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Abstract
The problem of minimizing the difference of two convex functions is called polyhedral
d.c. optimization problem if at least one of the two component functions is polyhedral.
We characterize the existence of global optimal solutions of polyhedral d.c. optimization
problems. This result is used to show that, whenever the existence of an optimal solution
can be certified, polyhedral d.c. optimization problems can be solved by certain concave
minimization algorithms. No further assumptions are necessary in case of the first component
being polyhedral and just some mild assumptions to the first component are required for
the case where the second component is polyhedral. In case of both component functions
being polyhedral, we obtain a primal and dual existence test and a primal and dual solution
procedure. Numerical examples are discussed.

Keywords Global optimization · D.c. programming · Multi-objective linear programming ·
Linear vector optimization

Mathematics Subject Classification 90C26 · 90C29 · 52B55

1 Introduction

D.c. programming and concave minimization are known to be closely related problems, see
e.g. [16]. Theory and methods for concave minimization are surveyed, for instance, in [2].
An overview about the field of d.c. programming is given, for example, in [8,17].

Let g : R
n → R ∪ {∞} and h : R

n → R ∪ {∞} be convex functions, where one of the
functions g or h is assumed to be polyhedral, i.e., the epigraph of the respective function is
a convex polyhedron. We consider the polyhedral d.c. optimization problem

min
x∈dom g

[g(x) − h(x)]. (DC)
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This problem will be transformed into a concave minimization problem under linear
constraints. The general form of such a problem is as follows. For a concave function
f : R

k → R ∪ {−∞} we consider

min
y

f (y) s.t. y ∈ P, (1)

where the feasible set P is an arbitrary polyhedron. For the reformulation of (DC) we choose
the concave objective function

f (x, r) := r − h(x). (2)

The feasible set P is the epigraph of g. The concave minimization problem associated to
(DC)

min
x,r

f (x, r) s.t. (x, r) ∈ epi g (ConcMin)

is equivalent to (DC) in the following sense:

• If (x0, r0) solves (ConcMin) then x0 solves (DC).
• If x0 solves (DC) then (x0, g(x0)) solves (ConcMin).

In the literature on concave minimization, many authors assume a compact feasible set
in order to guaranty the existence of optimal solutions, see e.g. [1,3,12]. However, problem
(ConcMin) always has a non-compact feasible set. In [4], algorithms for concave (even quasi-
concave) minimization based on a modification of methods for vector linear programming
(VLP) are studied. An implementation of these methods based on the VLP solver bensolve
[10,11] is provided by the Octave/Matlab package bensolve tools [5,6]. This approach allows
non-compact feasible sets but requires certain other assumptions.

While the reformulation of (DC) as (ConcMin) is straightforward, our research focuses
on the assumptions which are required for the solution methods. It turns out that verifying
or disproving the existence of optimal solutions of (DC) is the crucial task here. For the
case where g is polyhedral, we prove that whenever an optimal solution of (DC) exists, it
can be computed by solving the associated problem (ConcMin) using the methods of [4]. In
the case where h is polyhedral, the same applies to the dual problem of (DC). Under mild
assumptions, an optimal solution of (DC) can be obtained from an optimal solution of the
dual problem.

This article is organized as follows. In Sect. 2 we characterize the existence of optimal
solutions for polyhedral d.c. programs. Section 3 explains how a polyhedral d.c. program can
be solved using a (quasi-)concave minimization solver like bensolve tools after the existence
of optimal solutions has been verified. The last section presents two numerical examples for
the case where both g and h are polyhedral. Both existence tests and solution methods are
addressed.

We use the following notation. The domain of a function f : R
n → R ∪ {∞} is defined

by dom f := {x ∈ R
n | f (x) < ∞} and the epigraph of f is the set epi f := {(x, r) ∈

R
n × R | r ≥ f (x)}. A convex function f is called closed if epi f is a closed set. We

write R
n+ for the set of vectors with non-negative components. The recession cone 0+C of a

convex set C ⊆ R
n is the set of all y with C + {y} ⊆ C . The lineality space of C is the set

lineal(C) := 0+C ∩ (−0+C).
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2 Existence of global optimal solutions

In this sectionwe discuss the existence of optimal solutions of problem (DC) for the following
three cases: (1) g being polyhedral, (2) h being polyhedral, (3) both g and h being polyhedral.

2.1 The case of g being polyhedral

The following characterization of the existence of optimal solutions is the main result of this
article.

Theorem 1 Problem (DC) with g being polyhedral has an optimal solution if and only if the
following three properties hold:

(i) dom g 	= ∅,
(ii) dom g ⊆ dom h,
(iii) 0+epi g ⊆ 0+(epi h ∩ (dom g × R)).

Proof Let (DC) have an optimal solution x0. Since x0 ∈ dom g, (i) is satisfied. Let x ∈
dom g, then −h(x) ≥ g(x0) − h(x0) − g(x) > −∞ and hence x ∈ dom h, i.e., (ii) holds.
Assume (iii) is violated, that is, 0+epi g � 0+(epi h ∩ (dom g × R)). Then we can choose
(d, s) ∈ 0+epi g \ 0+(epi h ∩ (dom g × R)). By the definition of the recession cone, there
exists some (x, t) ∈ epi h ∩ (dom g × R) such that (x, t) + α(d, s) /∈ epi h ∩ (dom g × R)

for some α > 0. Without loss of generality we can set α = 1. Since t ≥ h(x) we get
(x, h(x)) + (d, s) /∈ epi h ∩ (dom g × R). We find some r ∈ R such that (x, r) ∈ epi g.

Case 1 If (x, h(x)) + (d, s) /∈ dom g × R, then (x, r) + (d, s) /∈ dom g × R and hence
(d, s) /∈ 0+epi g, a contradiction.

Case 2 If (x, h(x)) + (d, s) /∈ epi h, then

h(x) + s < h(x + d) (3)

by definition of the epigraph. We consider problem (ConcMin) which is equivalent to (DC)
as discussed above. For its objective function f defined in (2) we obtain

f (x + d, r + s) < f (x, r). (4)

For any n ∈ N, (x + nd, r + ns) is feasible for (ConcMin). But f (x + nd, r + ns) tends to
−∞, by concavity of f and (4). This contradicts the assumption that (DC) has an optimal
solution. Thus, (iii) is satisfied.

Assume now that (i), (ii) and (iii) hold. By (i), epi g is non-empty. Let (x, r) ∈ epi g and
(d, s) ∈ 0+epi g. Then (x, r) + α(d, s) ∈ epi g for all α > 0. By (ii), we have (x, h(x)) ∈
epi h ∩ (dom g ×R). By (iii) we obtain (d, s) ∈ 0+(epi h ∩ (dom g ×R)). Thus, (x, h(x))+
α(d, s) ∈ epi h ∩ (dom g × R) for all α > 0. From the definition of the epigraph, we obtain
h(x) + αs ≥ h(x + αd). For the objective function f of problem (ConcMin), this implies

f (x + αd, r + αs) = r + αs − h(x + αd) ≥ r − h(x) = f (x, r). (5)

Since epi g is a polyhedron, it can be expressed by a polytope Q as epi g = Q + 0+epi g.
By (ii), the values of f are finite over Q. The polytope Q is the convex hull of its vertices.
Concavity of f implies that f attains its minimum at a vertex (x0, r0) of Q. Since (5) holds
for every (x, r) ∈ Q and every (d, s) ∈ 0+epi g, (x0, r0) is an optimal solution of (ConcMin)
and hence x0 is an optimal solution of (DC). ��

123



40 Journal of Global Optimization (2020) 78:37–47

If g is not polyhedral, the conditions (i), (ii) and (iii) in Theorem 1 are still necessary
for the existence of optimal solutions. This can be seen in the first part of the proof, where
the assumption of g being polyhedral was not used. However, the conditions are no longer
sufficient, not even if h is polyhedral, as the following simple example shows.

Example 2 Let g, h : R → R ∪ {∞} be defined as

g(x) :=
{−√

x if x ≥ 0
+∞ otherwise

and h(x) :=
{

0 if x ≥ 0
+∞ otherwise

.

Then (DC) is unbounded and thus has no optimal solution. We have dom g = dom h = R+
and 0+epi g = 0+epi h = R

2+. Thus, the conditions (i), (ii) and (iii) of Theorem 1 are
satisfied.

An extension to the non-polyhedral case requires further assumptions as discussed in the
following remark.

Remark 3 The second part of the proof of Theorem 1 still works for non-polyhedral functions
g if epi g is of the special form Q + 0+epi g for some compact set Q and if h is assumed to
be upper semicontinuous. Then, by the Weierstrass theorem, the minimum of the objective
function f of (ConcMin) is attained in Q.

Under certain assumptions, condition (iii) in Theorem 1 can be simplified. We start with
two propositions and formulate this result as a corollary of Theorem 1.

Proposition 4 Let A, B ⊆ R
n be non-empty convex sets with A ⊆ B and let B be closed.

Then 0+ A ⊆ 0+ B.

Proof This follows from [13, Theorem 8.3], which states that for a non-empty closed convex
set B, d ∈ 0+ B if and only if there is some x ∈ B satisfying x + αd ∈ B for all α ≥ 0.
Let d ∈ 0+ A. By definition of the recession cone, we have x + αd ∈ A for all x ∈ A. Since
A ⊆ B, we get d ∈ 0+ B. ��
Proposition 5 Let 0+epi h = 0+cl epi h. Then condition (iii) in Theorem 1 is equivalent to

(iii’) 0+epi g ⊆ 0+epi h.

Proof Let (iii) be satisfied. Then

0+epi g
(iii)⊆ 0+(epi h ∩ (dom g × R)︸ ︷︷ ︸

⊆cl epi h

)
Prop.4⊆ 0+cl epi h = 0+epi h.

Let (iii’) be satisfied. Let (d, s) ∈ 0+epi g and (x, r) ∈ epi h ∩ (dom g ×R). By (iii’), we
have (x, r)+α(d, s) ∈ epi h for all α ≥ 0. Assuming that (x, r)+α(d, s) /∈ dom g ×R, we
get (x, g(x)) + α(d, s) /∈ dom g × R, which contradicts the precondition (d, s) ∈ 0+epi g.
Consequently, (x, r) + α(d, s) ∈ epi h ∩ (dom g × R) for all α ≥ 0. ��
Corollary 6 Problem (DC)with g being polyhedral and h being closed has an optimal solution
if and only if the following properties hold:

(i) dom g 	= ∅,
(ii) dom g ⊆ dom h,

(iii’) 0+epi g ⊆ 0+epi h.
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Proof If h is closed, we have epi h = cl epi h and hence 0+epi h = 0+cl epi h. Thus, the
result follows from Proposition 5 and Theorem 1. ��

The following example shows that condition (iii’) is not adequate if h is not assumed to
be closed.

Example 7 Consider problem (DC) for the functions g, h : R
2 → R ∪ {∞} with

g(x, y) =
{

|x | if y ∈ [1,∞)

∞ otherwise
and h(x, y) =

⎧⎪⎨
⎪⎩

|x | if y ∈ (0,∞)

2|x | if y = 0

∞ otherwise

.

Both g and h are convex and g is polyhedral. Both functions coincide on dom g = R×[1,∞),
whence (DC) has optimal solutions of the form (0, y) for y ≥ 1. The recession cones of the
functions are

0+epi g = cone

⎧⎨
⎩

⎛
⎝−1

0
1

⎞
⎠ ,

⎛
⎝ 1
0
1

⎞
⎠ ,

⎛
⎝ 0
1
0

⎞
⎠

⎫⎬
⎭

and

0+epi h = cone

⎧⎨
⎩

⎛
⎝−1

0
2

⎞
⎠ ,

⎛
⎝ 1
0
2

⎞
⎠ ,

⎛
⎝ 0
1
0

⎞
⎠

⎫⎬
⎭ .

We see that (1, 0, 1)T ∈ 0+epi g \ 0+epi h, i.e., (iii’) is violated.

2.2 The case of h being polyhedral

We consider the Toland-Singer dual problem of (DC), see [14,15], that is,

min
y∈dom h∗[h∗(y) − g∗(y)], (DC∗)

where g∗(y) := supx∈Rn [yT x − g(x)] is the conjugate of g and likewise for h. The duality
theory by Toland and Singer states that the optimal objective values of (DC) and (DC∗)
coincide under the assumption of h being closed.

Since g∗ is convex and h∗ is polyhedral convex, the existence result of Theorem 1 applies
to problem (DC∗). The following result provides the relation between optimal solutions of
(DC) and (DC∗).We denote by ∂ f (x) := {y ∈ R

n | ∀z ∈ R
n : f (z) ≥ f (x)+yT (z−x)} the

subdifferential of a convex function f : R
n → R ∪ {∞} at x ∈ dom f . We set ∂ f (x) := ∅

for x /∈ dom f .

Proposition 8 (e.g. [8, Proposition 4.7] or [18, Proposition 3.20]) Let g : R
n → R ∪ {∞}

and h : R
n → R ∪ {∞} be convex functions with non-empty domain. Then:

(i) If x is an optimal solution of (DC), then each y ∈ ∂h(x) is an optimal solution of
(DC∗).

If, in addition, g and h are closed, a dual statement holds:

(ii) If y is an optimal solution of (DC∗), then each x ∈ ∂g∗(y) is an optimal solution of
(DC).
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Remark 9 As already mentioned in [9], the assumption of g and h being closed for statement
(ii) of Proposition 8 ismissing in [8, Proposition 4.7]. In [18, Proposition 3.20] the assumption
of g being closed is required. Examples can be found in [9].

Proposition 10 (e.g. [13, Theorem23.5])Let g : R
n → R be a proper closed convex function.

Then x ∈ ∂g∗(y) if and only if x is an optimal solution of

min
z∈Rn

[g(z) − yT z]. (6)

Theorem 11 Let g be closed and let (6) have an optimal solution for every y ∈ dom g∗. Let
h be polyhedral. Then, problem (DC) has an optimal solution if and only if the following
properties hold:

(i*) dom h∗ 	= ∅,
(ii*) dom h∗ ⊆ dom g∗,
(iii*) 0+epi h∗ ⊆ 0+epi g∗.

Proof Let (DC) have an optimal solution x . Since x ∈ dom h and h is polyhedral, there
exists some y ∈ ∂h(x), see e.g. [13, Theorem 23.10]. Proposition 8 states that y is an optimal
solution of (DC∗). Theorem 1 applied to (DC∗) yields the conditions (i*), (ii*) and (iii*).

Let the conditions (i*), (ii*) and (iii*) be satisfied. By Theorem 1 we obtain that (DC∗)
has an optimal solution y. By assumption, (6) has an optimal solution x , which belongs to
∂g∗(y), by Proposition 10. Since g and h are closed, Proposition 8 yields that x is an optimal
solution to (DC). ��

2.3 The case of both g and h being polyhedral

Combining the previous results we obtain the following statement.

Corollary 12 Let g : R
n → R∪{∞} and h : R

n → R∪{∞} are polyhedral convex functions.
Then, the following statements are equivalent:

(a) Problem (DC) has an optimal solution.
(b) Problem (DC∗) has an optimal solution.
(c) The conditions (i), (ii), (iii’) in Corollary 6 are satisfied.
(d) The conditions (i*), (ii*), (iii*) in Theorem 11 are satisfied.

Proof ByCorollary 6, (a) is equivalent to (c). Since g and h are polyhedral, the assumptions of
Theorem 11 are satisfied. Indeed, by y ∈ dom g∗, problem (6) has a finite optimal value and
hence the minimum is attained as g is polyhedral. Theorem 11 yields that (b) is equivalent
to (d). By Proposition 8 and the fact that the subdifferential of a polyhedral function is
non-empty at points of the domain of the function, we see that (a) is equivalent to (b). ��

3 Solution procedure

Let g be polyhedral in problem (DC).We are going to solve (DC) by the following procedure.
First we check whether or not an optimal solution of (DC) exists by using Theorem 1. If
so, we solve the associated problem (ConcMin) by the solution methods of [4]. By using
Theorem 1 again, we will check the following assumptions which are required to be satisfied
for the algorithms presented in [4]:

There exists a polyhedral convex pointed cone C ⊆ R
n such that
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(M) f is C-monotone (i.e. y − x ∈ C implies f (x) ≤ f (y)),
(B) P is C-bounded (i.e. 0+ P ⊆ C).

If (M) and (B) are satisfied for somepolyhedral convex pointed coneC ⊆ R
n , then (ConcMin)

has an optimal solution ([4, Corollary 6]). Moreover, under these assumptions the methods
in [4] compute optimal solutions of (ConcMin), see [4, Algorithm 2, Theorem 16] for the
primal algorithm, [4, Algorithm 4, Theorem 22] for the dual algorithm, and [4, Section 6]
for the extension to the case of the interior of C being empty.

Theorem 13 Let problem (DC)with g being polyhedral have an optimal solution and let h be
closed. Then, for the associated problem (ConcMin), assumptions (M) and (B) are satisfied
for P = epi g and the polyhedral convex cone C = 0+epi g.

Proof The set C = 0+epi g is a polyhedral convex cone. Obviously, (B) holds. It remains to
show (M). Let (x, r), (y, s) ∈ R

n × R such that
(

y − x
s − r

)
∈ C = 0+epi g

Cor. 6(iii’)⊆ 0+epi h.

If x /∈ dom g, then f (x, r) = −∞ ≤ f (y, s). We have

(x, h(x))︸ ︷︷ ︸
∈epi h

+ (y − x, s − r)︸ ︷︷ ︸
∈0+epi h

= (y, h(x) + s − r) ∈ epi h.

By definition of epi h, we obtain h(x)+ s − r ≥ h(y) and hence r − h(x) ≤ s − h(y), which
proves (M). ��

Remark 14 In the previous theorem, the assumption of h being closed can be omitted if the
definition of f in (2) is replaced by

f (x, r) :=
{

r − h(x) if (x, r) ∈ dom g

−∞ otherwise
. (7)

The proof is similar by using Theorem 1 (iii) instead of Corollary 6 (iii’).

The cone C in the previous theorem is not necessarily pointed, as required for the solution
methods of [4], see above. However, pointedness can be achieved by a reformulation of
problem (DC): Denote by L the lineality space of the convex function g which is defined by

L :=
{

x ∈ R
n
∣∣∣∣ ∃r ∈ R :

(
x
r

)
∈ lineal(epi g)

}
.

Let L⊥ be the orthogonal complement of L . For some fixed x̄ ∈ dom g we define

ḡ(x) :=
{

g(x) if x − x̄ ∈ L⊥

∞ otherwise
. (8)

We denote by (DC) the polyhedral d.c. optimization problem (DC) where g is replaced by ḡ.

Proposition 15 Let (DC) with g being polyhedral have an optimal solution. Then (DC) has
an optimal solution and every optimal solution of (DC) is also an optimal solution of (DC).
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Proof We have dom ḡ 	= ∅, dom ḡ ⊆ dom g and 0+epi ḡ ⊆ 0+epi g. Theorem 1 yields
the first statement. Now let x0 be an optimal solution of the modified problem (DC). The
point x0 is feasible for (DC). Assume there is some x̃ ∈ dom g such that g(x̃) − h(x̃) <

g(x0) − h(x0) = ḡ(x0) − h(x0). Define

x̂ := ({x̃} + L) ∩ ({x̄} + L⊥) ∈ dom ḡ.

We show that g(x̃) − h(x̃) = ḡ(x̂) − h(x̂). Indeed, we have x̂ − x̃ ∈ L , hence there is some
r ∈ R such that (

x̂ − x̃
r

)
∈ lineal(epi g).

From Theorem 1 (iii) we conclude that(
x̂ − x̃

r

)
∈ lineal(epi h ∩ (dom g × R)) = lineal(epi (h|dom g)),

where h|dom g is the function that coincides with h on dom g and is ∞ elsewhere. From [13,
Theorem 8.8] we conclude that

g(x + λ(x̂ − x̃)) = g(x) + λr (9)

for all x ∈ R
n and all λ ∈ R. Likewise we get

h(x + λ(x̂ − x̃)︸ ︷︷ ︸
∈dom g

) = h(x) + λr (10)

for all x ∈ dom g and all λ ∈ R. We obtain

g(x̃) − h(x̃)
(9),(10)= g(x̃ + λ(x̂ − x̃)) − h(x̃ + λ(x̂ − x̃))

λ=1= g(x̂) − h(x̂).

Since x̂ ∈ dom ḡ, we have g(x̂) = ḡ(x̂). Together we have ḡ(x̂) − h(x̂) < ḡ(x0) − h(x0)
which contradicts the assumption that x0 is optimal for (DC). ��

The following example shows that an optimal solution of (DC) is not necessarily an
optimal solution of (DC).

Example 16 Let g, h : R → R, g ≡ 0 and h ≡ 0. Then L = R, L⊥ = {0}. We have ḡ(0) = 0
and ḡ(x) = ∞ if x 	= 0. Thus 0 is the only optimal solution of (DC) but every x ∈ R is
optimal solution of (DC).

Summarizing the results, we solve (DC) with g being polyhedral by the following proce-
dure:

(1) Check whether (DC) has an optimal solution or not using Theorem 1, if not, stop.
(2) Determine x̄ ∈ dom g and L⊥ in order to define the function ḡ in (8).
(3) Solve (ConcMin) with g replaced by ḡ using the methods of [4].

In the case where h is polyhedral, we need to assume additionally that g is closed and (6)
has an optimal solution for every y ∈ dom g∗. Then we can check whether or not (DC) has
an optimal solution by using Theorem 11. If so, by Theorem 1 we know that (DC∗) has an
optimal solution. An optimal solution y of (DC∗) can be obtained by the same method (steps
(2) and (3) of the above procedure) but applied to (DC∗) rather than (DC) (replace g by h∗
and h by g∗). Finally, we solve (6), which provides an optimal solution of (DC).
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Fig. 1 Numerical results for Example 17. The number of columns of G and H are mG = 20 and m H = 15.
Left: Run time of test for existence of solutions in dependance of the number of variables. Right: Run time of
primal and dual solution algorithms (without existence test) in dependance of number of variables

If both g and h are polyhedral, (DC) can be solved by two different methods: We speak
about the primal method in case we use the method where g is required to be polyhedral. The
term dual method refers to themethodwhere h is required to be polyhedral. Furthermore there
are two different tests for existence of an optimal solution of (DC). The test in Corollary 12
(c) is referred to as primal existence test whereas (d) in Corollary 12 is called dual existence
test.

4 Numerical results

We implemented the results of this article in Matlab 9.6 by using bensolve tools, version 2.3,
see [5,6]. The code and the test instances are available at http://tools.bensolve.org/dcsolve.
By two (new) commandsdcsolve and dcdsolve the user can run, respectively, the primal
and dual method described in the previous section. The input arguments of both commands
are two arbitrary polyhedral convex functions g and h in the usual format of bensolve tools.
Both commands solve arbitrary polyhedral d.c. optimization problems (of small size) or
certify that no optimal solution exists.

The following two numerical examples were run on a computer with Intel® Core™ i5
CPU with 3.3GHz.

Example 17 Let A ∈ R
n×m be a matrix and denote by ai its columns. We define a polyhedral

convex function f A : R
n → R by

f A(x) :=
m∑

i=1

‖x − ai‖1,

where ‖y‖1 = ∑n
j=1 |y j | denotes the sum norm of a vector y. Given two matrices G ∈

R
n×mG and H ∈ R

n×m H we consider the polyhedral d.c. optimization problem

min
x∈Rn

fG(x) − fH (x). (11)

Problems of this type occur in locational analysis, see e.g. [9] and the references therein. In
Fig. 1 numerical results are depicted for matrices G and H with components gi j = sin(i + j)
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Fig. 2 Numerical results for Example 18. Left: existence tests. Right: Comparison of our algorithms (without
existence test) with the methods from [9] (also without existence test). We observe that both dual methods
perform better than the primal ones. This is due to the easier structure of h in comparison to g. We observe
that our methods perform better in case of instances with sufficiently many variables

and hi j = cos(i + j) (just to make the results easily reproducible in comparison to random
numbers). The recession cone of epi f A is just the recession cone of epi (m‖ · ‖1) and
dom f A = R

n . Thus, by Corollary 6, a solution of (11) exists if and only if mG ≥ m H .
Figure 1 (left) shows the run time of a numeric verification of this fact for some problem
instances by checking the conditions of Corollary 6 (primal existence test) and Theorem 11
(dual existence test). Fig. 1 (right) shows the run time of the primal and dual solutionmethods.

The following example from [7] was solved in [9] using the VLP solver bensolve [10]. We
implemented the algorithms of [9]with bensolve tools and compare themwith our algorithms.
While the methods of [9] compute all vertices of epi g in the primal algorithm and all vertices
of epi h∗ in the dual algorithm, we compute only part of these vertices by using the qcsolve
command of bensolve tools. We observe a better performance for the bigger instances.

Example 18 Consider the polyhedral d.c. optimization problem (DC) with

g(x) = |x1 − 1| + 200
n∑

i=2

max {0, |xi−1| − xi }

and

h(x) = 100
n∑

i=2

(|xi−1| − xi ) .

One can easily verify that the all-one vector provides an optimal solution. In Fig. 2, the run
time of the primal and dual solution method proposed in this article is compared to the primal
and dual method of [9].

5 Summary

We characterized the existence of global optimal solutions of polyhedral d.c. optimization
problems in Theorem 1, Theorem 11 and Corollary 12 depending on whether the first, the
second, or both components of the objective function are polyhedral. We provided a solution
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procedure based on both an existence tests and a reformulation of the polyhedral d.c. opti-
mization problem into a quasi-concave minimization problem. Numerical experiments were
run for the case where both components of the objective function are polyhedral.
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