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Abstract
Amajor difficulty in optimization with nonconvex constraints is to find feasible solutions. As
simple examples show, the αBB-algorithm for single-objective optimizationmay fail to com-
pute feasible solutions even though this algorithm is a popular method in global optimization.
In this work, we introduce a filtering approachmotivated by amultiobjective reformulation of
the constrained optimization problem. Moreover, the multiobjective reformulation enables
to identify the trade-off between constraint satisfaction and objective value which is also
reflected in the quality guarantee. Numerical tests validate that we indeed can find feasible
and often optimal solutions where the classical single-objective αBB method fails, i.e., it
terminates without ever finding a feasible solution.

Keywords Constrained optimization · Nonconvex optimization · Global optimization ·
Branch and bound · Multiobjective optimization

Mathematics Subject Classification 90C26 · 90C29 · 90C30

1 Introduction andmotivation

Numerical methods for constrained optimization problems have a multitude of applications
in a large range of technical and economical applications. To give a concrete example, we
consider an engineering design problem where the overall aim is to minimize the building
costs while certain requirements on the quality have to be met. Depending on the structure
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of the problem at hand, it may already be a challenging task to find feasible solutions, and
even more so to find feasible solutions that are provably optimal.

1.1 Constraint handling andmultiobjective counterparts

In this paper, we focus on constrained optimization problems where the objective function
as well as the constraints are given by twice continuously differentiable functions. Noting
that feasibility constraints are a prevalent difficulty in constrained optimization, we take a
multiobjective perspective and suggest to relax all complicating constraints and re-interprete
them as additional and independent objective functions. From a practical point of view,
such multiobjective counterpart models account for the fact that the right-hand-side values
of constraints are often based on individual preferences and/or estimations (consider, for
example, quality constraints in an engineering design problem). Indeed, slight constraint
violations may be acceptable if this allows for a significant improvement of the primary
(cost) objective function. Conversely, if a significantly better quality can be obtained at only
slightly higher cost, the decision maker may be willing to invest more for a solution that in a
sense “oversatisfies” the constraints. A multiobjective counterpart model provides trade-off
information between constraint satisfaction on one hand and primary objective function on
the other hand, and thus supports the decision making process and the selection of a most
preferred solution.

From a numerical point of view,multiobjective counterpartmodels have another important
advantage: By relaxing all complicating constraints, feasible solutions are easily available
to initiate the optimization procedure. Depending on the selected constrained programming
solver, this may actually be a crucial property, see Example 1 below.Moreover, evenwhen the
original constrained optimization problem is infeasible, multiobjective counterpart models
have the potential to efficiently compute “best possible” solutions that, naturally, remain
infeasible for the original constrained problem, but perform as well as possible w.r.t. both
constraint satisfaction and primary objective in a multiobjective sense.

1.2 ˛BBmethod

TheαBB-method suggested by [1] is an example of a deterministic constrained programming
algorithm that aims at the determination of a globally optimal solution. It can be interpreted as
a geometric branch-and-bound algorithm that discards subregions of the feasible set (referred
to as boxes) based on efficiently computed lower and upper bounds on the optimal objective
value. It terminates with the best found feasible solution as soon as the difference between
upper and lower bound falls below a prespecified accuracy requirement. On a specific subbox,
a lower bound is obtained by solving an auxiliary convex optimization problem (referred to
as convexified problem in the following) restricted to a convex superset of the feasible set
in the considered subbox. The objective function of this convexified problem is a convex
underestimator of the original objective function, and thus an optimal solution yields a lower
bound on the best possible objective value in the subbox in question. Upper bounds, on the
other hand, are obtained from images of already known feasible solutions, and thus crucially
depend on the ability to efficiently compute such feasible solutions. Usually, feasible solu-
tions are retrieved from the optimal solutions of the convexified problems, i.e., by evaluating
the respective solutions with the original constraint functions. However, since the convex-
ified problems operate on relaxed (convex) feasible sets, their solutions do not have to be
feasible for the original problem, and in this case the determination of upper bounds becomes
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complicated. This difficulty was described in [17] and exemplified at the following example
problem:

Example 1 [17] Consider the single-objective optimization problem

min f (x) = x1 − x2
s.t. g(x) = −x21 − (x2 − 5)2 + 25 + √

2 ≤ 0,
x ∈ [1, 2] × [0, 1].

(1)

The global optimumof problem (1) is x∗ = (
4
√
2; 0) ≈ (1.1892; 0), and the optimal objective

value can be obtained as f (x∗) = 4
√
2 ≈ 1.1892.

As was noted in [17], the αBB method does not make any progress when applied to
problem (1) since the optimal solutions of the convexified problems are always infeasible for
the original problem.As a consequence, lower bounds are constructed,while upper bounds are
never obtained. Therefore, the αBB method can never satisfy the accuracy requirements and
thus does not terminate. In the following, wewill use Example 1 as a test case to exemplify the
advantages and also the difficulties when considering multiobjective counterpart models and,
as a natural consequence, a multiobjective counterpart of the αBBmethod that is specifically
tailored for the solution of constrained optimization problems.

1.3 Related literature

The close relationship between constrained optimization problems and multiobjective coun-
terpart models has been discussed and exploited in a variety of different ways. We refer to
[18] for a general survey on the interrelation between different relaxation strategies of con-
strained programming problems (like, for example, Lagrangian relaxation and exact penalty
functions) and corresponding scalarizations of the multiobjective counterpart model (in case
of Lagrangian relaxation this is the classical weighted-sum scalarization, while exact penalty
functions correspond to so-called elastic constraint scalarizations). In [15], a multiobjective
counterpart approach is introduced for constrained multiobjective optimization problems
and the interrelation of constrained and unconstrained multiobjective optimization is exam-
ined. Multiobjective counterpart models have motivated a variety of solution approaches for
different classes of constrained optimization problems. As a prominent example, multiob-
jective counterpart models naturally relate to filter methods where total constraint violation
is interpreted as a second objective function, see, for example, [11] and the survey in [12].
Multiobjective counterpart models are also used, among others, to handle constraints in evo-
lutionary algorithms (see, for example, [32] for a survey), and in the context of combinatorial
optimization problems to efficiently compute solution alternatives for multiobjective and
multidimensional knapsack problems [30]. Finally, we note that besides constraint handling
multiobjective optimization is also a powerful tool for other algorithmic aspects; see [34] for
a recent example.

Common algorithms to solve multiobjective optimization problems globally can be
divided into deterministic and stochastic algorithms. Stochastic algorithms, also named
evolutionary methods, construct a population of (feasible) solutions and use evolutionary
techniques in order to find new feasible solutions with a better objective value. See [3,4,13]
for some exemplary procedures. A drawback of such algorithms is that they cannot guarantee
to find optimal solutions in a finite amount of time.

Hence, we want to make use of a deterministic algorithm. Good surveys on determinis-
tic methods in multiobjective optimization can be found in the books [22,25]. Most of the
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knowndeterministicmethods for biobjective optimization are based on the branch-and-bound
approach, see, for example, [10,21,35]. The upper and lower bounds for “optimal” points
in the image space are often obtained by using interval methods or Lipschitz properties
of the objectives. For multiobjective optimization problems (with more than two objec-
tives) only a few branch-and-bound algorithm exist, see [2,9,24,28,29]. In [24] an improved
lower bounding procedure is introducedwhich uses αBBunderestimators and Benson’s outer
approximation algorithm for convex multiobjective optimization problems, see [7,19]. Fur-
thermore, the proposed algorithm guarantees a certain accuracy of the computed solutions
in the pre-image and in the image space.

1.4 Contribution

It is well known from the literature that using multiobjective counterparts can be highly ben-
eficial as outlined above. In a short conference proceeding, see [8], it was already mentioned
by the authors of this paper that solving the nonconvexmultiobjective counterpart by a global
solution technique can deliver feasible solutions for the original constrained single-objective
problem, and first numerical experiments on problem (1) were performed.

In thiswork, after introducing the basic notations and definitions in Sect. 2, we examine the
relations between constrained optimization problems and their multiobjective counterparts
in detail, see Sect. 3. We also study ε-optimality as well as weak optimality notions. In
Sect. 4, we present for the first time a branch-and-bound based algorithm for the specific
nonconvex multiobjective counterpart problem. This algorithm is specifically tailored to
find those points which deliver useful information for the original constrained optimization
problem—without waisting time by a full determination of the nondominated set of the
multiobjective counterpart. We prove the finiteness and the correctness of the proposed new
algorithm.

In Sect. 5, we propose some possible post-processing for improving the results further.
Finally, we illustrate the new algorithm on various test instances in Sect. 6. We conclude with
Sect. 7.

2 Definitions and notations

In this paper, we focus on two variants of constrained optimization problems. Let X ⊆ R
n

be a box, i.e., there are vectors x, x ∈ R
n with x ≤ x and X = {x ∈ R

n | x ≤ x ≤ x}. The
inequality sign ≤ has to be understood component-wise. Furthermore, let f : R

n → R and
gk : R

n → R, k = 1, . . . , r be twice continuously differentiable functions. For an arbitrary
set A ⊆ R

n , we denote the image set of A under the map f by f (A) := { f (x) ∈ R | x ∈ A}.
The following two constrained optimization problems are equivalent in the sense that they
have the same feasible set and objective functions.

min
x∈X f (x)

s.t. gk(x) ≤ 0, k = 1, . . . , r
(P1)

min
x∈X f (x)

s.t. max
k=1,...,r

gk(x) ≤ 0 (P2)
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We assume in the following that the feasible set S of (P1) and (P2) given by S := {x ∈
X | gk(x) ≤ 0, k = 1, . . . , r} is not empty. We denote the elements of the feasible set of the
single-objective optimization problem by feasible solutions.

Definition 1 Let ε > 0 be given.

(i) A feasible solution x̄ ∈ S is said to be minimal for (P1) (or (P2), respectively) if
f (x̄) ≤ f (x) for all x ∈ S.

(ii) A feasible solution x̄ ∈ S is said to be ε-minimal for (P1) (or (P2), respectively) if
f (x̄) < f (x) + ε for all x ∈ S.

Next, we formulate two box constrained multiobjective optimization problems that relax
the constraints of (P1) and (P2), respectively, and reinterpret them as additional objective
functions. We refer to these problems as the multiobjective counterparts to (P1) and (P2),
respectively. The relations between the original problems and the counterpart problems are
explored later.

min
x∈X

⎛
⎜⎜⎜⎝

f (x)
g1(x)

...

gr (x)

⎞
⎟⎟⎟⎠ (MOP1)

min
x∈X

(
f (x)

max
k=1,...,r

gk(x)

)
(MOP2)

Note that the bi-objective problem (MOP2) has an objective function which is in general
not differentiable. To simplify the notation, we define the mapping G : R

n → R by

G(x) := max
k=1,...,r

gk(x).

Moreover, we write ( f , g1, . . . , gr )(x) and ( f ,G)(x) to denote the objective vector of a
solution x ∈ X w.r.t. problem (MOP1) and (MOP2), respectively.

2.1 Multiobjective counterpart models

Multiobjective counterpart models fall in the class of multiobjective optimization problems.
In this context, optimality concepts are based on comparing outcome vectors subject to order
relations. We use the classical concept of Pareto dominance that is based on the following
order relation for two vectors x, y ∈ R

m (see, for example, [6] or [22]):

x ≤ y ⇔ x j ≤ y j for all j = 1, . . . ,m

x � y ⇔ x j ≤ y j for all j = 1, . . . ,m and x 
= y

x � y ⇔ x j > y j for at least one j ∈ {1, . . . ,m}
x < y ⇔ x j < y j for all j = 1, . . . ,m

The symbols ≥, �, � and > are defined analogously.
To simplify notation, we denote the vector-valued objective functions of (MOP1) and

(MOP2) by h : R
n → R

1+r with h(x) = ( f , g1, . . . , gr )(x) and h : R
n → R

2 with h(x) =
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( f ,G)(x), respectively. Moreover, e = (1, . . . , 1)T ∈ R
m is the m-dimensional all-ones

vector, wherem = 1+r orm = 2, respectively, depending on the dimension of the currently
considered problem.

Remark 1 Note that the pair ((P2), (MOP2)) is a special case of the pair ((P1), (MOP1))
(with r = 1 and g1(x) = G(x)). The following definitions and relations will be formulated
for ((P1), (MOP1)). They hold equivalently for ((P2), (MOP2)).

Definition 2 Let ε > 0 be given.

(i) A solution x̄ ∈ X is said to be efficient for (MOP1) if there does not exist another
solution x ∈ X with h(x) � h(x̄). If x̄ is efficient, then the corresponding outcome
vector h(x̄) is called nondominated.

(ii) A solution x̄ ∈ X is said to beweakly efficient for (MOP1) if there does not exist another
solution x ∈ X with h(x) < h(x̄). If x̄ is weakly efficient, then the corresponding
outcome vector h(x̄) is called weakly nondominated.

(iii) A solution x̄ ∈ X is said to be ε-efficient for (MOP1) if there does not exist another
solution x ∈ X with h(x) � h(x̄) − εe.

Note that for all considered optimization problems (P1), (P2), and (MOP1), (MOP2),
an optimal or efficient solution exists, respectively, because both feasible sets S and X are
compact sets and the objective functions are continuous. Moreover, for the efficient sets of
(MOP1) and (MOP2) external stability holds since the ordering coneR

m+ is a pointed closed
convex cone and h(X) := {h(x) | x ∈ X} is a compact set, compare with [27, Theorem
3.2.9]. This means that for any x ∈ X there exists some x̃ ∈ X with x̃ is efficient and
h(x̃) ≤ h(x). As a consequence, the next theorem, which is given for instance in [18], also
holds for our setting.

Theorem 1 The set of minimal solutions of the constrained problem (P1) always contains
an efficient solution of the associated multiobjective counterpart problem (MOP1), and all
minimal solutions of (P1) are weakly efficient for (MOP1). Conversely, the set of efficient
solutions of (MOP1) contains at least one minimal solution of (P1).

Since the pair ((P2), (MOP2)) is a special case of the pair ((P1), (MOP1)), see Remark 1,
Theorem 1 also holds for ((P2), (MOP2)). As it was explained in [18], the optimal solution
of (P1) can be calculated as a specific efficient solution of (MOP1):

Theorem 2 Let XE be the efficient set for (MOP1) and x̄ ∈ argmin{ f (x) | x ∈ XE ∩ S}.
Then x̄ is minimal for (P1).

In general, the determination of the complete efficient set is not practicable if only the
solution of a single-objective constrained optimization problem (P1) is sought. However, if
an algorithm can compute an approximation of the efficient set in a region of interest, it is
possible to find near-optimal solutions of the constrained optimization problem in reasonable
time, and additionally provide trade-off information between objective values and constraint
satisfaction.

2.2 Lower bounding by convex underestimators

Branch-and-bound algorithms heavily rely on lower bounds for the values of scalar-valued
functions on subsets. One possible approach to obtain lower bounds is the formulation of so
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called convex underestimators. A convex underestimator of a function f : R
n → R on a box

X = [x, x] ⊆ R
n is a convex function f : X → R with f (x) ≤ f (x) for all x ∈ X , see, for

example, [1]. A convex underestimator for a twice continuously differentiable function f on
X can, for example, be calculated as

f (x) := f (x) + α f

2
(x − x)T (x − x), (2)

where α f ≥ max{0,−minx∈X λmin, f (x)}. Here, λmin, f (x) denotes the smallest eigenvalue
of the Hessian H f (x) of f in x , see [20]. The minimal value of f over X , which can be
calculated by standard techniques from convex optimization, delivers then a lower bound for
the values of f on X . A lower bound for λmin, f (x) over X can be calculated easily with the
help of interval arithmetic, see again [20]. For that, the Matlab toolbox Intlab can efficiently
be used [26]. See also [31] for improved lower bounds. The above proposed and some other
methods to obtain lower bounds for λmin, f (x) are described and tested in [1]. There are also
other possibilities for the calculation of convex underestimators. For example in [1] special
convex underestimators for bilinear, trilinear, fractional, fractional trilinear or univariate
concave functions were defined. Here, we restrict ourselves to the above proposed convex
underestimator. The theoretical results remain true in case that the above underestimators are
replaced by tighter ones.

3 Relations between constrained optimization problems and their
multiobjective counterparts

From Sect. 2 we already know that (P1) and (P2) are equivalent and that all optimal solutions
of (P1) and (P2) are weakly efficient for (MOP1) and (MOP2), respectively.

Next to some obvious relations, we can state a relationship between the ε-minimal solu-
tions of (P1) and the ε-efficient solutions of (MOP1). Due to Remark 1, an equivalent result
holds for ((P2),(MOP2)).

Lemma 1 Let x̄ ∈ S be ε-minimal for (P1). Then x̄ is ε-efficient for (MOP1).

Proof Since x̄ ∈ S is ε-minimal for (P1) it holds that f (x̄) < f (x) + ε for all x ∈ S. Now
assume that x̄ is not ε-efficient for (MOP1). Then a solution x̃ ∈ X exists with

h(x̃) � h(x̄) − εe,

i.e., f (x̃) ≤ f (x̄) − ε and gk(x̃) ≤ gk(x̄) − ε for all k = 1, . . . , r (with at least one strict
inequality). Since x̄ ∈ S it follows that gk(x̃) ≤ 0 − ε < 0 for all k = 1, . . . , r and thus x̃ is
feasible for (P1). But with f (x̃) ≤ f (x̄) − ε we obtain a contradiction to the ε-minimality
of x̄ for (P1). �

The relationship between the different solution categories for (P1) and (MOP1) according
to Theorem 1 and Lemma 1 are visualized in Fig. 1.

In contrast to the equivalence between (P1) and (P2), the optimization problems (MOP1)
and (MOP2) are in general not equivalent if r ≥ 2. However, we can state the following
lemma.

Lemma 2 Let x̄ ∈ X be weakly efficient (or even efficient) for (MOP2). Then x̄ ∈ X is
weakly efficient for (MOP1).
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X

S

ε-eff.

ε-min.

weakly eff.

eff.min.

= ∅

Fig. 1 Venn diagram showing the relations between the solutions of (P1) and (MOP1)

Proof Herewe use h := ( f , g1, . . . , gr )T . Assume that x̄ is notweakly efficient for (MOP1).
Then there is an x∗ ∈ X with h(x∗) < h(x̄), i.e., f (x∗) < f (x̄) and gk(x∗) < gk(x̄) for
k = 1, . . . , r . This implies maxk=1,...,r gk(x∗) < maxk=1,...,r gk(x̄), which contradicts the
assumption that x̄ is weakly efficient (or efficient) for (MOP2). �

To see that the inverse implication does not hold, set f , g1, g2 : R → R with f (x) = x2,
g1(x) = x , and g2(x) = −x , and X = [−5, 5]. Then all x ∈ X are weakly efficient for
(MOP1), but only x = 0 is weakly efficient for (MOP2).

Note that for the special case that r = 1 the two problems (MOP1) and (MOP2) are
equivalent by definition.

Lemma 3 Let X (MOP1)
E be the efficient set of (MOP1) and X (MOP2)

E be the efficient set of
(MOP2).

(i) Let r = 1 and x̄ ∈ X (MOP1)
E with x̄ ∈ argmax{g1(x) | x ∈ S}. Then x̄ is minimal for

(P1).
(ii) Let r = 1 and x̄ ∈ X (MOP1)

E with x̄ ∈ argmax{g1(x) | x ∈ X (MOP1)
E ∩ S}. Then x̄ is

minimal for (P1).
(iii) Let r ≥ 2 and x̄ ∈ X (MOP2)

E with x̄ ∈ argmax{maxk=1,...,r gk(x) | x ∈ S}. Then x̄ is
minimal for (P1) and (P2).

(iv) Let r ≥ 2 and x̄ ∈ X (MOP2)
E with x̄ ∈ argmax{maxk=1,...,r gk(x) | x ∈ X (MOP2)

E ∩ S}.
Then x̄ is minimal for (P1) and (P2).

Proof (i) Assume that x̄ is not minimal for (P1). Then there is a point x∗ ∈ S with
f (x∗) < f (x̄) and g1(x∗) ≤ 0.Moreover, it holds g1(x∗) ≤ g1(x̄). But this contradicts
the efficiency of x̄ for (MOP1).

(ii) Assume that x̄ is not minimal for (P1). Then there is a point x∗ ∈ S with f (x∗) <

f (x̄) and g1(x∗) ≤ 0. Since x̄ ∈ X (MOP1)
E we obtain g1(x∗) > g1(x̄). Therefore,

x∗ /∈ X (MOP1)
E , since otherwise x̄ would not be an element of argmax{g1(x) | x ∈

X (MOP1)
E ∩ S}. For the optimization problem (MOP1) external stability holds. Hence,

since x∗ /∈ X (MOP1)
E , there exists a point x̃ ∈ X (MOP1)

E with f (x̃) ≤ f (x∗) < f (x̄) and
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g1(x̃) ≤ g1(x∗) ≤ 0. The feasible solutions x̄ and x̃ are both efficient of (MOP1) and
their images do not dominate each other. Therefore, 0 ≥ g1(x̃) > g1(x̄) holds. This
contradicts x̄ ∈ argmax{g1(x) | x ∈ X (MOP1)

E ∩ S}.
(iii) The assertion that x̄ is minimal for (P2) follows analogously to (i). Because of the

equivalence of (P1) and (P2), the point x̄ is also minimal for (P1).
(iv) The assertion that x̄ is minimal for (P2) follows analogously to (ii). Because of the

equivalence of (P1) and (P2), the point x̄ is also minimal for (P1).
�

Note that a solution x̄ according to Lemma 3, cases (i) and (iii), does not have to exist.
Consider, for example, the simple linear problemminx∈S f (x)with f (x) = x , g1(x) = x−1,
X = [0, 1], and S = {x ∈ X | x − 1 ≤ 0}. Then X (MOP1)

E = {0} while argmax{g1(x) | x ∈
S} = {1} (note that x∗ = 0 is the unique minimal solution for (P1) in this case). Moreover,
Lemma 3, cases (iii) and (iv) with x̄ ∈ X (MOP1)

E instead of x̄ ∈ X (MOP2)
E do not hold in

general. This is the reason why we focus on solving problem (MOP2) rather than problem
(MOP1) in the following sections.

4 Multiobjective counterpart˛BB algorithm

We will now focus on the constrained optimization problem (P2) and its multiobjective
counterpart (MOP2) as suggested at the end of Sect. 3.

To solve (MOP2) we adapt the branch-and-bound based algorithm for nonconvex multi-
objective optimization which was given in [24]. It is based on an iterative subdivision of the
feasible set X = [x, x] into successively smaller boxes (see Sect. 4.1 below), combinedwith a
bounding scheme that prunes irrelevant areas of the decision space.While this multiobjective
αBB algorithm determines an approximation of the complete nondominated set, the multi-
objective counterpart αBB algorithm (MOCPαBB algorithm) directs the search towards the
region of interest for the constrained problem (P2) in order to avoid unnecessary computa-
tions asmuch as possible.More precisely, given a required accuracy ε > 0, themultiobjective
αBB algorithm from [24] terminates with an approximation of the complete nondominated
set of (MOP2) that consists of ε-nondominated points (i.e., images of ε-efficient solutions)
such that for every nondominated point y there exists a representative ȳ in the approximation
such that ȳ − ε

2e ≤ y. Recognizing the fact that in our case (MOP2) is a multiobjective
counterpart of a constrained optimization problem (P2), we suggest appropriately adapted
discarding tests (Sect. 4.2) as well as selection and termination rules (Sect. 4.3) to direct
the search towards an optimal solution of the constrained problem. The overall MOCPαBB
algorithm is stated in Sects. 4.4 and 4.5 verifies the existence of appropriate bounds.

4.1 Box generation and branching scheme

The subdivision of the feasible set X = [x, x] of (MOP2) in the decision space is imple-
mented in the standard way of such subdivision algorithms. Thus, it is completely analogous
to the subdivision as done in the multiobjective αBB algorithm of [24]: Starting from the
initial box X = [x, x], a series of subboxes is generated by iteratively splitting a currently
selected box X∗ perpendicularly to a longest edge into two subboxes X1 and X2. For the
description of the selection rule for a box X∗, which determines in which series the boxes
are subdivided, we refer to Sect. 4.3.
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Fig. 2 Example for LPNS for an
instance of (MOP2), marked
with filled circles, and points q1

and q2 defined in (3) and (4). The
point p̄ = (q21 , q12 )T upper
bounds the region of interest

f

G

0

q1

q2

p̄

We denote the list of current, also called active, boxes by LW . The list LW is also denoted
as working list in the following, and it is initialized with X . The method terminates when
the list LW is empty. During the course of the algorithm, boxes that can not contribute to the
approximation of the optimal set of problem (P2) are discarded from further consideration.
On the other hand, boxes that have achieved a certain accuracy w.r.t. the current bound sets
and for which a further refinement is not promising are stored in a tentative solution list LS .

4.2 Bound computation and discarding test

A central element in the MOCPαBB algorithm is the discarding test which is used to prune
selected boxes from the list LW that do not contain (near) optimal solutions of (P2). For
this purpose, upper and lower bounds are computed based on solutions of (MOP2) (upper
bounds) and convex underestimators over selected subboxes (lower bounds), respectively.
Upper Bounds During the course of the MOCPαBB algorithm and while exploring selected
boxes from LW , we generate a stable set LPNS of feasible outcome vectors (called provi-
sional nondominated set) representing upper bounds for the global nondominated points of
(MOP2). In this context, a set N ⊂ R

m is called stable if for any y1, y2 ∈ N , y1 � y2

holds. Every time a point q is a new candidate for LPNS , we check if this point is dominated
by any other point of LPNS . In this case, q will not be included in LPNS . Otherwise, q will
be added to LPNS and all points that are dominated by q are removed. Figure 2 shows an
example for a provisional nondominated set LPNS for an instance of (MOP2). Note that in
the biobjective case considered here, the points y = ( f ,G)(x) in LPNS can be ordered such
that their objective function values f (x) are strictly increasing while their largest constraint
values G(x) = maxk=1,...,r gk(x) are strictly decreasing.

Sincewewant to direct the search towards the region of interest of the constrained problem
(P2), we are particularly interested in the two points from LPNS defined by

q1 := argminp∈LPNS
{p2 | p2 > 0} and (3)

q2 := argmaxp∈LPNS
{p2 | p2 ≤ 0}, (4)

see Fig. 2 for an illustration. Intuitively, these are the points of LPNS ⊆ R
2 which

are “around” G(x) = 0. Note that q1 = argmaxp∈LPNS
{p1 | p2 > 0} and q2 =

argminp∈LPNS
{p1 | p2 ≤ 0} also hold. It is possible that one of the two points does not

exist. This case is considered in Sect. 4.5. For the remainder of this section, we assume that
both points q1 and q2 exist. Note that, as the list LPNS changes its cardinality and precise-
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ness during the algorithm, the points q1 and q2 generally change their position during the
procedure.
Lower Bounds A main ingredient of the adapted discarding test in our new MOCPαBB
algorithm is to calculate lower bounds for the image set of a selected box X∗ from LW , i.e., a
set LB such that LB+R

2+ is a superset of {y ∈ R
2 | ∃x ∈ X∗ : y1 = f (x), y2 = G(x)}, and

compare them with the upper bounds q1 and q2 of the interesting part of the nondominated
set.

As a lower bound for the image set of a box X∗, we use the so called ideal point of convex
underestimators of the objective functions on the considered box X∗. In general, the ideal
point of a vector-valued function consists of the global minimal values of each function. For
(MOP2) this is the point a = (a1, a2)T with

a1 = min
x∈X∗ f (x) and a2 = min

x∈X∗ G(x) = min
x∈X∗( max

k=1,...,r
gk(x)).

Determining a in the nonconvex case is not possible without applying techniques from global
optimization, which are time consuming. As we have to calculate ideal points repeatedly over
many subboxes,we use convex underestimators as defined in Sect. 2.2 for both objective func-
tions. The ideal point of the convex underestimators is denoted by ( f ,G)T and is calculated
as

f = min
x∈X∗ fα(x) and G = min

x∈X∗ Gβ(x), (5)

where fα is a convex underestimator of f on X∗ and Gβ is a convex underestimator of G
on X∗. While we can directly use the convex underestimator (2) to define fα , the particular
structure of G as the maximum of r functions suggests several alternative definitions based
on (2). In the following lemma, we propose two such definitions for Gβ .

Lemma 4 Let a box X∗ = [x∗, x∗] be given. Moreover, let gk : R
n → R, k = 1, . . . , r be

twice continuously differentiable functions and let gk,βk : R
n → R be the corresponding

convex underestimators on X∗ according to (2), i. e.,

gk,βk (x) := gk(x) + βk

2
(x∗ − x)T (x∗ − x)

with sufficiently large βk > 0. Define the map G : R
n → R by G(x) := maxk=1,...,r gk(x).

Then the functions Gβ,G β̃ : R
n → R with

Gβ(x) = max
k=1,...,r

gk,βk (x)

G β̃ (x) =
(

max
k=1,...,r

gk(x)

)
+ β̃

2
(x∗ − x)T (x∗ − x) with β̃ := max

k=1,...,r
βk

are convex underestimators of G on X∗.

Proof Follows immediately from [20] and the fact that the maximum of convex functions is
again a convex function. �

While G β̃ is probably the more intuitive choice for a convex underestimator since it
follows directly from (2), the convex underestimator Gβ is generally preferable since it
provides stronger lower bounds. To illustrate this, consider an optimization problem with
two constraints g1 and g2 where g1(x) ≥ g2(x) for all x ∈ X∗. Additionally, assume that
g1 is a convex function and g2 is nonconvex. Therefore, β1 = 0 and β2 > 0, and hence
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g2,β2(x) ≤ g2(x) ≤ g1(x) = g1,β1(x) hold for all x ∈ X∗. Then, we obtain for the convex
underestimators for G on X∗:

Gβ(x) = g1(x) and G β̃ (x) = g1(x) + β2

2
(x∗ − x)T (x∗ − x),

and hence Gβ(x) ≥ G β̃ (x) holds for all x ∈ X∗. The following lemma shows that this is
true in general, i.e., Gβ is indeed a stronger convex underestimator than G β̃ .

Lemma 5 Under the assumptions of Lemma 4, it holds that G β̃ (x) ≤ Gβ(x) for all x ∈ X∗.

Proof Let x ∈ X∗ be arbitrary but fixed, and let k∗ ∈ {1, . . . , r} be an index for which
gk∗(x) = maxk=1,...,r gk(x). Then β̃ = maxk=1,...,r βk ≥ βk∗ and hence

G β̃ (x) =
(

max
k=1,...,r

gk(x)

)
+ β̃

2
(x∗ − x)T︸ ︷︷ ︸

≤0

(x∗ − x)︸ ︷︷ ︸
≥0

≤ gk∗,βk∗ (x) + βk∗

2
(x∗ − x)T (x∗ − x)

≤ max
k=1,...,r

gk,βk (x) = Gβ(x).

�
Thereby, Gβ is the preferred convex underestimator and is used in our procedure. As Gβ

is in general not differentiable, we solve the smooth convex optimization problem to obtain
the minimum of Gβ on the box X∗:

min
x∈X∗, t∈R t s.t. gk,βk (x) ≤ t, k = 1, . . . , r . (6)

Discarding Tests The following lemma is the basis for the first two discarding tests.

Lemma 6 Let q1 and q2 be defined as in (3) and (4). Moreover, let ( f ,G)T be a lower bound

vector, where f and G are lower bounds for f and G on X∗, respectively. If f > q21 or

G > q12 holds, the box X∗ does not contain any minimal solution of (P2).

Proof If the first condition f > q21 holds, we obtain q21 < f ≤ f (x) for all x ∈ X∗.
Moreover, the point q2 is the objective vector of a solution x̃ ∈ X , and by (4) it holds
G(x̃) = q22 ≤ 0. Hence, q2 is an image of a feasible solution x̃ of (P2) and the objective
function value q21 = f (x̃) is less than any function value attainable in X∗. Thus, there is no
minimal solution for (P2) in X∗ in this case.

If G > q12 holds, by (3) it follows 0 < q12 < G ≤ G(x) = maxk=1,...,r gk(x) for all
x ∈ X∗. Hence, for every x ∈ X∗ there is at least one constraint gk with gk(x) > 0. This
means that every x ∈ X∗ is infeasible for (P1) and cannot be a minimal solution of (P1). �

Note that the set {( f ,G)T } + R
2+ can be interpreted as an outer approximation of the

convex set

P := {y ∈ R
2 | y1 = fα(x), y2 = Gβ(x), x ∈ X∗} + R

2+ (7)

and that the discarding test of Lemma 6 actually tests whether p̄ := (q21 , q
1
2 )

T /∈ {( f ,G)T }+
R
2+ (and hence p̄ /∈ P), see Fig. 2 for an illustration of p̄. In this context, an outer approxi-

mation of a set A ⊆ R
2 is given by a set LB ⊆ R

2 such that A ⊆ LB + R
2+.

While the discarding test of Lemma 6 is very simple and can be easily evaluated, it is rather
weak in practice. In order to obtain a tighter outer approximation of the set ( fα,Gβ)(X∗)

123



Journal of Global Optimization (2021) 80:31–61 43

and, hence, to strengthen the discarding test, we replace the ideal point of the convex under-
estimators by an improved lower bound set LB that is implicitly obtained from solving a
single-objective convex optimization problem to decide whether p̄ belongs to P:

min
(x,t)∈Rn+1

t s.t. x ∈ X∗,

p̄1 + t ≥ fα(x),
p̄2 + t ≥ gk,βk (x), k = 1, . . . , r .

(P∗
X∗, p̄)

A minimal solution of (P∗
X∗, p̄) is named (x̃, t̃). If t̃ ≤ 0 holds, we have p̄ ∈ P . Otherwise,

if t̃ > 0 holds, the point p̄ lies outside P and can thus be separated from P with a supporting
hyperplane that can be constructed from a Lagrange multiplier λ∗ ∈ R

1+r for the inequality
constraints of (P∗

X∗, p̄): Given λ∗, a normal vector of this hyperplane is obtained as (λ∗
1, 1 −

λ∗
1) = (λ∗

1,
∑r+1

k=2 λ∗
k) ∈ R

2. Moreover, a support vector of this hyperplane is p̄ + t̃ e. This
result can be shown by using necessary and sufficient optimality conditions for nonsmooth,
convex optimization problems with linear constraints.

Note that the outer approximation of P gets indeed improved by using the constructed
supporting hyperplane, since the point p̄ is infeasible for this improved approximation.

The next lemma formally proves the above mentioned fact that a box can be discarded for
t̃ > 0.

Lemma 7 Let LPNS be a stable subset of h(X), X∗ ⊆ R
n be a box, fα and Gβ be the

convex underestimators of f and G on X∗ and q1, q2 be defined as in (3) and (4). Moreover,
consider the optimization problem (P∗

X∗, p̄) with p̄ = (q21 , q
1
2 )

T with the minimal solution

(x̃, t̃). If t̃ > 0 holds, then X∗ does not contain any minimal solution for (P1).

Proof Assume that there is a minimal solution x∗ for (P1) with x∗ ∈ X∗ ∩ S. The point q2

is the function value of a feasible solution x̃ ∈ S, i.e., there is an x̃ ∈ S with

q21 = f (x̃). (8)

Consider the pair (x∗, 0) ∈ R
n+1. Using the minimality and feasibility of x∗ and properties

of convex underestimators, we obtain that this pair is feasible for (P∗
X∗, p̄):

p̄1 + 0 ≥ fα(x∗), because p̄1 = q21 = f (x̃) ≥ f (x∗) ≥ fα(x∗)
p̄2 + 0 ≥ gk,βk (x

∗), because p̄2 = q12 > 0 ≥ gk(x∗) ≥ gk,βk (x
∗)

for all k = 1, . . . , r .

This is a contradiction to the minimality of t̃ > 0. �
Note that the optimization problem (P∗

X∗, p̄) is also used for a termination procedure which
is discussed in Sect. 4.3 below.

4.3 The selection and termination rule

A selection rule determines within the branch-and-bound procedure which of the remaining
subboxes is selected next to be bisected. The aim of every selection rule is to identify boxes
whose subboxes deliver good bounds for the globally minimal value. Such rules are usually
heuristic. A common rule in multiobjective optimization is to choose the box which has the
smallest lower bound w.r.t. one (arbitrary but fixed) objective function, or w.r.t. a weighted
sum of all objectives. In our case, we are interested in the minimization of f , but also in
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finding at least one feasible solution of (P1). Therefore, as long as no point q2 exists, a box
with the smallest lower bound for G is selected as the next box which will be bisected, while
a box with the smallest calculated lower bound for f is chosen otherwise.

The termination rule decides whether a box is discarded, whether it is stored in the solution
list LS (and thus not further bisected), or whether it is stored in the working list LW (i.e., the
list of active boxes that will be analyzed further). In the work of [24], a termination procedure
is introduced which guarantees some accuracies of calculated points in the decision and in
the objective space. The minimal solution of the optimization problem (P∗

X∗, p̄) plays an
essential role for the decision to store a box in the solution list. For our algorithm we use a
simpler rule in the first part, which ensures an accuracy of q1 and q2:

1. Termination rule: Solve (P∗
X∗, p̄) for the box X∗ and p̄ = (q21 , q

1
2 )

T , where q1 and q2

are defined as in (3) and (4). The minimal solution is denoted by (x̃, t̃). Store X∗ in LS if
0 ≥ t̃ ≥ − ε

2 holds for a given ε > 0.
Note that in case of t̃ > 0, the box is discarded because of Lemma 7.

4.4 TheMOCP˛BB algorithm

As mentioned in Sect. 4.1, the MOCPαBB algorithm is based on a box subdivision of X =
[x, x]. For all not-discarded boxes X∗ in the working list LW and in the solution list LS , an
outer approximation of the set P (which is an underestimation of possible outcome vectors
on X∗, see (7)) is encoded in a set H. This outer approximation is initialized using the
ideal point ( f ,G) of P and further refined whenever additional supporting hyperplanes of
P become available. Every element of H is a pair consisting of the normal vector λ of the
hyperplane and a scalar value, which is the scalar product of λ and one point belonging to the
hyperplane. Thus, the initial outer approximation of P obtained by minimizing the convex
underestimators on the box X∗ is given by

H = {((1, 0)T , f ), ((0, 1)T ,G)}.
Hence, the lower bounds f and G for each objective are stored in H as well.

The complete algorithm consists of two parts. The first part stated above is the main
part and includes the discarding test as well as the selection and termination rule which are
explained in the previous sections. The second part is a post processing algorithm which
includes different (optional) steps in order to further improve the solution quality.

The following theorem states that the algorithm (without the post processing) terminates.
We omit the proof as it is a special case of the proof of Lemma 4.1 of [24].

Theorem 3 Algorithm 1 needs finitely many subdivisions in line 7.

Next, we want to derive some properties of the points q1 and q2 computed with Algo-
rithm 1. These properties will be used in a post processing for further improvements.

Theorem 4 Let q1, q2 be defined by (3) and (4) after Algorithm 1, line 26. In particular,
assume that both exist. Denote the pre-images of q1 and q2 by x1 and x2, respectively. Then
x1 and x2 are ε-efficient of (MOP1) and (MOP2). Additionally, to each x1 and x2 exist
some boxes X1, X2 ∈ LS with x1 ∈ X1 and x2 ∈ X2.

Proof The solution x1 is the pre-imageofq1, i.e., it holds f (x1) = q11 andmaxk=1,...,r gk(x1) =
G(x1) = q12 . Assume that x1 is not ε-efficient for (MOP1) or for (MOP2). Then there is a
solution x ′ ∈ X with

f (x ′) ≤ q11 − ε (9)
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Algorithm 1MOCPαBB algorithm to solve (P2)
INPUT: (P2), ε > 0, δ > 0
OUTPUT: LS , q1, q2, (A, xmin,UB)

1: H0 ← {((1, 0)T , −∞), ((0, 1)T , −∞)},LW ← {(X ,H0)},LS ← ∅,LPNS = ∅,A = ∅
2: while LW 
= ∅ do
3: if a point q2 exists then
4: Select a pair (X∗,H) with a smallest value f from LW , delete it from LW
5: else Select a pair (X∗,H) with a smallest value G from LW , delete it from LW
6: end if
7: Bisect X∗ perpendicularly to a direction of maximum width → X1, X2

8: for l = 1, 2 do
9: Compute for f and G := maxk=1,...,r gk (·) their convex underestimators on Xl and their

corresponding minimal solution x f and xG

10: H ← {((1, 0)T , fα(x f )), ((0, 1)T ,Gβ(xG ))}
11: Store image of x f and xG in LPNS and update LPNS to a stable set
12: Obtain q1, q2 and p̄ from LPNS by (3), (4) and (11)
13: if fα(x f ) > q21 or Gβ(xG ) > q12 then
14: Discard Xl

15: else
16: Solve (P∗

X∗, p̄) with minimal solution (x̃, t̃) and Lagrange multiplier λ̄, and set λ ←
(λ̄1, 1 − λ̄1)

17: if t̃ > 0 then
18: Discard Xl

19: else if t̃ ≥ − ε
2 then

20: H ← H ∪ {(λ, λT ( p̄ + t̃ e))}
21: Store (Xl ,H) in LS
22: else Store (Xl ,H) in LW
23: end if
24: end if
25: end for
26: end while
27: (LS3 ,A, xmin,UB) ←Post processing(LS , q1, q2, p̄, δ)

gk(x
′) ≤ G(x ′) ≤ q12 − ε for all k = 1, . . . , r , (10)

and at least one inequality is strict. First assume that x ′ belongs to a box X ′ ∈ LS . Then the
termination rule implies that the minimal solution of (P∗

X∗, p̄) is (x̃, t̃) with − ε
2 ≤ t̃ ≤ 0.

Consider the pair (x ′,−ε) ∈ R
n+1 for the optimization problem (P∗

X∗, p̄) with p̄ = (q21 , q
1
2 )

as before. Then, with (9) and (10) we obtain

x ′ ∈ X ′,
q21 + (−ε) ≥ q11 − ε ≥ f (x ′) ≥ fα(x ′),
q12 + (−ε) ≥ G(x ′) ≥ gk(x

′) ≥ gk,βk (x
′) for all k = 1, . . . , r

All constraints of (P∗
X∗, p̄) are satisfied. Thus, (x

′,−ε) is feasible for (P∗
X∗, p̄), but this con-

tradicts the minimality of t̃ ≥ − ε
2 .

We can conclude that, since the algorithm terminates, x ′ has to belong to a box X ′ which
was discarded. There are two conditions based on which a box can be discarded. Either
because of the test from Lemma 7 or from Lemma 6. As (x ′,−ε) is still feasible for (P∗

X∗, p̄),
we can see that X ′ was not discarded because of Lemma 7.

Let ( f ′,G ′) be the ideal point of the convex underestimators of f and G on X ′. Then the
two reasons for discarding X ′ from Lemma 6 are still possible: (a) f ′ > q21 and (b) G ′ > q12 .

123



46 Journal of Global Optimization (2021) 80:31–61

Fig. 3 Example where pre-image
of q2 is not ε-minimal of (P1)

0

G

f

ε
2

→ ∞

f∗

q1

q2

(f, G)(X)

For case (a), we obtain with (9) the following chain of inequalities:

q11 < q21 < f ′ ≤ fα(x ′) ≤ f (x ′) ≤ q11 − ε.

This is a contradiction to ε > 0. Case (b) leads with (10) to

q12 < G ′ ≤ Gβ(x ′) ≤ G(x ′) ≤ q12 − ε,

which contradicts ε > 0 as well. Hence, x ′ does not exist and x1 is ε-efficient for (MOP1)
and (MOP2).

Now choose any box X∗, which is considered during Algorithm 1, with x1 ∈ X∗. Let
( f ,G) be the ideal point of convex underestimators of f and G on X∗. As

f = min
x∈X∗ fα(x) ≤ fα(x1) ≤ f (x1) = q11 < q21 and

G = min
x∈X∗ Gβ(x) ≤ Gβ(x1) ≤ G(x1) = q12

hold even for the final points q1, q2, X∗ can not have been discarded by Lemma 6. In addition,
with (x1, 0) ∈ R

n+1 a feasible solution for (P∗
X∗, p̄) is found and thus, for the minimal value t̃

of this optimization problem t̃ ≤ 0 holds. Hence, X∗ does not get discarded. As the algorithm
terminates (as shown in Theorem 3) there exists a subbox X1 with x1 ∈ X1 ⊆ X∗ which is
stored in LS .

The proof for x2 is analogous. Note that G(x2) ≤ 0 < q12 holds. �

Figure 3 shows that the pre-image of q2 does not have to be ε-minimal for the single-
objective problem (P1). Indeed, even in cases where q22 = 0 holds, f (x2) = q21 may be
arbitrarily far away from the optimal value f ∗.

Nevertheless, the following lemma states that we can enclose the image point of a minimal
solution for (P1) by a tube-shaped set determined by p̄ and ensure the ε-minimality for (P1)
of the pre-image of q2 in a special case.

Lemma 8 Let x∗ be a minimal solution of (P1). Then

( f ,G)(x∗) ∈ ({ p̄} − R
2+) \ ({ p̄ − ε

2
e} − int(R2+)).

A direct consequence from this is that if q12 > ε
2 holds, the pre-image of q2 is ε-minimal for

(P1) (actually ( ε
2 + μ)-minimal for all μ > 0).

Proof Since x∗ isminimal for (P1) and because of the definition of q1 and q2 (see (3) and (4)),
we know that f (x∗) ≤ q21 and G(x∗) ≤ 0 < q12 . Hence, ( f ,G)(x∗) ∈ {(q21 , q12 )T } − R

2+ =
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{ p̄} − R
2+ holds. Assume now that ( f ,G)(x∗) ∈ { p̄ − ε

2e} − int(R2+), i.e., f (x∗) < q21 − ε
2

and g(x∗) < q12 − ε
2 . Then we can choose a parameter μ′ > 0 such that

f (x∗) ≤ q21 − (
ε

2
+ μ′) and g(x∗) ≤ q12 − (

ε

2
+ μ′).

Let X∗ be a box from the solution list LS with x∗ ∈ X∗. Because of Lemma 7 and the
termination rule, X∗ was not discarded, i.e., for the minimal solution (x̃, t̃) of (P∗

X∗, p̄) it

holds 0 ≥ t̃ ≥ − ε
2 . But (x∗,−( ε

2 + μ)) is feasible for (P∗
X∗, p̄), which contradicts the

minimality of t̃ ≥ − ε
2 . This shows the first part of the result, i.e., that ( f ,G)(x∗) ∈ ({ p̄} −

R
2+) \ ({ p̄ − ε

2e} − int(R2+)) holds.
The second part follows immediately: As ( f ,G)(x∗) /∈ { p̄ − ε

2e} − int(R2+), we have
two possible cases: G(x∗) ≥ q12 − ε

2 or f (x∗) ≥ q21 − ε
2 . Because of q12 > ε

2 , we obtain
q12 − ε

2 > 0, and hence G(x∗) ≥ q12 − ε
2 can not hold because of the feasibility of x∗ for

(P1). Hence, f (x∗) ≥ q21 − ε
2 holds. Using the minimality of x∗, it follows that

q21 ≤ f (x∗) + ε

2
< f (x∗) + ε

2
+ μ ≤ f (x) + ε

2
+ μ for all μ > 0, x ∈ S.

Consequently, the pre-image of q2 is ( ε
2 +μ)-minimal for (P1), and, in particular, ε-minimal

for (P1). �

4.5 Existence of q1 and q2

Recall the definitions of q1 and q2 from (3) and (4). The list LPNS is not empty after a first
element is added to this list at the beginning. Therefore, at least one of the two points q1, q2

exists. However, it is possible that only one of the two points exists during the whole course
of the algorithm. This is, for example, the case when X = S or S = ∅ holds. Nevertheless,
we can still define a suitable point p̄ which can be used for initializing the discarding test
from Lemma 7.

p̄ :=

⎧⎪⎨
⎪⎩

(q21 , q
1
2 )

T , if q1 and q2 exist

(q21 , M)T , if only q2 exists

(M, q12 )
T , if only q1 exists

(11)

Thereby, the constant real number M has to be chosen as an upper bound of f (·) + ε and
G(·) + ε on the box X , i. e.,

M ≥ max{max
x∈X f (x),max

x∈X G(x)} + ε.

Such an upper bound can be calculated by interval arithmetic, for instance. If one of the two
points q1, q2 does not exist, it is clearly not possible to apply the corresponding discarding
test from Lemma 6 which depends on the missing point. Recall from Sect. 4.3 that the rule
to select a box from LW depends on the existence of q2 as well. As long as q2 does not exist,
a box with a smallest lower bound for G is chosen, otherwise the box with a smallest lower
bound for f is selected.

By the next lemma, we observe that in case that feasible solutions for problem (P2) exist,
the algorithm is able to find at least a so-called ε

2 -feasible solution for (P2), i.e., it finds a
solution x ∈ R

n with G(x) ≤ ε
2 .

Lemma 9 If S 
= ∅ holds, Algorithm 1 finds at least an ε
2 -feasible solution for (P2) (within

the main while-loop).
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Proof If Algorithm 1 finds a solution x with ( f ,G)(x) = q2, then x is feasible for (P2) and,
thus, also ε

2 -feasible. We thus have to consider the case that q2 does not exist. Then q1 exists
and p̄ = (M, q12 )

T . If q12 = p̄2 ≤ ε
2 , then q1 is ε

2 -feasible and the statement is satisfied.
Otherwise, we have that q12 = p̄2 > ε

2 .
Every time a box X∗ that contains feasible solutions for (P2) is considered, we obtain

for this box a lower bound G ≤ 0 for G. Define x f ∈ argmin{ fα(x) | x ∈ X∗} and
xG ∈ argmin{Gβ(x) | x ∈ X∗}. Then the images of x f and xG are possible candidates for
LPNS . If one of x f and xG is feasible for (P2), then the algorithm has found a point q2.
Similarly, if one of x f and xG is ε

2 -feasible for (P2), then the image of this point is added
to LPNS and an ε

2 -feasible solution is found. Otherwise, G(x f ) > ε
2 and G(xG) > ε

2 hold,
i. e., x f and xG are both infeasible for (P2). In this case, problem (P∗

X∗, p̄) is equivalent to

min
(x,t)∈Rn+1

t s.t. x ∈ X∗,

M + t ≥ fα(x),
p̄2 + t ≥ Gβ(x).

Note that the first constraint induced by p̄, M + t ≥ fα(x), is satisfied for all x ∈ X∗ and for
all t ≥ −ε if M is chosen as described above. Moreover, p̄2 > ε

2 and Gβ(xG) ≤ 0 (recall
that xG ∈ X∗) imply that an optimal solution (x̃, t̃) of problem (P∗

X∗, p̄) satisfies t̃ < − ε
2 .

Thus, as long as no ε
2 -feasible solution is found, no box with G ≤ 0 is discarded.

Assume that this is the case every time a box X∗ with feasible solutions is considered.
Recall that the convex underestimators get better for smaller box widths, see [1]. Thus, if a
certain box width is reached, we get G(x) − Gβ(x) ≤ ε

2 for all x ∈ X∗ and thus also for
xG ∈ X∗. Moreover, G = Gβ(xG) ≤ 0 and thus

G(xG) − ε

2
≤ Gβ(xG) ≤ 0. (12)

Now either G(xG) ≤ ε
2 , and xG is ε

2 -feasible, or G(xG) > ε
2 , but then with (12) we obtain

a contradiction. �

5 Post processing: filtering, box refinement, and local search

The post processing further improves the so far found ε
2 -efficient solutions. As before, we

assume that the algorithm has found until now two outcome vectors q1 and q2. The pre-
image of q2 is a feasible solution for (P2) and thus q21 is an upper bound for the minimal
value f ∗ of (P2). In the special case that q2 does not exist, the algorithm continues with
p̄ = (M, q12 ) as described in Sect. 4.5. The pre-image of q1 is infeasible for (P2). If it is just
slightly infeasible, i. e., if q12 ≤ ε

2 , the two procedures Box Refinement and Local Search
and Adaptive Discarding aim to find better upper bounds for f ∗ than q21 . Otherwise, i. e., in
case in which q1 is farer above 0, we can prove that the pre-image of q2 is already ε-minimal
for (P2), see Lemma 8. We summarize the proposed steps in Algorithm 2.

5.1 Filtering

The first post processing step eliminates further boxes from the solution list. The reason for
that is that boxes can be stored in the solution list during Algorithm 1 at an early iteration
where the bounds q1 and q2 may be quite weak, but the termination rule is satisfied. As the
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Algorithm 2 Post processing

INPUT: (P2), LS , q1, q2, p̄, δ
OUTPUT: LS2 or (LS3 ,A, xmin,UB)

1: LS2 ← Filtering(LS , q1, q2, p̄)
2: if q12 ≤ ε

2 then
3: (LS3 , A) ← Box Refinement(LS2 , q1, q2, p̄, δ)
4: (xmin, UB) ← Local Search and Adaptive Discarding(LS3 , A, δ)
5: end if

bounds q1 and q2 and, thus, p̄ changes during Algorithm 1 until line 26 and come closer
to 0 in their second component, some boxes (which are already in the solution list) would
be discarded if they were considered later. The filtering procedure presented in Algorithm 3
aims to find such boxes in order to delete them from the solution list LS .

Algorithm 3 Filtering

INPUT: (P2), LS , q1, q2, p̄
OUTPUT: LS2
1: LS2 ← ∅
2: while LS 
= ∅ do
3: Select a pair (X∗,H) from LS
4: if p̄ is outside of outer approximationH of f (X∗) then
5: Discard X∗
6: else
7: Solve (P∗

X∗, p̄) with minimal solution (x̃, t̃)

8: if t̃ > 0 then
9: Discard X∗
10: else Store (X∗, x̃, t̃) in LS2
11: end if
12: end if
13: end while

5.2 Box refinement

The next procedure is a refinement procedure which consists of decreasing the box width of
the boxes in the solution list. By using Lipschitz properties (recall that the objective function
f is continuous and bounded on a box), we can show that we obtain thereby a collection
of ε-efficient solutions for (MOP2). For every box of the solution list we find an ε-efficient
solution, see the forthcoming Lemma 11. Moreover, we even get ε-efficient points which are
close to a minimal solution for (P2) in the pre-image space.

Let ω(X∗) be the box width of X∗ = [x, x], i. e., ω(X∗) = ‖x − x‖, where ‖ · ‖ is
the Euclidean norm. During the refinement a more sophisticated rule to store boxes in the
solution list is used to get an additional preciseness in the pre-image space and to ensure the
ε-efficiency of the returned solutions:

2. Termination rule: Solve (P∗
X∗, p̄) for the box X∗ and p̄ = (q21 , q

1
2 )

T , where q1 and q2

are defined as in (3) and (4). The minimal solution is denoted by (x̃, t̃). Let ε > 0 and δ > 0
be given. Store X∗ in LS if

(i) ω(X∗) ≤ δ and

123



50 Journal of Global Optimization (2021) 80:31–61

(ii) 0 ≥ t̃ ≥ − ε
2 and

(iii) ( f (x̃),G(x̃))T � p̄ or ω(X∗) <
√

ε
max{α, max

k=1,...,r
βk } .

We summarize the proposed steps in Algorithm 4.

Algorithm 4 Box Refinement

INPUT: (P2), list LS2 of boxes a the minimal solution (x̃, t̃) of (P∗
X∗, p̄), q

1, q2, p̄, δ

OUTPUT: LS3 ,A
1: LS3 ← ∅, A ← ∅
2: while LS2 
= ∅ do
3: Select a triple (X∗, x̃, t̃) from LS2 and delete it from LS2
4: if t̃ > 0 then
5: Discard X∗
6: else if (ω(X∗) < δ) and

(
h(x̃) � p̄ or ω(X∗) <

√
ε

max{α,maxk=1,...,r βk }
)
then

7: Store (X∗, x̃) in LS3 and x̃ in A
8: else
9: Bisect X∗ perpendicularly to a direction of maximum width → X1, X2

10: for l = 1, 2 do
11: Solve (P∗

X∗, p̄) with minimal solution (x̃, t̃)

12: Store (Xl , x̃, t̃) in LS2
13: end for
14: end if
15: end while

Let L be the Lipschitz constant for f on X . A bound for L can be calculated, for example,
by using interval arithmetic for the partial derivatives of f . Indeed, as boxes with minimal
solutions are not discarded and for each box a representative x̃ is stored inA, a bound for the
minimal value f ∗ for (P1) can be derived. Using Lipschitz properties for f and condition (i)
from the second termination rule, we obtain min { f (x) − Lδ | x ∈ A} as a lower bound for
f ∗.

Lemma 10 The Box Refinement, see Algorithm 4, needs finitely many subdivisions in line 9.

Proof A box X∗ with ω(X∗) < min
{
δ,

√
ε/max{α,maxk=1,...,r βk}

} := δ′ is stored in LS3
automatically. Therefore, all boxes from LS2 and their subboxes are either discarded, stored
in LS3 or bisected until their box width is smaller than δ′. �

We omit the proof of the following lemma as it follows the structure of the proofs of
Lemma 4.10 and Lemma 4.11 of [24].

Lemma 11 LetA be the output of Algorithm 4. Then every x̃ ∈ A is ε-efficient for (MOP2).

5.3 Local search with adaptive discarding

It is possible to further improve the outcome of Algorithm 1 with a local search algorithm
which should be applied after Box Refinement, see Algorithm 4.

As we have proven in Lemmas 4 and 8, the pre-image of q2 is ε-minimal for (P2) if
q12 > ε

2 holds. In the other case we cannot guarantee any ε-minimality for the pre-image of
q2. Figure 3 shows an example, where q2 lies far away from the minimal value f ∗.
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For the local search, we use each solution ofA, which came from the Box Refinement, see
Algorithm 4, as a suitable starting point for a local solver to solve (P1). Here, we solve (P1)
instead of (P2) to avoid the handling of the max-term in (P2). At least one of these starting
points is in a δ-neighborhood of a minimal solution of (P1). The procedure is described in
Algorithm 5. Additionally, we can skip the local search procedure for some boxes in case in
which the lower bound of f on a current box, which is given by f (x̃) − Lδ, is larger than a
current upper bound for f ∗. There, x̃ is the ε-efficient solution belonging to a box from the
previous solution list and L is the Lipschitz constant of f .

Algorithm 5 Local Search for (P1) with Adaptive Discarding
INPUT: (P1), a list LS3 of boxes of box width less than δ and one ε-efficient solution for each box,A, δ

OUTPUT: xmin,UB
1: if A ∩ S 
= ∅ then
2: xmin ← argmins=1,...,|LS3 |

{
f (xs ) | xs ∈ S

}

3: UB ← mins=1,...,|LS3 |
{
f (xs ) | xs ∈ S

}
4: else xmin ← ∅,UB ← ∞
5: end if
6: while LS3 
= ∅ do

7: Select a pair (X̃ , x̃) from LS3 with x̃ ∈ argminx∈A{ f (x)} and delete it from LS3
8: if UB < f (x̃) − Lδ then
9: Discard X̃
10: else
11: Apply a local solver with starting point x̃ to (P1) and obtain locally minimal solution x∗ ∈ S
12: xmin ← argmin{ f (xmin), f (x∗)}
13: UB ← min{UB, f (x∗)}
14: end if
15: end while

The local search strategy can also be applied if the Box Refinement is not done before.
In this case the Adaptive Discarding is not possible because the boxes are not small enough.
Nevertheless, a local search from an ε-efficient starting point can always be done for every
box of the solution list LS2

6 Numerical results

In this section, we examine the performance of the new algorithmMOCPαBB on Example 1
and on several additional test instances. First, all steps of the algorithm including the post
processing are presented in detail forExample 1. Someof the further test instances are scalable
in the number of variables and constraints. The algorithm was implemented in MATLAB
R2018a. All experiments have been done on a computer with Intel(R) Core(TM) i5-7400T
CPU and 16 GBytes RAM on operating system Windows 10 Enterprise. For the local
search step, we obtain the Lipschitz constant by interval arithmetic using Intlab, [26]. For
every box X∗ a possible Lipschitz constant of f on X∗ is L = sup(‖∇F(X∗)‖), where ∇F
is the natural interval extension of the gradient of f . The local search was performed with
fmincon from Matlab using the SQP-algorithm and default parameters. As it is stated in
Algorithm5, for each selected box X̃ the starting point for the SQP-algorithm is the ε-efficient
solution x̃ ∈ X̃ .
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Fig. 4 Results after main while-loop

6.1 Illustrative example

First, we illustrate the new algorithm on the motivating Example 1, as given in (1), cf. [17].
We have chosen ε = 10−5 and δ = 0.0001. In the following figures, the star marks

always the best found minimal solution for the single-objective problem or its image w.r.t.
the multiobjective counterpart. The figures representing the pre-image space always show
box partitions. The dark gray boxes are the boxes in the current solution list, i. e., those boxes,
which could not yet be discarded. The light gray boxes are the discarded boxes. The different
color shades represent different criteria based on which the boxes have been discarded.

In the image space, we plot some representatives of the image set by light gray points.
They were obtained by discretizing the initial box and taking the function values. These
points serve just for illustrative purposes on the structure of the multiobjective counterpart.
The black crosses are the points ofLPNS . In themagnified picture, the first cross with positive
second component is q1, and the first with negative second component is q2. The black point
above q2 and on the right hand of q1 is p̄.

Figure 4 shows the box partition and the image space and their magnifications after the
execution of the main while-loop of Algorithm 1 without the post processing step. The
lightest gray boxes are the ones which got discarded by the discarding test based on Lemma 7.
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Fig. 5 Box partition after post processing—filtering and refinement

Fig. 6 Image space after post processing (magnified)

Themiddle gray boxes are discarded because of Lemma 6. Here, it holds that q12 > ε
2 . Hence,

with Lemma 8 the pre-image of q2 is already ( ε
2 + μ)-efficient for all μ > 0. Therefore, the

post processing would perform only the filtering step. For illustration, we also present here
the other post processing steps.

Figure 5a illustrates the box partition of the feasible set after the first post processing step—
the filtering, see Algorithm 3. The two large boxes on the upper left were discarded during
this step. Concerning the minimal solution of Example 1 no improvement was obtained, and
q2 remains the best found image point so far.

In Figs. 5b and 6a the second step of the post processing is illustrated. In this step, see
Algorithm 4, the boxes are usually refined until they are small enough and contain an ε-
efficient solution. For this example, the two boxes are already small enough. The star shaped
markers are the ε-efficient solutions and their images.

The last step of the post processing is a local search. In Fig. 6b, the star marks the image
of the solution found by the local search steps. We can see that the minimal value improved
slightly, because the star is a bit more on the left of q2.
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Table 1 Numbers of iterations
and computational time for each
step of MOPCPαBB

# it # sb t [s] q21 = best f ∗

Main 64 5 3.0465 1.1892

Filter 5 2 0.0193

Refine 2 2 0.0058

Local search 2 2 0.0212 1.1892

Total 73 2 3.0928

Table 1 states the number of iterations (# it), the number of boxes in the respective solution
list (# sb) and the computational time (t) for each step. After the main loop and the local
search step a feasible solution is found with a (nearly) minimal value. Those values are stated
in the last column. Here, q21 and theminimal value obtained by the local search step are nearly
the same. Actually, the difference between both values is 1.87 × 10−6, and the difference
of the computed minimal value at the end to the actual minimal value 4

√
2 is 0 (within the

tolerances of MATLAB).

6.2 Test instances

In addition to Example 1, we also tested some more instances. The instance KSS2Con is as
in Example 1, but with one additional constraint x1 + x2 ≤ 2:

Test instance 5 (KSS2Con) The dimension of the pre-image space is n = 2, and we have
r = 2 constraints.

min f (x) = x1 − x2
s.t. g1(x) = −x21 − (x2 − 5)2 + 25 + √

2 ≤ 0,
g2(x) = x1 + x2 − 2 ≤ 0,
x ∈ [1, 2] × [0, 1].

For HimmCon, which has as objective function the Himmelblau function, see [16], we
added one to two constraints which exclude some of the known minima.

Test instance 6 (HimmCon) The dimension of the preimage space is n = 2, and we have
r ∈ {1, 2} constraints.

min f (x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

s.t. g1(x) = −((x1 + 3.5)2 + (x2 + 3.5)2) + 4 ≤ 0,
g2(x) = −(x1 + 3)2 − x2 + 4 ≤ 0 only if r = 2
x ∈ [−5, 5] × [−5, 5].

The objective function minimized just with respect to the box constraints is known to have
four globally minimal solutions with the minimal value 0:

x1 = (3, 2)T , x2 = (−2.805118, 3.131312)T ,

x3 = (−3.779310,−3.283186)T , x4 = (3.584428,−1.848126)T .

The first added nonconvex constraint excludes theminimal solution x3. The second nonconvex
constraint excludes x2.

The instance FF is a typical test problem for biobjective optimization, see [13]. Since the
second objective has an image within the interval [0, 1] but will serve as a constraint now,
we adapted this function slightly.
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Test instance 7 (FF) The dimension of the preimage space n ∈ N can be arbitrarily chosen.
We have r = 1.

min 1 − exp

(
−

n∑
i=1

(
xi − 1√

n

)2)

s.t. 0.5 − exp

(
−

n∑
i=1

(
xi + 1√

n

)2) ≤ 0, x ∈ [−2, 2]n
(13)

Since the analytical form of the efficient and nondominated set of the original biobjective
optimization problem is known, we can state the minimal solution and the minimal value by

x∗ = (1/
√
n)

(
−1 + √− ln 0.5

)
e and f (x∗) ≈ 0.744089815

Recall that e is the all-ones vector.

Moreover, we make use of the multiobjective test instance suite DTLZ, in particular of
DTLZ2 and DTLZ7, [5]. These instances can be scaled regarding the number of variables
and the number of objectives. Thus, the first objective is always the objective function and
all other original objectives are the constraints. Again, we had to adapt the functions slightly
to ensure that there are some feasible solutions.

Test instance 8 (DTLZ2) The dimension of the preimage space n ∈ N and the number r < n
of constraints can be chosen arbitrarily.

min (1 + p(x))
r∏

i=1
cos(0.5πxi )

s.t. (1 + p(x)) sin(0.5πxr−k+1)
r−k∏
i=1

cos(0.5πxi ) ≤ 0.5 for all k = 1, . . . , r

x ∈ [0, 1]n
(14)

with p(x) = ∑n
i=r+1(xi − 0.5)2.

Test instance 9 (DTLZ7) The dimension of the preimage space n ∈ N and the number r < n
of constraints can be chosen arbitrarily.

min x1
s.t. xk+1 − 0.8 ≤ 0 for all k = 1, . . . , r − 1

(1 + p1(x))p2(x) ≤ r + 2, x ∈ [0, 1]n
(15)

with

p1(x) = 1 + 9

n − r

n∑
i=r+1

xi , p2(x) = r + 1 −
r∑

i=1

xi
1 + p1(x)

(1 + sin(3πxi )).

6.3 Numerical results

For all instances we set ε = δ = 0.01 and a time limit of 6 h (21,600 s). Note that for all the
instances in Table 2, the main while-loop took a maximum of 3969 s and most instances
have been solved much faster.

Table 2 shows the overall results for all chosen test instances which were obtained within
the time limit. In the first columns, we state the number n of variables and the number r of
constraints. Note that for r ≥ 2, the second objective of the multiobjective counterpart is
the maximum function of all constraints. The next block shows the computational time of
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Fig. 7 Results on HimmCon with one constraint after MOCPαBB

the main while-loop of Algorithm 1 and the number of needed iterations. Next, the post
processing is detailed. PP is the indicator whether the whole post processing is performed. If
PP is 0, only the filtering was applied and because of q12 > ε

2 and Lemma 8 the refinement and
local search are redundant. Then the computational time and the number of needed iterations
(# it f i ) are displayed. If refinement (# itr f ) and local search (# itls) are applied, we mention
all three counts separately. The next columns state the computed nearly minimal values:
First, we give q21 and then the best found minimal value (best f ∗). If PP= 0 holds, this is the
value of q21 , since the pre-image of q2 is always feasible. In case of PP= 1, the local search
was done and thus, we state that minimal value which was found during the local search. To
compare with the actual minimal values, we give these in the last column.

We observe that in some cases PP= 0 holds. The reason for that is q12 > ε
2 = 0.005, and

by Lemma 8 the pre-image of q2 is already ε-minimal for the single-objective optimization
problem. Thus, the additional post processing, i. e., refinement and local search do not have to
be executed. Even if those steps have been performed for most of the cases, we also observed
that the value q21 is already close to the real minimal value and therefore its pre-image is
ε-efficient for (P1). The only instance for which the pre-image of q2 is not ε-efficient is
DTLZ2 with n = 4, r = 3, see the italic entry of q21 .

We give in the following some more details on one of the instances, on HimmCon. Fig-
ures 7 and 8 illustrate the results of MOCPαBB for the cases r ∈ {1, 2}, i.e., with one
or two constraints. The meaning of the different shades of the boxes and points are the
same as in Sect. 6.1. As the run for the optimization problem with one constraint did the
refinement and local search step, the minimal solution and minimal value, visualized by
the stars in Fig. 7, are found during the local search. In fact, the minimal solution there is
x∗ = (−2.8051, 3.1313)T with f (x∗) ≈ 0. For two constraints, q12 ≈ 0.83was large enough
to skip the refinement and local search steps. Thus, the star in Fig. 8a is the pre-image of q2,
i.e, x∗∗ = (3.5844,−1.8481)T , and the one in Fig. 8b is q2 = (0.0000,−37.5066)T itself.
Both found solution correspond to one of the minimal solutions of the Himmelblau function
without additional constraints, i.e., x∗ ≈ x2 and x∗∗ ≈ x4.

6.4 Discussion

The above analysis shows that taking a multiobjective perspective on constrained optimiza-
tion in general, and on αBB-methods in particular, leads to a new and promising class of
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Fig. 8 Results on HimmCon with two constraints after MOCPαBB

global optimization algorithms. An additional benefit can be seen in the fact that the solution
alternatives that are generated for the multiobjective counterpart problems provide trade-off
information on objective valueminimization versus constraint satisfaction. This can be nicely
seen at the example of the HimmCon instances in Figs. 7b and 8b.

We emphasize that our implementation is prototypical and that no state-of-the-art pre-
processing was used. We can thus not expect computational times that are competitive with
other (commercial) state-of-the-art solvers. Indeed, the above test instances were solved
within (milli-)seconds using GAMS models [14] with BARON [33] (instances KSS2Con,
HimmCon, FF) and MINOS [23] (instances DTLZ2 and DTLZ7), and using the built-in
advanced pre-processing routines that in most cases already returned near-optimal solutions.

Moreover, our numerical results clearly show one of the main drawbacks of branch and
bound type methods in this context: Scaling the number of variables increases the computa-
tional time. This is clear, because the branching happens in the pre-image space and for more
variables a box has to be bisected more often to become small. Despite this shortcoming,
bounding and discarding have proven to be highly effective so that the number of active boxes
remains comparably small and storage requirements were never a problem.

7 Conclusions

Within this paper,weproposed to use amultiobjective counterpart to find feasible solutions for
nonconvex single-objective constrained optimization problems. It is well-known that finding
feasible solutions can be a hard task and we proposed a new approach to find such points. For
that approach, we adapted a global solutionmethod for multiobjective optimization problems
such that it concentrates on the region of interest. By using such multiobjective counterparts
one also gets additional information on the trade-off which one would obtain by relaxing the
constraints slightly in favour of an improved objective function value.

Acknowledgements Open Access funding enabled and organized by Projekt DEAL. The third author thanks
the Carl-Zeiss-Stiftung and theDFG-foundedResearch TrainingGroup 1567 for financial support. The authors
wish to thank the two anonymous referees for their helpful and constructive remarks.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



60 Journal of Global Optimization (2021) 80:31–61

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimizationmethod, αBB, for general
twice-differentiable constrained NLPs: I—theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158
(1998)

2. Campana, E.F., Diez,M., Liuzzi, G., Lucidi, S., Pellegrini, R., Piccialli, V., Rinaldi, F., Serani, A.: Amulti-
objective DIRECT algorithm for ship hull optimization. Comput. Optim. Appl. 71(1), 53–72 (2018)

3. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol.
Comput. 7(3), 205–230 (1999)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In:
Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 1,
pp. 825–830 (2002)

6. Ehrgott, M.: Multicriteria Optimisation, 2nd edn. Springer-Verlag, Berlin (2005)
7. Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming

problems. J. Global Optim. 50(3), 397–416 (2011)
8. Eichfelder, G., Klamroth, K., Niebling, J.: Using a B&B algorithm from multiobjective optimization to

solve constrained optimization problems. In: AIP Conference Proceedings, vol. 2070, p. 020028 (2019)
9. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-objective optimization.

Optim. Methods Softw. 29(5), 1005–1019 (2014)
10. Fernández, J., Tóth, B.: Obtaining the efficient set of nonlinear biobjective optimization problems via

interval branch-and-bound methods. Comput. Optim. Appl. 42(3), 393–419 (2009)
11. Fletcher, R., Leyffer, S.: Nonlinear programmingwithout a penalty function.Math. Program. 91, 239–269

(2002)
12. Fletcher, R., Leyffer, S., Toint, P.L.: A brief history of filter methods. Technical Report ANL/MCS-P1372-

0906 (2006)
13. Fonseca, C., Fleming, P.: Multiobjective genetic algorithms made easy: selection sharing and mating

restriction. In: Proceedings of the 1st International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, pp. 45–52. IEEE Press (1995)

14. GAMS Development Corporation. General Algebraic Modeling System (GAMS) Release 24.1.3. Wash-
ington, DC, USA (2013)

15. Günther, C., Tammer, C.: Relationships between constrained and unconstrainedmulti-objective optimiza-
tion and application in location theory. Math. Methods Oper. Res. 84(2), 359–387 (2016)

16. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
17. Kirst, P., Stein, O., Steuermann, P.: Deterministic upper bounds for spatial branch-and-bound methods in

global minimization with nonconvex constraints. TOP 23(2), 591–616 (2015)
18. Klamroth, K., Tind, J.: Constrained optimization using multiple objective programming. J. Global Optim.

37(3), 325–355 (2007)
19. Löhne, A., Rudloff, B., Ulus, F.: Primal and dual approximation algorithms for convex vector optimization

problems. J. Global Optim. 60(4), 713–736 (2014)
20. Maranas, C.D., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J.

Global Optim. 4(2), 135–170 (1994)
21. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Constraint propagation using dominance in

interval branch & bound for nonlinear biobjective optimization. Eur. J. Oper. Res. 260(3), 934–948
(2016)

22. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer-Verlag, Berlin (1998)
23. Murtagh,B.A.,Gill, P.E.,Murray,W., Saunders,M.A.,Wright,M.H.:MINOS5.51, LargeScaleNonlinear

Solver (2004)
24. Niebling, J., Eichfelder, G.: A branch-and-bound-based algorithm for nonconvex multiobjective opti-

mization. SIAM J. Optim. 29(1), 794–821 (2019)

123

http://creativecommons.org/licenses/by/4.0/


Journal of Global Optimization (2021) 80:31–61 61

25. Pardalos, P., Žilinskas, A., Žilinskas, J.: Non-convex Multi-objective Optimizationn. Springer-Verlag,
Berlin (2017)

26. Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Comput-
ing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

27. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Cam-
bridge (1985)

28. Scholz, D.: The multicriteria big cube small cube method. TOP 18, 286–302 (2010)
29. Scholz, D.: Deterministic Global Optimization: Geometric Branch-and-BoundMethods and Their Appli-

cations. Springer, Berlin (2012)
30. Schulze, B., Paquete, L., Klamroth, K., Figueira, J.R.: Bi-dimensional knapsack problems with one soft

constraint. Comput. Oper. Res. 78, 15–26 (2017)
31. Darup, M.S., Mönnigmann, M.: Improved automatic computation of Hessian matrix spectral bounds.

SIAM J. Sci. Comput. 38(4), A2068–A2090 (2016)
32. Segura, C., Coello, C.A.C., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for

single-objective constrained and unconstrained optimization. Ann. Oper. Res. 240(1), 217–250 (2016)
33. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.

Program. 103, 225–249 (2005)
34. Žilinskas, A., Calvin, J.: Bi-objective decision making in global optimization based on statistical models.

J. Global Optim. 74, 599–609 (2019)
35. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-

objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul.
21(1–3), 89–98 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Nonconvex constrained optimization by a filtering branch and bound
	Abstract
	1 Introduction and motivation
	1.1 Constraint handling and multiobjective counterparts
	1.2 αBB method
	1.3 Related literature
	1.4 Contribution

	2 Definitions and notations
	2.1 Multiobjective counterpart models
	2.2 Lower bounding by convex underestimators

	3 Relations between constrained optimization problems and their multiobjective counterparts
	4 Multiobjective counterpart αBB algorithm
	4.1 Box generation and branching scheme
	4.2 Bound computation and discarding test
	4.3 The selection and termination rule
	4.4 The MOCPαBB algorithm
	4.5 Existence of q1 and q2

	5 Post processing: filtering, box refinement, and local search
	5.1 Filtering
	5.2 Box refinement
	5.3 Local search with adaptive discarding

	6 Numerical results
	6.1 Illustrative example
	6.2 Test instances
	6.3 Numerical results
	6.4 Discussion

	7 Conclusions
	Acknowledgements
	References




