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Abstract
It is a challenging task to identify the objectives on which a certain decision was based, in
particular if several, potentially conflicting criteria are equally important and a continuous set
of optimal compromise decisions exists. This task can be understood as the inverse problem
of multiobjective optimization, where the goal is to find the objective function vector of a
given Pareto set. To this end, we present a method to construct the objective function vector
of an unconstrained multiobjective optimization problem (MOP) such that the Pareto critical
set contains a given set of data points with prescribed KKT multipliers. If such an MOP
can not be found, then the method instead produces an MOP whose Pareto critical set is at
least close to the data points. The key idea is to consider the objective function vector in the
multiobjective KKT conditions as variable and then search for the objectives that minimize
the Euclidean norm of the resulting system of equations. By expressing the objectives in a
finite-dimensional basis, we transform this problem into a homogeneous, linear system of
equations that can be solved efficiently. Potential applications of this approach include the
identification of objectives (both from clean and noisy data) and the construction of surrogate
models for expensive MOPs.

Keywords Multiobjective optimization · Inverse optimization · Pareto set · Pareto critical
set

Mathematics Subject Classification 49N45 · 90C29

1 Introduction

When applying optimization to real-world problems, there are often multiple quantities that
have to be optimized at the same time. In production for example, typical goals are the
maximization of the quality of a product and the minimization of the production cost. When
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the objectives are conflicting, there cannot be a single solution that is optimal for all objectives
at the same time. This is called a multiobjective optimization problem (MOP). To solve a
problem like this, we search for the set of all optimal compromises, the so-called Pareto set,
containing all Pareto optimal points. A point x∗ is called Pareto optimal if there exists no
other point that is at least as good as x∗ in all objectives, but strictly better than x∗ in at least
one objective.

While most of the research in multiobjective optimization is concerned with efficiently
computing the Pareto set of a given MOP, we here address the inverse problem of multiob-
jective optimization:

Given a set P ⊆ R
n, identify the objectives for which P

is the Pareto set.
(IMOP)

Although it is possible to state this problem in such a general form, it will have many
degenerate solutions that we are not interested in, since there is no restriction on any type of
regularity of the objective functions. Therefore, wewill instead consider amorewell-behaved
version of this problem that arises by using the concept of Pareto criticality. A point x∗ ∈ R

n

is called Pareto critical if it satisfies the Karush–Kuhn–Tucker (KKT) conditions [24], i.e., if
there is a convex combination of all the gradients of the objective functions fi ∈ C1(Rn,R),
i ∈ {1, ..., k}, in x∗ which is zero. In that case, if α∗ ∈ R

k contains the coefficients of this
convex combination, then α∗ is called a KKT vector of x∗ and the pair (x∗, α∗) is called an
extended Pareto critical point. The set of all such pairs is called the extended Pareto critical
set. The above problem can be restated using this concept:

Given a finite data set D = (Dx ,Dα) ⊆ R
n × R

k, find an obj. fun.

vector f ∈ C1(Rn,Rk) whose extended Pareto critical set contains D.
(IMOPc)

Since the search space C1(Rn,Rk) is infinite-dimensional, we will consider finite-
dimensional subspaces of C1(Rn,R) that are spanned by sets of basis functions B ⊆
C1(Rn,R). This will transform (IMOPc) into a homogeneous linear system in the coef-
ficients of the basis functions which can be solved by singular value decomposition. In
practice, an exact solution of (IMOPc) is unlikely to exist, due to noise in the data and the
finite-dimensional approximation of C1(Rn,Rk). Thus, we will also present an algorithm
to generate objective function vectors whose Pareto critical sets (and corresponding KKT
vectors) are close to the data set.

Part of the reason why (IMOPc) is more well-behaved than the original (IMOP) is the
fact that we assume the KKT vectors to be given in the data. Geometrically, if we attach
the KKT vector of a Pareto optimal point x∗ to f (x∗), then it is orthogonal to the Pareto
front (cf. [20], Theorem 4.2). Thus, the assumption that the KKT vectors are available means
that the data must provide significantly more information than just the Pareto critical points.
Nevertheless, we will later show that there are applications where this data is available (or
can be obtained). The first application is the generation of test problems for MOP solvers,
where the choice of KKT vectors can be made by considering geometrical and topological
results of Pareto critical sets (cf. [17,20,26]). The second application is the construction of
surrogate models for expensive MOPs, where the idea is to compute a few optimal points of
the expensive problem and to then use these points as data for our inverse approach. Most
standard methods for solving the expensive MOP will also (either explicitly or implicitly)
provide the corresponding KKT vectors that are needed. For example, in the weighting
method (cf. [27]), the KKT vector of an optimal point is the weighting vector that was used
to compute it. We point out that while our approach works well in most of the examples we
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present in this paper, there remain challenges that need to be addressed to increase the range
of applicability, in particular for the generation of surrogate models. These open problems
will be discussed in the conclusion.

For the single objective case, i.e., for k = 1, problems like (IMOP) are addressedwithin the
field of inverse optimization. For combinatorial problems, a survey on inverse optimization
can be found in [19]. In [21] and [1], inverse linear problems of the formminx c�x (with some
linear constraints) were considered, where the goal is to find the cost vector c so that a given
feasible point is optimal. In [23], convex parameter-dependent problemswere consideredwith
the intention of estimating the objective function from observations of parameter values and
associated optimal solutions. Similarly to our approach in this paper, this is done by expressing
the objective function as a linear combination of some pre-selected basis functions and then
minimizing the residuals of the first-order optimality conditions in the given observations.
Part of the literature in the single objective case is concerned with finding a weighting vector
for the objectives of anMOP such that a given feasible point is Pareto optimal (cf. [6,7]). This
area is also referred to as inverse multiobjective optimization, but differs from the context in
this paper. Recently, a first result in the multiobjective case has appeared. In [12], a method
was presented to find the parameters of a parameter-dependent, convex and constrained
MOP such that its Pareto set contains a set of given, noisy points (modeled via probability
distributions). This was done by discretizing the Pareto set for a fixed parameter by a finite
number of solutions of the weighting method and then minimizing the sum over the distances
of the given points to the discretization. This strategywas formalized as amixed integer linear
problem, for which a heuristic solution method was proposed.

By interpreting the coefficients of the linear combination of basis functions in our approach
as parameters of a parameter-dependent MOP, we are in a similar situation as in [12]. In
contrast to the approach in [12], we will not require convexity of the objective functions
and not rely on heuristic methods, but only consider the unconstrained case where the KKT
vectors are known. On the one hand, this will make our approach more restrained, since the
assumption of knowing the KKT vectors is strong, as discussed above. On the other hand,
if the KKT vectors are known (as in the applications presented in this paper), allowing non-
convex objectives will significantly increase the complexity of the geometry and topology
of the data that can be handled. This will also be highlighted in our examples, where many
of the objective functions are non-convex. Furthermore, the approach in [12] to avoid the
assumption of knowing KKT vectors (via the weighting method) strongly depends on the
convexity of the objective functions and thus can not be used in the non-convex setting.

The remainder of this article is structured as follows. We begin with a brief introduction
to multiobjective optimization in Sect. 2 before presenting our main theoretical results in
Sect. 3. There, we will first investigate the existence of an objective function vector in the
span of the chosen basis B for which the data points are extended Pareto critical. We then
address the task of finding the objective function vector whose extended Pareto critical set
is as close to a given data set as possible. Afterwards, we apply our algorithm to three
fundamentally different problem classes:

– the construction of objective functions from prescribed data (Sect. 4.1),
– the identification of objective functions of stochastic MOPs (Sect. 4.2),
– the generation of surrogate problems in situations where the objective functions are

known, but expensive to evaluate (Sect. 5).

In particular, we will discuss how the KKT vectors for the data can be obtained for each
problem class. Finally, we draw a conclusion and discuss open problems of our method in
Sect. 6.
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For our numerical results, we use the built-in method svd from MATLAB 2017a for
singular value decomposition. For the computation of the extended Pareto critical sets in this
article, we use the Continuation Method CONT-Recover from [34].

2 Multiobjective optimization

In this section, we will briefly introduce the basic concepts of multiobjective optimization.
For a more detailed introduction, we refer to [14,20,27].

Let f : R
n → R

k be a vector-valued function, called the objective function vector,
with continuously differentiable components fi : Rn → R, i ∈ {1, ..., k}, called objective
functions. It maps the variable space R

n to the image space R
k . The goal of multiobjective

optimization is to minimize the objective function vector f , i.e., to minimize all objective
functions fi simultaneously. This is called a multiobjective optimization problem (MOP) and
is denoted by

min
x∈Rn

f (x) = min
x∈Rn

⎛
⎜⎝

f1(x)
...

fk(x)

⎞
⎟⎠ . (MOP)

In contrast to scalar optimization (i.e., k = 1), it is not immediately clear what we mean by
minimizing f , as there is no natural total order of the objective values in Rk for k > 1. As a
result, we cannot expect to find a single point that solves (MOP). Instead, we search for the
Pareto set which is defined in the following way:

Definition 1 (a) A point x∗ ∈ R
n dominates a point x ∈ R

n , if fi (x∗) ≤ fi (x) for all
i ∈ {1, ..., k} and f j (x∗) < f j (x) for some j ∈ {1, ..., k}.

(b) A point x∗ ∈ R
n is called locally Pareto optimal if there exists an open set U ⊆ R

n with
x∗ ∈ U such that there is no point x ∈ U dominating x∗. If this holds for U = R

n , then
x∗ is called Pareto optimal.

(c) The set of all (locally) Pareto optimal points is called the (local) Pareto set, its image
under f the (local) Pareto front.

Similar to scalar optimization, there are necessary conditions for local Pareto optimality
using the first-order derivatives of f , called theKarush–Kuhn–Tucker (KKT) conditions [20]:

Theorem 1 Let x∗ be a locally Pareto optimal point of (MOP) and

Δk :=
{

α ∈ (R≥0)k :
k∑

i=1

αi = 1

}
. (1)

Then there exists some α∗ ∈ Δk such that

D f (x∗)�α∗ =
k∑

i=1

α∗
i ∇ fi (x∗) = 0. (KKT)

For k = 1, (KKT) reduces to the well-known optimality condition ∇ f (x∗) = 0. The set
of points satisfying the KKT conditions is a superset of the (local) Pareto set and we make
the following definition:

Definition 2 Let x ∈ R
n .
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(a) If there exists some α ∈ Δk (with Δk as in (1)) such that (KKT) holds, then x is called
Pareto critical and α aKKT vector of x containing theKKT multipliers αi , i ∈ {1, ..., k}.
The set of Pareto critical points Pc of (MOP) is called the Pareto critical set. (Pareto
critical points are sometimes also referred to as substationary points by other authors.)

(b) In the situation of a), the pair (x, α) ∈ R
n × Δk is called an extended Pareto critical

point. The set of all such pairs PM ⊆ R
n ×Δk is called the extended Pareto critical set.

Since the structure of Pc and PM will be important for our approach, we will briefly
mention three results on this topic: In [9,26] it was shown that Pc is generically a stratification,
which basically means that it is a “manifold with boundaries and corners”. In [17] it was
shown that the boundary (or edge) of Pc is covered by Pareto critical sets of subproblems
where only subsets of the set of objective functions are optimized. In [21] it was shown that
{(x, α) ∈ PM : α ∈ (R>0)k} ⊆ PM is a (k − 1)-dimensional submanifold of Rn+k if a
certain rank condition holds.

3 Inferring objective function vectors from data

We will now present a way to construct objective function vectors for which PM contains
a finite set of given data points Dx = {x̄1, ..., x̄ N } ⊆ R

n with corresponding KKT vectors
Dα = {ᾱ1, ..., ᾱN } ⊆ Δk . The general concept of this inverse approach is to consider x∗
and α∗ as given in (KKT) instead of the objective function vector f . So in contrast to the
usual task of searching for an x ∈ R

n for which an α ∈ Δk exists so that (KKT) holds, we
now search for an f ∈ C1(Rn,Rk) for which (KKT) holds for all x̄ j and ᾱ j , j ∈ {1, ..., N }.
As it is infinite-dimensional, we obviously cannot search the entire C1(Rn,Rk). Instead, we
consider finite-dimensional linear subspaces of C1(Rn,R) that are spanned by a set of basis
functions B = {b1, ..., bd} ⊆ C1(Rn,R), and then search for f ∈ span(B)k . An example
for the choice of basis functions is the monomials in n variables such that span(B) is the
space of polynomials (up to a certain degree). The usage of basis functions reduces the task of
finding an f ∈ C1(Rn,Rk) to the task of finding the coefficients c ∈ R

d of the corresponding
linear combination of basis functions. This problem can be stated as a homogeneous linear
problem in c and can be solved efficiently via singular value decomposition. Furthermore,
if no objective function vector exists whose extended Pareto critical set exactly contains the
data, e.g., due to noise or a bad choice of basis functions, then approximate solutions of this
linear problem yield objective function vectors whose extended Pareto critical set is at least
close to the data. In particular, the smallest singular value can be used as a measure of how
well the given data set can be represented as an extended Pareto critical set of a function
consisting of the given basis functions.

We will assume for the remainder of this section that the following are given:

– a data set D = {(x̄1, ᾱ1), (x̄2, ᾱ2), ..., (x̄ N , ᾱN )} ⊆ R
n × Δk (and in particular the

number of objective functions k),
– a set of basis functions B = {b1, ..., bd} ⊆ C1(Rn,R) with linearly independent deriva-

tives.

As discussed in the introduction, the assumption that the KKT vectors are given in the data
is relatively strong. Nevertheless, in Sects. 4 and 5 we will present applications where this
data can be obtained. Depending on the application, this is done in two different ways:

– At the end of Sect. 2, we summarized some of the structural results about the extended
Pareto critical set PM. Since we want to generate anMOP such that the data is contained
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in PM, these results also impact our data setD, and in particular the KKT vectors. While
the structural results are clearly not strong enough to uniquely determine the dataDα for
the KKT vectors from the data Dx of the Pareto critical points, they can still be useful.
This is mainly the case when we want to use our approach to generate test problems for
MOP solvers (Sect. 4.1), where we can influence topological properties like the boundary
and the connectedness of Pc via the KKT vectors. For example, if x̄ j should lie on the
boundary of Pc, then one component of the corresponding KKT vector ᾱ j has to be zero.

– In the forward problem of computing the Pareto set of a known objective function vector,
the KKT vectors can often be obtained as a by-product of the solution method. For
example, for many scalarization techniques like the weighting method, the KKT vectors
can be derived from the first-order optimality conditions of the scalar problem (see
Sect. 5). Thus, in the context of generating surrogate models for MOPs, we can obtain
the data for the KKT vectors by computing a few Pareto optimal points of the original
problem via one of these techniques. This is demonstrated in Sect. 4.2 (for stochastic
MOPs) and Sect. 5 (for computationally expensive MOPs).

3.1 Existence of exact approximations

In this subsection, our goal is to find an objective function vector with components in span(B)

for which the set D is exactly extended Pareto critical. In other words, our goal is to find a
function f : Rn → R

k , f = ( fi )i∈{1,...,k}, f 
= 0 with fi ∈ span(B) ∀i ∈ {1, ..., k} and
D f (x̄)�ᾱ = 0 ∀(x̄, ᾱ) ∈ D. (2)

To this end, for fi ∈ span(B), we can write

fi (x) =
d∑

j=1

ci j b j (x) (3)

for some ci ∈ R
d . Thus, we obtain

D f (x)�α =
k∑

i=1

αi∇ fi (x) =
k∑

i=1

αi

d∑
j=1

ci j∇b j (x) =
k∑

i=1

d∑
j=1

αi ci j∇b j (x)

= L(x, α)c

with
c := (c11, ..., c1d , c21, ..., c2d , ..., ck1, ..., ckd)� ∈ R

k·d (4)

and

L(x, α)

:= (α1∇b1(x), ..., α1∇bd(x), α2∇b1(x), ..., α2∇bd(x), ..., αk∇b1(x), ..., αk∇bd(x))

∈ R
n×(k·d).

Let

L :=
⎛
⎜⎝

L(x̄1, ᾱ1)
...

L(x̄ N , ᾱN )

⎞
⎟⎠ ∈ R

(n·N )×(k·d).
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Then (2) is equivalent to the homogeneous linear system

Lc = 0. (5)

Since the derivatives of the basis functions are linearly independent, a (nontrivial) function
satisfying (2) exists if and only if

rk(L) < k · d. (6)

We will now consider two cases for the dimension of system (5):
Case 1: (5) is an underdetermined system, i.e.,n·N < k·d . In this case, (6) automatically holds
such that (5) possesses at least one nontrivial solution. In other words, dim(ker(L)) > 0.
Note that in this case, our approach resembles an interpolation method. In fact, for n = 1,
k = 1 andmonomial basis functions,L is similar to theVandermonde matrix frompolynomial
interpolation (without the constant column).
Case 2: (5) is a square or overdetermined system, i.e., n · N ≥ k · d . This means that
generically, (5) does not have a solution, and we have to check the condition (6). In practice,
we can use singular value decomposition (SVD) to do this, as the rank ofL equals the number
of singular values of L that are non-zero. In particular, as rk(L) = k · d − dim(ker(L)), it
yields the dimension of the solution space of (5).

For ease of notation, we make the following definition:

Definition 3 Let

F : Rk·d → C1(Rn,Rk), c �→ ( fi )i∈{1,...,k} =
⎛
⎝

d∑
j=1

ci j b j

⎞
⎠

i∈{1,...,k}
be the map that maps a coefficient vector c onto the corresponding objective function vector
( fi )i∈{1,...,k} (cf. (3) and (4)).

It is easy to see that F is linear and by the linear independence of the derivatives of the
basis functions, F is also injective.

3.2 Finding the best approximation

In most applications, one can expect that (5) is overdetermined and that it cannot be solved
exactly. Even if there was a solution, we would require exact data to find it, which is numeri-
cally impossible. Furthermore, the casewhere the data is slightly noisy ismuchmore realistic.
Therefore, it makes more sense to look for the MOP whose extended Pareto critical set is the
best approximation for a given data set, i.e., where ‖D f (x̄)�ᾱ‖2 is as small as possible for
all (x̄, ᾱ) ∈ D. To this end, consider the problem

min‖c‖2=1
‖Lc‖2, (7)

where the vector of coefficients is constrained to the unit sphere S(k·d)−1 in R
k·d to avoid

the trivial solution c∗ = 0. If c∗ is a solution of (7) and f = F(c∗) is the corresponding
objective function vector, then

‖D f (x̄)�ᾱ‖2 = ‖L(x̄, ᾱ)c∗‖2 ≤ ‖Lc∗‖2 ∀(x̄, ᾱ) ∈ D, (8)

i.e., the optimal value of (7) is an upper bound for all ‖D f (x̄)�ᾱ‖2 with (x̄, ᾱ) ∈ D. In
particular, the optimal value of (7) is zero if and only if (6) holds. Problem (7) can easily be
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solved using SVD (see, e.g., [16]): Assume that n · N ≥ k · d , i.e., (5) is overdetermined. Let

L = U SV �

be the SVD of L with sorted singular values s1 ≤ s2 ≤ ... ≤ sk·d . Let v1, ..., vk·d ∈ R
k·d be

the right-singular vectors of L, i.e., the columns of V . Then

min‖c‖2=1
‖Lc‖2 = s1 and argmin

‖c‖2=1
‖Lc‖2 = span({vi : si = s1}) ∩ S(k·d)−1. (9)

Consequently, s1 is a measure for how well the data set D can be approximated with the
extended Pareto critical set of an MOP where the objective functions are linear combinations
of the basis functions in B. Furthermore, the singular values of L can be used to determine
the dimension of the space of approximating objective function vectors.

Algorithm 1 Generate objective function vector from data

Given: Data set D ⊆ R
n × Δk , basis functions B ⊆ C1(Rn ,R), threshold s.

1: Assemble L.
2: Calculate the SVD of L with singular values s1 ≤ s2 ≤ ... ≤ sk·d and right-singular vectors v1, ..., vk·d .
3: Identify the indices I = {1, ..., i∗}, i∗ ≤ k · d, such that si ≤ s for all i ∈ I .
4: Choose an element

c∗ ∈ span({vi : i ∈ I }) \ {0} ⊆ R
k·d

with ‖c∗‖2 = 1.
5: Assemble the objective function vector f = F(c∗) as in (3).

Algorithm 1 summarizes the numerical procedure which follows from the above consid-
erations. The resulting approximation then satisfies the following property:

Theorem 2 Let f be the result of Algorithm 1 and si∗ be the largest singular value less or
equal to s̄. Then

‖D f (x̄)�ᾱ‖2 ≤ si∗ ∀(x̄, ᾱ) ∈ D.

In particular, if si∗ = 0, then all (x̄, ᾱ) ∈ D are extended Pareto critical for the MOP with
objective function vector f .

Proof Let c∗ be the coefficient vector in step 4 such that f = F(c∗). Then there is some
λ ∈ R

k·d with c∗ = V λ, λi∗+1 = ... = λk·d = 0 and 1 = ‖c∗‖2 = ‖V λ‖2 = ‖λ‖2. Thus

‖Lc∗‖2 = ‖LV λ‖2 = ‖U Sλ‖2 = ‖Sλ‖2 =
√√√√ k·d∑

i=1

s2i λ2i ≤ si∗

√√√√ k·d∑
i=1

λ2i

= si∗‖λ‖2 = si∗ .

Combining this with (8) completes the proof. ��
Some properties of Algorithm 1 are highlighted in the following remark.

Remark 1 (a) Algorithm 1 can also be applied when (5) is underdetermined, i.e., when
n · N ≤ k · d , by treating v(n·N )+1, ..., vk·d as right-singular vectors to the “singular
value” zero.

(b) In general, if i∗ > 1, there is no obvious choice for c in step 4. A possible approach is
to choose c as sparse as possible (using, e.g., L1 minimization [35]). This can be very
advantageous for interpretability, see also [5] for sparse identification in the dynamical
systems context.
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(c) It is important to note that by construction, if si∗ = 0, we can only guarantee that D is
a subset of the extended Pareto critical set of f . It is possible for the extended Pareto
critical set to contain more than just D (cf. Example 1 and 3). Therefore, there are
cases where the smallest singular value is 0, but the corresponding MOP might not be
desirable.

(d) According to (9), if si∗ = 0, we can take any element of span({vi : i ∈ I }) \ {0} in step
3 and do not need to normalize it.

We will conclude this section with a brief discussion on the choice of the set of basis
functions B. It should satisfy the following requirements:

(i) The derivatives of the basis functions should be linearly independent to avoid trivial
solutions. (In particular, this implies that the representation of the derivatives of elements
of span(B) via coefficients of the derivatives of elements of B is unique.)

(ii) Since we have to evaluate the derivatives of the basis functions in every data point in
Dx for the assembly of L, the evaluation of these derivatives should be efficient.

(iii) In practice, an initial, a priori choice of B will often be insufficient. Thus, it should be
possible to increase the quality of the approximation by increasing the size of B without
much effort.

An intuitive choice for B are the monomials in n variables up to degree l ∈ N, i.e.,

B = {xl1
1 xl2

2 · · · xln
n : li ∈ N ∪ {0}, i ∈ {1, ..., n}, 0 < l1 + l2 + ... + ln ≤ l}.

It is easy to see that (i) and (ii) are satisfied for this choice. For (iii), the Stone-Weierstrass
theorem (cf. [31]) implies that for any compact D ⊆ R

n and any g ∈ C1(D,R), there
exists a sequence of polynomials on D that converges to g (with respect to ‖ · ‖∞). Thus,
for g ∈ C1(Rn,Rk), uniform convergence with polynomial functions can be guaranteed
component-wise on compact subsets of Rn . Therefore, for the rest of this article, we will
always consider the monomials up to a fixed degree as the set of basis functions.

4 Application 1: Constructing objectives from clean and noisy data

In this section, wewill show how the results from Sect. 3 can be utilized to construct objective
functions fromclean andnoisy data.Ourfirst scenariowill be the construction of test problems
for MOP solvers, where the data comes from a discretization of some continuous (i.e., non-
discrete) set. In the second scenario, we will consider stochastic MOPs, where we will
reconstruct the expected value of the objective function vectors using stochastic (i.e., noisy)
solution data.

4.1 Inferring objectives from exact data

Test problems and generators of test problems are an important tool to investigate the behavior
and to benchmark MOP solvers (cf. [10,22,37]). The idea is to interpret our method from
Sect. 3 as a way to generate MOPs with a prescribed extended Pareto critical set. Thus,
instead of finitely many extended Pareto critical points, the goal here is to prescribe the
complete set. We do this by (formally) constructing an infinite (or “continuous”) data set
D∞ = (D∞

x ,D∞
α ) ⊆ R

n × Δk , and then using an even discretization of D∞ with N ∈ N

points (for large N ) as the input for Algorithm 1. If the smallest singular value of L is zero,
D∞ will at least be contained in the extended Pareto critical set of the resulting MOP.
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In this application, the KKT vectors in D∞
α have to be chosen such that D∞ has the topo-

logical and geometrical properties of an extended Pareto critical set. This is nontrivial and
requires some knowledge about the structure of (extended) Pareto critical sets. In the follow-
ing, we will briefly summarize the generic implications of the structural results mentioned
in Sect. 2:

– According to [20], D∞ should (locally) be a differentiable manifold. In practice, this
means that similar x̄ ∈ D∞

x should have similar ᾱ ∈ D∞
α .

– Following [17], for points (x̄, ᾱ) ∈ D∞ where x̄ lies on the edge of D∞
x , we have to

ensure that ᾱ j = 0 for some j ∈ {1, ..., k}. In particular, for multiple Pareto critical
points on the same edge, the same component of the corresponding ᾱ has to be zero.

According to our discussion in Sect. 3, we can generically not expect the smallest singular
value of L to be exactly zero in this case, as we will choose N > k·d

n . Nonetheless, it turns
out that if we use monomials as basis functions, the resulting space of polynomials is large
enough to contain objective function vectors for nontrivial classes of infinite data sets.

Example 1 In this example, we will generate an MOP with two objective functions where
the Pareto critical set is the unit circle S1 in R

2. To this end, let N ∈ N and

x̄ j :=
(
cos(2π j

N )

sin(2π j
N )

)
, j ∈ {1, ..., N }.

The x̄ j are points distributed equidistantly on S1. While the choice of the x̄ j is straight-
forward, the selection of the corresponding KKT vectors is less obvious. Since S1 has no
edge (as defined in [17]), only the first one of the two structural results from above are relevant
here, i.e., similar x̄ should have similar ᾱ in the data. By construction, we have x̄ j ≈ x̄ j+1

for j ∈ {1, ..., N − 1} and x̄ N ≈ x̄1, so the same should hold for ᾱ j . One way of assuring
this is to define the ᾱ j such that they periodically depend on j . For example, for the first
component of ᾱ j , we can choose cos(4π j

N ) as a periodic function in j and transform it such
that it lies within [0, 1]. Since we must have ᾱ j ∈ Δ2, this results in

ᾱ j :=
(

0.5(cos(4π j
N ) + 1)

1 − 0.5(cos(4π j
N ) + 1)

)
, j ∈ {1, ..., N }. (10)

Note that this choice is just one possibility and by no means unique. (In this case, we chose
a different “frequency” for ᾱ j than for x̄ j to avoid unwanted structures in the data.) The
resulting data set for our algorithm is

D := {(x̄ j , ᾱ j ) ∈ R
2 × Δ2 : j ∈ {1, ..., N }}.

We choose monomials up to degree 3 as basis functions, i.e.,

B := {x1, x21 , x31 , x2, x1x2, x21 x2, x22 , x1x22 , x32 },
and use N = 1000 data points.

Figure 1a shows the sorted singular values of the matrix L ∈ R
2000×18 resulting from

the data and the basis functions. The first two singular values s1 = 3.92 · 10−15 and s2 =
9.69 · 10−15 are small, indicating that we found objective function vectors in the span of
our basis functions for which the data set we constructed is exactly extended Pareto critical.
There is an obvious gap from s2 to s3 = 5.41. Since s1 and s2 are both close to zero, we
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choose the threshold s̄ = s2, i.e., I = {1, 2}, in step 3 of Algorithm 1. The corresponding
columns of V are given by

v1 = (−0.9040, 0, 0.3013, 0, 0, 0, 0, 0, 0.010, 0, 0, 0.3013,−0.030, 0, 0, 0, 0, 0.010)�,

v2 = (−0.030, 0, 0.010, 0, 0, 0, 0, 0,−0.3013, 0, 0, 0.010, 0.9040, 0, 0, 0, 0,−0.3013)�.

In this example, it is easy to see that there is a certain pattern in v1 and v2, so that we can
write

span({v1, v2})
= {(−3σ1, 0, σ1, 0, 0, 0, 0, 0, σ2, 0, 0, σ1,−3σ2, 0, 0, 0, 0, σ2)

� : σ1, σ2 ∈ R}. (11)

Unfortunately, not all elements of span({v1, v2}) \ {0} in step 4 lead to desirable objective
function vectors. To see this, consider the element c corresponding to σ1 = 0 and σ2 = 1,
i.e.,

c = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−3, 0, 0, 0, 0, 1)�.

The corresponding objective function vector is given by

F(c)(x) =
(

x32
x32 − 3x2

)
. (12)

For this objective function vector, the extended Pareto critical set indeed contains the given
data set. However, the entire Pareto critical set for this problem is given by R × [−1, 1],
hence it contains significantly more than what we prescribed. In this case, the degeneracy is
caused by the fact that this objective function vector does not depend on x1. A better choice
for c would be, e.g., σ1 = 1 and σ2 = 1, resulting in

c = (−3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,−3, 0, 0, 0, 0, 1)�.

The corresponding objective function vector f = F(c) is given by

f (x) =
(−3x1 + x31 + x32−3x2 + x31 + x32

)
.

One can show that for this objective function vector, theKKTconditions are indeed equivalent
to

x21 + x22 = 1,

α1 = x21 ,

α2 = x22 ,

i.e., the Pareto critical set is precisely S1 with the corresponding KKT vectors given in (10).
(In particular, we did not need to normalize c in step 4 of Algorithm 1 in this case.) Fig. 1b,
c show the Pareto critical set and the image of the Pareto critical set under f .

Example 1 shows how the results from Sect. 3 can be used to derive an explicit expression
for an objective function vector for a prescribed data set. The following example shows that
we can even derive more general formulas.

Example 2 Using the same strategy as in Example 1, it is possible to numerically verify
that arbitrary ellipses can be represented as Pareto critical sets of polynomial MOPs. For
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Fig. 1 a Singular values of L in Example 1. b Pareto critical set of f . c Image of the Pareto critical set of f

a, b ∈ R
>0, we merely have to replace the x̄ j from Example 1 by

x̄ j :=
(

a · cos(2π j
N )

b · sin(2π j
N )

)
.

In this case, if we consider the analogous expression to (11), we see that variations of a and
b only influence a single component, respectively. In general, the following pattern can be
recognized:

span({v1, v2})
= {(−3a2σ1, 0, σ1, 0, 0, 0, 0, 0, σ2, 0, 0, σ1,−3b2σ2, 0, 0, 0, 0, σ2)

� : σ1, σ2 ∈ R},
which leads to the following conjecture: Let

f : R2 → R
2, x �→

(−3a2x1 + x31 + x32−3b2x2 + x31 + x32

)
.

Then

Pc =
{

x ∈ R
2 : x21

a2 + x22
b2

= 1

}

and the KKT vector corresponding to x ∈ Pc is given by α =
(

x21
a2

,
x22
b2

)�
. After deriving

this conjecture numerically, it is straight-forward to prove that it actually holds.

In Examples 1 and 2, the symbolic expressions could easily be verified. In particular,
in step 4 of Algorithm 1 we were able to choose c such that the Pareto critical set did not
contain more than what we intended, i.e., Pc was precisely the unit circle or an ellipse. This
obviously only works if the data set is sufficiently well-structured. The following example
shows a more complicated case.

Example 3 We are now searching for an MOP where the Pareto critical set contains three
connected components Ci , i = 1, 2, 3, given by the following three non-intersecting straight
lines:

Ci = pi + [0, 1] · 1
4

qi

‖qi‖2 ⊆ R
2
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Fig. 2 a Smallest singular value of L for different degrees of the monomial basis in Example 3. b Singular
values of L for degree 5

with

p1 =
(

0.15
−0.20

)
, q1 =

(
0.47
0.04

)
, p2 =

(
0.47

−0.32

)
, q2 =

(
0.40
0.14

)
,

p3 =
(
0.37
0.18

)
, q3 =

(
0.38
0.28

)
.

They are shown in Fig. 3a. For Dx we choose Nc = 500 equidistant points on each Ci , the
corresponding Dα are chosen linearly from (0, 1)� to (1, 0)�, and we again use monomials
as basis functions. When dealing with more complex data sets, we first have to estimate the
required degree of monomials for a satisfactory approximation. To this end, we repeat step
2 of Algorithm 1 for different maximal degrees. The smallest singular value depending on
the maximal degree of the monomials is shown in Fig. 2a. We see that the monomials up
to a degree of 5 are a promising choice, since the smallest singular values do not decrease
further after that. Figure 2b shows all singular values for this set of basis functions. There is
a relatively large gap from s4 = 2.09 · 10−14 to s5 = 8.17 · 10−9, suggesting that s̄ = s4, i.e.,
I = {1, 2, 3, 4}, in step 3 of Algorithm 1 is a good choice. In this case, there is no obvious
way to obtain an expression like (11) for span({v1, v2, v3, v4}), which is why we choose
c = v1‖v1‖2 in step 4. The Pareto critical set of f = F(c) and its image are shown in Fig. 3. As
expected from the small singular values, the given data set is approximated almost perfectly.
Unfortunately, we observe an additional connected component that is not contained in the
data. Since we are unable to influence properties outside the given data set D, additional
Pareto critical points can be expected in the general case.

4.2 Inferring objectives from noisy data

In the previous examples,we assumed thatwehaveprecise dataD thatwewant to approximate
with an extended Pareto critical set. However, there are many cases where this assumption
is unrealistic, for instance real-world applications where the data stems from numerical
simulations or measurements. Another example is stochastic multiobjective optimization,
which we will consider here. We will only give a brief introduction on this topic and refer to
[15] for a more detailed discussion.
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Fig. 3 a Pareto critical set of f in Example 3. b Image of the Pareto critical set of f

Let ξ ∈ R
m be a random vector and f : Rn × R

m → R
k . For x ∈ R

n let E[ f (x, ξ)] be
the (component-wise) expected value of f (x, ξ). For F(x) := E[ f (x, ξ)] we consider the
stochastic multiobjective optimization problem

min
x∈Rn

F(x). (SMOP)

Since we cannot evaluate F directly, in practice the sample average

f̃ Ns (x) = 1

Ns

Ns∑
j=1

f (x, ξ j ) ≈ F(x) (13)

is used, where ξ1, ..., ξ Ns are independent and identically distributed samples of ξ . Using
this approximation, we consider the Sample Average Approximation problem

min
x∈Rn

f̃ Ns (x). (SAA)

For Ns = ∞ the solutions of (SMOP) and (SAA) coincide. Otherwise, for a finite Ns ∈ N,
we can only expect the solution of (SAA) to be an approximation of the solution of (SMOP).
In other words, we can consider the solution of (SAA) (together with the corresponding
KKT vectors) as inexact data of the solution of the original problem (SMOP) and use our
approach to approximate the original solution and objective function vector F . We illustrate
this approach on the following Multiobjective Stochastic Location Problem from [15].

Example 4 Let a := (−1,−1)� and ξ := (ξ1, 0)� be a random vector, where ξ1 is uniformly
distributed on [0, 2]. Let

f (x, ξ) :=
(‖x − a‖22‖x − ξ‖22

)
.

In this case, we have

F(x) = E[ f (x, ξ)] =
( ‖x − a‖22‖x − (1, 0)�‖22 + 1/3

)
=

(
2x1 + x21 + 2x2 + x22 + 2
−2x1 + x21 + x22 + 4/3

)
, (14)

so the Pareto critical (and in this case Pareto optimal) set of (SMOP) is given by the line
connecting a and (1, 0)�. To obtain an approximation of (SMOP) in this case, we apply
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Fig. 4 a Approximation of the solution of (SMOP) with 1000 points for Example 4. b Singular values of L.
c Pareto critical set of the original problem (dotted line) and the approximation (solid line)

the weighting method to (SAA) for Ns = 10 with 100 equidistant weights in Δ2, and solve
each of the resulting scalar problems 10 times (with different realizations of ξ1). The result
is shown in Fig. 4a. Since there is no noise in the first component of f , the approximation is
relatively accurate close to a and becomes worse when moving towards (1, 0)�.

We now interpret the points in Fig. 4a as the data set Dx . The KKT vector α ∈ Dα

corresponding to x ∈ Dx is chosen as the weight in the weighting method that was used to
compute x (cf. Sect. 5). We choose B as the monomials up to degree 2, i.e.,

B := {x1, x21 , x2, x1x2, x22 }.
In this basis, the objective function vector F of (SMOP) can be represented exactly (up to
the constants in both components) by the coefficient vector

c̄ = (2, 1, 2, 0, 1,−2, 1, 0, 0, 1)�. (15)

When applying Algorithm 1, we obtain the singular values shown in Fig. 4b. The objective
function vector x �→ (2x2 + x22 , x22 )

� corresponding to the smallest singular value s1 =
2.34 · 10−6 is degenerate due to the missing dependency on x1. The next smallest singular
values are

s2 = 0.6134,

s3 = 1.5927,

s4 = 2.3106,

s5 = 8.5384.

Hence, due to the gap from s4 to s5, we choose s̄ = s4, i.e., I = {1, 2, 3, 4}, in step 3.
Calculating a (normalized) sparse basis {w1, w2, w3, w4} of span({v1, v2, v3, v4}) results in

w1 = (0, 0,−1, 0,−0.5, 0, 0, 0, 0,−0.5)�,

w2 = (−0.4979, 0.2505,−0.9981,−1, 0, 0,−0.0021, 0, 0.0078,−0.9965)�,

w3 = (−1,−0.5077, 0,−0.0040, 0, 0.9607,−0.4397,−0.0018, 0, 0.0008)�,

w4 = (0.7279,−0.1351, 0, 1,−0.4932,−0.0001, 0,−0.4782, 0.4424, 0.0001)�,

which shows that in step 4, we can choose

c∗ := −2w1 − 2w3 = (2, 1.0155, 2, 0.0080, 1,−1.9214, 0.8794, 0.0037, 0, 0.9985)�,

which is close to c̄ (cf. (15)). The Pareto critical set of the corresponding objective function
vector F(c∗) is shown in Fig. 4c. A numerical approximation of the Hausdorff distance
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between the two sets (using a pointwise discretization) yields 9 ·10−2 (and the corresponding
points ofmaximal distance are located close to (1, 0)�).As functions, comparing F andF(c∗)
(up to constants, cf. (14)) around the Pareto critical set yields

max
x∈[−1.1,1.1]×[−1.1,0.1] ‖(F(x) − (2, 4/3)�) − F(c∗)(x)‖∞ ≈ 2.38 · 10−1,

showing that we were able to construct a good approximation of the objective function vector
F from noisy data.

In all examples we considered so far, both the variable space and the image space were
two-dimensional, i.e., we searched for an objective function vector f : R2 → R

2. In the
following example, we consider a higher-dimensional case which is inspired by Example 1
in [34].

Example 5 Let ξ ∈ R be a random variable, uniformly distributed on [0, 2]. For
a1 := (1, ..., 1) ∈ R

10

a2 := (−1, ...,−1) ∈ R
10

a3 := (ξ,−1, 1,−1, ..., 1,−1) ∈ R
10

consider the function f : R10 × R → R
3 with

fi (x, ξ) := (xi − ai
i )
4 +

n∑
j=1, j 
=i

(x j − ai
j )
2, i ∈ {1, 2, 3}. (16)

Note that only f3 depends on ξ and we have

E[ f3(x, ξ)] = f3(x, 1) + 1

3
.

To generate the data for our inverse algorithm, we apply the weighting method to (SAA) as in
Example 4. In this case, we use Ns = 100 samples with 351 evenly distributed weights inΔ3

and solve each of the resulting scalar problems 5 times. The resulting 1755 points, projected
onto the first three components, are shown in Fig. 5a. As data for the KKT vectors, we again
use the corresponding weighting parameters in the weighting method. As basis functions, we
use the union of themonomials in 10 variables up to degree 2 and {x31 , x41 , x32 , x42 , x33 , x43 }, such
that the function F(x) = E[ f (x, ξ)] is again contained in the span of the basis functions (up
to constants). Let c̄ ∈ R

k·d = R
3·71 = R

213 be the vector of coefficients such that F = F(c̄).
The singular values of L ∈ R

17550×213 when applying Algorithm 1 are shown in Fig. 5b.
The first gap in the singular values occurs from s65 = 6.0154 · 10−5 to s66 = 0.0785. The
objective function vectors corresponding to si for i ∈ {1, ..., 65} are all degenerate, since
they are almost constant with respect to x1, similar to Example 4.

The second visible gap is between s68 = 0.0850 and s69 = 0.2928. Thus, we will first try
s̄ = 10−0.9 = 0.1259 as a threshold in Algorithm 1, which is indicated by the lower dashed
line in Fig. 5b. Let {v1, ..., v68} ⊆ R

213 be the set of corresponding right-singular vectors
and let V ∈ R

213×68 be the matrix with columns v1, ..., v68. In Example 4, we were able
to reconstruct the exact coefficient vector c̄ from the span of {v1, ..., v68} “by hand”. Due to
the higher complexity of this example, we need a more sophisticated strategy here, which
involves exploitation of the structure of (16). To this end, note that ξ only appears in the
coefficients for f3 of the 13 basis functions containing x1, and all other coefficients are fixed.
Let J ⊆ {1, ..., 213} be the set of indices of these fixed coefficients, let VJ ∈ R

200×68 be the
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Fig. 5 a Approximation of the solution of (SMOP) with 1755 points for Example 5. b Singular values of L.
The dashed lines indicate the different thresholds that were used in Example 5

Fig. 6 Approximation of the original coefficient vector c̄ ∈ R
213 (with F(c̄) = F) using a threshold of a

s̄ = −0.9 and b s̄ = 0.6

submatrix of V containing only rows with an index in J and let c̄J ∈ R
200 be the vector of

fixed coefficients. Let σ ∈ R
68 be a least squares solution of the linear system

VJ σ = c̄J .

Then c1 = V σ yields as an approximation of c̄, shown in Fig. 6a. When comparing c1 to c̄,
we have

‖c1 − c̄‖∞ = 1.0794,
1

213

213∑
i=1

|c1i − c̄i | = 0.0426.

So while the average error of c1 is relatively small, there are some outliers where the error is
large.

To improve the quality of the approximation, we will now apply the same strategy again,
but this time with a threshold of s̄ = 100.6 = 3.9811, corresponding to the third gap of the
singular values in Fig. 5b from s145 = 3.3666 to s146 = 5.3254. The resulting approximation
c2 is shown in Fig. 6b, where it is almost indistinguishable from c̄. The maximal and average
errors are

‖c2 − c̄‖∞ = 0.1536,
1

213

213∑
i=1

|c2i − c̄i | = 0.0023,

confirming the observation.
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Unfortunately, in the previous example, we were only able to infer the (coefficients of
the) original objective function vector by exploiting some of the structure of this specific
function. In general, when considering the span of the right-singular vectors corresponding
to some gap in the singular values, it is difficult (or even impossible) to reconstruct the original
coefficient vector without taking further steps such as a structural assumption. This will be
further discussed in the conclusion.

5 Application 2: Generation of surrogatemodels of expensive MOPs

In this section, we will use the results from Sect. 3 for the generation of surrogate models for
MOPs with an objective function vector f e that is known but very costly to evaluate. This
scenario occurs frequently for complex physics simulations, e.g., when the system under
consideration is described by a partial differential equation, cf. [2,3,25,29] for examples.
Here, while it is often possible to calculate single Pareto critical points, the computation of
the full Pareto critical set via a fine pointwise approximation is computationally infeasible.
In this situation, we will use a few Pareto critical points of the expensive model f e and their
correspondingKKT vectors as data points. Our goal is to find anMOPwhose extended Pareto
critical set is as close as possible to the extended Pareto critical set of f e while using as few
data points as possible.

When computing solutions of the expensive model for the generation of the data for our
approach, it is important to not only obtain the Pareto critical points in the variable space,
but also the corresponding KKT vectors. Fortunately, there are common methods where this
is easy to achieve:

– Weighting method: If x∗ = argminx∈Rn
∑k

i=1 α∗
i fi (x) for some weighting vector α∗ ∈

Δk , then α∗ is a KKT vector of x∗ (by first-order optimality).
– ε-constraint method (cf. [27]): For l ∈ {1, ..., k} and ε j ∈ R, j ∈ {1, ..., k} \ {l}, let x∗

be the solution of

min
x∈Rn

fl(x)

s.t. f j (x) ≤ ε j , j ∈ {1, ..., k} \ {l}.
By the first-order optimality conditions for this problem, there areμ∗

j ≥ 0, j ∈ {1, ..., k}\
{l}, such that

∇ fl(x∗) +
∑
j 
=l

μ∗
j∇ f j (x∗) = 0.

Let

α∗ = 1

α1 + ... + αk
α for αi =

{
μ∗

i , i 
= l,

1, i = l.

Then α∗ is a KKT vector of x∗.
– Reference point method (cf. [27]): Let z ∈ R

k and x∗ be a solution of

min
x∈Rn

‖ f (x) − z‖2

with zi ≤ fi (x∗) for all i ∈ {1, ..., k} and z 
= fi (x∗). By the first-order optimality
condition for this problem, we have

0 = ∇(x �→ ‖ f (x) − z‖2)(x∗) = 2D f (x∗)�( f (x∗) − z).
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By assumption, fi (x∗) − zi ≥ 0 for all i ∈ {1, ..., k} and ∑k
i=1 fi (x∗) − zi > 0, so we

obtain a KKT vector via

α∗ = f (x∗) − z∑k
i=1 fi (x∗) − zi

.

For methods which are not directly related to the KKT conditions of the MOP, like evolu-
tionary algorithms, KKT vectors are more difficult to obtain. Given only the Pareto critical
(or optimal) point, a straight-forward way to obtain the corresponding KKT vector would
be to evaluate the gradients of the objective functions and solve (KKT) as a linear system
in α. However, this approach can obviously be very time consuming. Furthermore, knowl-
edge of the derivatives of the expensive model is required. A much cheaper alternative is to
exploit the fact that KKT vectors are orthogonal to the linearized Pareto front [20]. For a
pointwise approximation of the Pareto front, e.g., obtained by NSGA-II, we can use linear
regression in each point of the front using only the neighboring points on the front to obtain
an approximation of the tangent space of the Pareto front. While this requires a relatively
even discretization of the Pareto front, it is much cheaper than assembling and solving the
above-mentioned linear system.

Surrogate modeling is a very active area of research and has been used extensively for
simulation and optimization, see [4,33] for overviews. In recent years, surrogate models have
also attracted interest in the multiobjective optimization community. All methods proposed
so far have the common goal of finding a surrogate model for the objective function f e, for
instance by polynomial regression (cf., e.g., [8,36]). Consequently, the surrogate model will
possess a dominance relation similar to the original function and as a result, dominance-
based methods like evolutionary algorithms can be applied. In contrast to this, our approach
constructs surrogatemodels which resemble the original KKT conditions. Thismeans that we
(in general) do not obtain a surrogate model for the objective function but for the first-order
optimality condition such that KKT-based methods like continuation [34] can be used.

When “fitting” a surrogate model to a data set of limited size as in this case, it is important
avoid underfitting and overfitting. These terms are common in statistics andmachine learning,
but they apply here in a similar fashion. In general, underfitting means that the chosen model
is not able to capture all structures that are present in the data set. In our context, this means
that we chose an unsuited (e.g., too small) set of basis functions. When using monomials
as basis functions, one can try to circumvent this by using a higher maximal degree (as in
Example 3). On the other hand, overfitting means that the model captures structures in the
data set that were caused by noise and are highly dependent on the data used for fitting the
model. In our context, this happens when the number of basis functions d in B is too large.
A necessary condition to circumvent this is to ensure that n · N ≥ k · d , i.e.,

d ≤ n · N

k
. (17)

As discussed in Sect. 3, if this condition does not hold then we always find an objective
function vector in the chosen basis where the data points are exactly extended Pareto critical.
Thus, if (17) is violated, overfitting is unavoidable.

To illustrate the behavior of our method, we begin with an example where the objective
function vector is cheap to evaluate andwe already know the solution of theMOP.Weconsider
the problem L&H2×2 from [18], where the objective function vector is non-polynomial and
has a complex (extended) Pareto critical set.
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Fig. 7 a Pareto critical set of (L&H2×2). The dots represent the N = 17 data points used for the surrogate
model construction. b Image of the Pareto critical set. c Singular values of L for monomials up to degree 4
for the chosen data points

Example 6 Consider the MOP

min
x∈R2

f e(x) (L&H2×2)

s.t . x ∈ [−0.75, 0.75] × [−2.5, 0.12]
for

f e(x) := −
( √

2
2 x1 +

√
2
2 b(x)

−
√
2
2 x1 +

√
2
2 b(x)

)

with

b(x) := 0.2g(x, (0, 0)�, 0.65) + 1.5g(x, (0,−1.5)�, 2.8),

g(x, p0, σ ) :=
√
2π

σ
exp

(
−‖x − p0‖22

σ 2

)
.

The Pareto critical set of this MOP and its image are shown in Fig. 7a, b, respectively. (Note
that since all Pareto critical points on the boundary of the feasible set are also Pareto critical
for the unconstrained problem, we can consider this problem as unconstrained.) For the
surrogate model construction, we choose the N = 17 data points depicted in Fig. 7a. We
choose all monomials up to degree 4 as basis functions. The reason for this choice is that for
larger degrees we have |B| = d ≥ 20 such that n · N = 34 < 40 ≤ k · d , which would result
in overfitting.

The surrogate model is now constructed from the data set by applying Algorithm 1. The
singular values of L are shown in Fig. 7c. In steps 3 and 4, we choose the coefficient vector
c = v1‖v1‖2 corresponding to the smallest singular value s1 = 5.76 · 10−4. A comparison
between the Pareto critical sets of the corresponding objective function vector f = F(c)
and the original objective function vector (L&H2×2) is shown in Fig. 8. We see in (a) that
the Pareto critical sets are almost identical besides the two additional connected components
at the top. After filtering these out (e.g., by applying clustering algorithms, cf. [32]), the
Hausdorff distance between the two sets is 4 · 10−3. Figure 8b shows the image of the
Pareto critical set of f under the original objective function vector f e without the additional
connected components. Similar to the variable space, the Pareto fronts are almost identical
with a Hausdorff distance of 1.6 · 10−3.
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Fig. 8 a The Pareto critical sets of (L&H2×2) (dotted line) and its approximation f (solid line). b The images
of the Pareto critical sets of (L&H2×2) (dotted line) and f under f e (solid line)

The previous example shows that few data points of the original objective function vector
can suffice to generate a good surrogate model, even if the original objective function vector
does not lie in the span of the chosen basis functions. In order to highlight the potential for
increased efficiency in real-world applications, our next example considers an MOP where
the evaluation of the objective function vector is very expensive.

Example 7 In this example, we consider the flow around a cylinder governed by the 2D
incompressible Navier–Stokes equations at a Reynolds number of 100, where the goal is to
influence the flow field by rotating the cylinder (cf. Fig. 9a):

ẏ(x, t) + y(x, t) · ∇ y(x, t) = ∇ p(x, t) + 1

Re
Δy(x, t),

∇ · y(x, t) = 0,

y(x, 0) = y0(x).

(NSE)

Here, y is the flow velocity and p is the pressure. For the non-rotating cylinder, the well-
known von Kármán vortex street occurs. This is a periodic solution where vortices detach
alternatingly from the upper and lower edge of the cylinder, respectively. This setup is a
classical problem from flow control which has been studied extensively in the literature both
using direct approaches as well as surrogate models, see [29] and the references therein.
The classical goal is to stabilize the flow, i.e., to minimize the vertical velocity. This can be
associated with minimizing the vertical force on the cylinder, the lift CL . As a second goal,
we want to minimize the control effort, which results in the following multiobjective optimal
control problem:

min
u∈L2([t0,te],R)

(∫ te
t0

C2
L(t) dt

∫ te
t0

u2(t) dt

)

s.t. (NSE).

(18)

By introducing a sinusoidal control u(t) = x1 sin(2πx2 t) and assuming that the control-to-
state mapping is injective, Problem (18) can be transformed into the MOP

min
x∈R2

f e(x) with f e(x) :=
( ∫ te

t0
C2

L(t) dt∫ te
t0

(x1 sin(2πx2 t))2 dt

)
. (19)
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Fig. 9 a Flow around a cylinder, controlled via cylinder rotation. b Result of the weighting method applied to
the MOP (19) in the variable space. c Image of the resulting points under the objective function (19)

Since the Navier–Stokes equations are a system of nonlinear partial differential equations,
we have to introduce a spatial discretization (here via the finite volume method) with 22, 000
cells, which results in 66, 000 degrees of freedom at each time instant. Consequently, it is
infeasible to accurately solve Problem (19) directly, regardless of the used method.

Oneway to approach this problem is to introduce a surrogate model for the system dynam-
ics (NSE), for instance via Proper Orthogonal Decomposition [29]. In contrast to this, here,
we directly construct a surrogate model for the MOP (19) instead of the system dynamics. In
order to generate the required data pointsD, we apply scalarization via the weighting method
(i.e., minw1 f e

1 + w2 f e
2 ) to (19) with varying weights

wi =
(

i − 1

25
, 1 − i − 1

25

)�
, i ∈ {1, ..., 26}. (20)

An advantage of the weighting method is that we directly obtain the KKT vectors of the
resulting Pareto optimal points as the corresponding weights that were used to calculate
them. Since there are convergence issues for i ∈ {10, ..., 16} (likely due to a large number of
local minima, which is a known problem), we will exclude these points from our data set. The
remaining 19 points are shown in Fig. 9b, c. ConsideringDx andDα , it appears that the Pareto
set consists of a single one-dimensional connected component whose corresponding KKT
vectors are monotonically increasing and decreasing in their first and second component,
respectively. Due to this simple structure, we take all monomials up to degree 2 as our set of
basis functions. The singular values of the resulting L ∈ R

38×10 are shown in Fig. 10a. The
smallest singular values s1 = 2.82·10−4 and s2 = 5.95·10−4 correspond to objective function
vectors where the influence of x1 is relatively small. (In particular, the hessian matrices of
both objective functions in both objective function vectors are almost singular.) Therefore, the
corresponding Pareto critical sets are degenerate similar to the objective function vector (12)
in Example 1. Due to this, we instead consider the objective function vector corresponding
to the third singular value s3 = 5.96 · 10−3 as our surrogate model, given by

f (x) =
(−0.0519x21 − 0.9285x1x2 + 0.1588x1 + 0.1542x22 + 0.1046x2

−0.0136x21 − 0.2704x1x2 + 0.0437x1 + 0.0054x22 − 0.0008x2

)
. (21)

A projection of the corresponding extended Pareto critical set is depicted in Fig. 10b, showing
that all data points are close to the solution of the surrogate problem. In order to obtain an
approximation of the Pareto front of the original MOP (19), we can evaluate the original
objective function vector f e in a pointwise discretization of the Pareto critical set of the
surrogate model f . In order to evaluate the performance, we compare our results with the
well-knownNSGA-II algorithm [11] (implementation fromMATLAB’sGlobalOptimization
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Fig. 10 a Singular values of L in Example 7. b Pareto critical set of (21) (solid line) and the data in Dx
(circles), where the first KKT multiplier α1 is shown in the third dimension

Fig. 11 a The approximation of the Pareto set via the surrogate model compared to NSGA-II in Example 7.
b Comparison of the corresponding approximations of the Pareto fronts

Toolbox) directly applied to the MOP (19). The results are depicted in Fig. 11. Here, we have
used an initial population size of 100 for NSGA-II and a discretization of the Pareto critical
set of our surrogate model (21) with 468 equidistant points. Figure 11 shows that although
we only used 19 data points for the generation of our surrogate model and there was a gap in
our data set, we are able to obtain a good approximation of the Pareto set and front in a very
efficient manner.

Example 8 In order to discuss possible challenges with higher-dimensional problems, we
consider a multiobjective optimal control problem for autonomous electric vehicles, see
[13,30] for a detailed description. The problem is to set the acceleration of a nonlinear
model for the longitudinal velocity of an electric vehicle – consisting of ordinary differential
equations for both the mechanical system and the electronic components – in such a way that
the vehicle drives both fast and comfortably on a given track:

min
u∈L2([t0,te],R)

(− ∫ te
t0

y1(t) dt
‖ẏ1‖L2

)

s.t. ẏ = g(y, u),

u(t) ∈ [−500, 1000].
(22)

Here, y = [v, S, ud L , ud S] is the system state comprised of the vehicle velocity, the battery
state of charge, and the long and short term voltage drops, respectively [13]. Consequently,
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Fig. 12 a Projection of the Pareto critical set of the surrogate model and the data that was used to create it for
Example 8. b Image of the Pareto critical set of the surrogate model and the data under the original objective
function vector

the two objectives are maximizing the final position and minimizing the integrated accel-
eration, representing fast and comfortable driving. A discretization of the control input u
into four piecewise constant parts over the time horizon te − t0 = 20 (represented via
x ∈ [−500, 1000]4 ⊆ R

4) results in the objective function vector f e : R4 → R
2.

We use the ε-constraint method to generate 30 data points for our inverse approach. (Note
that although this is a constrained MOP, the data points were computed such they do not lie
on the boundary of the feasible set.) As derived in the beginning of this section, we obtain the
KKT vectors via the optimality conditions of the scalarized problems. As basis functions, we
use monomials up to degree 3. Projections of the Pareto critical set of the resulting surrogate
model (approximated via the Continuation Method) and the data on which it is based are
shown in Fig. 12a. Although the Pareto critical set contains the data, it contains additional
points which are unrelated to the data. Figure 12b shows the image of the Pareto critical set
under the original objective function vector f e and the image of the data. In accordance with
the variable space, the image of the Pareto critical set of the surrogate model covers the true
Pareto front, but it also contains points which are clearly not Pareto optimal.

6 Conclusion and outlook

In this article, we present a way to construct an objective function vector of anMOP such that
its extended Pareto critical set contains a given data set. This is realized by considering the x∗
andα∗ in theKKT conditions as given by the data and then searching for an objective function
vector f ∈ C1(Rn,Rk) that solves the resulting system of equations. By using a finite set of
basis functions B ⊆ C1(Rn,R), f can be obtained via singular value decomposition, which
results in Algorithm 1.

The ability to infer objective function vectors from (potentially noisy) data has several
potential applications. In examples, we showed how it can be used to generate test problems
for solutionmethods ofMOPs and to approximate the Pareto set and objective function vector
of stochastic MOPs. Furthermore, the approach can be used to significantly reduce the com-
putational effort for expensive MOPs. Using several data points from the expensive problem,
a much cheaper surrogate model can be constructed which can be solved significantly faster.
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While we demonstrate the validity of the proposed approach in several examples, we
emphasize that there are open problems that should be addressed in order to increase the
range of applicability, in particular for real-life scenarios. These will be discussed in the
following.

– As explained in the introduction, the assumption thatKKTvectors are available in the data
is strong. While we found multiple examples where this data is available, it still restricts
the range of applications. Thus, to make our method more applicable, this assumption
should be weakened. In [12], this assumption was avoided by approximating the Pareto
set of a parameter-dependent MOP for different parameters using a finite number of
solutions obtained via the weighting method. This idea can not directly be conveyed to
our non-convex case, as the weighting method generally does not yield all Pareto optimal
(or critical) points. Instead, knowledge about structural properties of Pareto critical sets
and the corresponding KKT vectors might be of use [17].

– For the generation of surrogate models, it is important to ensure that the (extended)
Pareto critical set of the surrogate model is indeed a good approximation of the actual
(extended) Pareto critical set. The convergence result in Theorem 2 states that the smallest
singular value of L is an upper bound for the Euclidean norm of the KKT conditions
in the data points. However, this can not directly be used to obtain an estimate for the
Hausdorff distance between the actual Pareto critical set and its surrogate approximation.
Furthermore, even if the data is exactly contained in the Pareto critical set of the surrogate
model, the surrogate model will generally have additional Pareto critical points which
are not contained in the data. This can be seen in Examples 3, 6 and 8. Thus, a strategy
needs to be developed to exclude undesired additional points.

– In step 4 of Algorithm 1, one has to choose an element in the span of certain right-
singular vectors of L. In general, depending on the chosen threshold, this span can be
large. For instance, the span corresponding to the largest chosen threshold in Example 5
is 145-dimensional. Furthermore, different elements in this span can produce objective
function vectors with significantly differing Pareto critical sets, even if they contain the
data. If no additional information outside of the data set is given, then there is no obvious
way to choose an element in the span. Thus, as already mentioned in Remark 1, it makes
sense to think about additional criteria in step 4 that render the resulting function more
well-behaved or “regular” in an appropriate sense.

– By construction, the data points inDx are not necessarily Pareto optimal for the objective
function vectors that result from Algorithm 1. Thus, methods which can specifically
compute Pareto critical sets have to be used when working with the inferred objective
functions vectors. In this article, we used the Continuation Method from [34]. While
this works well for the low-dimensional examples we presented here, it is increasingly
challenging in high-dimensional cases. Thus, our inverse approach could be improved
by assuring that the data points are actually Pareto optimal and not just Pareto critical.
As sufficient optimality conditions for MOPs use second order derivatives (cf. [27]), a
possible way to control the optimality of the data set might be to incorporate the hessians
of the basis functions in our approach.

– Since the variables in most MOPs in practical applications have to satisfy certain con-
straints, our method should be extended to constrained MOPs.

– For the reasonsmentioned at the end of Sect. 3, wemainly usedmonomials up to different
maximal degrees as basis functions B. Although this lead to satisfactory results in the
examples considered here, there might be more sophisticated choices, in particular if
one has some knowledge of the problem structure. Moreover, promising approaches for
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dictionary learning have recently been proposed, for instance in the context of dynamical
systems approximations [28].
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