
Dautel, Alexander Jakob; Härdle, Wolfgang Karl; Lessmann, Stefan; Seow,
Hsin-Vonn

Article — Published Version

Forex exchange rate forecasting using deep
recurrent neural networks

Digital Finance

Provided in Cooperation with:
Springer Nature

Suggested Citation: Dautel, Alexander Jakob; Härdle, Wolfgang Karl; Lessmann, Stefan; Seow,
Hsin-Vonn (2020) : Forex exchange rate forecasting using deep recurrent neural networks,
Digital Finance, ISSN 2524-6186, Springer International Publishing, Cham, Vol. 2, Iss. 1-2, pp.
69-96,
https://doi.org/10.1007/s42521-020-00019-x

This Version is available at:
https://hdl.handle.net/10419/288752

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s42521-020-00019-x%0A
https://hdl.handle.net/10419/288752
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

Digital Finance (2020) 2:69–96
https://doi.org/10.1007/s42521-020-00019-x

1 3

ORIGINAL ARTICLE

Forex exchange rate forecasting using deep recurrent
neural networks

Alexander Jakob Dautel1 · Wolfgang Karl Härdle1,2 · Stefan Lessmann1 ·
Hsin‑Vonn Seow3

Received: 8 March 2019 / Accepted: 12 March 2020 / Published online: 27 March 2020
© The Author(s) 2020

Abstract
Deep learning has substantially advanced the state of the art in computer vision,
natural language processing, and other fields. The paper examines the potential of
deep learning for exchange rate forecasting. We systematically compare long short-
term memory networks and gated recurrent units to traditional recurrent network
architectures as well as feedforward networks in terms of their directional forecast-
ing accuracy and the profitability of trading model predictions. Empirical results
indicate the suitability of deep networks for exchange rate forecasting in general but
also evidence the difficulty of implementing and tuning corresponding architectures.
Especially with regard to trading profit, a simpler neural network may perform as
well as if not better than a more complex deep neural network.

Keywords Deep learning · Financial time series forecasting · Recurrent neural
networks · Foreign exchange rates

JEL Classification C14 · C22 · C45

 * Stefan Lessmann
 stefan.lessmann@hu-berlin.de

 Alexander Jakob Dautel
 a.j.dautel@gmail.com

 Wolfgang Karl Härdle
 haerdle@hu-berlin.de

 Hsin-Vonn Seow
 Hsin-Vonn.Seow@nottingham.edu.my

1 School of Business and Economics, Humboldt-Universiät zu Berlin, Unter-den-Linden 6,
10099 Berlin, Germany

2 Singapore Management University, 50 Stamford Road, Singapore 178899, Singapore
3 Nottingham University Business School, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

http://crossmark.crossref.org/dialog/?doi=10.1007/s42521-020-00019-x&domain=pdf

70 Digital Finance (2020) 2:69–96

1 3

1 Introduction

Deep learning has revitalized research into artificial neural networks. Substantial
methodological advancements associated with the optimization and regulariza-
tion of large neural networks, the availability of large data sets together with the
computational power to train large networks, and development of powerful, easy-
to-use software libraries, deep neural networks (DNNs) have achieved break-
through performance in computer vision, natural language processing, and other
domains (LeCun et al. 2015). A feature that sets deep learning apart from conven-
tional machine learning is the ability automatically extract discriminative features
from raw data (Nielsen 2015). Reducing the need for manual feature engineering,
this ability decreases the costs of applying a learning algorithm in industry, sim-
plifies tasks associated with model maintenance, and, more generally, broadens
the scope of deep learning applications.

Convolutional neural networks and recurrent neural networks (RNNs) have
been particularly successful. The former represent the model of choice for com-
puter vision tasks. RNNs are designed for processing sequential data including
natural language, audio, and generally, any type of time series. The paper focuses
on RNNs and examines their potential for financial time series forecasting.

Deep-learning-based forecasting models and their applications in finance have
attracted considerable attention in recent research (Fischer and Krauss 2018;
Huck 2019; Kim et al. 2019). However, only a small number of studies examine
the foreign exchange (FX) market. This is surprising for several reasons. On the
one hand, examining the degree to which market developments can be forecast
with high accuracy is of academic and practical relevance. Moreover, exchange
rates have been characterized as non-linear, stochastic, and highly non-stationary
financial time series (Kayacan et al. 2010), which makes them particularly dif-
ficult to predict and an interesting subject for forecasting research (Wu and Chen
1998; Czech and Waszkowski 2012). Finally, the FX market differs notably from
other financial markets so that research results from other markets such as stock
markets may not generalize to the FX market.

The distinct characteristics of the FX market have been discussed in several
studies. For example, most participants of the FX market are professional traders
(Sager and Taylor 2006). The FX market also has a higher share of short-term
interdealer trading compared to stock markets (Lyons 2001). Moreover, exchange
rates fluctuate enormously leading to doubtful decision-making whether to buy
or sell for traders (Bagheri et al. 2014). Because of this, models of fair value are
less convincing for FX traders compared to stock market traders (Taylor 1995;
Campbell et al. 1998). Given that the peculiarities question the generalizability
of empirical results from other financial markets and the fact that research into
state-of-the-art deep learning approaches for exchange rate forecasting is scarce
motivate the focal study. The goal of the paper is to contribute to the empirical
literature on FX forecasting by re-introducing deep machine learning-based fore-
casting methodology to the community and assessing the accuracy of correspond-
ing models when forecasting exchange rate movements.

71

1 3

Digital Finance (2020) 2:69–96

In particular, the paper reports original results from a comparative analysis of
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural net-
works versus benchmark models. Considering four exchange rates, we assess fore-
casting models in terms of their directional accuracy and the profitability of trading
on model predictions. Our analysis of related literature (see Sect. 3) indicates that
the last attempts to model price movements in the FX market using RNNs have been
published more than a decade ago (Kiani and Kastens 2008; Hussain et al. 2008)
and did not make use of advanced, gated RNNs, which have important advantages
over traditional RNNs for temporal data processing. Therefore, we consider the
empirical results reported in the paper a valuable and needed update of the state of
affairs at the interface of deep learning and FX rate forecasting. Given the scarcity
of deep learning-based approaches in the FX modeling literature, a secondary con-
tribution of the paper may be seen in the fact that it provides a thorough explanation
of the operating principles of RNNs vis-a-vis conventional feedforward neural net-
works (FNNs) and re-introduces recent RNN representatives in the form of LSTM
and GRU to the FX modeling literature. In this scope, we also elaborate on the ways
in which these recent RNNs overcome the vanishing gradient problem, which ren-
dered previous attempts to train deep RNNs less effective.

The paper is organized as follows: the next section elaborates on neural net-
work-based forecasting and introduces LSTM and GRU. Thereafter, we review
related work and show how the paper contributes to closing gaps in research.
Subsequently, we describe the experimental design of the forecasting comparison
and report empirical results. We then conclude the paper with a summary and dis-
cussion of findings and an outlook to future research.

2 Neural network architectures

2.1 Feedforward neural networks

Neural networks consist of multiple connected layers of computational units called
neurons. The network receives input signals and computes an output through a con-
catenation of matrix operations and non-linear transformations. In this paper, the
input represents time series data and the output a (price) forecast. Every neural net-
work consists of one input and one output layer, and one or multiple hidden layers,
whereby each layer consists of several neurons. The connections between the neu-
rons of different layers carry a weight. Network training refers to the tuning of these
weights in such a way that network output (i.e., forecast) matches the target variable
as accurately as possible. The training of a neural network through adjusting con-
nection weights is equivalent to the task of estimating a statistical model through
empirical risk minimization (Härdle and Leopold 2015).

The layer of a FNN comprises fully connected neurons without shortcuts or
feedback loops. When processing sequential data, the activation of a hidden layer
unit in an FNN at time t can be described as follows:

72 Digital Finance (2020) 2:69–96

1 3

where the hidden activation function gh is a function of the hidden weight matrix
Wh , an input vector xt , and a bias bh . It produces the hidden activation ht . A predic-
tion ŷt is the result of applying a suitable output activation function to the weighted
sum of the activations received in the output layer. As such, the prediction is again
only a function of inputs, weights, and biases.

The weights and biases determine the mapping from xt to ŷt and will be learned
during training. A FNN will treat input sequences as time-invariant data and thus
be agnostic of inherent features of time series. At any given point in time, t, a FNN
takes an input xt and maps it to a hidden activation ht . This is repeated at the time of
the next observation, t + 1 , while the two mappings are not interconnected.

2.2 Recurrent neural networks

RNNs are designed for sequential data processing. To this end, they include feed-
back loops and feed the output signal of a neuron back into the neuron. This way,
information from previous time steps is preserved as hidden state ht and can be dis-
counted in network predictions. When viewed over time, RNNs resemble a chain-
like sequence of copies of neural networks, each passing on information to its suc-
cessor. More formally, a RNN takes as additional argument the previous time step’s
hidden state ht−1:

The objective of training a neural network is to minimize the value of a loss func-
tion, which represents the cumulative difference between the model’s outputs and
the true labels. Since the output of a neural network is a function of the weights
and biases of all its connections, the loss function value can be changed by modify-
ing the network’s weights and biases. Therefore, computing the gradient of the loss
function with respect to the network’s weights obtains the information needed to
train the network. The backpropagation algorithm uses the insight that the gradient
with respect to each weight can be found by starting at the gradient with respect
to the output and then propagating the derivatives backwards through the network
using the chain rule (Rumelhart et al. 1986). In RNNs, the gradient descent-based
training of the network is called backpropagation through time, as the error deriva-
tives are not only backpropagated through the network itself but also back through
time via the recurrent connections (Werbos 1990).

RNNs often use activation functions such as the hyperbolic tangent (tanh) or the
logistic sigmoid (�). The derivative of both lies in the interval [0, 1] and thus any
gradient with respect to a weight that feeds into such an activation function is bound
to be squeezed smaller (Hochreiter 1998b). Given that we are successively comput-
ing the derivative of an activation function by use of the chain rule, the gradient gets

ht = gh(W
T
h
xt + bh),

ŷt = gy(W
T
y
ht + by)

ht = gh(Wh[ht−1, xt] + bh)

73

1 3

Digital Finance (2020) 2:69–96

smaller and smaller the further away a weight is from the output layer (see Fig. 1). In
RNNs, this problem, routinely called the problem of gradient vanishing, is amplified
by the sequential data processing of the network. Specifically, the gradient signal
vanishes not only across layers but also across time steps. In consequence, RNNs
face difficulties in modeling long-term dependencies, and much research has sought
ways to overcome this issue (Schaefer et al. 2008). The problem of gradient vanish-
ing also implies that the magnitude of weight adjustments during training decreases
for those weights. Effectively, weights in early layers learn much slower than those
in late hidden layers (closer to the output) (Nielsen 2015). For large networks or
many time steps, this can keep a neural network from learning and prevent it from
storing information, to a point where “the vanishing error problem casts doubt on
whether standard RNNs can indeed exhibit significant practical advantages over
time window-based feedforward networks” (Gers et al. 1999).

Note that the recursive application of the chain rule in neural network training
may also cause a problem closely related to that of gradient vanishing. This prob-
lem is called gradient explosion and it occurs when recursively multiplying weight
matrices with several entries above one in the backward pass of network training.
Remedies of this problem, which help to stabilize and accelerate neural network
training, include gradient clipping and batch normalization (Goodfellow et al. 2016).

2.3 Long short‑term memory

One solution to the vanishing gradient problem was proposed by Hochreiter and
Schmidhuber (1997) in the form of LSTM. Twenty years after its invention, LSTM
and its variants have turned out to become a state-of-the-art neural network architec-
ture for sequential data. The following discussion of the LSTM cell follows Graves
(2013) as it seems to be one of the most popular LSTM architectures in recent
research and is also available in the widely used Python library Keras (Chollet et al.
2018b).

2.3.1 The cell state

The central feature that allows LSTM to overcome the vanishing gradient problem is an
additional pathway called the cell state. The cell state is a stream of information that is

Fig. 1 A recurrent neural network architecture (Olah 2015): the RNN feeds learned information back
into the network via the output ht

74 Digital Finance (2020) 2:69–96

1 3

passed on through time. Its gradient does not vanish and enforces a constant error flow
through time (Hochreiter 1998a). The cell state allows the LSTM to remember depend-
encies through time and facilitates bridging long time lags (Hochreiter and Schmidhu-
ber 1997).

Figure 2 depicts a single LSTM cell with all but the cell state pathway grayed out.
Note that the cell state contains no activation functions but only linear operations. In
that way, it is “immune” to the vanishing gradient. The following discussion details
how the cell state is maintained, updated, or read.

2.3.2 Gate units

The LSTM cell contains a number of gate structures that allow accessing the cell. A
typical LSTM cell receives two inputs: the current input xt and the recurrent input,
which is the previous time step’s hidden state ht−1 . Gating units control how these
inputs change the cell state in order to produce an updated cell state, Ct , or read from it
to make use of the information that the cell state embodies.

The logistic sigmoid function, defined as �(x) = 1

1+e−x
 , plays an important role in the

gating mechanisms of the LSTM cell. It takes the weighted current and recurrent inputs
and maps them to the interval [0, 1]. This enables the network to control the informa-
tion flow through the gates, which also explains the term “gate.” The values of 0 and 1
can be interpreted as allowing no information and all information to pass through a
specific gate, respectively. In addition to the “gatekeeper” sigmoid, two of the three
LSTM gates make use of the hyperbolic tangent function, defined as tanh(x) = ex−e−x

ex+e−x
 .

The tanh is the usual activation function for input and output gates in the LSTM (Greff
et al. 2017) and pushes its inputs into the interval [−1, 1].

The logistic sigmoid and the hyperbolic tangent have relatively simple derivatives,
d

d(x)
�(x) = �(x)(1 − �(x)) and d

d(x)
tanh(x) = 1 − tanh2(x) , which makes them a suitable

choice for network training (e.g., backpropagation).

Fig. 2 A single LSTM unit (a
memory block) according to
Olah (2015) with all but the cell
state pathway grayed out

75

1 3

Digital Finance (2020) 2:69–96

2.3.3 The forget gate

The forget gate ft determines the parts of Ct−1 , which the cell state passed on from
the previous time step, that are worth remembering. As shown in Fig. 3, this is
achieved by means of a sigmoid gatekeeper function:

ft is then multiplied with Ct−1 to selectively allow information to remain in memory.
Values of ft = 1 and ft = 0 imply that all information from Ct−1 are kept and erased,
respectively.

2.3.4 The input gate

The input gate it , highlighted in Fig. 4, employs a sigmoid to control information
flow:

The objective of this gate is to protect the information of the cell state, which has
accumulated over previous time steps, from irrelevant updates. Therefore, the input

ft = �(Wf [ht−1, xt] + bf)

it = �(Wi[ht−1, xt] + bi)

Fig. 3 The forget gate ft is
multiplied with the previous cell
state Ct−1 to selectively forget
information (Olah 2015)

Fig. 4 The input gate it directs
where to update the cell state
with new candidate values C̃t
(Olah 2015)

76 Digital Finance (2020) 2:69–96

1 3

gate selectively updates the cell state with new information (Hochreiter and Schmid-
huber 1997). To this end, a new set of candidate values C̃t is generated by an activa-
tion function; typically a hyperbolic tangent:

2.3.5 The updated cell state

Based on the mechanisms of the input and forget gate, the new cell state Ct is
obtained in two ways: a part of the old cell state Ct−1 has been remembered (via ft)
and has been updated with the new candidate values from C̃t where needed (via it).
This updated cell state will be relayed to the next time step, t + 1:

Note that it = ft does not necessarily hold, and neither does it = 1 − ft . It is not
exactly the parts that got remembered that get updated, and not exactly the ones that
were forgotten either. While both the forget gate and the input gate make use of a
sigmoid as their activation function and take the same arguments (ht−1 and xt), in
general their weights and biases will differ (Olah 2015).

2.3.6 The output gate

The output gate steers the actual prediction of the LSTM, which is determined by
both, the current input xt and the cell state Ct . A hyperbolic tangent is applied to the
values of the current cell state to produce a version of the cell state that is scaled to
the interval [−1, 1]:

The output gate ot consists of a sigmoid with arguments ht−1 and xt , and determines
which information to pass on to the output layer and subsequent time steps in the
new hidden state ht.

As shown in Fig. 5,

ot and C∗
t
 are then multiplied to construct the hidden output, ht , of the current time

step:

This output represents the recurrent input at time t + 1 and the basis for the pre-
diction at time t. As in a FNN, predictions are computed from the hidden state by
applying an output activation in the final layer.

C̃t = tanh(WC[ht−1, xt] + bC)

Ct = ft ◦Ct−1 + it ◦C̃t

C∗
t
= tanh(Ct)

ot = �(Wo[ht−1, xt] + bo)

ht = ot◦C
∗
t

77

1 3

Digital Finance (2020) 2:69–96

2.3.7 The LSTM cell

A typical LSTM cell with forget gate, input gate, and output gate is depicted in
Fig. 6. The different gates and activations work together to save, keep, and pro-
duce information for the task at hand.

When considering the gates and cell state together as
ht = ot ◦ tanh(ft◦Ct−1 + it◦C̃t) , it can be seen that ht is essentially a sophisticated
activation function:

This architecture is an augmented version of the original LSTM architecture and the
setup most common in the literature (Greff et al. 2017). Figure 7, which depicts a
sequence of LSTM cells through time, conveys how information can be propagated
through time via the cell state. The three gates ft to the left of it under and ot above
the hidden layer unit (“—” for closed and “O” for open) control which parts of the
cell state are forgotten, updated, and output at each time step.

ht = �(Wo[ht−1, xt] + bo)◦ tanh(�(Wf [ht−1, xt] + bf) ⋅ Ct−1

+ �(Wi[ht−1, xt] + bi)◦ tanh(WC[ht−1, xt] + bC))

= gh(Wh, ht−1, xt)

Fig. 5 The output gate ot con-
trols the network’s predictions
(Olah 2015)

Fig. 6 A sequence of LSTM units through time (Olah 2015)

78 Digital Finance (2020) 2:69–96

1 3

There exist a few variants of the LSTM cell with fewer or additional components.
For example, one modification concerns the use of peephole connections, which allow
the cell state to control the gates and have been shown to increase LSTM resilience
toward spikes in time series (Gers and Schmidhuber 2000). Greff et al. (2017) perform
a comprehensive evaluation of the LSTM and the marginal efficacy of individual com-
ponents including several recent adaptations such as peephole connection. They start
from an LSTM cell with all gates and all possible peephole connections and selectively
remove one component, always testing the resulting architecture on data from several
domains. The empirical results suggest that the forget gate and the output activation
function seem particularly important, while none out of the investigated modifications
of the above LSTM cell significantly improves performance (Greff et al. 2017). In view
of these findings, we focus on the LSTM as described above.

2.4 Gated recurrent units

A second approach to overcome the vanishing gradient problem in RNNs is GRUs
(Cho et al. 2014). They also use gates but simplify the handling of the cell state. The
hidden state in a GRU is controlled by two sigmoid gates: an update gate couples the
tasks of LSTM’s forget and input gates. It decides how much of the recurrent informa-
tion is kept:

A reset gate controls to which extent the recurrent hidden state is allowed to feed
into the current activation:

zt = �
(
Wz[ht−1, xt] + bz

)

rt = �
(
Wr[ht−1, xt] + br

)

Fig. 7 Preservation of gradient information by LSTM (Graves 2012)

79

1 3

Digital Finance (2020) 2:69–96

A closed reset gate (rt = 0) allows the memory cell to disregard the recurrent state
and act as if it were reading the first observation in a sequence (Chung et al. 2014).
The new activation can be computed as

and the new hidden state is

Again, the GRU cell can be seen as a sophisticated activation function:

There is no output activation function like in the LSTM, but the hidden cell state
is bounded because of the coupling of input and forget gate in the GRU’s update
gate (Greff et al. 2017). Figure 8 illustrates that GRUs have less parameters than
LSTMs, which should make them computationally more efficient. In terms of fore-
casting performance, previous results on GRUs versus LSTMs are inconclusive (see,
e.g., Chung et al. 2014 versus Jozefowicz et al. 2015). Therefore, we consider both
types of RNNs in our empirical evaluation.

3 Related work

Financial markets are a well-studied subject. Starting with seminal work of Fama
(1970), a large body of literature has examined the informational efficiency of finan-
cial markets. Empirical findings do not offer a clear result. Considering the FX
market, Wu and Chen (1998) investigate seven currency pairs and find the efficient
market hypothesis (EMH) to hold, while Hakkio and Rush (1989) and Czech and
Waszkowski (2012) reject the EMH for at least some of the exchange rates tested

h̃t = tanh
(
Wh̃[rt◦ht−1, xt] + bh̃

)

ht = (1 − zt)◦ht−1 + zt◦h̃t.

ht = (1 − 𝜎
(
Wz[ht−1, xt] + bz

)
)◦ht−1

+ 𝜎
(
Wz[ht−1, xt] + bz

)
◦ tanh

(
Wh̃[𝜎

(
Wr[ht−1, xt] + br

)
◦ht−1, xt] + bh̃

)

= gh(Wh, ht−1, xt)

Fig. 8 A GRU cell in detail with
the recurrent hidden state ht−1 ,
update gate zt , reset gate rt , a
hidden state candidate vector
h̃t , and the new hidden state ht
(Olah 2015)

80 Digital Finance (2020) 2:69–96

1 3

by Wu and Chen (1998). It might be because of such contradictions that a statisti-
cal modeling of market prices, volatility, and other characteristics continues to be a
popular topic in the forecasting and machine learning literature.

The range of forecasting methods that has been considered is very broad and
comprises econometric models such as ARIMA, GARCH, and their derivatives, and
various machine learning and computational intelligence approaches such as sup-
port vector machines, ensemble models and fuzzy system. Survey papers such as
Cavalcante et al. (2016) and Bahrammirzaee (2010) offer a comprehensive overview
of the field. Past price movements and transformation of these methods, for exam-
ple, in the form a technical indicators (Lo et al. 2000), represent the main input to
such forecasting models. More recently, research has started to examine auxiliary
data sources such as financial news (Feuerriegel and Prendinger 2016; Zhang et al.
2015), tweets (Oliveira et al. 2017), and, more generally textual data (Junqué de For-
tuny et al. 2014; Khadjeh Nassirtoussi et al. 2014).

In this paper, we focus on artificial neural networks. Neural networks have been a
popular instrument for financial forecasting for decades and represent the backbone
of modern modeling approaches in the scope of deep learning. With regard to their
applications in finance, feedforward neural networks (FNN) have received much rec-
ognition and have been used by several studies to predict price movements (Hsu
et al. 2016). From a methodological point of view, RNNs are better suited to pro-
cess sequential data (i.e., temporal financial data) than other network architectures.
Therefore, we focus the reminder of the literature review to studies that employed
RNNs for financial forecasting and summarize corresponding studies in Table 1.
To depict the state of the art in the field, we consider the type of RNN as well as
benchmark methods, the type of features used for forecasting, the target variable,
and whether a study employed a trading strategy. In addition to reporting statisti-
cal measures of forecast accuracy such as the mean-squared error, a trading strategy
facilitates examining the monetary implications of trading model forecasts. The last
column of Table 1 sketches the main focus of a paper such as testing the EMH or the
merit of a specific modeling approach such as ensemble forecasting.

Table 1 suggests that there is no unified experimental framework. Notable dif-
ferences across the financial time series considered in previous work exemplify
this variation. About half of the studies adopt a univariate approach and use either
historic prices, returns, or transformations of these as input to forecasting models.
Other studies derive additional features from the time series, for example, in the
form of a technical indicator, or consider external sources such as prices from other
financial instruments. Evaluation practices display a similar variance with roughly
50 percent of papers performing a trading evaluation and the rest focusing exclu-
sively on forecast accuracy.

In terms of neural network architectures, studies examining RNNs in the 1990s
can be seen as forerunners, with comparatively little research on the applications of
RNNs available at that time. One of the earliest studies includes Kamijo and Tani-
gawa (1990) who use an RNN in the scope of technical stock analysis. Interestingly,
Table 1 also identifies some earlier studies that examine the foreign exchange mar-
ket. For example, Tenti (1996) constructs three different RNNs to predict the returns
of exchange rate futures with encouraging results, while Kuan and Liu (1995) assess

81

1 3

Digital Finance (2020) 2:69–96

Ta
bl

e
1

 S
el

ec
te

d
stu

di
es

 e
m

pl
oy

in
g

re
cu

rr
in

g
ne

ur
al

 n
et

w
or

ks
 fo

r fi
na

nc
ia

l f
or

ec
as

tin
g

A
ut

ho
rs

Ye
ar

D
at

a
Re

cu
rr

en
t n

eu
ra

l
ne

tw
or

ks
B

en
ch

m
ar

ks
Fe

at
ur

es
Ta

rg
et

Tr
ad

in
g

str
at

eg
y

D
is

cu
ss

io
n

K
am

ijo
 a

nd
 T

an
i-

ga
w

a
(1

99
0)

19
90

St
oc

ks
: T

SE
 (c

ha
rt

si
gn

al
s)

R
N

N
–

W
ee

kl
y

pr
ic

es
D

et
ec

tio
n

of
 p

at
-

te
rn

s
N

o
–

K
ua

n
an

d
Li

u
(1

99
5)

19
95

Fo
re

x:
 G

B
P,

 C
A

D
,

D
M

, J
PY

, C
H

F
vs

. U
SD

R
N

N
FN

N
, A

R
M

A
D

ai
ly

 p
ric

es
 (1

–6

da
ys

)
Lo

g
re

tu
rn

s
N

o
U

ni
va

ria
te

 >
m

ul
ti-

va
ria

te

Te
nt

i (
19

96
)

19
96

Fo
re

x:
 D

M
/U

SD

Fu
tu

re
s

R
N

N
–

Lo
g

re
tu

rn
s,

SD
,

te
ch

ni
ca

l i
nd

ic
a-

to
rs

 (8
 o

ut
 o

f l
as

t
34

 d
ay

s)

Lo
g

re
tu

rn
s

Ye
s

EM
H

, p
ra

ct
ic

al

ap
pl

ic
at

io
n

Sa
ad

 e
t a

l.
(1

99
8)

19
98

St
oc

ks
: v

ar
io

us
R

N
N

TD
N

N
, P

N
N

D
ai

ly
 p

ric
es

D
et

ec
tio

n
of

 p
ro

fit

op
po

rtu
ni

tie
s

N
o

–

G
ile

s e
t a

l.
(2

00
1)

20
01

Fo
re

x:
 D

M
, J

PY
,

C
H

F,
 G

B
P,

 C
A

D

vs
. U

SD

R
N

N
FN

N
Sy

m
bo

lic

en
co

di
ng

s o
f

di
ffe

re
nc

ed
 d

ai
ly

pr

ic
es

 (3
 d

ay
s)

D
ire

ct
io

na
l c

ha
ng

e
N

o
EM

H
, e

xt
ra

ct
io

n
of

he

ur
ist

ic
s

K
ia

ni
 a

nd
 K

as
te

ns

(2
00

8)
20

08
Fo

re
x:

 G
B

P,
 C

A
D

,
JP

Y
 v

s.
U

SD
R

N
N

FN
N

, A
R

M
A

,
G

SS
Pr

ic
es

Pr
ic

es
Ye

s
–

H
us

sa
in

 e
t a

l.
(2

00
8)

20
08

Fo
re

x:
 E

U
R

/D
M

,
JP

Y,
 G

B
P

vs
.

U
SD

FN
N

/R
N

N
 c

om
bi

-
na

tio
n

FN
N

s
(i)

 P
ric

es
, (

ii)

re
tu

rn
s (

6
da

ys
)

(i)
 P

ric
es

, (
ii)

re

tu
rn

s
Ye

s
EM

H
, i

np
ut

s:
 p

ric
es

>

re
tu

rn
s

H
uc

k
(2

00
9)

20
09

St
oc

ks
: S

&
P

10
0

R
N

N
–

Pa
irs

 o
f w

ee
kl

y
re

tu
rn

s (
3)

Re
tu

rn
s s

pr
ea

d
di

re
ct

io
n

Ye
s

–

C
he

n
et

 a
l.

(2
01

5)
20

15
St

oc
ks

: S
SE

 &

SZ
SE

LS
TM

R
an

do
m

 p
re

di
c-

tio
n

U
p

to
 te

n
fe

at
ur

es

fro
m

 d
ai

ly
 p

ric
es

an

d
vo

lu
m

e
of

sto

ck
 a

nd
 in

de
x

(3
0

da
ys

)

3-
D

ay
 e

ar
ni

ng
 ra

te

(c
la

ss
ifi

ca
tio

n)
Ye

s
–

82 Digital Finance (2020) 2:69–96

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

A
ut

ho
rs

Ye
ar

D
at

a
Re

cu
rr

en
t n

eu
ra

l
ne

tw
or

ks
B

en
ch

m
ar

ks
Fe

at
ur

es
Ta

rg
et

Tr
ad

in
g

str
at

eg
y

D
is

cu
ss

io
n

R
at

he
r e

t a
l.

(2
01

5)
20

15
St

oc
ks

: N
SE

R
N

N
FN

N
, A

R
M

A
,

Ex
p.

 S
m

oo
th

.
W

ee
kl

y
re

tu
rn

s (
3

w
ee

ks
)

W
ee

kl
y

re
tu

rn
s

N
o

En
se

m
bl

in
g

X
io

ng
 e

t a
l.

(2
01

5)
20

15
In

de
x:

 S
&

P
50

0
(v

ol
at

ili
ty

)
LS

TM
L1

-R
eg

.,
L2

-R
eg

.,
G

A
RC

H
Re

tu
rn

s,
vo

la
til

ity

an
d

G
oo

gl
e

se
ar

ch
 tr

en
d

(1
0

da
ys

)

Vo
la

til
ity

N
o

–

D
i P

er
si

o
an

d
H

on
ch

ar
 (2

01
7)

20
17

St
oc

k:
 G

O
O

G
L

R
N

N
, L

ST
M

,
G

RU

–
D

ai
ly

 p
ric

e
an

d
vo

lu
m

e
(3

0
da

ys
)

D
ire

ct
io

na
l c

ha
ng

e
N

o
–

Fi
sc

he
r a

nd

K
ra

us
s (

20
18

)
20

18
St

oc
ks

: S
&

P
50

0
co

ns
tit

ue
nt

s
LS

TM
FN

N
, R

an
do

m

Fo
re

st,
 L

og
.

Re
g.

D
ai

ly
 re

tu
rn

s (
24

0
da

ys
)

A
bo

ve
-m

ed
ia

n
re

tu
rn

 (b
in

ar
y)

Ye
s

EM
H

, h
eu

ris
tic

s,
tim

e-
va

ria
nc

e
of

pe

rfo
rm

an
ce

Sh
en

 e
t a

l.
(2

01
8)

20
18

In
di

ce
s:

 H
SI

,
D

A
X

, S
&

P
50

0
G

RU

FN
N

, S
V

M
D

ai
ly

 re
tu

rn
s (

24
0

da
ys

)
D

ire
ct

io
na

l c
ha

ng
e

Ye
s

–

Zh
ao

 e
t a

l.
(2

01
8)

20
18

In
di

ce
s:

 S
SE

, C
SI

,
SZ

SE
LS

TM
SV

M
, R

an
do

m

Fo
re

st,
 A

da
-

B
oo

st

Ti
m

e-
w

ei
gh

te
d

re
tu

rn
s (

4
da

ys
)

Tr
en

d
la

be
lin

g
N

o
–

83

1 3

Digital Finance (2020) 2:69–96

RNNs compared to FNNs and an ARMA model to obtain mixed results as to the
superiority of the former. Giles et al. (2001) further expand these studies through
examining directional currency movement forecasts in a RNN framework.

These studies predate the publication of the seminal LSTM paper by Hochreiter
and Schmidhuber (1997) and use relatively short input sequences (of length smaller
than 10) as features. More recent studies consider longer input sequences using
memory networks like LSTM and GRU. Xiong et al. (2015) predict the volatility
of the S&P 500 and find that LSTM outperforms econometric benchmarks in the
form of L1- and L2-regression as well as GARCH. Fischer and Krauss (2018) com-
pare the performance of a single-layer LSTM against several benchmark algorithms,
namely random forests, a FNN, and a logistic regression, and find that LSTM
“beat[s] the standard deep networks and the logistic regression by a very clear mar-
gin” and outperforms a random forest in most periods. Shen et al. (2018) test GRUs
against a FNN and a support vector machine on three financial indices, with the
GRUs producing the best results.

An interesting finding of Table 1 concerns the foreign exchange market. While
many earlier studies consider this market, we find no study that examines the ability
of recent RNN architectures in the form of LSTM and GRU to forecast exchange
rates. To the best of our knowledge, the 2008 studies of Kiani and Kastens (2008)
and Hussain et al. (2008) represent the latest attempts to model foreign exchange
markets using a RNN framework. This observation inspires the focal paper. We con-
tribute original empirical evidence through comparing different types of RNNs—a
simple RNN, a LSTM, and a GRU—in terms of their ability to forecast exchange
rate returns. To set observed results into context, we contrast the performance of
RNNs with that of a FNN and a naive benchmark model.

4 Experimental design

4.1 Data

The empirical evaluation grounds on data of four major foreign exchange rates: the
Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY), and the Swiss Franc
(CHF), each of which we measure against the U.S. Dollar (USD). The selection of
data follows previous work in the field (Kuan and Liu 1995; Tenti 1996; Giles et al.
2001; Kiani and Kastens 2008; Hussain et al. 2008). The data set consists of 12,710
rows representing daily bilateral exchange rates from January 4, 1971 until August
25, 2017. However, the time series are not of the same length. For example, the
EUR was first reported in 1999 so that the EUR/USD exchange rate time series only
contains 4688 non-null observations compared to the 11,715 observations for the
longest time series in the data set.

Table 2 provides an overview of the characteristics of the time series’ 1-day per-
centage returns. The exchange rates and the corresponding daily returns are also
plotted in Fig. 9, together with a combination of a histogram (gray bars), a kernel
density estimation (black line), and a rug plot (black bars along the x-axis). From the
return plots in the middle column, we observe that the transformation from prices to

84 Digital Finance (2020) 2:69–96

1 3

returns removes trends, but the return series still exhibit non-stationarity. In particu-
lar, the histograms, kernel density estimators, and rug plots indicate leptokurtic dis-
tributions, and the large kurtosis values in Table 2 support this observation.

4.2 Data preprocessing

In order to prepare the data for analysis, we divide each time series into study peri-
ods, scale the training data, and create input sequences and target variable values.

4.2.1 Features

Exchange rates represent the price of one unit of currency denominated in another
currency, whereby we consider the USD as denominator.

Fig. 9 Prices, 1-day returns, and a combination of histograms, KDE, and rug plots of the one-day per-
centage returns for the four foreign exchange rate time series

Table 2 Statistical properties of
the one-day percentage returns
of selected currencies

EUR/USD GBP/USD USD/JPY USD/CHF

Observations 4687 11,708 11,702 11,708
Mean 0.0000 − 0.0000 − 0.0001 − 0.0001
Standard Deviation 0.0063 0.0060 0.0065 0.0073
Minimum − 0.0296 − 0.0784 − 0.0907 − 0.1221
25 % Quantile − 0.0034 − 0.0029 − 0.0030 − 0.0038
Median 0.0000 0.0001 0.0000 0.0000
75 % Quantile 0.0035 0.0029 0.0031 0.0036
Maximum 0.0473 0.0470 0.0646 0.0930
Skewness 0.1511 − 0.3216 − 0.5540 − 0.2305
Kurtosis 2.2591 6.9514 8.6128 12.3697

85

1 3

Digital Finance (2020) 2:69–96

Let Pc
t
 denote the price of a currency c at time t in USD. The one-day percentage

return can then be calculated as the percentage change of the price from time t to the
following trading day:

Before model training, we scale the returns to the interval [l, u] using min-max
scaling.

To avoid data leakage, we perform the scaling for each study period individually,
which ensures that the scaler is fitted to the training data and has no access to the
trading (or test) data.

We use the time series of scaled returns as the sole feature, with the input at time
t consisting of the sequence of returns of the previous � trading days:

The approach of using lagged returns, and more generally past realizations of the
price signal, as input for a RNN follows the recent work of Fischer and Krauss
(2018), who find it to deliver highly accurate forecasts. We acknowledge that dif-
ferent ways to set up the forecasting tasks are possible and could consist of using
technical indicators as additional signal and/or incorporating price signals from
other financial instruments (e.g., other exchange rates than the one being forecast),
among others. Using multiple features would also facilitate the constructions of
more advanced network designs. One could, for example, envision crafting time
point embeddings that mimic the word embeddings, which are employed in natural
language processing.1. We leave the design of corresponding deep learning-based
forecasting models and their empirical evaluation for future research.

4.2.2 Targets

We formulate the prediction task as a binary classification problem. The focus on
directional forecasts is motivated by recent literature (Takeuchi 2013; Fischer and
Krauss 2018). We then define the target variable Yc

t
 such that values of one and zero

indicate non-negative and negative returns, respectively.

4.2.3 Length of the input sequences

Previous studies found foreign exchange rates to exhibit long-term memory (van de
Gucht et al. 1996). This suggests the suitability of GRUs and LSTMs with their

rc
t
=

Pc
t

Pc
t−1

− 1

Xc
t
= {r̃c

t−𝜏
, r̃c

t−𝜏+1
, r̃c

t−𝜏+2
,… , r̃c

t−1
}

Yc
t
=

{
1 if rc

t
≥ 0

0 otherwise

1 We are grateful to an anonymous reviewer who suggested this interesting approach for future studies.

86 Digital Finance (2020) 2:69–96

1 3

ability to store long-term information, provided they receive input sequences of suf-
ficient length. We chose an input sequence length of � =240, which follows from
two of the most recent studies (Fischer and Krauss 2018; Shen et al. 2018). The
LSTM, GRU, and simple RNN (SRNN) that we consider as benchmark model
regard each sequence of 240 observations as one single feature and make use of
the relative order of data points. On the contrary, a FNN, which we also consider as
benchmark, regards the 240 observations as distinct features.

4.2.4 Training and trading window

To test the predictive performance of different forecasting models, we employ a slid-
ing-window evaluation, which is commonly used in previous literature (Krauss et al.
2017; Tomasini and Jaekle 2011; Dixon et al. 2016). This approach forms several
overlapping study periods, each of which contains a training and a test window. In
each study period, models are estimated on the training data and generate predic-
tions for the test data, which facilitate model assessment. Subsequently, the study
period is shifted by the length of one test period as depicted in Fig. 10. Such evalu-
ation is efficient in the sense that much data are used for model training while at the
same time predictions can be generated for nearly the whole time series. Only the
observations in the first training window cannot be used for prediction.

4.2.5 Loss function

The models are trained to minimize the cross-entropy between predictions and actual
target values. In the binary case, the cross-entropy for an individual prediction and
the corresponding target value is given by −(yt log(ŷt) + (1 − yt) log(1 − ŷt)) , and the
overall training loss is the average of the individual cross-entropy values. That way,

Fig. 10 Sliding window evaluation: Models are trained in isolation inside each study period, which con-
sists of a training set and a trading (test) set. The models are trained only on the training set, predictions
are made on the test set, which is out of sample for each study period. Then, all windows are shifted by
the length of the test set to create a new study period with training set and out-of-sample test set (from
Giles et al. 2001)

87

1 3

Digital Finance (2020) 2:69–96

the training process can be interpreted as a maximum likelihood optimization, since
the binary cross-entropy is equal to the negative log-likelihood of the targets given
the data. The loss function for study period S including trading set TS (with cardinal-
ity |TS|) is represented by LS2:

4.2.6 Activation functions

We train the FNN using a rectified linear unit (relu) activation function:
relu(x) = max(0, x) Using relu activations improves gradient flow, reduces the train-
ing time (Glorot et al. 2011), and has become the state of the art in deep learning
(LeCun et al. 2015; Clevert et al. 2016; Ramachandran et al. 2017).

For the recurrent neural networks, activation functions in the recurrent layers are
applied as described in Sect. 2: the SRNN uses hyperbolic tangent activations, while
the LSTM and the GRU use sigmoid gates and hyperbolic tangent activations as
input and output activations. More precisely, we follow Chollet et al. (2018a) and
use a segment-wise linear approximation of the sigmoid function to enhance compu-
tational efficiency.

All networks use a sigmoid function as their output activation to model
the conditional probability of non-negative returns given the training data,
ℙ(Yc

t
= 1|Xc

t
= {rc

t−�
,… , rc

t−1
}) (Goodfellow et al. 2016).

4.2.7 Regularization

One drawback of neural networks is their vulnerability to overfitting (Srivastava
et al. 2014). Regularization is a way to protect against overfitting, and can be imple-
mented in several ways including penalizing model complexity or monitoring the
model’s performance on unseen data. We employ two regularization techniques:

Dropout: helps the network’s neurons to generalize and avoid large co-
dependence between different neurons (Hinton et al. 2012). To that end, a drop-
out layer randomly masks the connections between some neurons during model
training. We use dropout on the non-recurrent connections after all hidden layers
as in Zaremba et al. (2014) with various dropout rates. For example, a dropout rate
of 25 percent implies that each neuron in the previous layer is dropped with prob-
ability 25 percent; on average, a quarter of the neurons of that layer are masked.

Early stopping: refers to holding back a certain part of the training data to trace the
forecasting error of a network during training (e.g., after each epoch). The vali-
dation set error enables us to stop network training conditional on the validation
loss.

LS(yTS , ŷTS) = −
1

|TS|
∑

t∈TS

(
yt log(ŷt) + (1 − yt) log(1 − ŷt)

)

2 LS simplifies to LS(yTS , ŷTS) = −
1

�TS�
∑

t∈TS
log(ŷt) in the binary classification task with labels (0, 1).

88 Digital Finance (2020) 2:69–96

1 3

4.3 Hyperparameter tuning

Neural networks and their underlying training algorithms exhibit several hyperparam-
eters that affect model quality and forecast accuracy. Examples include the number
of hidden layers and their number of neurons, the dropout rate or other regularization
parameters, as well as algorithmic hyperparameters such as the learning rate, the num-
ber of epochs, the size of mini-batches, etc. (Goodfellow et al. 2016).

Hyperparameter tuning is typically performed by means of empirical experimenta-
tion, which incurs a high computational cost because of the large space of candidate
hyperparameter settings. We employ random search (Bengio 2012) for hyperparameter
tuning considering the following search space:

– Number of hidden layers: 1, 2, 3, 4.
– Number of neurons per hidden layer: 25, 50, 100, 200, 400, 800, 1600.
– Dropout: 0 to 60%, in steps of 10%.
– Optimizer and learning rate: Adam and RMSprop with various learning rates.
– Batch size: 16, 32, 64, 128, 256

4.4 Model architecture

We set up a supervised training experiment in accordance with Fischer and Krauss
(2018) and Shen et al. (2018) who applied LSTM to stock and GRUs to index data,
respectively. This meant constructing overlapping study periods consisting of 750
training observations and 250 trading observations as depicted in Fig. 10 and an input
sequence length of 240 observations. The input data were scaled to the bounds of the
hyperbolic tangent ([l, u] = [−1, 1]). We then built models with fixed hyperparameters
for all time series with the insights from manual tuning. All models had the following
topology:

The other models use different layers but possess the same structure—with the
exception that the FNN layers do not pass on sequences and thus the data dimensions
between the first and third hidden layers in the FNN are (1, 50) rather than (240, 50)
like in the three recurrent networks. All models were trained using minibatch sizes of
32 samples and the Adam Kingma and Ba (2014) optimizer with default parameters,
training for a maximum of 100 epochs with early stopping after 10 periods without
improvement in validation loss. 20% of the training set was held out of training for
validation.

– 3 hidden layers
– 50 neurons per hidden layer
– Dropout layers with dropout rate of 25 percent after each hidden layer

89

1 3

Digital Finance (2020) 2:69–96

5 Evaluation

We consider three measures of forecast accuracy: logarithmic loss (Log loss)
as this loss function is minimized during network training; predictive accuracy
(Acc.) as the most intuitive interpretation of classification performance; and the
area under the receiver operator characteristic curve (AUC).

In addition to assessing classification performance, we employ a basic trading
model to shed light on the economic implications of trading on model forecasts.
The trading strategy is as follows: for each observation t in the test period, buy
the currency in the numerator of the currency pair if a non-negative return is pre-
dicted with probability of at least 50 percent (and realize that day’s net profit);
sell that currency otherwise (and realize that day’s net profit multiplied by −1).
The position is held for one day. This would yield the following realized daily
return r̃c

t
 of the basic trading model:

As each test set consist of 240 trading days (roughly one year), the annualized net
returns of this strategy in study period S are approximated by

As a measure of risk, the standard deviation (SD) of the series of realized trading
strategy returns is considered, and the Sharpe ratio (SR) is computed as a measure
of risk-adjusted returns. These three metrics are used to compare the different mod-
els’ predictions economically.

6 Empirical Results

In order to set results of different neural networks models into context, we com-
pute a naive benchmark forecast the prediction of which at time t simply equals
the true target at time t − 1:

The results of this benchmark can be found in Table 3, both per time series as well
as aggregated across time series. Note that we cannot compute the log loss for this
benchmark since log(0) is undefined and the naive benchmark predicts 0 whenever
the previous day’s true returns are negative.

The naive benchmarks give accurate direction predictions about half of the
time. If the trading strategy defined in Sect. 5 were applied, it would result in
small positive net returns.

r̃c
t
=

{
rc
t

if ŷt ≥ 0.5

−rc
t
otherwise

RS =
∏

t∈TS

(1 + r̃c
t
) − 1

ŷt = yt−1

90 Digital Finance (2020) 2:69–96

1 3

Results from training the FNN, SRNN, LSTM, and GRU on the four selected
foreign exchange rate time series are displayed in Table 4 and visualized in
Fig. 11 by means of violin plots. Recall that the empirical results are obtained
from the window-based cross-validation approach depicted in Fig. 10. Hence,
accuracy/profit figures in Table 4 represent averages, which we compute across
the multiple test windows.

Table 4 suggests three conclusions. First, in terms of the training loss (Log
Loss), the gated recurrent networks LSTM and GRUs perform slightly better
than the FNN and SRNN for each time series. This general observation also
holds roughly true for the accuracy for three of the four time series, but not
for the EUR/USD exchange rate. Second, economic measures of forecast per-
formance paint a different picture. None of the models is able to produce a large
positive return. Both in terms of returns and risk-adjusted returns, the SRNN
performs competitive and not inferior to more advanced network architectures in
the form of GRU and LSTM. This is an interesting result in that several previous
forecast comparisons observe a different result. We discuss the ramifications of
our results in Sect. 5. Third, the deep learning models perform better than the
benchmark in terms of accuracy and area under the ROC curve. However, the
net returns resulting from applying the selected trading strategy are smaller in
most cases.

Table 3 Results from a naive
forecast by time series and
aggregated (average weighted
by length of time series)

Acc. AUC Returns SD SR

EUR/USD 0.4744 0.4718 − 0.0202 0.0060 − 0.0188
GBP/USD 0.5010 0.4971 0.0481 0.0059 0.0310
USD/JPY 0.4940 0.4888 0.0488 0.0063 0.0280
USD/CHF 0.4873 0.4839 0.0131 0.0071 0.0014
Weighted Avg. 0.4921 0.4880 0.0307 0.0064 0.0161

Fig. 11 Accuracy and trading strategy returns of the naive benchmark and the four deep learning models

91

1 3

Digital Finance (2020) 2:69–96

7 Conclusion

The paper has reported results from an empirical comparison of different deep
learning frameworks for exchange rate prediction. We have found further support
for previous findings that exchange rates are highly non-stationary (Kayacan et al.
2010). Even training in a rolling window setting cannot always ensure that train-
ing and trading set follow the same distribution. Another observation concerns
the leptokurtic distribution of returns. For example, the average kurtosis of the
exchange rate returns examined in this study is 8.60 compared to 2.01 for the
stock returns in Fischer and Krauss (2018). This resulted in many instances of
returns close to zero and few, but relatively large deviations and could have lead
to the models exhibiting low confidence in their predictions.

The results, in term of predictive accuracy, are in line with previous work on
LSTMs for financial time series forecasting (Fischer and Krauss 2018). However,
our results exhibit a large discrepancy between the training loss performance
and economic performance of the models. This becomes especially apparent in
Fig. 11. The observed gap between statistical and economic results agrees with
Leitch and Tanner (1991) who find that only a weak relationship exists between
statistical and economic measures of forecasting performance. A similar problem

Table 4 Results for the four neural networks by currency pair and model type averaged across the test
windows in our window-based cross-validation approach

Time Series Model Log Loss Acc. AUC Returns SD SR

EUR/USD FNN 0.6953 0.5155 0.5202 0.0218 0.0060 0.0186
SRNN 0.7114 0.5019 0.5003 0.0406 0.0060 0.0240
LSTM 0.6948 0.4928 0.5005 − 0.0138 0.0060 − 0.0073
GRU 0.6948 0.4944 0.5103 − 0.0216 0.0060 − 0.0131

GBP/USD FNN 0.6964 0.5068 0.5035 − 0.0094 0.0059 − 0.0034
SRNN 0.7064 0.5110 0.5116 0.0166 0.0059 0.0098
LSTM 0.6943 0.5066 0.5021 − 0.0088 0.0059 − 0.0041
GRU 0.6945 0.5064 0.4930 − 0.0056 0.0059 − 0.0021

USD/JPY FNN 0.7001 0.4966 0.4995 − 0.0340 0.0063 − 0.0255
SRNN 0.7100 0.5030 0.4955 − 0.0019 0.0063 − 0.0081
LSTM 0.6956 0.5019 0.5077 − 0.0157 0.0063 − 0.0143
GRU 0.6945 0.5091 0.5089 0.0075 0.0038 0.0092

USD/CHF FNN 0.6977 0.4999 0.4982 − 0.0068 0.0071 − 0.0019
SRNN 0.7016 0.5081 0.5057 0.0356 0.0071 0.0196
LSTM 0.6936 0.5079 0.5080 0.0056 0.0071 0.0044
GRU 0.6941 0.5108 0.5109 0.0108 0.0071 0.0057

Weighted Avg. FNN 0.7026 0.5062 0.5061 − 0.0126 0.0064 − 0.0071
SRNN 0.7115 0.5103 0.5073 0.0195 0.0064 0.0090
LSTM 0.6993 0.5076 0.5088 − 0.0072 0.0064 − 0.0050
GRU 0.6992 0.5107 0.5085 0.0014 0.0057 0.0024

92 Digital Finance (2020) 2:69–96

1 3

might exist between the log loss minimized during training and the trading strat-
egy returns in this study.

One implication of our study is that the conceptual advantages of recent, gated
RNN architectures such as LSTM and GRU translate into superior forecasting per-
formance compared to more traditional RNNs. Arguably, this finding was to be
expected and might not come as surprise. However, evidence of the merit of deep
learning in the scope of exchange rate forecasting was sparse so that expanding
the knowledge base with original empirical results is useful. At the same time, we
observe traditional FNNs to be a competitive benchmark to deep RNN architectures.
One may take this finding as evidence for the adequacy of using FNNs as bench-
mark in this study and, more generally, paying much attention to FNNs in previous
work on FX markets and financial markets as a whole.

As any empirical study, the paper exhibits limitations which could be addressed in
future research. One way of addressing the issue of low confidence predictions could
be to use scaled prices as inputs, either with the same targets as in this experiment
or to predict price levels in a regression and then transform the outputs to binary
predictions by comparing them to the previous day’s price. Hussain et al. (2008)
find scaled prices as inputs slightly outperform scaled returns, but the majority of
the literature uses returns. Augmenting the input structure of RNN-based forecasting
model by incorporating additional predictors might be another way to overcome the
low confidence issue. Moreover, the focus of this study was on (deep) neural net-
works. Many other powerful machine learning algorithms exist. Comparing RNN-
based approaches to alternatives such as, e.g., random forest and gradient boosting
(Krauss et al. 2017) is an interesting field of future study in its own right and could
clarify whether other algorithms also exhibit low confidence when applied to the
exchange rates considered in this study.

Another avenue for future research concerns the employed trading strategy.
Employing a more advanced trading rule might help to overcome the discrepancy
between statistical and economic results. One example of such a trading strategy is
the work of Fischer and Krauss (2018) who construct a strategy only trading a num-
ber of top and bottom pairs from a large set of 500 binary predictions on stock per-
formance. This particular strategy would, of course, require training on many more
time series. A possible solution for better interaction between model and economic
performance is furthermore to develop a combination of a custom loss function and
suitable output activation function instead of using binary cross-entropy with a sig-
moid output activation function. That way, the model could directly optimize for
either returns or risk-adjusted returns.

Furthermore, hyperparameter tuning turned out to be cumbersome. The win-
dow-based training approach described in Sect. 4 and depicted in Fig. 10 has one
huge drawback: it requires training several individual models. Applying the same
hyperparameters to the whole time series constrains the models’ capacity. Isolated
hyperparameter tuning for each study period would be desirable but is not feasi-
ble in this setting as it included 144 such study periods (15 study periods for the
EUR/USD series and 43 each for the GBP/EUR, USD/JPY, and USD/CHF series).
Efforts to automate large deep learning processes are under way (Feurer et al. 2015),
but tuning a large number of individual models remains computationally costly. An

93

1 3

Digital Finance (2020) 2:69–96

orthogonal approach to improve the tuning of the model to the data at hand involves
revisiting the search strategy. We have used random search to configure deep neu-
ral networks, which can be considered standard practice. However, the search space
of hyperparameters is very large and random search does not advocate narrowing
down the space after the initial inspection of the wide space. Successive executions
of the hyperparameter search have been employed in conjunction with grid search
(Van Gestel et al. 2004) and could also be considered when tuning deep neural net-
works with random search. Especially if reusing the same hyperparameter setting
across study periods, as done here, finding a strong configuration of the network
is crucial and could benefit from repeating random search while zooming in more
promising regions of the parameter space.

Finally, LSTM and GRUs have become the state of the art in many fields (Vas-
wani et al. 2017) and are still developed further to improve certain aspects. A num-
ber of recent proposals for prediction of sequential data augments or even aims to
supplant RNNs. Such expansions include combining RNNs with CNNs when the
data are both spatial and temporal (Karpathy and Li 2014) or even applying image
classification to plots of time series data; giving models access to an external
memory bank (Neural Turing Machine(s) Graves et al. 2014); employing recurrent
encoder-decoder structures, or modeling time dependencies in a non-recurrent way
(Vaswani et al. 2017). Machine learning research is moving increasingly fast and
new ideas for improvements or augmentations of algorithms keep appearing. On the
other hand, some technologies become practical only many years after their emer-
gence. The best example of this is LSTM, an algorithm that was little appreciated in
the first decade of its life but is one of the cornerstones of machine learning another
ten years later. It is intriguing to imagine what might be possible in another decade.

Acknowledgements Open Access funding provided by Projekt DEAL.

Funding Funding was provided by DFG - Deutsche Forschungsgemeinschaft (Grant No. IIRTG 1972).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Bagheri, A., Mohammadi Peyhani, H., & Akbari, M. (2014). Financial forecasting using anfis networks
with quantum-behaved particle swarm optimization. Expert Systems with Applications, 41(14),
6235–6250.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

94 Digital Finance (2020) 2:69–96

1 3

Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Arti-
ficial neural networks, expert system and hybrid intelligent systems. Neural Computing & Applica-
tions, 19(8), 1165–1195.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In G.
Montavon, G. B. Orr, & K. R. Mueller (Eds.), Neural networks: Tricks of the trade (2nd ed., pp.
437–478). Berlin: Springer. Lecture notes in computer science.

Campbell, J. Y., Lo, A. W., MacKinlay, A. C., & Whitelaw, R. F. (1998). The econometrics of financial
markets. Macroeconomic Dynamics, 2(4), 559–562.

Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Com-
putational intelligence and financial markets: A survey and future directions. Expert Systems with
Applications, 55, 194–211.

Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study
of China stock market. In 2015 IEEE international conference on big data (pp. 2823–2824).

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning phrase representations using RNN Encoder-Decoder for statistical machine
translation. arXiv : 1406.1078.

Chollet, F. et al, (2018a). Keras TensorFlow Backend. https ://githu b.com/keras -team/keras /blob/maste
r/keras /backe nd/tenso rflow _backe nd.py#L1487 .

Chollet, F. et al. (2018b). Keras: The Python Deep Learning library. Astrophysics Source Code
Library p ascl:1806.022. http://adsab s.harva rd.edu/abs/2018a scl.soft0 6022C .

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv : 1412.3555

Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by
exponential linear units (ELUS). Archive pre-print p 15.

Czech, K. A., & Waszkowski, A. (2012). Foreign exchange market efficiency: Empirical results for the
USD/EUR market. e-Finanse: Financial Internet Quarterly 8(3):1–9. https ://www.econs tor.eu/
handl e/10419 /14704 4

Di Persio, L., & Honchar, O. (2017). Recurrent neural networks approach to the financial forecast of
Google assets. International Journal of Mathematics and Computers in Simulation, 11, 7–13.

Dixon, M. F., Klabjan, D., & Bang, J. (2016). Classification-based financial markets prediction using
deep neural networks. SSRN Scholarly Paper ID 2756331, Social Science Research Network,
Rochester, NY. https ://paper s.ssrn.com/abstr act=27563 31.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work*. The Journal of
Finance, 25(2), 383–417.

Feuerriegel, S., & Prendinger, H. (2016). News-based trading strategies. Decision Support Systems,
90, 65–74.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient
and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama
& R. Garnett (Eds.), Advances in neural information processing systems (Vol. 28, pp. 2962–
2970). Curran Associates, Inc.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial
market predictions. European Journal of Operational Research, 270(2), 654–669.

Junqu de Fortuny, E., De Smedt, T., Martens, D., & Daelemans, W. (2014). Evaluating and under-
standing text-based stock price prediction models. Information Processing & Management,
50(2), 426–441.

Gers, F., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-
INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neural computing:
New challenges and perspectives for the new millennium (Vol. 3, pp. 189–194). IEEE, Como,
Italy.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with
LSTM. Neural Computation, 12, 2451–2471.

Giles, C. L., Lawrence, S., & Tsoi, A. C. (2001). Noisy time series prediction using recurrent neural net-
works and grammatical inference. Machine Learning, 44(1), 161–183.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics (pp. 315–323).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press. http://www.
deepl earni ngboo k.org.

http://arxiv.org/abs/1406.1078
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L1487
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L1487
http://adsabs.harvard.edu/abs/2018ascl.soft06022C
http://arxiv.org/abs/1412.3555
https://www.econstor.eu/handle/10419/147044
https://www.econstor.eu/handle/10419/147044
https://papers.ssrn.com/abstract=2756331
http://www.deeplearningbook.org
http://www.deeplearningbook.org

95

1 3

Digital Finance (2020) 2:69–96

Graves, A. (2012). Supervised sequence labelling. In A. Graves (Ed.), Supervised sequence labelling with
recurrent neural networks (pp. 5–13)., Studies in computational intelligence Berlin: Springer.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv :1308.0850.
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv :1410.5401.
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search

space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232.
arXiv : 1503.04069 .

Hakkio, C. S., & Rush, M. (1989). Market efficiency and cointegration: an application to the sterling and
deutschemark exchange markets. Journal of International Money and Finance, 8(1), 75–88.

Härdle, W. K., & Leopold, S. (2015). Applied multivariate statistical analysis (4th ed.). Cham: Springer.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving

neural networks by preventing co-adaptation of feature detectors. arXiv :1207.0580
Hochreiter, S. (1998a). Recurrent neural net learning and vanishing gradient. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 6(2), 107–116.
Hochreiter, S. (1998b). The vanishing gradient problem during learning recurrent neural nets and prob-

lem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
06(02), 107–116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780.

Hsu, M. W., Lessmann, S., Sung, M. C., Ma, T., & Johnson, J. E. (2016). Bridging the divide in financial
market forecasting: Machine learners vs. financial economists. Expert Systems with Applications,
61, 215–234.

Huck, N. (2009). Pairs selection and outranking: An application to the S&P 100 index. European Journal
of Operational Research, 196(2), 819–825.

Huck, N. (2019). Large data sets and machine learning: Applications to statistical arbitrage. European
Journal of Operational Research, 278(1), 330–342.

Hussain, A. J., Knowles, A., Lisboa, P. J. G., & El-Deredy, W. (2008). Financial time series prediction
using polynomial pipelined neural networks. Expert Systems with Applications, 35(3), 1186–1199.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd international conference on international conference on
machine learning (Vol. 37, pp. 2342–2350). JMLR.org, ICML’15.

Kamijo, K., & Tanigawa, T. (1990). Stock price pattern recognition-a recurrent neural network approach.
In 1990 IJCNN international joint conference on neural networks (Vol.1, pp. 215–221). San Diego,
CA: IEEE.

Karpathy, A., & Li, F. F. (2014). Deep visual-semantic alignments for generating image descriptions.
arXiv :1412.2306

Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series predic-
tion. Expert Systems with Applications, 37(2), 1784–1789.

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., & Ngo, D. C. L. (2014). Text mining for mar-
ket prediction: A systematic review. Expert Systems with Applications, 41(16), 7653–7670.

Kiani, K. M., & Kastens, T. L. (2008). Testing forecast accuracy of foreign exchange rates: Predictions
from feed forward and various recurrent neural network architectures. Computational Economics,
32(4), 383–406.

Kim, A., Yang, Y., Lessmann, S., Ma, T., Sung, M. C., & Johnson, J. E. V. (2019). Can deep learning
predict risky retail investors? A case study in financial risk behavior forecasting. European Journal
of Operational Research,. https ://doi.org/10.1016/j.ejor.2019.11.007.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv :1412.6980
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests:

Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259, 689–702.
Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural net-

works. Journal of Applied Econometrics, 10(4), 347–364.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Leitch, G., & Tanner, J. E. (1991). Economic forecast evaluation: Profits versus the conventional error

measures. The American Economic Review, 81(3), 580–590.
Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algo-

rithms, statistical inference, and empirical implementation. The Journal of Finance, 55(4),
1705–1770.

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.2306
https://doi.org/10.1016/j.ejor.2019.11.007
http://arxiv.org/abs/1412.6980

96 Digital Finance (2020) 2:69–96

1 3

Lyons, R. K. (2001). New perspective on fx markets: Order-flow analysis. International Finance, 4(2),
303–320.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press. http://neura lnetw orksa
nddee plear ning.com.

Olah, C. (2015). Understanding LSTM networks. http://colah .githu b.io/posts /2015-08-Under stand ing-
LSTMs /.

Oliveira, N., Cortez, P., & Areal, N. (2017). The impact of microblogging data for stock market predic-
tion: Using twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert
Systems with Applications, 73, 125–144.

Ramachandran, P., Zoph, B., & Le, QV. (2017). Searching for activation functions. arXiv :1710.05941
Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for

prediction of stock returns. Expert Systems with Applications, 42(6), 3234–3241.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323(6088), 533–536.
Saad, E., Prokhorov, D., & Wunsch, D. (1998). Comparative study of stock trend prediction using time

delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6),
1456–1470.

Sager, M. J., & Taylor, M. P. (2006). Under the microscope: The structure of the foreign exchange mar-
ket. International Journal of Finance & Economics, 11(1), 81–95.

Schaefer, A. M., Udluft, S., & Zimmermann, H. G. (2008). Learning long-term dependencies with recur-
rent neural networks. Neurocomputing, 71(13–15), 2481–2488.

Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep learning with gated recurrent unit networks
for financial sequence predictions. Procedia Computer Science, 131, 895–903.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1),
1929–1958.

Takeuchi, L. (2013). Applying deep learning to enhance momentum trading strategies in stocks. Techni-
cal Report, Stanford University.

Taylor, M. P. (1995). The economics of exchange rates. Journal of Economic Literature, 33(1), 13–47.
Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks. Applied Artificial

Intelligence, 10(6), 567–582.
Tomasini, E., & Jaekle, U. (2011). Trading systems: A new approach to system development and portfo-

lio optimisation, reprinted edn. Harriman House, Petersfield, oCLC: 934736951.
van de Gucht, L. M., Dekimpe, M. G., & Kwok, C. C. Y. (1996). Persistence in foreign exchange rates.

Journal of International Money and Finance, 15(2), 191–220.
Van Gestel, T., Suykens, J. A., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., et al. (2004). Bench-

marking least squares support vector machine classifiers. Machine Learning, 54(1), 5–32.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is

all you need. In: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R.
Garnett (Eds.), Advances in neural information processing systems (Vol. 30, pp. 5998–6008). Cur-
ran Associates, Inc.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the
IEEE, 78(10), 1550–1560.

Wu, J. L., & Chen, S. L. (1998). Foreign exchange market efficiency revisited. Journal of International
Money and Finance, 17(5), 831–838.

Xiong, R., Nichols, E. P., & Shen, Y. (2015). Deep learning stock volatility with Google Domestic
Trends. arXiv :1512.04916 .

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv :1409.2329.
Zhang, J. L., Härdle, W. K., Chen, C. Y., & Bommes, E. (2015). Distillation of news flow into analy-

sis of stock reactions. Journal of Business & Economic Statistics. https ://doi.org/10.1080/07350
015.2015.11105 25

Zhao, Z., Rao, R., Tu, S., & Shi, J. (2018). Time-weighted LSTM model with redefined labeling for stock
trend prediction. In 2017 IEEE 29th international conference on tools with artificial intelligence
(ICTAI) (pp. 1210–1217).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1512.04916
http://arxiv.org/abs/1409.2329
https://doi.org/10.1080/07350015.2015.1110525
https://doi.org/10.1080/07350015.2015.1110525

	Forex exchange rate forecasting using deep recurrent neural networks
	Abstract
	1 Introduction
	2 Neural network architectures
	2.1 Feedforward neural networks
	2.2 Recurrent neural networks
	2.3 Long short-term memory
	2.3.1 The cell state
	2.3.2 Gate units
	2.3.3 The forget gate
	2.3.4 The input gate
	2.3.5 The updated cell state
	2.3.6 The output gate
	2.3.7 The LSTM cell

	2.4 Gated recurrent units

	3 Related work
	4 Experimental design
	4.1 Data
	4.2 Data preprocessing
	4.2.1 Features
	4.2.2 Targets
	4.2.3 Length of the input sequences
	4.2.4 Training and trading window
	4.2.5 Loss function
	4.2.6 Activation functions
	4.2.7 Regularization

	4.3 Hyperparameter tuning
	4.4 Model architecture

	5 Evaluation
	6 Empirical Results
	7 Conclusion
	Acknowledgements
	References

