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Abstract
Linear bilevel optimization problems are often tackled by replacing the linear lower-
level problem with its Karush–Kuhn–Tucker conditions. The resulting single-level
problem can be solved in a branch-and-bound fashion by branching on the comple-
mentarity constraints of the lower-level problem’s optimality conditions. While in
mixed-integer single-level optimization branch-and-cut has proven to be a powerful
extension of branch-and-bound, in linear bilevel optimization not too many bilevel-
tailored valid inequalities exist. In this paper, we briefly review existing cuts for linear
bilevel problems and introduce a new valid inequality that exploits the strong duality
condition of the lower level. We further discuss strengthened variants of the inequality
that can be derived from McCormick envelopes. In a computational study, we show
that the new valid inequalities can help to close the optimality gap very effectively on
a large test set of linear bilevel instances.
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1 The difficulty in closing the optimality gap

Roughly speaking, branch-and-bound algorithms solve mathematical optimization
problems by successively finding lower and upper bounds on the optimal objective
function value. This procedure progressively decreases the optimality gap, i.e., the
difference of the two bounds, until it is closed and the lower and upper boundmeet. For
minimization problems, every primal feasible solution provides a valid upper bound on
the objective function value. Lower bounds in turn are computed by solving relaxations
of the original problem. While modern branch-and-bound algorithms may find good
primal solutions quickly, proving optimality by closing the optimality gap might be
very challenging. It is not unusual to observe solution processes similar to the dashed
line in Fig. 1, which shows an exemplary evolution of the lower and upper bounds
over the number of visited nodes provided by a branch-and-bound implementation. An
almost optimal solution is found right at the beginning, but the lower bound improves
only slowly. As a result, many branch-and-bound nodes need to be visited until the
gap is closed and optimality is proved.

In mixed-integer programming, the discussed obstacle has been tackled by subse-
quently adding valid inequalities that cut off integer-infeasible points. In many cases,
this yields tighter relaxations and ultimately delivers stronger lower bounds. Such
branch-and-cut algorithms are now state-of-the-art in solvingmixed-integer problems.

Linear bilevel problems, in which some variables of a linear upper-level problem
need to constitute an optimal solution of a second linear optimization problem (the
lower-level problem), are no exception to the behavior discussed above in general.

Fig. 1 Exemplary evolution of lower and upper bounds in dependence of visited nodes for a branch-and-
bound (dashed) and a branch-and-cut (solid) algorithm
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A new valid primal-dual inequality for linear bilevel problems 1029

While bilevel-feasible points, i.e., points that satisfy all upper-level constraints and
lower-level optimality, can often be found quickly [17], proving optimality is much
more difficult. In fact, the dashed lines in Fig. 1 is based on a simple branch-and-bound
code for linear bilevel problems applied to an exemplary instance. Similarly to mixed-
integer programming, valid inequalities could be used to provide tighter relaxations
of bilevel problems by cutting off bilevel-infeasible points, i.e., points that violate
optimality of the lower-level problem. However, for linear bilevel problems not many
tailored valid inequalities are known.

In this paper, we derive such a valid inequality for linear bilevel problems by
exploiting the strong-duality condition of the lower-level problem. This primal-dual
inequality turns out to be very effective for some instances. Indeed, applying it to
the same instance that was used for the dashed plot in Fig. 1 yields much faster
convergence; see the solid plot in Fig. 1. The lower bound increases much quicker,
which results in around 20 000 visited nodes compared to roughly 45 000 nodes when
the inequality is not used. We will analyze the benefit gained by the proposed valid
inequality in detail in a computational study later in the paper.

The remainder of the paper is structured as follows. In Sect. 2 we formally introduce
linear bilevel problems and review existing valid inequalities. Afterward, we develop a
newvalid inequality basedon the strong-duality condition of the lower-level problem in
Sect. 3 and also propose some tighter variants. In Sect. 4, we evaluate the effectiveness
of the inequalities in a computational study. Finally, we conclude in Sect. 5.

2 Linear bilevel problems and valid inequalities

In this paper, we consider linear bilevel problems of the form

min
x∈Rn ,y∈Rm

c�x + d�y s.t. Ax + By ≥ a, y ∈ S(x), (1)

where S(x) denotes the set of optimal solutions of the parameterized linear program

max
ȳ

f � ȳ s.t. Dȳ ≤ b − Cx, (2)

with c ∈ R
n , d, f ∈ R

m , A ∈ R
k×n , B ∈ R

k×m , a ∈ R
k , C ∈ R

�×n , D ∈ R
�×m , and

b ∈ R
�. The upper-level player (or leader) optimizes the upper-level problem (1) by

anticipating the optimal reaction y of the lower-level player (or follower). Whenever
the follower is indifferent for a given x , the set of optimal solutions S(x) is not
a singleton. In this case, the formulation in (1) establishes the so-called optimistic
solution, i.e., the leader may select any solution y ∈ S(x) that is the most favorable
one for the upper-level problem; see [5]. Furthermore, throughout the paper, we make
the following standard assumption (see, e.g., [1–3]) that is necessary in Sect. 3 for the
derivation of a valid inequality for Problem (1).
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1030 T. Kleinert et al.

Assumption 1 The shared constraint set

� := {x ∈ R
n, y ∈ R

m : Ax + By ≥ a, Cx + Dy ≤ b}

is nonempty and bounded.

In general, bilevel problems are intrinsically nonconvex due to their hierarchical
structure and even linear bilevel problems are known to be strongly NP-hard [14]. In
addition, even checking local optimality is NP-hard; see [23]. For many real-world
problems that require a bilevel or even multilevel modeling, application-specific solu-
tion techniques have been developed. This includes but is not limited to fields such
as energy markets [8,13,15], pricing problems [18,19], or network interdiction prob-
lems [4,10]. In a more general setting in which no problem-specific structure can be
exploited, most solution techniques resort to an equivalent single-level reformulation.
For linear bilevel problems, this is typically done by replacing the lower-level prob-
lem (2) by its necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions, which
yields a mathematical program with complementarity constraints:

min
x,y,λ

c�x + d�y (3a)

s.t. (x, y) ∈ �, (3b)

λ ∈ �D := {λ ≥ 0 : D�λ = f }, (3c)

λ�(b − Cx − Dy) ≤ 0. (3d)

This reformulation was first mentioned in [12], which also contains two solution
approaches exploiting the disjunctive nature of the complementarity constraints (3d).
The first one is a mixed-integer linear reformulation of the KKT complementar-
ity constraints, which requires additional binary variables and sufficiently large
big-M constants. The problem can then be solved by standard mixed-integer solvers.
However, big-Ms that are chosen too small can yield suboptimal or infeasible
solutions [21] and verifying the correctness of a big-M constant is as hard as solving
the original bilevel problem; see [16]. From today’s point of view, this method should
only be used if correct big-Ms can be obtained via problem-specific knowledge. The
second approach mentioned in [12] overcomes this obstacle by branching directly on
the complementarity constraints: for all j = 1, . . . , �, either the primal lower-level
constraint is binding, i.e., (b − Cx − Dy) j = 0, or λ j = 0 holds. This approach is
evaluated in more detail in [3] and improving branching rules have been proposed in
[14].

One drawback of this complementarity-based branch-and-bound approach (as well
as of themixed-integer approach using big-Ms) is a weak root relaxation. The problem
that is solved in the root node is Problem (3) without the complementarity con-
straints (3d). In this setting, dual feasibility of the lower level (3c) is completely
decoupled from the primal upper- and lower-level constraints (3b). In the original
problem (3), these two sets of constraints are solely coupled by the complementar-
ity constraints (3d)—the exact same constraints are initially relaxed and branched on
in a bilevel branch-and-bound algorithm. In this view, the coupling is brought back
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A new valid primal-dual inequality for linear bilevel problems 1031

subsequently via branching. It is thus desirable to extend such bilevel branch-and-
bound approaches to branch-and-cut algorithms by adding cuts that resolve themissing
coupling, either already at the root node or later in the branch-and-bound tree. How-
ever, up to now, not too many bilevel-specific valid inequalities are known.

In [1], the complementarity conditions (3d) are used to derive disjunctive cuts that
can be applied to the root node problem. For each violated complementarity constraint,
solving a linear optimization problem (LP) yields such a cut. In a very small example,
the usefulness of the cut is demonstrated. It is also shown that sometimes this cut
couples constraints (3b) and (3c) and sometimes it does not.

In [2], three root node cuts are presented that can be derived from the solution of
the root node problem. The first one is a Gomory-like cut. For each violated comple-
mentarity constraint of the lower level, two inequalities can be derived. One of them
is acting on the primal upper- and lower-level variables and the other one on the dual
lower-level variables. At least one of the two inequalities must be valid and is actually
a cut. Since the valid one is not known, both inequalities are added to the problem
and a binary switching variable is used to select the valid inequality. In this light,
the two inequalities add a rather implicit coupling of the constraints (3b) and (3c).
Another variant are so-called extended cuts that, similar to the Gomory-like cuts, also
involve binary switching variables. However, it is noted that these cuts are deeper than
the Gomory-like cuts. One can also derive two cuts that do not involve a switching
variable. These cuts are called simple cuts in [2]. Again, the combination of both cuts
implicitly couples the primal upper as well as lower level with the dual lower level. In a
small numerical study it is shown that applying a cut generation phase at the root node
that adds cuts of either one of the three types outperforms pure branch-and-bound.

To the best of our knowledge no other general-purpose valid inequalities dedicated
to linear bilevel problems have been published so far.

3 A new valid primal-dual inequality

All cuts reviewed in the last section have in common that they exploit the explicit
disjunctive structure of the complementarity conditions. They are all derived from a
single violated complementarity condition and it is not clear which violated one should
be chosen to separate a cut. In this section, we derive a valid inequality for Problem (1)
based on the aggregated complementarity conditions (3d). Using dual feasibility (3c),
we can substitute λ�D with f in (3d) to obtain

λ�b − λ�Cx − f �y ≤ 0. (4)

This is exactly the strong-duality condition of the lower-level problem (2), as shown in
the following. For a fixed upper-level decision x , the dual to the lower-level problem (2)
is given by

min
λ∈�D

λ�(b − Cx). (5)
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1032 T. Kleinert et al.

For every primal-dual feasible point (y, λ), weak duality

λ�b − λ�Cx − f �y ≥ 0

holds. Thus, every primal-dual feasible point satisfying Inequality (4) fulfills the
strong-duality equation and is primal-dual optimal for the lower level. An alternative
formulation of the single-level reformulation (3) can hence be obtained by replac-
ing the KKT complementarity condition (3d) with the strong duality condition (4).
The main drawback of this approach is the bilinear term λ�Cx of primal upper-
level and dual lower-level variables. When considering only integer linking variables,
as, e.g., in [25], linearizations can be applied yielding mixed-integer linear reformula-
tions. Here, however, we study purely continuous bilevel problems. Thus, this bilinear
term cannot be reformulated in a mixed-integer linear way as opposed to the KKT
complementarity condition (3d).

Still, the strong duality inequality can be used to derive a valid inequality for
Problem (3). A straightforward idea is to relax the nonconvex term λ�Cx by replacing
each term Ci ·x in (4) with an upper bound C+

i ≥ Ci ·x , where Ci · denotes the i th row
of C . This yields the inequality

λ�b − λ�C+ − f �y ≤ 0, (6)

whereC+ denotes the vector of upper boundsC+
i . The rationale behind this inequality

is very simple and the inequality is obviously valid. Despite, or even because of its
simplicity, this inequality can be very useful. It explicitly couples the primal lower-
level variable y to the dual lower-level variable λ—a coupling that is missing in the
root node problem of branch-and-bound approaches. The boundsC+

i can be obtained,
e.g., from variable bounds on x . While this approach is cheap from a computational
point of view, it may result in weak inequalities depending on the tightness of the
bounds on x . Stronger bounds C+

i can be computed with the auxiliary LPs

C+
i := max

x,y,λ
Ci ·x s.t. (x, y, λ) ∈ � × �D, (x, y, λ) ∈ C, (7)

where C is a constraint set containing already added valid inequalities of type (6)
and might be empty. This problem is bounded due to Assumption 1, such that finite
bounds C+

i exist. In addition to the root node, Inequality (6) can also be added at
any node u deeper in the branch-and-bound tree, where the bound C+

i is potentially
tighter due to branching or previously added inequalities of type (6). This yields tighter
inequalities that are locally valid for the subtree rooted at node u. Besides already
added (locally) valid inequalities, the set C then also contains branching decisions,
and C and C+

i in (7) both depend on the current branch-and-bound node u. For the
ease of presentation, we omit an index u for C and C+

i , because this dependence will
always be clear from the context.We discuss implementation details such as the timing
of the generation of valid inequalities (6) or the derivation of the boundsC+

i in Sect. 4,
where we also demonstrate the effectiveness of the inequalities in a numerical study.
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Before, let us emphasize that Inequality (6) can also be derived from another per-
spective. Consider a general bilinear term z = vw with bounds v− ≤ v ≤ v+ and
w− ≤ w ≤ w+. Then, McCormick envelopes [20] provide linear under- and overes-
timators for z = vw:

z ≥ v+w + vw+ − v+w+, z ≥ v−w + vw− − v−w−, (8a)

z ≤ v−w + vw+ − v−w+, z ≤ v+w + vw− − v+w−. (8b)

This can be applied to the strong-duality condition (4). We can decompose the bilinear
products λ�Cx = ∑�

i=1 zi to obtain terms zi = viwi with vi = λi and wi = Ci ·x .
Due to the sign in the strong-duality condition (4), only the overestimators (8b) can
be used:

λ�b −
�∑

i=1

zi − f �y ≤ 0, (9a)

zi ≤ λ−
i Ci ·x + λiC

+
i − λ−

i C
+
i for all i = 1, . . . , �, (9b)

zi ≤ λ+
i Ci ·x + λiC

−
i − λ+

i C
−
i for all i = 1, . . . , �. (9c)

If we apply the initial bounds λ−
i = 0 for all i = 1, . . . , �, then (9b) simplifies to

zi ≤ λiC
+
i . (10)

Obviously, Inequality (6) is fulfilled if (9a) and (10) are satisfied. Contrary, when
Inequality (6) is feasible, then zi = λiC

+
i is feasible for (9a) and (10) Thus, (9a)

together with (10) is equivalent to Inequality (6). However, whenever tighter (local)
bounds λ−

i > 0 are available, e.g., after presolve or branching, (9a) and (9b) provide a
tightening of (6). The second overestimator (9c) involves bounds C−

i ≤ Ci ·x , which
can again be obtained by variable bounds on x or byminimizing instead ofmaximizing
in Problem (7). However, it also involves upper bounds λ+

i for the initially unbounded
dual variables λi . In general, such dual upper bounds are not available so that the
overestimator (9c) cannot be used. Yet, whenever a (maybe locally valid) bound for λi
is available by chance, e.g., due to a combination of branching and node presolve, the
overestimator (9c) can be used to potentially tighten the valid inequality (6). In this
light, the derivation viaMcCormick envelopes (8) may indeed provide tighter versions
of Inequality (6). While the applicability of the tighter variants of the inequality solely
depends on the availability of bounds, the basic inequality (6) can always be derived.
We will discuss the applicability of the tightened variants in Sect. 4.

Furthermore, one could also relax λ�Cx in the strong-duality inequality (4) by
replacing each term λ�C· j with an upper bound C+

j ≥ λ�C· j , where C· j denotes the
j th column of C . We then obtain the inequality

λ�b −
n∑

i= j

C+
j x j − f �y ≤ 0. (11)
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1034 T. Kleinert et al.

This inequality couples all three types of variables x , y, and λ and can also be
derived from the McCormick envelopes (8) by decomposing λ�Cx = ∑n

j=1 z j with

z j = v jw j , v j = λ�C· j , and w j = x j . However, Inequality (11), respectively both
overestimators (8b), involve finding lower or upper boundsC±

j for λ�C· j . This means
that every problem

min
x,y,λ

λ�C· j s.t. (x, y, λ) ∈ � × �D, (x, y, λ) ∈ C, (12)

needs to be bounded to obtain finite coefficients for each x j . The lower-level
problem (2) is bounded due to Assumption 1. Thus, the feasible set �D of the dual
lower-level problem (5) is bounded in the direction b−Cx of the dual objective func-
tion. However, this is not necessarily the case for the optimization directions C· j . In
fact, preliminary computational tests revealed that no instance in our test set has the
property that all problems (12) are bounded.We thus refrain from using Inequality (11)
and its variants that can be derived by McCormick envelopes. Finally, note that (6)
and (11) are also valid for the pessimistic version of the bilevel problem,

min
x∈Rn

max
y∈Rm

c�x + d�y s.t. Ax + By ≥ a, y ∈ S(x),

since the lower-level problem is still given by (2). However, in order to streamline the
presentation, we will stick to the discussion of the optimistic case.

4 Computational study

We now evaluate the effectiveness of the valid inequalities derived in Sect. 3 within
a complementarity-based branch-and-bound framework similar to what is described
in Sect. 2. All our experiments are carried out on a single thread using the C inter-
face of CPLEX 12.10 on a compute cluster with Xeon E3-1240 v6 CPUs at 3.7 GHz
and 32 GB RAM; see [22] for more details.

Our complementarity-based branch-and-bound algorithm is realized in the follow-
ing way. We introduce slack variables si = bi − Ci ·x − Di ·y ≥ 0 to the single-level
reformulation (3) for every lower-level constraint.We can then rewrite the complemen-
tarity constraints (3d) using special-ordered-sets of type 1 (SOS1) for each pair (si , λi ).
This way, we could use the SOS1 capabilities of CPLEX to branch on the complemen-
tarity conditions. However, to have full control and information on the branching
(in particular, on the set C), we implemented our own branching and book-keeping
using generic CPLEX callbacks. We branch on the most violated complementarity con-
straint i ∈ {1, . . . , �} by setting either si = 0 or λi = 0, while leaving the node
selection to CPLEX. This basic branch-and-bound procedure serves as a benchmark
and is called B&B throughout this section. Interestingly, a preliminary computational
study revealed that B&B already outperforms the native SOS1 branching of CPLEX.

We extend this setting to a branch-and-cut approach by subsequently adding the
valid inequalities described in Sect. 3 via generic CPLEX callbacks. We therefore
use the general formulation (9). This allows to add tighter inequalities whenever the
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Table 1 Test set sizes

Test set Reference Total Solved Easy Remaining

CLIQUE [11] 60 60 0 60

IMKP [10] 144 70 17 53

INTER-ASSIG [6] 24 24 4 20

INTER-CLIQUE [11] 80 80 0 80

INTER-KP [6] 99 78 38 40

KP [11] 450 449 358 91

XU [9,24] 160 160 96 64

required bounds are available. In a preliminary computational study, we tested various
inequalities and strategies of how and when to add the inequalities. It turned out that
computing the boundsC±

i and λ±
i with auxiliary LPs, similar to Problem (7), provides

significantly better bounds and thus tighter inequalities than using internal global and
local bounds provided “for free” by CPLEX. Although time-consuming, we follow
the former approach to generate the tightest inequalities possible. Our preliminary
experiments also revealed that making use of the McCormick overestimators (9b)
and (9c) by tightening λ−

i and C−
i is only beneficial for a very small fraction of tested

instances and inmost cases it even harms the solution process. Hence, in the remainder
of this section, we only discuss results for Inequality (6), implemented as the set of
inequalities (9a) and (10). In particular, we compare the following parameterizations,
where � ∈ N denotes the number of lower-level primal constraints:

B&B : The branch-and-bound benchmark without additional inequalities.
C&B : The set of inequalities (9a) and (10) is added at the root node if violated.

B&C(5) : Inequality (9a) is added at the root and the inequalities (10) are added
whenever (6) is violated at a node with depth d = p��/5�, 0 ≤ p ∈ N.

B&C(10) : Like B&C(5) but with d = p��/10�.
Obviously, the separation routine is invoked twice asmany times in B&C(10) compared
to B&C(5).

To compare our different methods, we use linear bilevel instances described in [17].
Table 1 summarizes the sizes of different test sets. The column“reference” indicates the
origin in the literature of each subset and in the column “total” we state the size of the
respective test sets. Further, the column “solved” shows howmany instances are solved
by at least one of the above methods in a time limit of 1 h, whereas “easy” indicates
how many are solved in less then 10 s by all four methods. Finally, the last column
displays the remaining number instances for each test set. Note that the test set XU
consists of the test sets XUWANG and XULARGE, which are constructed the same way.
Furthermore, based on our preliminary computational experiments, we completely
omit the test sets DENEGRE, GENERALIZED, as well as INT0SUM since they are too
easy (i.e., all instances are labeled “easy”) and GK, INTER-FIRE, as well asMIPLIB since
they are too hard (i.e., hardly any instance is labeled “solved”). We thus obtain a total
of 408 instances in Table 1. In the following, we discuss our observations w.r.t. the
remaining instances in each of these different test sets. We illustrate the performance
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1036 T. Kleinert et al.

Fig. 2 Log-scaled performance profiles for branch-and-bound nodes (left) and running times (right) for all
remaining KP instances; see Table 1

of the different parameterizations of our implementation using performance profiles
according to [7]. For each instance i and implementation variant s, we compute the
performance ratio

rni,s := ni,s
min{ni,s : s ∈ S}

w.r.t. the branch-and-boundnode count,where S is the set of all studied implementation
variants. This means that ni,s is the node count of variant s on instance i . Every
performance profile for node counts in this section shows the proportion of instances
for which a given approach lies within a factor τ n ≥ 1 of the best approach. Similarly,
we introduce τ t for performance profiles w.r.t. the running times inwall-clock seconds.

It is well known that cuts often work only on a small number of instances and
not throughout large and diverse test sets, in particular if they exploit a certain struc-
ture. Thus, we first discuss the impact of the valid inequalities for specific subsets
of instances. It has already been shown in Fig. 1 that the application of our valid
inequalities is capable of closing the optimality gap much faster compared to a pure
branch-and-bound. This effect is even more pronounced for all instances of the test
set CLIQUE. These instances are solved immediately once the valid inequality is added
at the root node. In contrast, B&B finds the optimal solution early in the tree in most
of the cases but the lower bound does not improve at all. Thus, B&B cannot solve a
single instance within the time limit of 1 h. For INTER-CLIQUE, we observe a similar
behavior, except that a few instances can also be solved by B&B.

On the other hand, for the test set KP, it is beneficial to also separate inequalities
further down in the branch-and-bound tree. Figure 2 shows performance profiles for
branch-and-bound node counts (left) and total running times (right) for these instances.
We first discuss the node counts and observe that C&B yields a notable improvement
over B&B. However,C&B in turn is clearly dominated by B&C(10), which needs the least
branch-and-bound nodes for almost every instance. On the other hand, this comes at a

123



A new valid primal-dual inequality for linear bilevel problems 1037

Fig. 3 Log-scaled performance profiles for branch-and-bound nodes (left) and running times (right) over
remaining XU instances

certain price since the node count improvement is not significant enough to compensate
the time needed to separate the additional cuts; see also the right plot in Fig. 2. Thus,
C&B yields the best performance in terms of running times and dominates every other
approach. The results on the test set INTER-ASSIG show similar trends w.r.t. nodes,
but in contrast to KP, B&C(10) is also the best performing variant in terms of running
times.

While similar trends can also be observed for the node counts for the test sets
INTER-KP and IMKP, the decrease in nodes is insufficient to justify a branch-and-cut
framework. In other words, B&B is dominated by every other approach in terms of
node counts, but the resulting gain in running time is outweighed by cut separation,
such that B&B slightly dominates the other variants in terms of running times.

Figure 3 displays performance profiles for nodes and running times restricted to the
XU instances. Here, all variants perform pretty similar with respect to the node count.
Since cut generation always costs computational time, it is not beneficial regarding
running time to use the additional valid inequalities at all. This is especially notable
for larger instances with many variables for which a large number of LPs (7) need to
be solved to compute the coefficients of the cuts.

Overall, our methods are very useful on the considered instances. Figure 4
shows performance profiles for node counts and running times aggregated for all
408 instances. The branch-and-cut variants solve roughly 30% more instances than
the plain branch-and-bound procedure. All branch-and-cut variants largely outperform
B&B, but there is no significant difference between the variants of the branch-and-cut
method—neither in terms of node counts nor in terms of running times. To sum up,
the C&B approach seems to be the best choice in general but the structure of specific
instances might also lead to improved numerical results if the inequalities are added
further down in the branch-and-bound tree.
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Fig. 4 Log-scaled performance profiles for branch-and-bound nodes (left) and running times (right) over
all remaining instances

5 Conclusion

In this paper, we derived a new valid primal-dual inequality for linear bilevel problems
based on the strong-duality condition of the linear lower-level problem. We further
discussed tightened variants of the inequality resulting from McCormick envelopes
and tested these inequalities in a computational study. While the latter inequalities are
not beneficial in practice, the former simple variant is shown to be crucial for proving
optimality for the majority of all tested instances. In fact, for many instances, adding
a single inequality at the root node is sufficient to immediately close the optimality
gap. For other instances, it is shown to be beneficial to add the inequality in a branch-
and-cut approach further down in the branch-and-bound tree. Overall, adding the
proposed valid inequalities helps to close the optimality gap much faster compared
to a pure branch-and-bound algorithm and gives rise to a dedicated branch-and-cut
implementation for linear bilevel problems.

While being out of scope of this short paper, we see several enhancements that could
be applied within a sophisticated branch-and-cut implementation for linear bilevel
problems. First, adding initial valid inequalities already before preprocessing could
further improve node counts and running times. Second, in case that the inequality
added in the root node does not immediately prove optimality, applying several rounds
of adding valid inequalities and bound tightening could be useful. Third, whenever
the separation of our inequalities yields bounds λ−

i > 0, one could directly fix the
corresponding primal lower-level constraint to be active. Finally, although our imple-
mented branching rule already outperforms the SOS1-based branching of CPLEX,
other branching and node selection rules may further improve the performance of the
overall branch-and-cut implementation.
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