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Abstract
Deep learning has substantially advanced the state of the art in computer vision, 
natural language processing, and other fields. The paper examines the potential of 
deep learning for exchange rate forecasting. We systematically compare long short-
term memory networks and gated recurrent units to traditional recurrent network 
architectures as well as feedforward networks in terms of their directional forecast-
ing accuracy and the profitability of trading model predictions. Empirical results 
indicate the suitability of deep networks for exchange rate forecasting in general but 
also evidence the difficulty of implementing and tuning corresponding architectures. 
Especially with regard to trading profit, a simpler neural network may perform as 
well as if not better than a more complex deep neural network.
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1 Introduction

Deep learning has revitalized research into artificial neural networks. Substantial 
methodological advancements associated with the optimization and regulariza-
tion of large neural networks, the availability of large data sets together with the 
computational power to train large networks, and development of powerful, easy-
to-use software libraries, deep neural networks (DNNs) have achieved break-
through performance in computer vision, natural language processing, and other 
domains (LeCun et al. 2015). A feature that sets deep learning apart from conven-
tional machine learning is the ability automatically extract discriminative features 
from raw data (Nielsen 2015). Reducing the need for manual feature engineering, 
this ability decreases the costs of applying a learning algorithm in industry, sim-
plifies tasks associated with model maintenance, and, more generally, broadens 
the scope of deep learning applications.

Convolutional neural networks and recurrent neural networks (RNNs) have 
been particularly successful. The former represent the model of choice for com-
puter vision tasks. RNNs are designed for processing sequential data including 
natural language, audio, and generally, any type of time series. The paper focuses 
on RNNs and examines their potential for financial time series forecasting.

Deep-learning-based forecasting models and their applications in finance have 
attracted considerable attention in recent research (Fischer and Krauss 2018; 
Huck 2019; Kim et al. 2019). However, only a small number of studies examine 
the foreign exchange (FX) market. This is surprising for several reasons. On the 
one hand, examining the degree to which market developments can be forecast 
with high accuracy is of academic and practical relevance. Moreover, exchange 
rates have been characterized as non-linear, stochastic, and highly non-stationary 
financial time series (Kayacan et  al. 2010), which makes them particularly dif-
ficult to predict and an interesting subject for forecasting research (Wu and Chen 
1998; Czech and Waszkowski 2012). Finally, the FX market differs notably from 
other financial markets so that research results from other markets such as stock 
markets may not generalize to the FX market.

The distinct characteristics of the FX market have been discussed in several 
studies. For example, most participants of the FX market are professional traders 
(Sager and Taylor 2006). The FX market also has a higher share of short-term 
interdealer trading compared to stock markets (Lyons 2001). Moreover, exchange 
rates fluctuate enormously leading to doubtful decision-making whether to buy 
or sell for traders (Bagheri et al. 2014). Because of this, models of fair value are 
less convincing for FX traders compared to stock market traders (Taylor 1995; 
Campbell et  al. 1998). Given that the peculiarities question the generalizability 
of empirical results from other financial markets and the fact that research into 
state-of-the-art deep learning approaches for exchange rate forecasting is scarce 
motivate the focal study. The goal of the paper is to contribute to the empirical 
literature on FX forecasting by re-introducing deep machine learning-based fore-
casting methodology to the community and assessing the accuracy of correspond-
ing models when forecasting exchange rate movements.
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In particular, the paper reports original results from a comparative analysis of 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural net-
works versus benchmark models. Considering four exchange rates, we assess fore-
casting models in terms of their directional accuracy and the profitability of trading 
on model predictions. Our analysis of related literature (see Sect. 3) indicates that 
the last attempts to model price movements in the FX market using RNNs have been 
published more than a decade ago (Kiani and Kastens 2008; Hussain et  al. 2008) 
and did not make use of advanced, gated RNNs, which have important advantages 
over traditional RNNs for temporal data processing. Therefore, we consider the 
empirical results reported in the paper a valuable and needed update of the state of 
affairs at the interface of deep learning and FX rate forecasting. Given the scarcity 
of deep learning-based approaches in the FX modeling literature, a secondary con-
tribution of the paper may be seen in the fact that it provides a thorough explanation 
of the operating principles of RNNs vis-a-vis conventional feedforward neural net-
works (FNNs) and re-introduces recent RNN representatives in the form of LSTM 
and GRU to the FX modeling literature. In this scope, we also elaborate on the ways 
in which these recent RNNs overcome the vanishing gradient problem, which ren-
dered previous attempts to train deep RNNs less effective.

The paper is organized as follows: the next section elaborates on neural net-
work-based forecasting and introduces LSTM and GRU. Thereafter, we review 
related work and show how the paper contributes to closing gaps in research. 
Subsequently, we describe the experimental design of the forecasting comparison 
and report empirical results. We then conclude the paper with a summary and dis-
cussion of findings and an outlook to future research.

2  Neural network architectures

2.1  Feedforward neural networks

Neural networks consist of multiple connected layers of computational units called 
neurons. The network receives input signals and computes an output through a con-
catenation of matrix operations and non-linear transformations. In this paper, the 
input represents time series data and the output a (price) forecast. Every neural net-
work consists of one input and one output layer, and one or multiple hidden layers, 
whereby each layer consists of several neurons. The connections between the neu-
rons of different layers carry a weight. Network training refers to the tuning of these 
weights in such a way that network output (i.e., forecast) matches the target variable 
as accurately as possible. The training of a neural network through adjusting con-
nection weights is equivalent to the task of estimating a statistical model through 
empirical risk minimization (Härdle and Leopold 2015).

The layer of a FNN comprises fully connected neurons without shortcuts or 
feedback loops. When processing sequential data, the activation of a hidden layer 
unit in an FNN at time t can be described as follows:
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where the hidden activation function gh is a function of the hidden weight matrix 
Wh , an input vector xt , and a bias bh . It produces the hidden activation ht . A predic-
tion ŷt is the result of applying a suitable output activation function to the weighted 
sum of the activations received in the output layer. As such, the prediction is again 
only a function of inputs, weights, and biases.

The weights and biases determine the mapping from xt to ŷt and will be learned 
during training. A FNN will treat input sequences as time-invariant data and thus 
be agnostic of inherent features of time series. At any given point in time, t, a FNN 
takes an input xt and maps it to a hidden activation ht . This is repeated at the time of 
the next observation, t + 1 , while the two mappings are not interconnected.

2.2  Recurrent neural networks

RNNs are designed for sequential data processing. To this end, they include feed-
back loops and feed the output signal of a neuron back into the neuron. This way, 
information from previous time steps is preserved as hidden state ht and can be dis-
counted in network predictions. When viewed over time, RNNs resemble a chain-
like sequence of copies of neural networks, each passing on information to its suc-
cessor. More formally, a RNN takes as additional argument the previous time step’s 
hidden state ht−1:

The objective of training a neural network is to minimize the value of a loss func-
tion, which represents the cumulative difference between the model’s outputs and 
the true labels. Since the output of a neural network is a function of the weights 
and biases of all its connections, the loss function value can be changed by modify-
ing the network’s weights and biases. Therefore, computing the gradient of the loss 
function with respect to the network’s weights obtains the information needed to 
train the network. The backpropagation algorithm uses the insight that the gradient 
with respect to each weight can be found by starting at the gradient with respect 
to the output and then propagating the derivatives backwards through the network 
using the chain rule (Rumelhart et al. 1986). In RNNs, the gradient descent-based 
training of the network is called backpropagation through time, as the error deriva-
tives are not only backpropagated through the network itself but also back through 
time via the recurrent connections (Werbos 1990).

RNNs often use activation functions such as the hyperbolic tangent ( tanh ) or the 
logistic sigmoid ( � ). The derivative of both lies in the interval [0, 1] and thus any 
gradient with respect to a weight that feeds into such an activation function is bound 
to be squeezed smaller (Hochreiter 1998b). Given that we are successively comput-
ing the derivative of an activation function by use of the chain rule, the gradient gets 

ht = gh(W
T
h
xt + bh),

ŷt = gy(W
T
y
ht + by)

ht = gh(Wh[ht−1, xt] + bh)
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smaller and smaller the further away a weight is from the output layer (see Fig. 1). In 
RNNs, this problem, routinely called the problem of gradient vanishing, is amplified 
by the sequential data processing of the network. Specifically, the gradient signal 
vanishes not only across layers but also across time steps. In consequence, RNNs 
face difficulties in modeling long-term dependencies, and much research has sought 
ways to overcome this issue (Schaefer et al. 2008). The problem of gradient vanish-
ing also implies that the magnitude of weight adjustments during training decreases 
for those weights. Effectively, weights in early layers learn much slower than those 
in late hidden layers (closer to the output) (Nielsen 2015). For large networks or 
many time steps, this can keep a neural network from learning and prevent it from 
storing information, to a point where “the vanishing error problem casts doubt on 
whether standard RNNs can indeed exhibit significant practical advantages over 
time window-based feedforward networks” (Gers et al. 1999).

Note that the recursive application of the chain rule in neural network training 
may also cause a problem closely related to that of gradient vanishing. This prob-
lem is called gradient explosion and it occurs when recursively multiplying weight 
matrices with several entries above one in the backward pass of network training. 
Remedies of this problem, which help to stabilize and accelerate neural network 
training, include gradient clipping and batch normalization (Goodfellow et al. 2016).

2.3  Long short‑term memory

One solution to the vanishing gradient problem was proposed by Hochreiter and 
Schmidhuber (1997) in the form of LSTM. Twenty years after its invention, LSTM 
and its variants have turned out to become a state-of-the-art neural network architec-
ture for sequential data. The following discussion of the LSTM cell follows Graves 
(2013) as it seems to be one of the most popular LSTM architectures in recent 
research and is also available in the widely used Python library Keras (Chollet et al. 
2018b).

2.3.1  The cell state

The central feature that allows LSTM to overcome the vanishing gradient problem is an 
additional pathway called the cell state. The cell state is a stream of information that is 

Fig. 1  A recurrent neural network architecture (Olah 2015): the RNN feeds learned information back 
into the network via the output ht
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passed on through time. Its gradient does not vanish and enforces a constant error flow 
through time (Hochreiter 1998a). The cell state allows the LSTM to remember depend-
encies through time and facilitates bridging long time lags (Hochreiter and Schmidhu-
ber 1997).

Figure 2 depicts a single LSTM cell with all but the cell state pathway grayed out. 
Note that the cell state contains no activation functions but only linear operations. In 
that way, it is “immune” to the vanishing gradient. The following discussion details 
how the cell state is maintained, updated, or read.

2.3.2  Gate units

The LSTM cell contains a number of gate structures that allow accessing the cell. A 
typical LSTM cell receives two inputs: the current input xt and the recurrent input, 
which is the previous time step’s hidden state ht−1 . Gating units control how these 
inputs change the cell state in order to produce an updated cell state, Ct , or read from it 
to make use of the information that the cell state embodies.

The logistic sigmoid function, defined as �(x) = 1

1+e−x
 , plays an important role in the 

gating mechanisms of the LSTM cell. It takes the weighted current and recurrent inputs 
and maps them to the interval [0, 1]. This enables the network to control the informa-
tion flow through the gates, which also explains the term “gate.” The values of 0 and 1 
can be interpreted as allowing no information and all information to pass through a 
specific gate, respectively. In addition to the “gatekeeper” sigmoid, two of the three 
LSTM gates make use of the hyperbolic tangent function, defined as tanh(x) = ex−e−x

ex+e−x
 . 

The tanh is the usual activation function for input and output gates in the LSTM (Greff 
et al. 2017) and pushes its inputs into the interval [−1, 1].

The logistic sigmoid and the hyperbolic tangent have relatively simple derivatives, 
d

d(x)
�(x) = �(x)(1 − �(x)) and d

d(x)
tanh(x) = 1 − tanh2(x) , which makes them a suitable 

choice for network training (e.g., backpropagation).

Fig. 2  A single LSTM unit (a 
memory block) according to 
Olah (2015) with all but the cell 
state pathway grayed out
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2.3.3  The forget gate

The forget gate ft determines the parts of Ct−1 , which the cell state passed on from 
the previous time step, that are worth remembering. As shown in Fig.  3, this is 
achieved by means of a sigmoid gatekeeper function:

ft is then multiplied with Ct−1 to selectively allow information to remain in memory. 
Values of ft = 1 and ft = 0 imply that all information from Ct−1 are kept and erased, 
respectively.

2.3.4  The input gate

The input gate it , highlighted in Fig. 4, employs a sigmoid to control information 
flow:

The objective of this gate is to protect the information of the cell state, which has 
accumulated over previous time steps, from irrelevant updates. Therefore, the input 

ft = �(Wf [ht−1, xt] + bf )

it = �(Wi[ht−1, xt] + bi)

Fig. 3  The forget gate ft is 
multiplied with the previous cell 
state Ct−1 to selectively forget 
information (Olah 2015)

Fig. 4  The input gate it directs 
where to update the cell state 
with new candidate values C̃t 
(Olah 2015)
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gate selectively updates the cell state with new information (Hochreiter and Schmid-
huber 1997). To this end, a new set of candidate values C̃t is generated by an activa-
tion function; typically a hyperbolic tangent:

2.3.5  The updated cell state

Based on the mechanisms of the input and forget gate, the new cell state Ct is 
obtained in two ways: a part of the old cell state Ct−1 has been remembered (via ft ) 
and has been updated with the new candidate values from C̃t where needed (via it ). 
This updated cell state will be relayed to the next time step, t + 1:

Note that it = ft does not necessarily hold, and neither does it = 1 − ft . It is not 
exactly the parts that got remembered that get updated, and not exactly the ones that 
were forgotten either. While both the forget gate and the input gate make use of a 
sigmoid as their activation function and take the same arguments ( ht−1 and xt ), in 
general their weights and biases will differ (Olah 2015).

2.3.6  The output gate

The output gate steers the actual prediction of the LSTM, which is determined by 
both, the current input xt and the cell state Ct . A hyperbolic tangent is applied to the 
values of the current cell state to produce a version of the cell state that is scaled to 
the interval [−1, 1]:

The output gate ot consists of a sigmoid with arguments ht−1 and xt , and determines 
which information to pass on to the output layer and subsequent time steps in the 
new hidden state ht.

As shown in Fig. 5,

ot and C∗
t
 are then multiplied to construct the hidden output, ht , of the current time 

step:

This output represents the recurrent input at time t + 1 and the basis for the pre-
diction at time t. As in a FNN, predictions are computed from the hidden state by 
applying an output activation in the final layer.

C̃t = tanh(WC[ht−1, xt] + bC)

Ct = ft ◦Ct−1 + it ◦C̃t

C∗
t
= tanh(Ct)

ot = �(Wo[ht−1, xt] + bo)

ht = ot◦C
∗
t
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2.3.7  The LSTM cell

A typical LSTM cell with forget gate, input gate, and output gate is depicted in 
Fig. 6. The different gates and activations work together to save, keep, and pro-
duce information for the task at hand.

When considering the gates and cell state together as 
ht = ot ◦ tanh(ft◦Ct−1 + it◦C̃t) , it can be seen that ht is essentially a sophisticated 
activation function:

This architecture is an augmented version of the original LSTM architecture and the 
setup most common in the literature (Greff et al. 2017). Figure 7, which depicts a 
sequence of LSTM cells through time, conveys how information can be propagated 
through time via the cell state. The three gates ft to the left of it under and ot above 
the hidden layer unit (“—” for closed and “O” for open) control which parts of the 
cell state are forgotten, updated, and output at each time step.

ht = �(Wo[ht−1, xt] + bo)◦ tanh(�(Wf [ht−1, xt] + bf ) ⋅ Ct−1

+ �(Wi[ht−1, xt] + bi)◦ tanh(WC[ht−1, xt] + bC))

= gh(Wh, ht−1, xt)

Fig. 5  The output gate ot con-
trols the network’s predictions 
(Olah 2015)

Fig. 6  A sequence of LSTM units through time (Olah 2015)
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There exist a few variants of the LSTM cell with fewer or additional components. 
For example, one modification concerns the use of peephole connections, which allow 
the cell state to control the gates and have been shown to increase LSTM resilience 
toward spikes in time series (Gers and Schmidhuber 2000). Greff et al. (2017) perform 
a comprehensive evaluation of the LSTM and the marginal efficacy of individual com-
ponents including several recent adaptations such as peephole connection. They start 
from an LSTM cell with all gates and all possible peephole connections and selectively 
remove one component, always testing the resulting architecture on data from several 
domains. The empirical results suggest that the forget gate and the output activation 
function seem particularly important, while none out of the investigated modifications 
of the above LSTM cell significantly improves performance (Greff et al. 2017). In view 
of these findings, we focus on the LSTM as described above.

2.4  Gated recurrent units

A second approach to overcome the vanishing gradient problem in RNNs is GRUs 
(Cho et al. 2014). They also use gates but simplify the handling of the cell state. The 
hidden state in a GRU is controlled by two sigmoid gates: an update gate couples the 
tasks of LSTM’s forget and input gates. It decides how much of the recurrent informa-
tion is kept:

A reset gate controls to which extent the recurrent hidden state is allowed to feed 
into the current activation:

zt = �
(
Wz[ht−1, xt] + bz

)

rt = �
(
Wr[ht−1, xt] + br

)

Fig. 7  Preservation of gradient information by LSTM (Graves 2012)
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A closed reset gate ( rt = 0 ) allows the memory cell to disregard the recurrent state 
and act as if it were reading the first observation in a sequence (Chung et al. 2014). 
The new activation can be computed as

and the new hidden state is

Again, the GRU cell can be seen as a sophisticated activation function:

There is no output activation function like in the LSTM, but the hidden cell state 
is bounded because of the coupling of input and forget gate in the GRU’s update 
gate (Greff et  al. 2017). Figure  8 illustrates that GRUs have less parameters than 
LSTMs, which should make them computationally more efficient. In terms of fore-
casting performance, previous results on GRUs versus LSTMs are inconclusive (see, 
e.g., Chung et al. 2014 versus Jozefowicz et al. 2015). Therefore, we consider both 
types of RNNs in our empirical evaluation.

3  Related work

Financial markets are a well-studied subject. Starting with seminal work of Fama 
(1970), a large body of literature has examined the informational efficiency of finan-
cial markets. Empirical findings do not offer a clear result. Considering the FX 
market, Wu and Chen (1998) investigate seven currency pairs and find the efficient 
market hypothesis (EMH) to hold, while Hakkio and Rush (1989) and Czech and 
Waszkowski (2012) reject the EMH for at least some of the exchange rates tested 

h̃t = tanh
(
Wh̃[rt◦ht−1, xt] + bh̃

)

ht = (1 − zt)◦ht−1 + zt◦h̃t.

ht = (1 − 𝜎
(
Wz[ht−1, xt] + bz

)
)◦ht−1

+ 𝜎
(
Wz[ht−1, xt] + bz

)
◦ tanh

(
Wh̃[𝜎

(
Wr[ht−1, xt] + br

)
◦ht−1, xt] + bh̃

)

= gh(Wh, ht−1, xt)

Fig. 8  A GRU cell in detail with 
the recurrent hidden state ht−1 , 
update gate zt , reset gate rt , a 
hidden state candidate vector 
h̃t , and the new hidden state ht 
(Olah 2015)
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by Wu and Chen (1998). It might be because of such contradictions that a statisti-
cal modeling of market prices, volatility, and other characteristics continues to be a 
popular topic in the forecasting and machine learning literature.

The range of forecasting methods that has been considered is very broad and 
comprises econometric models such as ARIMA, GARCH, and their derivatives, and 
various machine learning and computational intelligence approaches such as sup-
port vector machines, ensemble models and fuzzy system. Survey papers such as 
Cavalcante et al. (2016) and Bahrammirzaee (2010) offer a comprehensive overview 
of the field. Past price movements and transformation of these methods, for exam-
ple, in the form a technical indicators (Lo et al. 2000), represent the main input to 
such forecasting models. More recently, research has started to examine auxiliary 
data sources such as financial news (Feuerriegel and Prendinger 2016; Zhang et al. 
2015), tweets (Oliveira et al. 2017), and, more generally textual data (Junqué de For-
tuny et al. 2014; Khadjeh Nassirtoussi et al. 2014).

In this paper, we focus on artificial neural networks. Neural networks have been a 
popular instrument for financial forecasting for decades and represent the backbone 
of modern modeling approaches in the scope of deep learning. With regard to their 
applications in finance, feedforward neural networks (FNN) have received much rec-
ognition and have been used by several studies to predict price movements (Hsu 
et al. 2016). From a methodological point of view, RNNs are better suited to pro-
cess sequential data (i.e., temporal financial data) than other network architectures. 
Therefore, we focus the reminder of the literature review to studies that employed 
RNNs for financial forecasting and summarize corresponding studies in Table  1. 
To depict the state of the art in the field, we consider the type of RNN as well as 
benchmark methods, the type of features used for forecasting, the target variable, 
and whether a study employed a trading strategy. In addition to reporting statisti-
cal measures of forecast accuracy such as the mean-squared error, a trading strategy 
facilitates examining the monetary implications of trading model forecasts. The last 
column of Table 1 sketches the main focus of a paper such as testing the EMH or the 
merit of a specific modeling approach such as ensemble forecasting.

Table  1 suggests that there is no unified experimental framework. Notable dif-
ferences across the financial time series considered in previous work exemplify 
this variation. About half of the studies adopt a univariate approach and use either 
historic prices, returns, or transformations of these as input to forecasting models. 
Other studies derive additional features from the time series, for example, in the 
form of a technical indicator, or consider external sources such as prices from other 
financial instruments. Evaluation practices display a similar variance with roughly 
50 percent of papers performing a trading evaluation and the rest focusing exclu-
sively on forecast accuracy.

In terms of neural network architectures, studies examining RNNs in the 1990s 
can be seen as forerunners, with comparatively little research on the applications of 
RNNs available at that time. One of the earliest studies includes Kamijo and Tani-
gawa (1990) who use an RNN in the scope of technical stock analysis. Interestingly, 
Table 1 also identifies some earlier studies that examine the foreign exchange mar-
ket. For example, Tenti (1996) constructs three different RNNs to predict the returns 
of exchange rate futures with encouraging results, while Kuan and Liu (1995) assess 
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RNNs compared to FNNs and an ARMA model to obtain mixed results as to the 
superiority of the former. Giles et  al. (2001) further expand these studies through 
examining directional currency movement forecasts in a RNN framework.

These studies predate the publication of the seminal LSTM paper by Hochreiter 
and Schmidhuber (1997) and use relatively short input sequences (of length smaller 
than 10) as features. More recent studies consider longer input sequences using 
memory networks like LSTM and GRU. Xiong et  al. (2015) predict the volatility 
of the S&P 500 and find that LSTM outperforms econometric benchmarks in the 
form of L1- and L2-regression as well as GARCH. Fischer and Krauss (2018) com-
pare the performance of a single-layer LSTM against several benchmark algorithms, 
namely random forests, a FNN, and a logistic regression, and find that LSTM 
“beat[s] the standard deep networks and the logistic regression by a very clear mar-
gin” and outperforms a random forest in most periods. Shen et al. (2018) test GRUs 
against a FNN and a support vector machine on three financial indices, with the 
GRUs producing the best results.

An interesting finding of Table 1 concerns the foreign exchange market. While 
many earlier studies consider this market, we find no study that examines the ability 
of recent RNN architectures in the form of LSTM and GRU to forecast exchange 
rates. To the best of our knowledge, the 2008 studies of Kiani and Kastens (2008) 
and Hussain et  al. (2008) represent the latest attempts to model foreign exchange 
markets using a RNN framework. This observation inspires the focal paper. We con-
tribute original empirical evidence through comparing different types of RNNs—a 
simple RNN, a LSTM, and a GRU—in terms of their ability to forecast exchange 
rate returns. To set observed results into context, we contrast the performance of 
RNNs with that of a FNN and a naive benchmark model.

4  Experimental design

4.1  Data

The empirical evaluation grounds on data of four major foreign exchange rates: the 
Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY), and the Swiss Franc 
(CHF), each of which we measure against the U.S. Dollar (USD). The selection of 
data follows previous work in the field (Kuan and Liu 1995; Tenti 1996; Giles et al. 
2001; Kiani and Kastens 2008; Hussain et al. 2008). The data set consists of 12,710 
rows representing daily bilateral exchange rates from January 4, 1971 until August 
25, 2017. However, the time series are not of the same length. For example, the 
EUR was first reported in 1999 so that the EUR/USD exchange rate time series only 
contains 4688 non-null observations compared to the 11,715 observations for the 
longest time series in the data set.

Table 2 provides an overview of the characteristics of the time series’ 1-day per-
centage returns. The exchange rates and the corresponding daily returns are also 
plotted in Fig. 9, together with a combination of a histogram (gray bars), a kernel 
density estimation (black line), and a rug plot (black bars along the x-axis). From the 
return plots in the middle column, we observe that the transformation from prices to 
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returns removes trends, but the return series still exhibit non-stationarity. In particu-
lar, the histograms, kernel density estimators, and rug plots indicate leptokurtic dis-
tributions, and the large kurtosis values in Table 2 support this observation.

4.2  Data preprocessing

In order to prepare the data for analysis, we divide each time series into study peri-
ods, scale the training data, and create input sequences and target variable values.

4.2.1  Features

Exchange rates represent the price of one unit of currency denominated in another 
currency, whereby we consider the USD as denominator.

Fig. 9  Prices, 1-day returns, and a combination of histograms, KDE, and rug plots of the one-day per-
centage returns for the four foreign exchange rate time series

Table 2  Statistical properties of 
the one-day percentage returns 
of selected currencies

EUR/USD GBP/USD USD/JPY USD/CHF

Observations 4687 11,708 11,702 11,708
Mean 0.0000 − 0.0000 − 0.0001 − 0.0001
Standard Deviation 0.0063 0.0060 0.0065 0.0073
Minimum − 0.0296 − 0.0784 − 0.0907 − 0.1221
25 % Quantile − 0.0034 − 0.0029 − 0.0030 − 0.0038
Median 0.0000 0.0001 0.0000 0.0000
75 % Quantile 0.0035 0.0029 0.0031 0.0036
Maximum 0.0473 0.0470 0.0646 0.0930
Skewness 0.1511 − 0.3216 − 0.5540 − 0.2305
Kurtosis 2.2591 6.9514 8.6128 12.3697
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Let Pc
t
 denote the price of a currency c at time t in USD. The one-day percentage 

return can then be calculated as the percentage change of the price from time t to the 
following trading day:

Before model training, we scale the returns to the interval [l,  u] using min-max 
scaling.

To avoid data leakage, we perform the scaling for each study period individually, 
which ensures that the scaler is fitted to the training data and has no access to the 
trading (or test) data.

We use the time series of scaled returns as the sole feature, with the input at time 
t consisting of the sequence of returns of the previous � trading days:

The approach of using lagged returns, and more generally past realizations of the 
price signal, as input for a RNN follows the recent work of Fischer and Krauss 
(2018), who find it to deliver highly accurate forecasts. We acknowledge that dif-
ferent ways to set up the forecasting tasks are possible and could consist of using 
technical indicators as additional signal and/or incorporating price signals from 
other financial instruments (e.g., other exchange rates than the one being forecast), 
among others. Using multiple features would also facilitate the constructions of 
more advanced network designs. One could, for example, envision crafting time 
point embeddings that mimic the word embeddings, which are employed in natural 
language processing.1. We leave the design of corresponding deep learning-based 
forecasting models and their empirical evaluation for future research.

4.2.2  Targets

We formulate the prediction task as a binary classification problem. The focus on 
directional forecasts is motivated by recent literature (Takeuchi 2013; Fischer and 
Krauss 2018). We then define the target variable Yc

t
 such that values of one and zero 

indicate non-negative and negative returns, respectively.

4.2.3  Length of the input sequences

Previous studies found foreign exchange rates to exhibit long-term memory (van de 
Gucht et  al. 1996). This suggests the suitability of GRUs and LSTMs with their 

rc
t
=

Pc
t

Pc
t−1

− 1

Xc
t
= {r̃c

t−𝜏
, r̃c

t−𝜏+1
, r̃c

t−𝜏+2
,… , r̃c

t−1
}

Yc
t
=

{
1 if rc

t
≥ 0

0 otherwise

1 We are grateful to an anonymous reviewer who suggested this interesting approach for future studies.
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ability to store long-term information, provided they receive input sequences of suf-
ficient length. We chose an input sequence length of � =240, which follows from 
two of the most recent studies (Fischer and Krauss 2018; Shen et  al. 2018). The 
LSTM, GRU, and simple RNN (SRNN) that we consider as benchmark model 
regard each sequence of 240 observations as one single feature and make use of 
the relative order of data points. On the contrary, a FNN, which we also consider as 
benchmark, regards the 240 observations as distinct features.

4.2.4  Training and trading window

To test the predictive performance of different forecasting models, we employ a slid-
ing-window evaluation, which is commonly used in previous literature (Krauss et al. 
2017; Tomasini and Jaekle 2011; Dixon et al. 2016). This approach forms several 
overlapping study periods, each of which contains a training and a test window. In 
each study period, models are estimated on the training data and generate predic-
tions for the test data, which facilitate model assessment. Subsequently, the study 
period is shifted by the length of one test period as depicted in Fig. 10. Such evalu-
ation is efficient in the sense that much data are used for model training while at the 
same time predictions can be generated for nearly the whole time series. Only the 
observations in the first training window cannot be used for prediction.

4.2.5  Loss function

The models are trained to minimize the cross-entropy between predictions and actual 
target values. In the binary case, the cross-entropy for an individual prediction and 
the corresponding target value is given by −(yt log(ŷt) + (1 − yt) log(1 − ŷt)) , and the 
overall training loss is the average of the individual cross-entropy values. That way, 

Fig. 10  Sliding window evaluation: Models are trained in isolation inside each study period, which con-
sists of a training set and a trading (test) set. The models are trained only on the training set, predictions 
are made on the test set, which is out of sample for each study period. Then, all windows are shifted by 
the length of the test set to create a new study period with training set and out-of-sample test set (from 
Giles et al. 2001)
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the training process can be interpreted as a maximum likelihood optimization, since 
the binary cross-entropy is equal to the negative log-likelihood of the targets given 
the data. The loss function for study period S including trading set TS (with cardinal-
ity |TS| ) is represented by LS2:

4.2.6  Activation functions

We train the FNN using a rectified linear unit (relu) activation function: 
relu(x) = max(0, x) Using relu activations improves gradient flow, reduces the train-
ing time (Glorot et al. 2011), and has become the state of the art in deep learning 
(LeCun et al. 2015; Clevert et al. 2016; Ramachandran et al. 2017).

For the recurrent neural networks, activation functions in the recurrent layers are 
applied as described in Sect. 2: the SRNN uses hyperbolic tangent activations, while 
the LSTM and the GRU use sigmoid gates and hyperbolic tangent activations as 
input and output activations. More precisely, we follow Chollet et al. (2018a) and 
use a segment-wise linear approximation of the sigmoid function to enhance compu-
tational efficiency.

All networks use a sigmoid function as their output activation to model 
the conditional probability of non-negative returns given the training data, 
ℙ(Yc

t
= 1|Xc

t
= {rc

t−�
,… , rc

t−1
}) (Goodfellow et al. 2016).

4.2.7  Regularization

One drawback of neural networks is their vulnerability to overfitting (Srivastava 
et al. 2014). Regularization is a way to protect against overfitting, and can be imple-
mented in several ways including penalizing model complexity or monitoring the 
model’s performance on unseen data. We employ two regularization techniques: 

Dropout: helps the network’s neurons to generalize and avoid large co-
dependence between different neurons (Hinton et al. 2012). To that end, a drop-
out layer randomly masks the connections between some neurons during model 
training. We use dropout on the non-recurrent connections after all hidden layers 
as in Zaremba et al. (2014) with various dropout rates. For example, a dropout rate 
of 25 percent implies that each neuron in the previous layer is dropped with prob-
ability 25 percent; on average, a quarter of the neurons of that layer are masked.

Early stopping: refers to holding back a certain part of the training data to trace the 
forecasting error of a network during training (e.g., after each epoch). The vali-
dation set error enables us to stop network training conditional on the validation 
loss.

LS(yTS , ŷTS ) = −
1

|TS|
∑

t∈TS

(
yt log(ŷt) + (1 − yt) log(1 − ŷt)

)

2 LS simplifies to LS(yTS , ŷTS ) = −
1

�TS�
∑

t∈TS
log(ŷt) in the binary classification task with labels (0, 1).
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4.3  Hyperparameter tuning

Neural networks and their underlying training algorithms exhibit several hyperparam-
eters that affect model quality and forecast accuracy. Examples include the number 
of hidden layers and their number of neurons, the dropout rate or other regularization 
parameters, as well as algorithmic hyperparameters such as the learning rate, the num-
ber of epochs, the size of mini-batches, etc. (Goodfellow et al. 2016).

Hyperparameter tuning is typically performed by means of empirical experimenta-
tion, which incurs a high computational cost because of the large space of candidate 
hyperparameter settings. We employ random search (Bengio 2012) for hyperparameter 
tuning considering the following search space:

– Number of hidden layers: 1, 2, 3, 4.
– Number of neurons per hidden layer: 25, 50, 100, 200, 400, 800, 1600.
– Dropout: 0 to 60%, in steps of 10%.
– Optimizer and learning rate: Adam and RMSprop with various learning rates.
– Batch size: 16, 32, 64, 128, 256

4.4  Model architecture

We set up a supervised training experiment in accordance with Fischer and Krauss 
(2018) and Shen et al. (2018) who applied LSTM to stock and GRUs to index data, 
respectively. This meant constructing overlapping study periods consisting of 750 
training observations and 250 trading observations as depicted in Fig. 10 and an input 
sequence length of 240 observations. The input data were scaled to the bounds of the 
hyperbolic tangent ( [l, u] = [−1, 1] ). We then built models with fixed hyperparameters 
for all time series with the insights from manual tuning. All models had the following 
topology:

The other models use different layers but possess the same structure—with the 
exception that the FNN layers do not pass on sequences and thus the data dimensions 
between the first and third hidden layers in the FNN are (1, 50) rather than (240, 50) 
like in the three recurrent networks. All models were trained using minibatch sizes of 
32 samples and the Adam Kingma and Ba (2014) optimizer with default parameters, 
training for a maximum of 100 epochs with early stopping after 10 periods without 
improvement in validation loss. 20% of the training set was held out of training for 
validation.

– 3 hidden layers
– 50 neurons per hidden layer
– Dropout layers with dropout rate of 25 percent after each hidden layer
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5  Evaluation

We consider three measures of forecast accuracy: logarithmic loss (Log loss) 
as this loss function is minimized during network training; predictive accuracy 
(Acc.) as the most intuitive interpretation of classification performance; and the 
area under the receiver operator characteristic curve (AUC).

In addition to assessing classification performance, we employ a basic trading 
model to shed light on the economic implications of trading on model forecasts. 
The trading strategy is as follows: for each observation t in the test period, buy 
the currency in the numerator of the currency pair if a non-negative return is pre-
dicted with probability of at least 50 percent (and realize that day’s net profit); 
sell that currency otherwise (and realize that day’s net profit multiplied by −1 ). 
The position is held for one day. This would yield the following realized daily 
return r̃c

t
 of the basic trading model:

As each test set consist of 240 trading days (roughly one year), the annualized net 
returns of this strategy in study period S are approximated by

As a measure of risk, the standard deviation (SD) of the series of realized trading 
strategy returns is considered, and the Sharpe ratio (SR) is computed as a measure 
of risk-adjusted returns. These three metrics are used to compare the different mod-
els’ predictions economically.

6  Empirical Results

In order to set results of different neural networks models into context, we com-
pute a naive benchmark forecast the prediction of which at time t simply equals 
the true target at time t − 1:

The results of this benchmark can be found in Table 3, both per time series as well 
as aggregated across time series. Note that we cannot compute the log loss for this 
benchmark since log(0) is undefined and the naive benchmark predicts 0 whenever 
the previous day’s true returns are negative.

The naive benchmarks give accurate direction predictions about half of the 
time. If the trading strategy defined in Sect.  5 were applied, it would result in 
small positive net returns.

r̃c
t
=

{
rc
t

if ŷt ≥ 0.5

−rc
t
otherwise

RS =
∏

t∈TS

(1 + r̃c
t
) − 1

ŷt = yt−1
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Results from training the FNN, SRNN, LSTM, and GRU on the four selected 
foreign exchange rate time series are displayed in Table  4 and visualized in 
Fig. 11 by means of violin plots. Recall that the empirical results are obtained 
from the window-based cross-validation approach depicted in Fig.  10. Hence, 
accuracy/profit figures in Table 4 represent averages, which we compute across 
the multiple test windows.

Table 4 suggests three conclusions. First, in terms of the training loss (Log 
Loss), the gated recurrent networks LSTM and GRUs perform slightly better 
than the FNN and SRNN for each time series. This general observation also 
holds roughly true for the accuracy for three of the four time series, but not 
for the EUR/USD exchange rate. Second, economic measures of forecast per-
formance paint a different picture. None of the models is able to produce a large 
positive return. Both in terms of returns and risk-adjusted returns, the SRNN 
performs competitive and not inferior to more advanced network architectures in 
the form of GRU and LSTM. This is an interesting result in that several previous 
forecast comparisons observe a different result. We discuss the ramifications of 
our results in Sect. 5. Third, the deep learning models perform better than the 
benchmark in terms of accuracy and area under the ROC curve. However, the 
net returns resulting from applying the selected trading strategy are smaller in 
most cases.

Table 3  Results from a naive 
forecast by time series and 
aggregated (average weighted 
by length of time series)

Acc. AUC Returns SD SR

EUR/USD 0.4744 0.4718 − 0.0202 0.0060 − 0.0188
GBP/USD 0.5010 0.4971 0.0481 0.0059 0.0310
USD/JPY 0.4940 0.4888 0.0488 0.0063 0.0280
USD/CHF 0.4873 0.4839 0.0131 0.0071 0.0014
Weighted Avg. 0.4921 0.4880 0.0307 0.0064 0.0161

Fig. 11  Accuracy and trading strategy returns of the naive benchmark and the four deep learning models



91

1 3

Digital Finance (2020) 2:69–96 

7  Conclusion

The paper has reported results from an empirical comparison of different deep 
learning frameworks for exchange rate prediction. We have found further support 
for previous findings that exchange rates are highly non-stationary (Kayacan et al. 
2010). Even training in a rolling window setting cannot always ensure that train-
ing and trading set follow the same distribution. Another observation concerns 
the leptokurtic distribution of returns. For example, the average kurtosis of the 
exchange rate returns examined in this study is 8.60 compared to 2.01 for the 
stock returns in Fischer and Krauss (2018). This resulted in many instances of 
returns close to zero and few, but relatively large deviations and could have lead 
to the models exhibiting low confidence in their predictions.

The results, in term of predictive accuracy, are in line with previous work on 
LSTMs for financial time series forecasting (Fischer and Krauss 2018). However, 
our results exhibit a large discrepancy between the training loss performance 
and economic performance of the models. This becomes especially apparent in 
Fig. 11. The observed gap between statistical and economic results agrees with 
Leitch and Tanner (1991) who find that only a weak relationship exists between 
statistical and economic measures of forecasting performance. A similar problem 

Table 4  Results for the four neural networks by currency pair and model type averaged across the test 
windows in our window-based cross-validation approach

Time Series Model Log Loss Acc. AUC Returns SD SR

EUR/USD FNN 0.6953 0.5155 0.5202 0.0218 0.0060 0.0186
SRNN 0.7114 0.5019 0.5003 0.0406 0.0060 0.0240
LSTM 0.6948 0.4928 0.5005 − 0.0138 0.0060 − 0.0073
GRU 0.6948 0.4944 0.5103 − 0.0216 0.0060 − 0.0131

GBP/USD FNN 0.6964 0.5068 0.5035 − 0.0094 0.0059 − 0.0034
SRNN 0.7064 0.5110 0.5116 0.0166 0.0059 0.0098
LSTM 0.6943 0.5066 0.5021 − 0.0088 0.0059 − 0.0041
GRU 0.6945 0.5064 0.4930 − 0.0056 0.0059 − 0.0021

USD/JPY FNN 0.7001 0.4966 0.4995 − 0.0340 0.0063 − 0.0255
SRNN 0.7100 0.5030 0.4955 − 0.0019 0.0063 − 0.0081
LSTM 0.6956 0.5019 0.5077 − 0.0157 0.0063 − 0.0143
GRU 0.6945 0.5091 0.5089 0.0075 0.0038 0.0092

USD/CHF FNN 0.6977 0.4999 0.4982 − 0.0068 0.0071 − 0.0019
SRNN 0.7016 0.5081 0.5057 0.0356 0.0071 0.0196
LSTM 0.6936 0.5079 0.5080 0.0056 0.0071 0.0044
GRU 0.6941 0.5108 0.5109 0.0108 0.0071 0.0057

Weighted Avg. FNN 0.7026 0.5062 0.5061 − 0.0126 0.0064 − 0.0071
SRNN 0.7115 0.5103 0.5073 0.0195 0.0064 0.0090
LSTM 0.6993 0.5076 0.5088 − 0.0072 0.0064 − 0.0050
GRU 0.6992 0.5107 0.5085 0.0014 0.0057 0.0024
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might exist between the log loss minimized during training and the trading strat-
egy returns in this study.

One implication of our study is that the conceptual advantages of recent, gated 
RNN architectures such as LSTM and GRU translate into superior forecasting per-
formance compared to more traditional RNNs. Arguably, this finding was to be 
expected and might not come as surprise. However, evidence of the merit of deep 
learning in the scope of exchange rate forecasting was sparse so that expanding 
the knowledge base with original empirical results is useful. At the same time, we 
observe traditional FNNs to be a competitive benchmark to deep RNN architectures. 
One may take this finding as evidence for the adequacy of using FNNs as bench-
mark in this study and, more generally, paying much attention to FNNs in previous 
work on FX markets and financial markets as a whole.

As any empirical study, the paper exhibits limitations which could be addressed in 
future research. One way of addressing the issue of low confidence predictions could 
be to use scaled prices as inputs, either with the same targets as in this experiment 
or to predict price levels in a regression and then transform the outputs to binary 
predictions by comparing them to the previous day’s price. Hussain et  al. (2008) 
find scaled prices as inputs slightly outperform scaled returns, but the majority of 
the literature uses returns. Augmenting the input structure of RNN-based forecasting 
model by incorporating additional predictors might be another way to overcome the 
low confidence issue. Moreover, the focus of this study was on (deep) neural net-
works. Many other powerful machine learning algorithms exist. Comparing RNN-
based approaches to alternatives such as, e.g., random forest and gradient boosting 
(Krauss et al. 2017) is an interesting field of future study in its own right and could 
clarify whether other algorithms also exhibit low confidence when applied to the 
exchange rates considered in this study.

Another avenue for future research concerns the employed trading strategy. 
Employing a more advanced trading rule might help to overcome the discrepancy 
between statistical and economic results. One example of such a trading strategy is 
the work of Fischer and Krauss (2018) who construct a strategy only trading a num-
ber of top and bottom pairs from a large set of 500 binary predictions on stock per-
formance. This particular strategy would, of course, require training on many more 
time series. A possible solution for better interaction between model and economic 
performance is furthermore to develop a combination of a custom loss function and 
suitable output activation function instead of using binary cross-entropy with a sig-
moid output activation function. That way, the model could directly optimize for 
either returns or risk-adjusted returns.

Furthermore, hyperparameter tuning turned out to be cumbersome. The win-
dow-based training approach described in Sect. 4 and depicted in Fig. 10 has one 
huge drawback: it requires training several individual models. Applying the same 
hyperparameters to the whole time series constrains the models’ capacity. Isolated 
hyperparameter tuning for each study period would be desirable but is not feasi-
ble in this setting as it included 144 such study periods (15 study periods for the 
EUR/USD series and 43 each for the GBP/EUR, USD/JPY, and USD/CHF series). 
Efforts to automate large deep learning processes are under way (Feurer et al. 2015), 
but tuning a large number of individual models remains computationally costly. An 
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orthogonal approach to improve the tuning of the model to the data at hand involves 
revisiting the search strategy. We have used random search to configure deep neu-
ral networks, which can be considered standard practice. However, the search space 
of hyperparameters is very large and random search does not advocate narrowing 
down the space after the initial inspection of the wide space. Successive executions 
of the hyperparameter search have been employed in conjunction with grid search 
(Van Gestel et al. 2004) and could also be considered when tuning deep neural net-
works with random search. Especially if reusing the same hyperparameter setting 
across study periods, as done here, finding a strong configuration of the network 
is crucial and could benefit from repeating random search while zooming in more 
promising regions of the parameter space.

Finally, LSTM and GRUs have become the state of the art in many fields (Vas-
wani et al. 2017) and are still developed further to improve certain aspects. A num-
ber of recent proposals for prediction of sequential data augments or even aims to 
supplant RNNs. Such expansions include combining RNNs with CNNs when the 
data are both spatial and temporal (Karpathy and Li 2014) or even applying image 
classification to plots of time series data; giving models access to an external 
memory bank (Neural Turing Machine(s) Graves et al. 2014); employing recurrent 
encoder-decoder structures, or modeling time dependencies in a non-recurrent way 
(Vaswani et  al. 2017). Machine learning research is moving increasingly fast and 
new ideas for improvements or augmentations of algorithms keep appearing. On the 
other hand, some technologies become practical only many years after their emer-
gence. The best example of this is LSTM, an algorithm that was little appreciated in 
the first decade of its life but is one of the cornerstones of machine learning another 
ten years later. It is intriguing to imagine what might be possible in another decade.
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