The utility function �̃  fulfills assumptions A1–A7 but 
it only satisfies A8 if f (r) = 1∕r for all r = 1,… , n , in which case A8 directly fol‑
lows from IIA. However, �̃  as defined above represents ≿ on the set of hyperplane 
games. The following theorem directly follows from Lemma 3.5.

Theorem  4.2  Let ≿ be a preference relation on MN×� that satisfies A1–A8. Let � 
be the expected utility function which represents ≿ and fulfills �(i, (De, e)) = 1 
and �(i, (D0, 0)) = 0 for all i ∈ N . Then, for all (S, d) ∈ �

H and for all 
i ∈ N, �(i, (S, d)) = �̃(i, (S, d)).

Since there are several utility functions on � that coincide with �̃  on �H Theo‑
rem 4.2 is only of limited significance. In order to determine the utility for a position 
in a bargaining game without side payments given the utility function on hyperplane 
games we cannot dispense with a condition like A8. Thus, we have to restrict our‑
selves to the case of n = 2 if we want to get a characterization result also for the case 
of a risk loving or risk averse player. Since many real life bargaining situations and 
also Nash’s original work involve only two parties the following theorem is still a 
remarkable result.

Theorem  4.3  Let n = 2 and let ≿ be a preference relation on MN×� that satisfies 
A1–A7 and A8’. Let � be the expected utility function which represents ≿ and fulfills 
�(i, (De, e)) = 1 and �(i, (D0, 0)) = 0 for all i ∈ N . Then � = �̃ .

Proof  It is clear that the expected utility function �̃  satisfies conditions A1–A7. Since 
n = 2 it also satisfies A8’. To see this observe that for x ∈ ℝ

2
+
, (S, 0), (T , 0) ∈ � and 

Dx ⊆ S ⊆ T  , the fact that x is Pareto optimal in T and xi = �̃(i, (T , 0)) = �
q

i
(T , 0) for 

some i ∈ N imply that x = �q(T , 0) . It remains to be shown that � = �̃  . We follow the 
line of arguments in the proof of Theorem 4.1.7 Let (i, (S, d)) ∈ N × � and R = R(S,d) 
be the set of strategic positions. If i ∉ R we are done by Lemma 3.2. Thus, let i ∈ R 
and r = |R| . Let q ∈ ℝ

2
++

 be given by qi = f (r) and qj = 1 − f (r) for j ≠ i . Observe 
that with this definition 

∑
j∈R qj = 1 also in the case where r = 1 since f (1) = 1.

Case 1: d = 0.

By definition �̃(i, (S, 0)) = �
q

i
(S, 0) . Let x = �q(S, 0) , i.e. 

c =
∏

j∈R x
qj

j
>
∏

j∈R y
qj

j
≥ 0 for all y ∈ S, y ≥ 0, y ≠ x , and let 

E = {y ∈ ℝ
n
+
�∏j∈R y

qj

j
≥ c} = {y ∈ ℝ

n
+
�∑j∈R qj log yj ≥ log c}. The sets E and S 

�̃(i, (S, d)) = �q
i
(S, d).

7  In none of the lemmas we used in the proof of Theorem 4.1 we needed assumption A8.
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are convex with intersection x. Therefore, there exists a plane H that separates E and 
S. As H is tangent to E in x, H is given by

Let

Then clearly S ⊆ T  since H separates E and S and

by Lemmas 3.1 and 3.5. By condition A8’ we conclude that 
(
i,
(
Dx, 0

))
∼ (i, (S, 0)) 

which implies �i(S, 0) = xi = �̃(i, (S, 0)).
The proof for Case 2 ( d ≠ 0 ) proceeds exactly as in Theorem 4.1. 	�  ◻

5 � Discussion

It has been shown that under fairly natural assumptions it is possible to deduce 
a cardinal utility function that represents an individual’s preference relation on 
the class of positions in bargaining games. If the individual is risk neutral in 
the sense that she believes in getting a fair share whenever one dollar is to be 
distributed among some players, then the utility function is given by the sym‑
metric Nash solution. For the case of a risk loving or risk averse player we only 
succeeded in characterizing the expected utility function if either n = 2 or if we 
restrict ourselves to the class of positions in hyperplane games. In both cases the 
individual’s utility for position i is determined by some asymmetric Nash solu‑
tion, where the weight for position i equals the player’s risk attitude as expressed 
by the certainty equivalent f(r), where r is the number of strategic positions in the 
underlying game. Thus, only for the case of a risk neutral player we were able to 
fully recover and generalize Roth’s (1978a, b) result that was based on a serious 
flaw.

Based on an idea of Roth (1978a) we have offered a new interpretation of the 
symmetric Nash solution as the outcome of the game expected by an individual with 
risk neutral preferences over bargaining positions. Thus, our paper fits into the line 
of research that seeks to find justifications for bargaining solutions beyond those 
given by axiomatizations of solution concepts. At the same time our paper seems 
to reveal a structural difference between symmetric and asymmetric Nash solutions. 
While the symmetric Nash solution turns out to be a utility function on positions in 

H =

{
z ∈ ℝ

n

||||||
∑
j∈R

qj

xj
zj = 1

}
.

T =

{
z ∈ ℝ

n

||||||
∑
j∈R

qj

xj
zj ≤ 1, zk ≤ 0 (k ∉ R)

}
.

�(i, (T , 0)) =
xi

qi
f (r) = xi = �

(
i,
(
Dx, 0

))
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bargaining games, it is an open question whether we can characterize asymmetric 
solutions in the same way if the number of players exceeds two.
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Appendix

Proof of Theorem 2.4 

1.	 It is straightforward to see that N(p) satisfies SIR, COV and IIA if p =
(
(pR)�≠R⊆N

)
 

with pR ∈ ℝ
R
++

 and 
∑

i∈R p
R
i
= 1 for all ∅ ≠ R ⊆ N . Let � ∶ � → ℝ

n be a solution 
that satisfies the axioms. We will show that �(S, d) ∈ PO(S) for all (S, d) ∈ � . 
Let (S, d) ∈ � . By COV w.l.o.g. we can assume that d = 0 . Suppose there exists 
x ∈ S such that x > 𝜑(S, 0) . W.l.o.g. assume that there exists some k ∈ N such 
that xi > 𝜑i(S, 0) if and only if i ∈ {1,… , k}.8 This implies {1,… , k} ⊆ R(S,0) 
and therefore, by SIR, 𝜑i(S, 0) > 0 for all i = 1,… , k . Define a ∈ ℝ

n
++

 by 
ai = �i(S, 0)∕xi for i = 1,… , k , and aj = 1 for j = k + 1,… , n . Then a ∗ S ⊂ S and 
�(S, 0) = a ∗ x ∈ a ∗ S . (Observe that xi = �i(S, 0) for i = k + 1,… , n .) By IIA 
this implies �(a ∗ S, 0) = �(S, 0) , but by COV �(a ∗ S, 0) = a ∗ �(S, 0) ≠ �(S, 0) . 
This contradiction proves that �(S, d) ∈ PO(S) for all (S, d) ∈ �.

	   Define p =
(
(pR)�≠R⊆N

)
 by pR

i
= �i(D

R, 0) for all i ∈ R, � ≠ R ⊆ N . By SIR we 
know that pR ∈ ℝ

R
++

 and since �(DR, 0) ∈ PO(DR) we conclude that 
∑

i∈R p
R
i
= 1 

for all ∅ ≠ R ⊆ N  . We will show that � = N(p) . Let (S, d) ∈ � . If R(S,d) = � , 
then �(S, d) = d = N(p)(S, d) by SIR. Thus, suppose R = R(S,d) ≠ � . By COV 
w.l.o.g. we can assume that d = 0 and N(p)

i
(S, 0) = pR

i
 for all i ∈ R . (Observe that 

N
(p)

i
(S, 0) > 0 for all i ∈ R .) Then S ⊆ DR and �(DR, 0) =

(
(pR

i
)i∈R, 0N⧵R

)
∈ S . By 

IIA we conclude that �(S, 0) = �(DR, 0) = N(p)(S, 0).
2.	 It is straightforward to see that �q satisfies SIR, COV, IIA and DCONT for all 

q ∈ ℝ
n
++

 . Let � ∶ � → ℝ
n be a solution that satisfies the axioms. By part 1 of the 

theorem we know that � = N(p) for some p =
(
(pR)�≠R⊆N

)
 with pR ∈ ℝ

R
++

 and ∑
i∈R p

R
i
= 1 for all ∅ ≠ R ⊆ N . Let q = pN ∈ ℝ

n
++

 . If (S, d) ∈ � with R(S,d) = N , 
then, by definition, �q(S, d) = N(p)(S, d) . For any (S, d) ∈ � with R(S,d) ⫋ N 
there exists a sequence ((S, dm))m ⊂ � such that R(S,dm) = N  for all m ∈ ℕ and 

8  We assume this for expositional reasons only. The proof for the case where {i | x
i
> 𝜑

i
(S, 0)} is an arbi‑

trary nonempty subset of N is analogous.

http://creativecommons.org/licenses/by/4.0/
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limm→∞ dm = d . Thus, �q(S, dm) = N(p)(S, dm) = �(S, dm) for all m ∈ ℕ , and by 
DCONT we conclude that �q(S, d) = �(S, d).

3.	 Obviously, � satisfies SIR, COV, IIA and SY. Let � ∶ � → ℝ
n be a solution that 

satisfies the axioms. By part 1 of the theorem we know that � = N(p) for some 
p =

(
(pR)�≠R⊆N

)
 with pR ∈ ℝ

R
++

 and 
∑

i∈R p
R
i
= 1 for all ∅ ≠ R ⊆ N . By SY and 

s ince N(p)(DR, 0) =
(
(pR

i
)i∈R, 0N⧵R

)
 i t  fol lows that  pR

i
= pR

j
 for  a l l 

i, j ∈ R, � ≠ R ⊆ N , and therefore � = N(p) = �.

	�  ◻
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