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Abstract Package bids, i.e., bids on sets of items, are an

essential aspect of combinatorial auctions. They can allow

bidders to accurately express their preferences. However,

bidders on packages consisting of few items are often

unable to outbid provisionally winning bids on large

packages. To resolve this, both coordination as well as

cooperation are needed. Coordination, since smaller bid-

ders need to bid on packages that are disjoint; cooperation,

since typically bid increases from more than one bidder are

required to overcome the threshold to outbid a larger

package bid. The authors design an information system that

supports the implementation of an iterative combinatorial

auction; this system is specifically aimed at helping bidders

overcome coordination and threshold problems. They study

the effect of information feedback on the behavior of

bidders in different auction settings. The authors test this in

an experimental setting using human bidders, varying

feedback from very basic information about provisionally

winning bids/prices, to providing more advanced concepts

such as winning and deadness levels, and coalitional

feedback. The experiment indicates that coalitional feed-

back has a positive impact on economic efficiency in cases

where difficult threshold problems arise; however, it

appears to have an adverse effect when threshold problems

are easy.

Keywords Auctions/bidding � Coordination and threshold

problems � Bidder support � Laboratory experiment

1 Introduction

Combinatorial auctions (CAs) are allocation mechanisms

that enable selling and buying multiple (indivisible) items

simultaneously. In fact, CAs allow bidders to bid on sets of

items (packages) and the auctioneer can allocate any

package only in its entirety to the corresponding bidder.

CAs have established themselves as a viable allocation

mechanism in settings where market prices are not readily

available, and bidders have sub- or super-additive valua-

tions. CAs offer the possibility for a coalition of bids on

small packages to jointly outbid a single bidder’s claim on

the complete set of items. However, two hurdles need to be

overcome before a coalition can become winning.

(1) The coordination problem Bidders need to coordi-

nate their bids and bid on complementary (i.e., non-

overlapping) sets of items. The coordination chal-

lenge lies in bidders having to discover such a set of

individually profitable and collectively complemen-

tary packages, given that the number of possible
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packages rises exponentially with the number of

items. This is complicated by the existence of

cognitive limits on the number of packages people

can concentrate on during the auction. For instance,

experimental research by Scheffel et al. (2012)

indicates that bidders only bid on 6 to 10 different

packages, independent of the auction format,

although the bidders had a multitude of packages

with positive valuations to choose from. Coordina-

tion is hindered by the assumption that a bidder only

knows his/her private valuation for these packages,

and not the preferences of other bidders. In fact, in

order to mitigate collusion, it makes sense to restrict

communication between bidders (see e.g., Cramton

and Schwartz 2000).

(2) The threshold problem Even if the coordination

problem is overcome, the task of determining

appropriate bid prices to displace the currently

winning bid still remains. A complicating factor is

that each bidder in a coalition has an incentive not to

increase his/her bid. Indeed, the forgone revenue

from unilaterally increasing one’s bid falls entirely

on the cooperating bidder, whereas the benefits

extend to the non-cooperating bidders as well. Thus,

the problem of choosing an appropriate bid price is

non-trivial.

As far as we are aware, the term ‘‘threshold problem’’ was

coined by Rothkopf et al. (1998), although the problem

itself was mentioned already in e.g., Banks et al. (1989).

Several papers on CAs discuss the threshold problem

(e.g., Rothkopf et al. 1998; Day and Raghavan 2008;

Brunner et al. 2010; Scheffel et al. 2012; Chernomaz and

Levin 2012), however, in some cases the term ‘‘threshold

problem’’ is used as a container concept for both the

coordination and the threshold problem. Bichler et al.

(2017) point out that the coordination problem has largely

been ignored in the game-theoretical literature on CAs.

Both the coordination problem and the threshold prob-

lem are solved in the well-known Vickrey-Clarke-Groves

(VCG) auction. Indeed, in the VCG auction, it is a weakly

dominant strategy for bidders to report their valuations

truthfully, which takes care of the threshold problem, and

hence to bid on all packages for which they have a positive

valuation, which deals with the coordination problem.

However, the VCG auction is rarely used in practice due to

a number of issues, such as very low auction revenues (see

Ausubel and Milgrom 2006). The VCG outcome is also not

necessarily a competitive equilibrium. Furthermore, there

is still the issue of cognitive limits, making it unrealistic

that bidders would effectively bid on each package they

value.

Even though the coordination and threshold problem are

also relevant in single round CAs, this paper focuses on

iterative, ascending CAs. An iterative auction consists of

multiple rounds, such that bidders can repeatedly increase

their bids and/or introduce new bids. Our paper discusses

the design of an information system for iterative CAs.

While bidders need to decide after every round which bids

to increase and by how much, given their valuations (which

is private information), they typically lack information to

be able to overcome the coordination and the threshold

problem. Hence, our main contribution is the development

of an information system that processes the bids, produces

detailed information on their status and prospects, and

shares this with the bidders as so-called feedback after each

round. We study the effect of different types of feedback

on bidder behavior and auction performance by reporting

the outcome of an experiment involving over 300 indi-

viduals. By varying feedback from providing only basic

information to a more substantial type of feedback (called

coalitional feedback), we are able to draw (statistically

significant) conclusions on how our information system

impacts auction performance.

The paper is organized as follows. In the next section,

we provide an overview of relevant literature dealing with

either feedback and/or experimental settings in CAs. Sec-

tion 3 gives the precise terminology. We describe a new

type of feedback (coalitional feedback) in Sect. 4. In

Sect. 5, we discuss the details of the iterative CA used in

our laboratory experiments, along with the experimental

design; the results are presented in Sect. 6.

2 Related Literature

CAs are big business, having several practical applications

ranging from the allocation of airport landing slots (Ras-

senti et al. 1982) or harbor time slots (Ignatius et al. 2014),

the allocation of spectrum licenses (Brunner et al. 2010;

Scheffel et al. 2012; Bichler et al. 2013), the allocation of

mineral/oil drilling rights (Cramton 2007), and real estate

(Goossens et al. 2014).

An early form of feedback is described by Banks et al.

(1989). They introduce a so-called ‘‘stand-by queue’’,

which allows bidders to publicly announce their willing-

ness to pay a certain price for a specific package. Bidders

can then use this information to express a bid which,

combined with one or more of the bids on the stand-by

queue, is able to outbid the currently winning bid. While a

stand-by queue can help to overcome the coordination

problem, it is less clear how it alleviates the threshold

problem. Nevertheless, there is some experimental evi-

dence suggesting that bidders were indeed able to coordi-

nate their bids using the stand-by queue and displace large
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package bids when the sum of the small bidders’ valuations

was higher than that of the large bidder (Bykowsky et al.

2000).

Adomavicius and Gupta (2005) introduce several

important concepts concerning feedback: deadness and

winning levels. In short, the former is the price a bidder

needs to bid to have any chance of becoming winning,

whereas the latter is the price that guarantees the bidder to

become winning if no other bids are increased. Their work

serves as a foundation for bidder support systems in CAs,

as it provides theoretical, algorithmic, and computational

results on deadness and winning levels.

Adomavicius et al. (2012) study how bidders behave in

continuous CAs. Their main objective is to study how

information feedback affects bidding behavior leading to

differences in the retained surplus of bidders. They used

baseline feedback (all bids displayed anonymously), out-

come feedback (provisional winning allocation) and price

feedback (deadness and winning levels). They find that

price feedback leads to higher efficiencies, fewer dead bids

and a higher percentage of winning bids when compared to

outcome and baseline feedback.

Petrakis et al. (2013) build on the work by Adomavicius

and Gupta (2005) and define and analyze computational

and game theoretical properties of deadness and winning

levels. They mention the threshold problem, and the fact

that often winning levels are too high for a single bidder to

outbid a large bidder. As a solution they briefly suggest

coalitional winning levels, which they introduce as per-

sonalized and non-linear ask prices in between deadness

and winning levels. The underlying idea is that the costs to

outbid the currently winning bid is shared among the bid-

ders in a losing coalition. However, they point out that

coalitional winning levels are computationally very chal-

lenging and do not change the free-rider incentive, and as

such they do not further expand on this concept. There is

game-theoretical research on this free-rider problem in

ascending CAs (see e.g., Sano 2012; Goeree and Lien

2014; Guler et al. 2016), that shows that ascending CAs

can lead to inefficient perfect Bayesian equilibria with risk-

neutral bidders. However, laboratory experiments have

shown that ascending combinatorial auctions consistently

achieve high allocative efficiencies, indicating that this

negative theoretical result does not seem to apply in

practical situations.

In a time-wise overlapping but independent study,

Bichler et al. (2017) introduce an ascending CA which

implements coalitional winning levels, where the cost

sharing is based on the Shapley value. It is important to

realize an essential difference with this paper: the coali-

tional winning levels in Bichler et al. (2017) are imple-

mented as a price rule. This means that bidders either

accept the suggested price, or are forced to drop out. In our

laboratory experiment (see Sect. 5), we use coalitional

winning levels as feedback, i.e., purely informative (bid-

ders can bid any price they prefer). Besides numerical

experiments, Bichler et al. (2017) perform lab experiments

with human participants on auction settings similar to the

one used by Adomavicius et al. (2012), allowing them to

compare results and to express causal statements about the

differences. The results of their experiments indicate high

economic efficiencies in ascending CAs with deadness and

winning level feedback, but even higher efficiencies if the

price rule based on coalitional winning levels is enforced,

in addition to giving deadness and winning levels. The

price rule also appears to lead to faster auctions. We

position this paper as a different set of experiments, with

different types of coalitional feedback in a different

experimental setting. Therefore, comparing our results with

these prior papers is impracticable.

3 Notation, Terminology, and Modeling

Our setting is an ascending, iterative CA consisting of

multiple rounds. Consider a set I ¼ f1; 2; . . .;mg of indi-

visible, unique items which are auctioned using a first price

(i.e., winning bidders pay the prices they bid) iterative CA,

and a set A ¼ f1; 2; . . .; ng of bidders that participate in the

CA. A bid b consists of three components: the bidder

aðbÞ 2 A expressing bid b, the package SðbÞ � I to which

bid b applies, and the price p(b) that bidder a(b) commu-

nicates for package S(b). Hence, we see a bid b as a triple

(a(b), S(b), p(b)), and we denote the set of bids by B ¼
fðaðbÞ; SðbÞ; pðbÞÞj bidder aðbÞ has expressed the willing-

ness to pay p(b) for package SðbÞg. Every bidder a 2 A has

a value vaðSÞ� 0 for every subset S � I; this value vaðSÞ is
the private valuation of bidder a for the package S.

The winner determination problem (WDP) is now the

following: given the set of bids B, determine the allocation

of items to bidders that maximizes the sum of the prices of

the accepted bids, ensuring that each item is sold at most

once. An integer programming formulation of WDP, using

binary variables x(b) which are equal to one if and only if

bid b 2 B is selected as a winning bid, is presented below.

(WDP) max
P

b2B
pðbÞxðbÞ

s.t.
P

b2B: i2SðbÞ
xðbÞ� 1 8 i 2 I

xðbÞ 2 f0; 1g 8 b 2 B

Given a set of bids B, an instance of the WDP follows. For

each solution x of this WDP, there is an allocation X ¼
fðaðbÞ; SðbÞÞjxðbÞ ¼ 1g indicating which bidder receives

what set(s) of items, and a corresponding set of winning

bids WðXÞ ¼ fb 2 BjxðbÞ ¼ 1g. Let X� and W� symbolize
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respectively the allocation and the set of winning bids

corresponding to an optimal solution of the WDP. The

optimal objective function value is denoted by

WDPðIÞ ¼
P

b2B pðbÞxðbÞ
�
, with xðbÞ� denoting the opti-

mal values for the decision variables.

The value of an allocation X depends on the private

valuations of the bidders, and is denoted by

VðXÞ ¼
P

b2WðXÞ vaðbÞðSðbÞÞ. This value can be seen as

being distributed over the auctioneer on the one hand, and

the bidders on the other hand. We use the term auctioneer

surplus of an allocation X, denoted by AS(X), to represent

the revenue for the auctioneer: ASðXÞ ¼
P

b2WðXÞ pðbÞ,
which corresponds to the amount received by the auc-

tioneer. The bidders surplus of an allocation X, denoted by

BS(X), is defined as BSðXÞ ¼
P

b2WðXÞðvaðbÞðSðbÞÞ � pðbÞÞ.
Clearly, VðXÞ ¼ ASðXÞ þ BSðXÞ.

A particular allocation, called XE, is found when each

bidder bids his/her private valuation on each possible

package. The private valuations are an upper bound on the

bid prices in pay-what-you-bid auctions. Hence, the value

of this allocation, VðXEÞ is maximum over all allocations,

and we use this quantity to be able to define the economic

efficiency of any allocation X: EðXÞ ¼ VðXÞ=VðXEÞ.
Notice that 0�EðXÞ� 1. The economic efficiency of an

auction measures the total amount of achieved surplus

relative to the maximum obtainable surplus. It represents a

measure of social welfare. When the efficiency is 100%, no

participant in the auction, whether they are a bidder or the

auctioneer, can improve their situation without making

some other participant worse off. However, when the

efficiency is below 100%, there is still ‘money left on the

table’.

We refer to Adomavicius and Gupta (2005) for the

original treatment of the concepts presented in this para-

graph. Observe that in the course of an iterative, ascending

CA, a bid b 2 B can be in one of three states. The state of a

bid b depends on its corresponding price p(b). When we

vary p(b) from a low value, say 0, to a high value, the state

of the bid will start in a dead state, where the bid is cur-

rently not winning and has no chance of ever becoming a

winning bid. Next, at a specific value for p(b) called the

deadness level, the state will become live; the bid is cur-

rently not winning, but it could become winning in a fol-

lowing round, depending upon the new bids. Finally, at

another specific value called the winning level, the state

will become winning (i.e., the bid is provisionally win-

ning). This is depicted in Fig. 1.

The deadness level for a subset of items S � I, called

DL(S), is defined as the minimum price pmin, ceteris par-

ibus, that some bidder a 2 A has to bid on S such that the

resulting bid ða; S; pminÞ can become winning in some

future round.

The winning level for a subset of items S � I, called

WL(S), is defined as the minimum price that some bidder

a 2 A has to bid on package S so that that bid, ceteris

paribus, will become winning in the next round.

4 Coalitional Feedback

In this section, we discuss two types of coalitional feed-

back. The section closes with a numerical example.

4.1 Factual Coalitional Feedback

In this section, we describe a new type of feedback, called

factual coalitional feedback (FCFB), which is explicitly

designed to overcome coordination problems in CAs. The

value of FCFB lies in the information we provide to a

bidder with a non-winning bid regarding the existence of

other bids that potentially can help to jointly become

(provisionally) winning. This information gives a bidder an

idea whether or not there is still potential in raising the bid

price of the currently non-winning bid. FCFB answers the

question ‘‘how many other bids exist that complement my

bid, and what is, ceteris paribus, the additional amount

needed?’’

We now describe how to obtain factual coalitional

feedback. First, consider a non-winning bid b 2 B. When

calculating the winning level for b, i.e., WLðSðbÞÞ, we also
find a coalition of bids, referred to as N(b), that consists of

‘newcomers’, i.e., bids that were not winning before, but

become winning together with b. More formally, this

coalition is defined as NðbÞ ¼ ðb [W�ðI n SðbÞÞÞnW�, and
the number of bids in that coalition is |N(b)|. Next, if

jNðbÞj[ 1, the following message goes out to all bids in

N(b): ‘‘If |N(b)| bids, including this one, are collectively

raised by ðWLðSðbÞÞ � pðbÞÞ, these |N(b)| bids become

winning.’’ Thus, all bidders in |N(b)| face the same ‘in-

crement’, i.e., ðWLðSðbÞÞ � pðbÞÞ. A single bid receives

such a feedback message each time it appears in an allo-

cation that makes some non-winning bid winning, thus it is

possible to receive multiple such messages for a single bid.

Clearly, FCFB is a potential remedy against coordina-

tion problems. Indeed, when deciding upon a new bid, a

bidder can now consider, in addition to their private

Deadness level Winning level

Winning stateLive stateDead state

Bid price0

Fig. 1 Bid states
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valuation, the size of the coalition, and the suggested

‘increment’.

4.2 Suggestive Coalitional Feedback

Suggestive coalitional feedback (SCFB), goes one step

further than FCFB, and adds a concrete bid suggestion in

addition to the feedback given with FCFB. As such, SCFB

is designed to combat both coordination and threshold

problems. With SCFB, a bid b for a set of items S(b) will

receive feedback in the following manner: ‘‘If |N(b)| bids,

including this one, are collectively raised by

ðWLðSðbÞÞ � pðbÞÞ, these |N(b)| bids become winning. We

suggest you bid pðbÞ þ ðWLðSðbÞÞ � pðbÞÞ=jNðbÞj.’’ The

same message also goes out to the other bidders in N(b).

Suggestive coalitional feedback solves the questions ‘‘are

there other bids that complement my bid?’’ and ‘‘what

price should I bid, so that I become winning instead of the

currently winning bid(s)?’’ There are many ways to give a

concrete bid suggestion and they all have advantages and

disadvantages. For example, one could look at the current

bid prices and suggest an amount proportional to that. The

idea is then to suggest a higher bid price to bids that are

high already. The disadvantage of this approach is that a

bidder with a relatively low private value, that bids rela-

tively close to this private value, can get a suggestion that

is too high. Another approach is to take into account the

number of items in the bids, or even incorporate the

Shapley value (Bichler et al. 2017). However, these sort of

technicalities often make it unnecessarily difficult for

bidders to understand what is going on in the feedback. For

that reason, we opted for a concrete suggestion that divides

the increment equally among the bidders in the coalition.

We remark that this may not always be perceived as fair,

e.g., for coalitions consisting of bidders where the ratio of

the highest to lowest bid price is very high. However, for

the valuations we use (described in Sect. 5.2.2), this ratio is

never extreme. Note that it is again possible to receive

multiple feedback messages for a single bid, one message

for every time it occurs in an allocation that makes some

non-winning bid winning. Also note that it is possible that

the concrete bid suggestion exceeds the bidder’s private

valuation for the corresponding set of items. In practice this

is unavoidable; the auctioneer does not know the private

valuations.

Finally note that coalitional feedback, both the factual

and the suggestive variants, give no concrete suggestion as

to which package of items to bid on. Instead, it takes into

account previously made bids, and informs the bidder

about coordination opportunities, and in case of suggestive

coalitional feedback adds a price suggestion. In other

words: bidders still need to find packages that are of

interest to them (i.e., where they can get a positive bidders

surplus), but coordination and cooperation with other bid-

ders becomes easier. Receiving multiple (viable) feedback

messages for one bid could be interpreted by the bidder as a

realistic prospect of becoming a winner with that package,

and persuade him/her to raise his/her bid on that package,

rather than on other packages for which no coalitional

feedback message was received. Nevertheless, the number

of potential coalitions also needs some consideration.

Given that the number of possible coalitions is exponential

in the number of bids, the number of potential feedback

messages is of the same order. Depending on the setting,

limiting the number of coalitions, e.g., by considering

coalitions of live bids and/or some number of ’most

promising coalitions’ (i.e., those with the lowest required

increments), can make sense.

4.3 Numerical Example

Consider some round in an iterative ascending combina-

torial auction with 6 bidders and 3 items (A, B, and C). The

set of bids is presented in Table 1. The columns respec-

tively contain the bidder a(b), the bid price p(b), the

package S(b), the deadness level DL(S(b)), and finally the

winning level WL(S(b)). A * in the deadness level column

indicates that the bid currently is not dead (i.e., the bid is

live). A * in the winning level column indicates that the bid

is currently winning.

Bidder 1 has the (provisionally) winning bid. Bidders 2

to 5 each have live bids, so any of these could be picked up

in a winning coalition. Bidder 6’s bid is a dead bid and will

hence never be part of any winning allocation: there is

always a better alternative to selecting the bid by bidder 6.

Bidder 2’s bid will receive the following factual coali-

tional feedback: ‘‘If 2 bids, including this one, are collec-

tively raised by 10, these 2 bids become winning.’’ It is not

hard to see that the coalition induced by bidder 2’s bid

consists of that bid and bidder 5’s bid. In fact, bidder 5 will

receive the same message. There is, however, a second

potentially viable coalition that consists of the bids by

Table 1 A set of bids and their corresponding deadness levels and

winning levels

a(b) p(b) S(b) DLðSðbÞÞ WLðSðbÞÞ

1 80 {A,B,C} 80* 80*

2 50 {A,B} 50* 60

3 20 {A} 20* 40

4 20 {B} 20* 40

5 20 {C} 20* 30

6 30 {A,B} 50 60
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bidders 3, 4, and 5. They will get the following factual

coalitional feedback message: ‘‘If 3 bids, including this

one, are collectively raised by 20, these 3 bids become

winning.’’ Bidders 2, 3, and 4 are each present in one

viable coalition, and hence receive one feedback message.

Bidder 5’s bid, however, is present in two viable coalitions,

and will receive two messages corresponding to those

coalitions: a smaller coalition consisting of 2 bids that faces

an increment of 10 and a larger coalition consisting of 3

bids that faces an increment of 20.

5 Methodology

5.1 Experimental Design

To experimentally study the effect of feedback on the

bidders’ ability to overcome coordination and threshold

problems, we set up iterative CAs in a lab using the z-Tree

software (Fischbacher 2007). In these auctions, bidders

compete to acquire a number of items, and are allowed to

bid on any subset of the items (see Sect. 5.2.1). We impose

no limit on the number of bids that a bidder can submit, nor

do we impose any activity rules. We use a minimum bid

increment of 1, and only allow bids lower than or equal to

the relevant private valuation. This eliminates gaming

behavior; bidders can no longer incur possible losses. More

details on the private valuations is given in Sect. 5.2.2.

We opted for an OR-bids bidding language, which

means that given a number of bids from a bidder, the

auctioneer can accept any non-overlapping set of these bids

and charge the sum of the specified prices (see e.g., Nisan

2000). The XOR-bidding language would be a more

expressive alternative, but, as stated in both Brunner et al.

(2010) and Scheffel et al. (2012), XOR-bidding can lead to

problems if bidders only submit few bids. Indeed, a low

number of bids often leads to a number of unsold items,

which may have a considerable impact on efficiency. Since

we use super-additive valuations in our laboratory experi-

ments, the OR-bids bidding language is well suited.

The auction proceeds in rounds, until two consecutive

rounds occur in which the total auction revenue does not

increase compared to the previous round. In other words, if

three consecutive auction rounds lead to the same revenue,

the auction closes. When that happens, the provisionally

winning allocation becomes the final winning allocation.

This closing rule effectively eliminates sniping strategies,

where bidders suddenly make (higher) bids in the last

round. On the other hand, it might lead to an extreme

number of rounds, as bidders could still opt to do nothing

as long as the auction has not resulted in consecutive

rounds with the same revenue. However, in our experi-

ments we encountered no such adverse effects.

The experimental design is presented in Table 2, and

involves 3 factors: structure (STR), valuation (VAL), and

feedback (FB). We refer to Sect. 5.2 for a detailed dis-

cussion of these factors. A row in Table 2 corresponds to

an experimental session. An experimental session consists

of 4 groups, one for every level of the factor structure.

Every group in an experimental session is called an

experimental unit. An experimental unit consists of a series

of 4 consecutive auctions with the same set of participants,

and contains 1 auction for each feedback level. Each entry

in Table 2 corresponds to an auction; for instance the entry

‘‘3;4’’ refers to an auction where the factor valuation equals

3, and the factor feedback equals 4. A total of 192 auctions

were held. Every session requires 27 subjects (one exper-

imental unit consisting of 4 subjects, two experimental

units consisting of 7 subjects, and one experimental unit

consisting of 9 subjects), hence the total number of

required participants for 12 sessions is 324.

The design is between-subject for the factor structure,

and within-subject for the factors valuation and feedback.

In addition, all 24 permutations of the 4 feedback levels

occur exactly twice, all threshold levels occur at least once

per experimental unit and any two consecutive valuation

levels within an experimental unit are distinct. We note that

specifically in the experimental units corresponding to

STR4, there are no auctions using a VAL level of 3.

A printout of the instructions (which can be found in the

appendix, available online via http://www.springerlink.

com) was handed out to every participant in the beginning

of the experiment. All participants worked their way

through the instructions and filled in a set of test questions.

Participants were free to ask questions. Once all subjects

were done filling in the test questions, and when all those

questions were answered correctly, the auctions started. In

every session, the same experimenter was present, and all

the experiments were held in the same room. Students

received a bonus point on the exam of a course they had to

take for showing up, and a monetary incentive that

depended on performance in the auctions. Performance is

measured by the difference between the private values and

the prices paid for the final winning bids. On average, the

participants earned €9.62.

5.2 Factors of the Experiment

In this section we discuss the different factors (independent

variables) in our experimental design.

5.2.1 The Factor Structure (STR)

We use four different item/bidder structures, as shown in

Fig. 2a and b. The item structures are similar to settings in

Kazumori (2010), Scheffel et al. (2011), and Vangerven
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et al. (2017). Bidders need not bid on sets of adjacent

items, however, their valuations (see Sect. 5.2.2) are such

that if complementarity effects exist, they involve adjacent

items.

Combining both the number of items and bidders, we

obtain what we refer to as the factor structure. The factor

structure has four levels: 3 items with 4 bidders (STR1), 3

items with 7 bidders (STR2), 6 items with 7 bidders

(STR3), and 6 items with 9 bidders (STR4).

We remark that subjects are randomly assigned to an

auction, and stay in the same level of the factor structure

during four consecutive auctions. In other words: four

consecutive auctions in a session with the same level of

structure have the same subjects.

5.2.2 The Factor Valuation (VAL)

With the valuation structure, we aim to obtain auction

settings that give rise to coordination and threshold prob-

lems. For each structure, there are a number of small bid-

ders who are interested in different items and 1 large bidder

who is mainly interested in a package containing all items.

Each small bidder has one favorite item. The valuations of

the other individual items depend on how close they are to

that item: valuations for adjacent items decrease by 50%

with each step they are further away from the item of main

interest. The valuations for the small bidders are purely

additive. The large bidder’s valuation for the complete

package is generated first. With super-additivities of 20%

for every additional adjacent item, we calculate the valu-

ations for all possible subsets of items. The large bidder’s

valuation for the complete package equals the sum over all

individual items of their highest valuation by a small bid-

der, multiplied with a factor W. We discern three levels for

the valuation factor, depending on W.

• VAL1: W 2 ½106%; 108%�. The large bidder has the

upper hand, hence, no coordination is required to

obtain an efficient outcome. We expect coalitions of

small bidders to face a threshold problem they

cannot overcome, since their valuations are not high

enough. Still, it remains interesting to see how far

the small bidders will boost the price for the large

bidder.

• VAL2: W 2 ½93%; 95%�. Here, coalitions of smaller

bidders have a small advantage over the large bidder.

We expect a difficult threshold problem. Coordination

is required to obtain an efficient allocation.

• VAL3: W 2 ½80%; 82%�. An efficient allocation

requires small bidders to coordinate. However, as the

valuation of such coalition amply exceeds the valuation

of the large bidder, we anticipate an easy threshold

problem.

With the resulting valuations, we avoid situations where

the equal split rule used in the suggestive coalitional

feedback creates situations that can be perceived as unfair.

We created two sets of private values for every

Table 2 Experimental sessions: first number in an experimental unit represents the VAL level, second number represents the FB level

Session STR1 STR2 STR3 STR4

1 1;1 2;2 1;3 3;4 2;3 3;4 1;1 3;2 1;4 3;3 1;2 2;1 1;3 2;4 2;2 2;1

2 1;2 2;3 1;4 3;1 2;1 1;3 3;2 2;4 1;2 2;4 3;3 1;1 2;2 1;4 2;1 1;3

3 1;3 3;4 2;1 3;2 2;4 3;2 2;3 1;1 3;4 2;3 3;1 1;2 1;2 2;1 2;3 1;4

4 1;4 3;2 1;1 2;3 3;1 2;4 1;3 2;2 2;1 1;4 2;3 3;2 1;1 2;3 1;2 2;4

5 2;1 1;2 3;3 2;4 2;2 1;4 3;1 1;3 2;2 1;3 2;1 3;4 2;1 2;3 2;4 1;2

6 2;2 1;1 2;4 3;3 3;2 2;1 3;3 1;4 1;3 3;2 1;1 2;4 1;4 2;1 1;3 2;2

7 2;3 3;1 2;2 1;4 3;3 1;2 2;1 3;4 1;1 3;4 2;2 3;3 2;1 2;2 1;4 2;3

8 2;4 3;3 1;2 2;1 3;4 1;1 2;2 3;3 3;2 2;1 1;4 2;3 2;3 2;4 2;2 1;1

9 3;1 2;4 3;2 1;3 1;2 2;3 1;4 3;1 2;3 1;1 3;2 1;4 2;4 2;2 1;1 2;3

10 3;2 1;4 2;3 1;1 1;4 3;1 1;2 2;3 3;1 2;2 3;4 1;3 2;3 1;1 2;4 2;2

11 3;3 2;1 3;4 1;2 1;3 2;2 3;4 2;1 2;4 3;1 1;3 2;2 2;4 1;2 2;3 2;1

12 3;4 1;3 3;1 2;2 1;1 3;3 2;4 1;2 3;3 1;2 2;4 3;1 2;2 1;3 2;1 2;4

Item 1 Item 2 Item 3

Item 1 Item 2 Item 3

Item 4 Item 5 Item 6

(b)
(a)

6 items and either
7 or 9 bidders.

3 items and either
4 or 7 bidders.

Fig. 2 Item and bidder structure
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combination of STR and VAL, leading to a total of 24

different sets of private values.1

Finally, we remark that participants are not told their

role (e.g., small bidder) or that of others; they simply

discover their private valuations by clicking on packages.

The values are private, but participants are informed that

all values are at least additive. Participants take part in

consecutive auctions, but valuations (roles) rotate between

these auctions.

5.2.3 The Factor Feedback (FB)

The third factor in our laboratory experiments is feedback.

Feedback is calculated after every round and communi-

cated to the bidders. We use a hierarchy of feedback

involving four levels, as depicted in Fig. 3. The first level,

outcome feedback (FB1), consists of showing the (provi-

sionally) winning allocation along with the prices corre-

sponding to that allocation. The second feedback level

(FB2) consists of the feedback given in FB1, and adds

winning and deadness levels. We call this bid states

feedback. Another layer up the hierarchy, in FB3, we add

factual coalitional feedback on top of the feedback given in

FB2. The fourth feedback level (FB4) adds a concrete bid

suggestion, suggestive coalitional feedback, in addition to

the feedback given in FB2. Feedback regarding a particular

subset of the items is displayed if the bidder clicks on that

subset.

Our coalitional feedback bears some resemblance to the

price rule based on coalitional winning levels used in

Bichler et al. (2017). As discussed in Sect. 2, there are a

number of differences on the implementation level. (1) In

Bichler et al. (2017), the coalitional pricing rule is calcu-

lated for currently losing bidders, but in their experiments

the price rule for a bid follows from one coalition,

specifically the coalition with the lowest price suggestion

for that bid. In our experiments, we allow for multiple

messages to be displayed, because it is possible that the

lowest suggested amount corresponds to a coalition that

faces a threshold they simply cannot bridge given their

valuation. Moreover, we want to make sure that when one

coalition member receives a price suggestion, all other

members whose collaboration is required also receive this

suggestion. (2) In our versions of coalitional feedback we

only consider coalitions of live bids for feedback. Disre-

garding coalitions that include dead bids has the advantage

of limiting the number of feedback suggestions, and

requiring bidders to first bid past their respective deadness

levels. It also encourages activity in the auction, without

actually requiring an explicit activity rule.

6 Results

We report the results of 192 auctions, involving 324 dif-

ferent subjects (students at the Faculty of Economics and

Business), carried out at KU Leuven.

6.1 Validation

Before we start discussing the outcome of the experiment,

it makes sense to first validate whether the experimental

design resulted in the coordination and threshold problems

we anticipated, and whether it aligns with what is reported

in the literature on cognitive limits.

6.1.1 The Realized Coordination and Threshold Problem

In order to validate whether the experimental settings

indeed led to coordination and threshold problems, we

make use of measures for both problems described in

Vangerven (2017). The Coordination Index (CI) is a

measure for the magnitude of the coordination problem,

and basically looks at the total relative loss in economic

efficiency if each bidder bids his/her true valuation on his/

her k most valuable packages, for k ranging from 1 to a

value kmax for which an efficient allocation is obtained. The

larger CI, the larger the coordination challenge present in

the auction. The Threshold Index (TI) for a coalition of

non-winning bids boils down to the ratio of the price

increase that this coalition jointly needs in order to win, to

the margin this coalition has, taking into account the pri-

vate valuations and current bid prices. A higher value for

TI corresponds to a more severe threshold problem. If

TI[ 1, the non-winning coalition cannot outbid the cur-

rently winning bids (without exceeding private valuations);

this situation is called an insurmountable threshold

problem.

We have computed the realized CI and TI values for

each auction. Since we found that auctions using STR1 and

STR2 (3 items) are very similar with respect to CI and TI,

we have grouped them. The same applies for STR3 and

STR4 (6 items). Moreover, for auctions with VAL1, all

FB1: outcome feedback
FB2: bid states
FB3: factual coalitional feedback
FB4: suggestive coalitional feedback

Fig. 3 Feedback hierarchy

1 The private valuations used in the experiment are available here:

https://feb.kuleuven.be/public/u0093797/Valuations/. Accessed 25

Feb 2020.
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item/bidder structures resulted in similar TI and CI values.

The average CI and TI values are given in Table 3.

Since the highest valuation in VAL1 is that of the large

bidder for the complete package, it is logical that CI equals

0. For STR1 and STR2, we find easy coordination chal-

lenges for both VAL2 and VAL3. On the other hand STR3

and STR4 lead to difficult coordination problems, in par-

ticular for VAL3.

Note that we calculated TI from the perspective of the

small bidders, namely, we look at the highest value coali-

tion of small bidders versus the large package bidder. The

results reported in Table 3 are averaged over every auction

that has such a TI value (not all auctions have TI values to

compute if the coalitions mentioned above were not pre-

sent). Overall, the TI values show that the threshold

problems we wanted to create, were indeed present. For

VAL1, we see a TI value that, on average, is almost equal

to 1. Considering that there were auctions in which the

coalition of smaller bidders all bid up to their private

valuation but did not win, and hence did not have a TI

value, this TI value indeed seems to correspond to insur-

mountable threshold problems for a coalition of small

bidders. For VAL2, we find an average TI value of 0.25,

and for VAL3 we find a value of 0.11, corresponding to

difficult and easy threshold problems respectively. This

also looks to be in line with the expectations sketched in

Sect. 5.2.2.

For the remainder of this paper, we use the following

notation:

• C0T" includes all settings with VAL1, corresponding

to an insurmountable threshold problem,

• C�T? includes all settings with VAL2 and STR1-2,

corresponding to an easy coordination problem and a

difficult threshold problem,

• C?T? includes all settings with VAL2 and STR3-4,

corresponding to a difficult coordination problem and a

difficult threshold problem,

• C�T� includes all settings with VAL3 and STR1-2,

corresponding to an easy coordination problem and an

easy threshold problem,

• C?T- includes all settings with VAL3 and STR3-4,

corresponding to a difficult coordination problem and

an easy threshold problem.

6.1.2 Cognitive Limits

Figure 4 depicts the average number of different packages

a bidder bids on per round. This excludes the bids entered

in the first round, as bidders are then still discovering their

private valuations and enter a lot of bids. This result con-

firms the findings of Kagel et al. (2010) and Scheffel et al.

(2012), who observe that bidders usually bid on a limited

number of different packages, independent of the auction

format. Furthermore, it shows that bidder support in the

form of feedback FB2-4 reduces the number of packages

bidders bid on in an auction for those settings with difficult

coordination problems, or if the threshold problem is

insurmountable. Bidders can focus on fewer packages, and

still achieve higher efficiencies and revenues compared to

basic outcome feedback (see Sect. 6.2). If the coordination

problem is easy, feedback does not seem to impact the

number of packages that bidders track.

6.2 Observations

We discuss the results of our experiments in terms of

economic efficiency, bid prices, auction revenue, bidders

surplus, and auction duration.

6.2.1 Economic Efficiency

Overall, efficiencies were quite high. Figure 5 has box

plots showing the efficiency per level of feedback. We see

that in the cases where only basic feedback is given (FB1)

efficiencies show the highest degree of dispersion. This

indicates that simply showing the (provisionally) winning

allocation as feedback is often insufficient for bidders to

find an efficient outcome. The difference between FB1 on

the one hand, and FB2-4 on the other hand is striking: it

seems deadness and winning levels are important in guid-

ing bidders to an efficient outcome. The FB2, FB3 and FB4

Table 3 Mean CI; TI values for each combination of the factors STR

and VAL

VAL1 VAL2 VAL3

STR1-2 0.00 0.98 0.20 0.25 0.63 0.12

STR3-4 1.96 0.24 7.73 0.09

FB1 FB2 FB3 FB4
0

5

10

15

20
C0T↑
C-T+
C-T-
C+T+
C+T-

Fig. 4 Average number of bids entered per bidder per round

(excluding round 1) on unique packages
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box plots look similar, although FB3 and FB4 show a

couple of outliers.

We use the non-parametric Wilcoxon-Mann-Whitney

test to examine the differences in efficiencies. The notation

	, 	� and 	�� respectively denote a difference at 10%, 5%

and 1% significance level, and 
 denotes we cannot reject

the null hypothesis.

Onservation 1 Efficiencies ranked by Wilcoxon-Mann-

Whitney tests:

FB1 	�� ðFB2 
 FB3 
 FB4Þ

At .01 significance level, we conclude that the efficiencies

obtained under FB1 are lower than those obtained under

FB2, FB3, and FB4. At .1 significance level, we cannot

reject the hypothesis that the efficiencies obtained under

FB2, FB3, and FB4 come from the same distribution.

In order to obtain a more detailed understanding of these

results, we check whether the degree of coordination and

threshold problems has an impact. Table 4 contains the

mean efficiencies per feedback level, for each of the 5

auction settings. Box plots for efficiency per feedback level

for the 5 auction settings are given in the online appendix.

In the insurmountable threshold case, COT", we see that
efficiencies are almost always 100%, i.e., the large bidders

win when they should win, no matter the feedback. In the

difficult threshold cases, FB3 and FB4 fare better than FB1

and FB2: the average efficiency is higher, and the spread is

lower. This difference is striking in the case when the

coordination problem is easy (C�T?). This indicates that

coalitional feedback offers added value to overcome the

threshold problem. When the coordination problem is hard,

FB3-4 loses its advantage compared to FB2. In the C�T�
case, FB4 actually performs worse than FB2, for which –

remarkably – all auctions ended efficiently. These obser-

vations are confirmed by Wilcoxon-Mann-Whitney tests.

Onservation 2 Table 5 contains the efficiencies ranked

by Wilcoxon-Mann-Whitney tests.

For COT", we cannot reject the hypothesis that the

efficiencies obtained under FB1, FB2, FB3, and FB4 come

from the same distribution.

For C�Tþ; at .1 significance level, we conclude that the

efficiencies obtained under coalitional feedback (FB3 and

FB4) are larger than those obtained under FB1 and FB2.

For C�T�; at .1 significance level, we conclude that the

efficiencies obtained under FB2 are larger than those

obtained under FB4.

In settings with a high coordition problem (CþTþ and

CþT�), at .1 significance level, we conclude that the

efficiencies obtained under FB1 are lower than those

obtained under FB2, FB3 and FB4.

Figure 6 depicts the proportion of auctions that ended

efficiently. Overall, FB1 shows the lowest percentage of

efficient auctions, however, the difference is particularly

notable for the settings with hard coordination problems

(not a single auction ended efficiently in the C?T� case).

Comparing coalitional feedback (FB3 and FB4) with bid

states feedback (FB2), the former performs better in the

C�T? case, and nearly identical in the cases with hard

coordination problems.

6.2.2 Bid Prices

Table 6 presents the average ratio of the bid prices to their

private valuations for all expressed bids. Table 7 contains

the Wilcoxon-Mann-Whitney tests.

FB1 FB2 FB3 FB4
0.8

0.85

0.9

0.95

1
E
(X

)

Fig. 5 FB box plots

Table 4 Mean E(X)

COT" C�T? C�T� C?T? C?T�

FB1 0.986 0.979 0.989 0.976 0.927

FB2 0.999 0.985 1.00 0.978 0.995

FB3 0.986 0.993 0.989 0.986 0.963

FB4 0.988 0.993 0.975 0.979 0.982

Table 5 Ranked efficiencies

Wilcoxon-Mann-Whitney tests

COT" FB1 
 FB2 
 FB3 
 FB4

C�T? ðFB1 
 FB2Þ 	 ðFB3 
 FB4Þ
C�T� FB4 	 FB2

C?T? FB1 	 ðFB2 
 FB3 
 FB4Þ
C?T� FB1 	 ðFB2 
 FB3 
 FB4Þ
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Onservation 3 In COT" we see that with more feedback,

bidders on average bid a higher percentage of their private

valuations. In cases with a difficult threshold problem

ðC�Tþ and CþTþÞ; we see that when FB3-4 is given, bid-

ders on average bid higher compared to FB1-2 cases. In

this case, the coalitional feedback appears to convince

bidders to bid higher. This is not the case for the settings

with easy threshold problems, in fact, for CþT�average bid

prices are lower for FB3-4, compared to when FB1-2 is

given.

6.2.3 Auction Revenue

Table 8 contains the mean auction revenue (i.e., the auc-

tioneer surplus). We see that revenues in auctions with an

easy threshold problem (C�T� and C?T�) are clearly

lower than in auctions with a difficult threshold problem.

We have seen in Sect. 6.2.2 that especially in the C�T�
setting small bidders do not bid high compared to their

private valuations. Indeed, in this setting they have plenty

of margin to outbid the package bidder, and given the easy

coordination and threshold problem, they seem to realize

this quickly in the auction, which impacts the auction

revenue (Table 9).

Examining the box plots of auction revenue for the

various feedback levels (Fig. 7), we notice little difference

between feedback levels 2, 3 and 4. Restricting the bidders

to outcome feedback (FB1), however, does reduce the

auction revenue, as is confirmed by Wilcoxon-Mann-

Whitney tests.

Onservation 4 Auction revenues ranked by Wilcoxon-

Mann-Whitney tests:

FB1 	� ðFB2 
 FB3 
 FB4Þ

At .05 significance level, we conclude that the auction

revenues obtained under FB1 are lower than those

obtained under FB2, FB3, and FB4. At .1 significance

level, we cannot reject the hypothesis that the revenues

obtained under FB2, FB3, and FB4 come from the same

distribution.

In line with Observation 3, in cases with a difficult

threshold problem ðC�Tþand CþTþÞ; we see that when

FB3-4 is given, revenues are higher compared to FB1-2

cases. This is not so much the case for the settings with

easy threshold problems.

FB1 FB2 FB3 FB4
0

0.2

0.4

0.6

0.8

1
C0T↑
C-T+
C-T-
C+T+
C+T-

Fig. 6 Proportion of efficient auctions

Table 6 Average bid as percentage of private valuations

COT" C�T? C�T� C?T? C?T�

FB1 0.812 0.812 0.821 0.847 0.840

FB2 0.842 0.786 0.790 0.853 0.862

FB3 0.839 0.811 0.804 0.863 0.828

FB4 0.821 0.845 0.783 0.857 0.821

Table 7 Ranked ratio of the average bid prices to private valuations

Wilcoxon-Mann-Whitney tests

COT" FB1 
 FB2 
 FB3 
 FB4

C�T? ðFB1 
 FB2 
 FB3Þ 	� FB4

C�T� FB1 
 FB2 
 FB3 
 FB4

C?T? FB2 	 FB3, FB4 	 FB3

C?T� FB3 	 FB2

Table 8 Mean auction revenue

COT" C�T? C�T� C?T? C?T�

FB1 0.929 0.915 0.850 0.919 0.844

FB2 0.943 0.962 0.864 0.930 0.918

FB3 0.919 0.951 0.874 0.937 0.838

FB4 0.929 0.955 0.849 0.938 0.873

Table 9 Ranked revenues

Wilcoxon-Mann-Whitney tests

COT" FB1 
 FB2 
 FB3 
 FB4

C�T? FB1 	�� ðFB2 
 FB3 
 FB4Þ, FB3 	 FB4

C�T� FB1 
 FB2 
 FB3 
 FB4

C?T? FB1 	� FB4

C?T� (FB1 
 FB2Þ 	 FB3
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6.2.4 Bidders Surplus

Table 10 contains the percentage of available surplus that

goes to the bidders, i.e., BSðXÞ=VðXEÞ and Table 11 con-

tains the results of the Willcoxon-Mann-Whitney tests.

Onservation 5 In the cases with difficult threshold

problems, the highest bidder profits are obtained when FB1

is provided. However, in these settings efficiency was much

lower than with feedback FB3-4. Hence, what happened

there is that large bidders received the total BS when it was

not economically efficient for them to receive any surplus

at all. In C�Tþ; bidders obtained a larger share of the

potential surplus with coalitional feedback (FB3-4),

compared to bid states feedback (FB2), combined with a

higher efficiency (see Table 4).

6.2.5 Auction Duration

Table 12 contains the mean number of auction rounds for

each feedback level. Auctions with FB2-4 seem to last a

few more rounds on average than auctions with FB1, where

not a lot of coordination is possible between bidders.

Furthermore, we notice that in case of an insurmount-

able threshold problem (COT"), the number of rounds

under FB1 is lower compared to the other settings, for all

levels of feedback. Apparently, it becomes clear to the

small bidders that they will not be able to win relatively

quickly, compared to the other auction settings where the

small bidders indeed have better odds. Furthermore, ceteris

paribus, increasing the difficulty of the coordination

problem increases the required number of rounds for FB3

and FB4.

The average round duration (in seconds) is provided in

Table 13. In cases with a difficult coordination problem

(C?T� and C?T?), bidders seem to need more time per

round than in cases with an easy coordination problem,

especially for FB1. This can be explained by the fact that

bidders need to click on several itemsets to explore their

options and to compose individually profitable and col-

lectively complementary packages. In particular in the case

with FB1, they receive little or no guidance for this task.

Apparently, finding a promising itemset to bid on is more

time-consuming than deciding on the amount with which to

FB1 FB2 FB3 FB4
0.7

0.8

0.9

1

A
S(
X
)

Fig. 7 Auction revenue box plots

Table 10 Average percentage of surplus obtained by the bidders

(BSðXÞ=VðXEÞ)

COT" C�T? C�T� C?T? C?T�

FB1 0.057 0.064 0.139 0.057 0.084

FB2 0.056 0.023 0.136 0.048 0.076

FB3 0.067 0.042 0.115 0.049 0.125

FB4 0.059 0.038 0.125 0.042 0.109

Table 11 Ranked bidder surplus

Wilcoxon-Mann-Whitney tests

COT" FB1 
 FB2 
 FB3 
 FB4

C�T? FB2\�ðFB1 
 FB3 
 FB4Þ
C�T� FB1 
 FB2 
 FB3 
 FB4

C?T? FB1 
 FB2 
 FB3 
 FB4

C?T� ðFB1 
 FB2Þ 	 FB3

Table 12 Mean number of rounds per auction

COT" C�T? C�T� C?T? C?T�

FB1 6.4 8.0 6.8 6.8 7.8

FB2 8.5 10.3 7.8 8.8 10.5

FB3 6.7 9.1 8.4 10.3 10.3

FB4 6.8 9.1 11.0 10.2 17

Table 13 Mean auction duration (seconds) per round

COT" C�T? C�T� C?T? C?T�

FB1 154 128 138 194 154

FB2 138 116 128 174 160

FB3 184 113 125 151 145

FB4 170 128 97 162 121
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increase the current bid. Apart from the setting with an

insurmountable threshold problem (COT"), FB3 and FB4

manage to reduce the mean round duration.

6.3 Discussion

In our results, we find little difference between factual

coalitional feedback (FB3) and suggestive coalitional

feedback (FB4). Apparently, the price suggestion, which

consists of evenly splitting the required increment among

the bidders in the coalition, did not make a difference

compared to simply stating the increment and the number

of bidders in the coalition. One explanation could be that

the participants simply came up with the same idea about

the price they should bid in the next round when confronted

with the factual feedback.

It should not be surprising that FB4 has added value

compared to FB2 for threshold problems in cases where

winning levels (WL) exceed private valuations (PV).

However, if the coalitional feedback price suggestion

(CFB) offered by FB4 is such that CFB is lower than WL

and at the same time WL\PV, it persuades bidders

towards smaller bid increments. This could either lead to

an increase in the number of rounds, or – in case of an

abrupt stopping rule - the auction could close with a less

efficient outcome (when compared to FB2). In what fol-

lows, we provide a detailed explanation for this, for every

level of Coordination/Threshold.

When the threshold problem is insurmountable (COT"),
aside from some outliers, feedback does not have a real

impact on who will be the winning bidder. However, when

FB2-4 is applied the package bidder has a harder time

because the competition with the smaller bidders, even

though they cannot win, is stronger. This leads to the

package bidder having to bid higher prices, as is reflected

in the higher auctioneer revenue results. In this case, FB3

and FB4 have no added value compared to FB2 in terms of

efficiency or revenue. The reason for this is twofold: a

substantial amount of the feedback messages of FB4 is

either (1) ‘‘useless’’ (i.e., CFB[ PV), as seen in Table 14

and/or (2) sent to bidders that at that time have at least one

provisionally winning bid, as seen in Table 15. In the

former case bidders will not be able to follow the feedback

and in the latter case bidders might not be willing to follow

the suggestion. After all, they already have a provisional

winning bid.

In cases with a considerable threshold problem, the

coalitional feedback appears to convince bidders to bid

higher, which leads to higher efficiencies. If FB1 is applied,

the highest bidder profits are obtained: this is an indication

of the threshold problem: in cases where the efficiency is

not 100%, the large package bidders receive the total

bidders surplus while it is not economically efficient for

them to receive any surplus at all. When more feedback is

given, total bidder profits decrease, yet efficiencies

improve as bidders are better able to coordinate and com-

pete with the large package bidder. Indeed, one would

expect FB3 and FB4 to be more effective than FB2 in cases

where the winning levels are restrictively high, i.e., greater

than the private values of losing bidders, and hence the

information is not of much use to bidders. In such a case,

FB3 and more so FB4 have the largest potential effect

because of the new information they provide. This happens

more often in difficult threshold cases. Indeed, in Tables 14

and 15 we respectively see that in C�T? and C?T? the

highest proportion of messages are useful and go out to

current non-winning bidders.

In easy threshold cases, FB2 performs better than FB4

with regards to efficiency. It seems that FB4 (sometimes)

prevents the small bidders from bidding what they should

bid to win the auction. The explanation for this phe-

nomenon is threefold. First, FB4 is rarely an added value

compared to WL. Table 14 shows that in only around 10 to

13% of the messages sent out in auctions with an easy

threshold problem, the coalitional feedback has an added

value compared to winning levels. Second, in the case

useful coalitional feedback is sent, it most often goes out to

current winners instead of non-winners, as can be seen in

Table 15. Third, if useful FB4 feedback is sent out, the

bidders in fact get the message that they could also win by

bidding (much?) less than the winning level. If only some

of the bidders in a losing coalition follow this advice, the

auction requires more rounds. Moreover, given our

potentially abrupt stopping rule, the auction could stop

prematurely.

Table 14 Average percentage

of useful and useless FB4

messages

The remainder of the messages

fall in a category where both

CFB and WL are below the PV

Setting Useless Useful

COT" 60.3 23.2

C�T? 21.4 33.1

C�T� 36.7 13.3

C?T? 45.7 25.0

C?T� 44.9 9.9

Table 15 Average percentage of useful FB4 messages that go out to

current (non-)winners

Setting To winners To non-winners

COT" 56.8 43.2

C�T? 54.2 45.8

C�T� 81.3 18.8

C?T? 43.1 56.9

C?T� 75.9 24.1
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Overall, with respect to speed of convergence, our

coalitional feedback often provokes more rounds than

similar settings with bid state or outcome feedback. In

some cases, this brings an increase in efficiency or revenue.

However, we notice a substantial drop in the mean duration

of a round, which reflects that our feedback reduces the

time the bidders spend exploring their options or contem-

plating their bid increment.

7 Conclusions

In situations where bidders have different additive or

super-additive private valuations, academic literature has

shown that CAs have the edge over (sequential) single item

auctions. However, CAs introduce two problems: the

coordination problem and the threshold problem. The

coordination problem arises when bidders fail to identify

bids that are individually profitable and collectively com-

plementary. The threshold problem represents the next

problem: even when individually profitable and collec-

tively complementary packages are identified, and the

coordination problem is essentially overcome, the problem

of determining bid prices still remains. This is further

complicated by free-rider incentives. Naturally, these

problems are of significant practical interest.

We design types of feedback dubbed coalitional feed-

back to help bidders overcome coordination and threshold

problems. We put different types of feedback to the test in

a laboratory setting with human bidders, using iterative

CAs. There are many ways coalitional feedback can be

implemented: the number of messages could be limited,

bid suggestions may be based on different ways of splitting

the required increment over the coalition members, the

feedback might be binding and function as a bid price rule,

etc. While conceptually similar, these differences in

implementation might result in different effects, depending

on the auction setting (e.g., small vs. large auctions), which

makes them an interesting topic for future research.

In line with Adomavicius et al. (2012), we find that bid

states feedback is a big improvement upon outcome feed-

back, both with respect to economic efficiency and auction

revenue. We find that coalitional feedback offers further

improvements, leading to higher efficiencies as well as

higher bidder profits, when threshold problems are difficult.

The advantages include reducing the complexity bidders

face with package bidding and enabling bidders to focus

more on relevant packages. Furthermore, they can adjust

their bid prices smartly, considering both the coalitional

winning levels and the number of coalitions. We conclude

that confronted with a difficult threshold problem, bidders

are not insensitive to bid price suggestions and tend to

follow such suggestions readily. This is interesting, as it

appears that the free-rider aspect is at least diminished by

coalitional feedback.

We learned that two factors are important for coalitional

feedback to have an added value compared to bid states

feedback. First, coalitional feedback works well if it sug-

gests a price increment which is lower than the private

valuation, while the winning level is higher than the private

valuation. On the other hand, when the latter is below the

private valuation, coalition feedback may have an adverse

effect. Second, coalitional feedback has more potential

impact when it goes out to bidders, who at the time of

receiving the feedback do not have a provisionally winning

bid. We have witnessed this particularly in cases with a

high threshold problem.

This paper shows what can potentially be achieved using

coalitional feedback. Whether or not such feedback can be

implemented in practice may however depend on other

considerations. Indeed, feedback is information, which will

allow bidders to learn about the preferences and behaviour

of other (rivaling) bidders. Despite being helpful in terms

of economic efficiency or bidder profits, this could be

perceived as inappropriate in some practical settings.

While our research has mainly been done with human

bidders in mind, the (factual) coalitional feedback can also

be offered to automated bidding agents. An automated

bidding agent bids on behalf of a human bidder, according

to some bidding strategy and after having learned the

preferences of the human bidder. Clearly, coalitional

feedback offers automated bidding agents objective infor-

mation on the coalitions in which it features and the

threshold that needs to be bridged by each of these coali-

tions. How automated bidding agents could best use this

information to determine which packages are the most

interesting to pursue, and how to improve current auto-

mated bidding strategies to take this into account are

interesting questions for further research.
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