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Alfredas Račkauskas1 ·Martin Wendler2

Received: 27 August 2019 / Revised: 13 January 2020 / Published online: 29 January 2020
© The Author(s) 2020

Abstract
To detect a changed segment (so called epidemic changes) in a time series, variants of
the CUSUM statistic are frequently used. However, they are sensitive to outliers in the
data and do not perform well for heavy tailed data, especially when short segments get
a high weight in the test statistic. We will present a robust test statistic for epidemic
changes based on theWilcoxon statistic. To study their asymptotic behavior, we prove
functional limit theorems for U -processes in Hölder spaces. We also study the finite
sample behavior via simulations and apply the statistic to a real data example.

Keywords Wilcoxon statistic · Epidemic change · Functional central limit theorem ·
Hölder space

1 Introduction

In change point detection, the hypothesis is typically stationarity, but there are different
types of alternatives, like the atmost one change point ormultiple change points. In this
article, we are interested in testing stationarity with respect to the so called epidemic
change or changed segment alternative: We have a random sample X1, X2, . . . , Xn

(with values in a sample space (S,S) and distributions PX1 , PX2 , . . . , PXn ) and we
wish to test the null hypothesis

H0 : PX1 = PX2 = · · · = PXn ,

versus the alternative

H1 : there is a segment I ∗ := {k∗ + 1, . . . ,m∗} ⊂ In := {1, 2, . . . , n} such that
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1410 A. Račkauskas, M. Wendler

PXi =
{
P for i ∈ In\I ∗

Q for i ∈ I ∗,
and P �= Q.

Under H1 the sample (Xi , i ∈ I ∗) constitutes a changed segment starting at k∗ and
having the length �∗ = m∗ − k∗ and Q is then the corresponding distribution in the
changed segment. This type of alternative is of special relevance in epidemiology
and has first been studied by Levin and Kline (1985) in the case of a change in
mean. Their test statistic is a generalization of the CUSUM (cumulated sum) statistic.
Simultaneously, epidemic-type models were introduced by Commenges et al. (1986)
in connection with experimental neurophysiology.

If the changed segment is rather short compared to the sample size, tests that give
higher weight to short segments have more power. Asymptotic critical values for such
tests have been proved by Siegmund (1988) in the Gaussian case [see also (Siegmund
and Venkatraman 1995)]. The logarithmic case was treated in Kabluchko and Wang
(2014), and the regular varying case in Mikosch and Račkauskas (2010). Yao (1993)
andHušková (1995) compared tests with different weightings. Račkauskas and Suquet
(2004, 2007) have suggested using a compromise weighting, that allows to express
the limit distribution of the test statistic as a function of a Brownian motion. However,
in order to apply the continuous mapping theorem for this statistic, it is necessary to
establish the weak convergence of the partial sum process to a Brownian motion with
respect to the Hölder norm.

It is well known that the CUSUM statistic is sensitive to outliers in the data, see
e.g. Prášková and Chochola (2014). The problem becomes worse if higher weights
are given to shorter segments. A common strategy to obtain a robust change point
test is to adapt robust two-sample tests like the Wilcoxon one. This was first used by
Darkhovsky (1976) and by Pettitt (1979) in the context of detecting at most one change
in a sequence of independent observations. For a comparison of different change point
test seeWolfe and Schechtman (1984). The results on theWilcoxon type change point
statistic were generalized to long range dependent time series by Dehling et al. (2013).
The Wilcoxon statistic can either be expressed as a rank statistic or as a (two-sample)
U -statistic. This motivated Csörgő and Horváth (1989) to study more general U -
statistics for change point detection, followed by Ferger (1994) and Gombay (2001).
Orasch (2004) and Döring (2010) have studied U -statistics for detecting multiple
change-points in a sequence of independent observations. Results for change point
tests based on general two-sample U -statistics for short range dependent time series
were given by Dehling et al. (2015), for long range dependent time series by Dehling
et al. (2017). Betken (2016) has suggested a self-normalized change-point test based
on the Wilcoxon statistic. By using self-normalization, it is possible to avoid the
estimation of unknown parameters in the limit distribution.

Gombay (1994) has suggested to use a Wilcoxon type test also for the epidemic
change problem. The aim of this paper is to generalize these results in three aspects:
to study more general U -statistics, to allow the random variable to exhibit some form
of short range dependence, and to introduce weightings to the statistic. This way, we
obtain a robust test which still has good power for detecting short changed segments.
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Convergence of U-processes in Hölder spaces... 1411

To obtain asymptotic critical values, we will prove a functional central limit theorem
for U -processes in Hölder spaces.

The article is organized as follows. Section 2 introducesU -statistics type test statis-
tics to deal with the epidemic change point problem. In Sect. 3 some experimental
results are presented and discussed whereas Sect. 4 deals with a concrete data set.
Sects. 5 and 6 constitute the theoretical part of the paper where asymptotic results are
established under the null hypothesis. Consistency under the alternative of a changed
segment is discussed in Sect. 7. Finally in Sect. 8, we present the table with asymptotic
critical values for the tests under consideration.

2 Tests for changed segment based on U-statistics

A general approach for constructing procedures to detect a changed segment is to use
a measure of heterogeneity �n(k,m) between two segments

{Xi , i ∈ I (k,m)} and {Xi , i ∈ I c(k,m)}, 0 ≤ k < m ≤ n,

where I (k,m) = {k+1, . . . ,m} and I c(k,m) = In\I (k,m). As neither the beginning
k∗ nor the end m∗ of changed segment is known, the statistics

Tn := max
0≤k<m≤n

1

ρn(m − k)
�n(k,m)

may be used to test the presence of a changed segment in the sample (Xi ), where
ρn(m − k) is a factor smoothing over the influence of either too short or too large data
windows. In this paperweconsider a class ofU -statistic typemeasures of heterogeneity
�n(k,m) defined via a measurable function h : S × S → R by

�n(k,m) = �h,n(k,m) :=
∑

i∈I (k,m)

∑
j∈In\I (k,m)

h(Xi , X j ),

and the corresponding test statistics

Tn(γ, h) = max
0≤k<m≤n

|�h,n(k,m)|
ργ ((m − k)/n)

, (1)

where 0 ≤ γ < 1/2 and

ργ (t) = [t(1 − t)]γ , 0 < t < 1.

Although other weighting functions are possible our choice is limited by application
of a functional central limit theorem in Hölder spaces.

Recall the kernel h is symmetric if h(x, y) = h(y, x) and antisymmetric if
h(x, y) = −h(y, x) for all x, y ∈ S. Any non symmetric kernel h can be anti-
symmetrized by considering
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1412 A. Račkauskas, M. Wendler

h̃(x, y) = h(x, y) − h(y, x), x, y ∈ S.

Let’s note that the kernel h is antisymmetric if and only if E[h(X ,Y )] = 0 for any
independent random variables with the same distribution such that the expectation
exists. The if part follows by Fubini and antisymmetry. To see the only if part, first
consider the one point distribution X = x and Y = x almost surely to conclude that
h(x, x) = 0 for all x . Next, consider the two point distribution P(X = x) = P(X =
y) = 1/2 and conclude that 0 = E[h(X ,Y )] = (h(x, x) + h(y, y) + h(x, y) +
h(y, x))/4 and thus h(x, y) = −h(y, x). So a U -statistic with antisymmetric kernel
has expectation 0 if the observations are independent and identically distributed and
are good candidates for change point tests. We only consider antisymmetric kernels
in this paper.

In the case of a real valued sample, examples of antisymmetric kernels include the
CUSUMkernel hC (x, y) = x−y or theWilcoxon kernel hW (x, y) = 1{x<y}−1{y<x}.
The kernel hW leads to Wilcoxon type statistics

Tn(γ, hW ) := max
0≤k<m≤n

1

ργ ((m − k)/n)

∣∣∣ ∑
i∈I (k,m)

∑
j∈In\I (k,m)

[
1{Xi<X j } − 1{X j<Xi }

]∣∣∣
whereas with the kernel hC we get CUSUM type statistics

n−1Tn(γ, hC ) = max
0≤k<m≤n

1

ρ((m − k)/n)

∣∣∣ m∑
i=k+1

[Xi − Xn]
∣∣∣,

where Xn := n−1 ∑n
i=1 Xi . As more general classes of kernels and corresponding

statistics we can consider the CUSUM test of transformed data (h(x, y) := ψ(x) −
ψ(y)) or a test based on two-sample M-estimators (h(x, y) = ψ(x − y) for some
monotone function, see (Dehling et al. 2017).

Based on invariance principles in Hölder spaces discussed in the next section,
we derive the limit distribution of test statistics Tn(γ, h). Theorems 1 and 2 provide
examples of our results. Let W = (W (t), t ≥ 0) be a standard Wiener process and
B = (B(t), 0 ≤ t ≤ 1) be a correspondingBrownian bridge. Define for 0 ≤ γ < 1/2,

Tγ := sup
0≤s<t≤1

|B(t) − B(s)|
ργ (t − s)

.

Theorem 1 If (Xi )i∈N are independent and identically distributed random elements
and h is an antisymmetric kernel with E[|h(X1, X2)|p] < ∞ for some p > 2, then
for any γ < (p − 2)/2p, we have

lim
n→∞ P(n−3/2σ−1

h Tn(γ, h) ≤ x) = P(Tγ ≤ x), for all x ∈ R,

where the variance parameter σh is defined by σ 2
h = var(h1(Xi )) and h1(x) =

E[h(x, Xi )].
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Convergence of U-processes in Hölder spaces... 1413

Note that in practice, the random variables Xi might not have high moments, but if
we use a bounded kernel like hW , we know that the condition of the theorem holds
for any p ∈ (0,∞), so we have the convergence for any γ < 1/2. Also, in practical
applications, the variance parameter has to be estimated. This can be done by

σ̂ 2
n,h := 1

n

n∑
i=1

ĥ21(Xi ) (2)

with ĥ1(x) = n−1 ∑n
j=1 h(x, Xi ).

For the case of a dependent sample, we consider absolutely regular sequences
of random elements (also called β-mixing). Recall that the coefficients of absolute
regularity (βm)m∈N are defined by

βm = E sup
A∈F∞

m

(
P(A|F0−∞) − P(A)

)
,

where Fb
a := σ(Xa, Xa+1, . . . , Xb) is the σ -field generated by Xa, Xa+1, . . . , Xb.

Theorem 2 Let (Xi )i∈N be a stationary, absolutely regular sequence and h be an
antisymmetric kernel, and assume that the following conditions are satisfied:

(i) supi, j∈N E |h(Xi , X j )|q < ∞ for some q > 2;

(ii)
∑∞

k=1 kβ
1−2/q
k < ∞ and

∑
k k

r/2−1β
1−r/q
k < ∞ for some 2 < r < q.

Then for any 0 ≤ γ < 1/2 − 1/r , we have

lim
n→∞ P(n−3/2σ−1∞ Tn(γ, h) ≤ x) = P(Tγ ≤ x), for all x ∈ R,

where the long run variance parameter σ∞ is given by

σ 2∞ = var
(
h1(X1)

) + 2
∞∑
k=2

cov
(
h1(X1), h1(Xk)

)

For a bounded kernel h the conditions (ii) on decay of the coefficients of absolute
regularity reduces to

(ii’)
∑

k max{k, kr/2−1}βk < ∞ for some r > 2.

Following Vogel and Wendler (2017), σ 2∞ can be estimated using a kernel variance
estimator. For this, define autocovariance estimators ρ̂(k) by

ρ̂(k) = 1

n

n−k∑
i=1

ĥ1(Xi )ĥ1(Xi+k)
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1414 A. Račkauskas, M. Wendler

with ĥ1(x) = ∑n
j=1 h(x, Xi ). Then, for some Lipschitz continuous function K with

K (0) = 1 and finite integral, we set

σ̂ 2∞ = σ̂ 2
h + 2

n−1∑
k=1

K (k/bn)ρ̂(k),

where bn is a bandwidth such that bn → ∞ and bn/
√
n → 0 as n → ∞.

With the help of the limit distribution and the variance estimators, we obtain critical
values for our test statistic. Simulated quantiles for the limit distribution can be found
in Sect. 8.

To discuss the behavior of the test statistics Tn(γ, h) under the alternativewe assume
that for each n ≥ 1 we have two probability measures Pn and Qn on (S,S) and a
random sample (Xni )1≤i≤n such that for k∗

n , �
∗
n ∈ {1, . . . , n},

PXni =
{
Qn, for i ∈ I ∗ := {k∗

n + 1, . . . , k∗
n + �∗

n}
Pn, for i ∈ In\I ∗.

Set

δn =
∫
S

∫
S

h(x, y)Qn(dx)Pn(dy), νn =
∫
S

∫
S

(h(x, y) − δn)
2Qn(dx)Pn(dy).

Theorem 3 Let 0 ≤ γ < 1. Assume that for all n ∈ N, the random variables
Xn1, . . . , Xnn are independent and let h be an antisymmetric kernel.

If

lim
n→∞

√
n |δn|

[�∗
n

n

(
1 − �∗

n

n

)]1−γ = ∞ and sup
n

[�∗

n

(
1 − �∗

n

)]1−2γ
νn < ∞, (3)

then
n−3/2Tn(γ, h)

P−−−→
n→∞ ∞. (4)

For dependent random variables, we get a similar theorem:

Theorem 4 Assume that for all n ∈ N, the random variables Xn1, . . . , Xnn are
absolutely regular with mixing coefficients (βk)k∈N not depending on n, such that∑∞

k=1 k
q/2β

1/2−1/q
k < ∞ for some q > 2. Let h be an antisymmetric kernel, such

that there exist Cr < ∞ such that E[|h(Xin, X jn)|q ] ≤ Cq for all n ∈ N, i, j ≤ n.
Furthermore, let 0 ≤ γ < 1 and assume that

lim
n→∞

√
n |δn|

[�∗
n

n

(
1 − �∗

n

n

)]1−γ = ∞. (5)

Then (4) holds.

This implies that a test based on statistic Tn(γ, h) is consistent. More on consistency
see Sect. 7. The proofs of Theorems 1 and 2 are given in Sect. 6.
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Table 1 Empirical rejection frequency under alternative for an AR(1)-process of length N = 480 with
AR-parameter 0.5 and t5 distributed-innovations, changed segment from 1 to 160 or from 161 to 320,
change height δn = 0.58, level α = 5%

γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

CUSUM

Start = 1, End = 160 0.791 0.794 0.794 0.786 0.747

Start = 161, End = 320 0.780 0.783 0.782 0.782 0.742

Wilcoxon

Start = 1, End = 160 0.853 0.859 0.858 0.852 0.805

Start = 161, End = 320 0.842 0.844 0.843 0.840 0.802

3 Simulation results

We compare the CUSUM type and the Wilcoxon type test statistic in a Monte Carlo
simulation study. The model is an autoregressive process (Yn)n∈N of order 1 with
Yi = aYi−1 + εi , where (εi )i∈N are either normal distributed, exponential distributed
or t5 distributed.We assume that the first L observations are shifted, so that we observe

Xi :=
{
Yi/

√
var(Yi ) + δn for i = 1, . . . , L

Yi/
√
var(Yi ) for i = L + 1, . . . , n

Under independence, the distribution of the change-point statistics does not dependent
on the beginning of the changed segment, only on the length. In Table 1, we show some
simulation results comparing the power for a changed segment in the beginning of the
data and in the middle for a dependent sequence (autoregressive parameter a = 0.5).
The rejection frequencies do not differ much, so we restrict further simulations to
segments of the form I  = {1, . . . , L}.

In Fig. 1, the results for n = 240 independent observations (a = 0) are shown. In
this case, we use the known variance of our observations and do not estimate the vari-
ance. The relative rejection frequency of 3000 simulation runs under the alternative
is plotted against the relative rejection frequency under the hypothesis for theoretical
significance levels of 1%, 2.5%, 5% and 10%. As expected, the CUSUM test has a
better performance than the Wilcoxon test for normal distributed data. For the expo-
nential and the t5 distribution, the Wilcoxon type test has higher power. For the long
changed segment (L = 80), the weighted tests with γ = 0.1 outperform the tests
with γ = 0.3. For the short changed segment (L = 30), the Wilcoxon type test has
more power with weight γ = 0.3. The same holds for the CUSUM type test under
normality. For the other two distributions however, the empirical size is also higher
for γ = 0.3 so that the size corrected power is not improved.

In Fig. 2, we show the results for n = 480 dependent observations (AR(1) with
a = 0.5). In this case, we estimated the long run variance with a kernel estimator,
using the quartic spectral kernel and the fixed bandwidth b = 4. Both tests become
too liberal now with typical rejection rates of 13% to 15% for a theoretical level of
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Fig. 1 Rejection frequency under alternative versus rejection frequency under the hypothesis for N = 240
independent observations using the true variance, normal (upper panels), exponential (middle panels) or
t5 distribution (lower panels) with change segment of length L = 80 and height δn = 0.58 (left panels),
changed segment of length L = 30 and height δn = 0.78 (right panels), for the CUSUM type test (open
circle) and for the Wilcoxon type test (open diamond) with γ = 0.1 (solid line) or γ = 0.3 (dashed line)
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Fig. 2 Rejection frequency under alternative versus rejection frequency under the hypothesis for an AR(1)-
process of length N = 480 using an estimated variance (fixed bandwidth bn = 4), normal (upper panels),
exponential (middle panels) or t5 distribution (lower panels) with changed segment of length L = 160 and
height δn = 0.58 (left panels), change segment of length L = 60 and height δn = 0.78 (right panels), for
the CUSUM type test (open circle) and for theWilcoxon type test (open diamond) with γ = 0.1 (solid line)
or γ = 0.3 (dashed line)
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10%. For the long changed segment (L = 160) it is better to use the weight γ = 0.1,
for the short segment (L = 60) the weight γ = 0.3. Under normality, the CUSUM
type test has a better performance, though the difference in power is not very large.
For the other two distributions, the Wilcoxon type test has a better power.

In practice, the strength of dependence is usually not known beforehand, so it would
make sense to use a data-adaptive bandwidth for the variance estimation. However, the
bias of the variance estimator under the alternative might get worse for data-adaptive
bandwidths, and this might lead to a nonmonotonic power of change-point tests, see
e.g. Vogelsang (1999) or Shao and Zhang (2010). For this reason, we propose to
estimate the variance the following way: Split the data set into five shorter parts of
equal length and use a variance estimator with data-adaptive bandwidth separately for
each of the parts. Then take the median of the five estimators for standardizing the test
statistic. The beginning and the end of the changed segment will only affect at most
two of the parts, so we have at least three estimates not affected. In the simulations
in Fig. 3, we study again an AR(1)-process and use the standard setting of the R
function lvar for the data-adaptive choice of the bandwidths in the five parts. With
this method, we do not observe a loss of power compared to the fixed bandwidth.
Under the hypothesis, the all tests become strongly oversized. The Wilcoxon type test
statistic clearly outperforms the CUSUM type statistic for nonnormal in innovations.

Another problem in many practical applications is the unknown length of the
changed segment, so that it is difficult to choose the value γ ∈ [0, 1/2) to achieve the
optimal power. If there is no a-priori knowledge of the typical length of an epidemic
change, it would also be possible to use the maximum of (suitable standardized) test
statistics for different values of γ . Another straightforward application of Theorem 15
leads to the asymptotic distribution of this combined test statistic and critical values
could be obtained via simulations, but this goes beyond the scope of this paper.

4 Data example

We investigate the frequency of search for the term ‘Harry Potter’ from January 2004
until February 2019 obtained from Google trends. The time series is plotted in Fig. 4.
We apply the CUSUM type and the Wilcoxon type change-point test with weight
parameters γ ∈ {0, 0.1, . . . , 0.4}. The lag one autocovariance is estimated as 0.457,
so that we have to allow for dependence in our testing procedure. We estimate the long
run variance with a kernel estimator, using the quartic spectral kernel and the fixed
bandwidth b = 4.

TheCUSUMtype test does not reject the hypothesis of stationarity for a significance
level of 5%, regardless of the choice of γ . In contrast, the Wilcoxon type test detects
a changed segment for any γ ∈ {0, 0.1, . . . , 0.4}, even at a significance level of 1%.
The beginning and end of the changed segment are estimated differently for different
values of γ : The unweighted Wilcoxon type test with γ = 0 leads to a segment from
January 2008 to June 2016. For γ = 0.1, 0.2, 0.3, we obtain January 2012 to June
2016 as an estimate. γ = 0.4 leads to an estimated changed segment from January
2012 to May 2016.
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Fig. 3 Rejection frequency under alternative versus rejection frequency under the hypothesis for an AR(1)-
process of length N = 480 using the median of five variance estimates with data-adaptive bandwidth,
normal (upper panels), exponential (middle panels) or t5 distribution (lower panels) with changed segment
of length L = 160 and height δn = 0.58 (left panels), length L = 60 and height δn = 0.78 (right panels),
for the CUSUM type test (open circle) and for the Wilcoxon type test (open diamond) with γ = 0.1 (solid
line) or γ = 0.3 (dashed line)
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Fig. 4 Frequency of search queries for ‘harry potter’ obtained from Google trends: CUSUM type statistic
does not detect a change for any γ ∈ {0, 0.1, 0.2, 0.3, 0.4}. The Changed segment detected by theWilcoxon
type statistic with γ = 0 is indicated by blue solid line, changed segment detected for γ ∈ {0.1, 0.2, 0.3}
by red dashed line

By visual inspection of the time series, we come to the conclusion that the estimated
changed segment for values γ ≥ 0.1 fits the data better, because this segment coincides
with a period with only low frequencies of search. Furthermore, the spikes of this time
series can be explained by the release of movies, and the estimated changed segment
is between the release of the last harry potter movie in July 2011 and the release of
‘Fantastic Beasts and Where to Find Them’ in November 2016.

5 Double partial sum process

Throughout this sectionwe assume that the sequence (Xi ) is stationary and PX := PXi

is the distribution of each Xi . Consider for a kernel h : S× S → R the double partial
sums

Uh,0 = Uh,n = 0, Uh,k =
k∑

i=1

n∑
j=k+1

h(Xi , X j ), 1 ≤ k < n

and the corresponding polygonal line process Uh,n = (Uh,n(t), t ∈ [0, 1]) defined by

Uh,n(t) := Uh,�nt� + (nt − [nt])(Uh,�nt�+1 −Uh,�nt�), t ∈ [0, 1], (6)

where for a real number a ≥ 0, �a� := max{k : k ∈ N, k ≤ x}, N = {0, 1, . . .}, is
a value of the floor function. So Uh,n = (Uh,n(t), t ∈ [0, 1]), is a random polygonal
line with vertexes (Uh,k, k/n), k = 0, 1, . . . , n. As a functional framework for the
process Uh,n we consider Banach spaces of Hölder functions. Recall the spaceC[0, 1]
of continuous functions on [0, 1] is endowed with the norm
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||x || = max
0≤t≤1

|x(t)|.

The Hölder space Ho
γ [0, 1], 0 ≤ γ < 1, of functions x ∈ C[0, 1] such that

ωγ (x, δ) := sup
0<|s−t |≤δ

|x(t) − x(s)|
|t − s|γ → 0 as δ → 0,

is endowed with the norm

||x ||γ := |x(0)| + ωγ (x, 1).

Both C[0, 1] and Ho
γ [0, 1] are separable Banach spaces. The space Ho

0[0, 1] is iso-
morphic to C[0, 1].
Definition 5 For a kernel h and a number 0 ≤ γ < 1 we say that (Xi ) satisfies
(h, γ )-FCLT if there is a Gaussian process Uh = (Uh(t), t ∈ [0, 1]) ∈ Ho

γ [0, 1], such
that

n−3/2Uh,n
D−−−→

n→∞ Uh in the space Ho
γ [0, 1].

In order tomake use of results for partial sumprocesses, we decompose theU -statistics
into a linear part and a so-called degenerate part. Hoeffding’s decomposition of the
kernel h reads

h(x, y) = h1(x) − h1(y) + g(x, y), x, y ∈ S,

where

h1(x) =
∫
S

h(x, y)PX (dy), and g(x, y) = h(x, y) − h1(x) + h1(y), x, y ∈ S,

and leads to the splitting

Uh,n(t) = n[Wh1,n(t) − tWh1,n(1)] + Ug,n(t), t ∈ [0, 1], (7)

where

Wh1,n(t) =
�nt�∑
i=1

h1(Xi ) + (nt − �nt�)h1(X�nt�+1), t ∈ [0, 1],

is the polygonal line process defined by partial sums of random variables (h1(Xi )).
Decomposition (7) reduces (h, γ )-FCLT to Hölderian invariance principle for random
variables (h1(Xi )) via the following lemma.
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Lemma 6 If there exists a constant C > 0 such that for any integers 0 ≤ k < m ≤ n

E(Ug,m −Ug,k)
2 ≤ C(m − k)(n − (m − k)) (8)

then

||n−3/2Ug,n||γ = oP (1)

for any 0 ≤ γ < 1/2.

Remark 7 For an antisymmetric kernel h the condition (8) follows from the following
one: there exists a constant C > 0 such that for any 0 ≤ m1 < n1 ≤ m2 < n2,

E

⎛
⎝ n1∑

i=m1+1

n2∑
j=m2+1

g(Xi , X j )

⎞
⎠

2

≤ C(n1 − m1)(n2 − m2). (9)

Indeed, by antisymmetry

Ug,m −Ug,k =
m∑

i=k+1

n∑
j=m+1

h(Xi , X j ) +
m∑

i=k+1

k∑
j=1

h(Xi , X j ),

so that (9) yields

E(Ug,m −Ug,k)
2

≤ 2C[(m − k)(n − m) + (m − k)(k − 1)] ≤ 2C(m − k)(n − (m − k)).

Before we proceed with the proof of Lemma 6 we need some preparation. Let Dj

be the set of dyadic numbers of level j in [0, 1], that is D0 := {0, 1} and for j ≥ 1,
Dj := {

(2l − 1)2− j ; 1 ≤ l ≤ 2 j−1
}
. For r ∈ Dj set r− := r − 2− j , r+ := r + 2− j ,

j ≥ 0. For f : [0, 1] → R and r ∈ Dj define

λr ( f ) :=
{
f (r+) + f (r−) − 2 f (r) if j ≥ 1,

f (r) if j = 0.

The following sequential norm on Ho
γ [0, 1] defined by

2−1|| f ||seqγ := sup
j≥0

2γ j max
r∈Dj

|λr ( f )|,

is equivalent to the norm || f ||γ , see Ciesielski (1960): there is a positive constant cγ

such that
|| f ||seqγ ≤ || f ||γ ≤ cγ || f ||seqγ , f ∈ Ho

γ [0, 1]. (10)

Set D j := {k2− j , 0 ≤ k ≤ 2 j }. In what follows, we denote by log the logarithm with
basis 2 (log 2 = 1).
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Lemma 8 For any 0 ≤ γ ≤ 1 there is a constant cγ > 0 such that, if Vn is a polygonal
line function with vertexes (0, 0), (k/n, Vn(k/n)), k = 1, . . . , n, then

||Vn||γ ≤ cγ max
0≤ j≤log n

2γ j max
r∈D j

∣∣∣Vn(�nr + n2− j�/n) − Vn(�nr�/n)

∣∣∣.
Proof First we remark that for any j ≥ 1,

max
r∈Dj

|λr (Vn)| ≤ max
r∈Dj

|Vn(r+) − Vn(r)| + max
r∈Dj

|Vn(r) − Vn(r
−)|.

As r+ and r− belong to D j , this gives,

sup
j≥1

2γ j max
r∈Dj

|λr (Vn)| ≤ 2 sup
j≥1

2γ j max
r∈D j

|Vn(r + 2− j ) − Vn(r)|

and it follows by (10),

||Vn||γ ≤ 2cγ sup
j≥0

2γ j max
r∈D j

|Vn(r + 2− j ) − Vn(r)|.

If s and t > s belong to the same interval, say, [(k − 1)/n, k/n], then, observing that
the slope of Vn in this interval is precisely n[Vn(k/n) − Vn((k − 1)/n)], we have

|Vn(t) − Vn(s)| = n(t − s)|Vn(k/n) − Vn((k − 1)/n)| ≤ n(t − s)�n,

where �n = max1≤k≤n |Vn(k/n) − Vn((k − 1)/n)|. If s ∈ [(k − 1)/n, k/n), t ∈
[k/n, (k + 1)/n) then

|Vn(t) − Vn(s)| ≤ |Vn(t) − Vn(k/n)| + |Vn(k/n) − Vn(s)| ≤ n(t − s)�n .

If s ∈ [(k − 1)/n, k/n), t ∈ [( j − 1)/n, j/n) and j > k + 1, then

|Vn(t) − Vn(s)| ≤ |Vn(t) − Vn(( j − 1)/n)| + |Vn(k/n) − Vn(( j − 1)/n)|
+ |Vn(k/n) − Vn(s)|

≤ |Vn(k/n)−Vn(( j − 1)/n)|+n[(k/n − s) + (t − ( j − 1)/n)]�n .

We apply these three configurations to s = r and t = r + 2− j . If j ≥ log n then only
the first two configurations are possible and we deduce

max
j≥log n

2γ j max
r∈D j

|Vn(r + 2− j ) − Vn(r)| ≤ max
j≥log n

2γ j n2− j�n = 2nγ �n .

If j < log n then we apply the third configuration to obtain

max
j<log n

2γ j max
r∈D j

|Vn(r + 2− j ) − Vn(r)|

123
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≤ max
j<log n

2γ j max
r∈D j

|Vn(�nr + n2− j�/n) − Vn(�nr�/n)|

+ 2 max
j<log n

2γ j n2− j max
1≤k≤n

|Vn(k/n) − Vn((k − 1)/n)|
≤ max

j<log n
2γ j max

r∈D j

|Vn(�nr + n2− j�/n) − Vn(�nr�/n)| + 2nγ �n .

To complete the proof just observe that �nr + 2− j� = �nr� + 1 if j = log n and so
�n ≤ max j≤log n 2γ j maxr∈D j |Vn(�nr + n2− j�/n) − Vn(�nr�/n)|. �
Proof of Lemma 6 By Lemma 8 we have with some constant C > 0,

E ||Ug,n||2γ ≤ C
log n∑
j=0

22γ j2 j max
r∈D j

E
(
Ug,n(�nr + n2− j�/n) − Ug,n(�nr�/n)

)2
.

Condition (8) gives

E
(
Ug,n(m/n) − Ug,n(k/n)

)2 ≤ C(m − k)(n − (m − k)).

This yields, taking into account that �nr + n2− j� − �nr� ≤ n2− j for r ∈ D j ,

E ||n−3/2Ug,n||2γ ≤ Cγ n
−3

log n∑
j=1

22γ j2 j [n2− j (n − n2− j )] ≤ Cγ n
−1+2γ .

This completes the proof due to the restriction 0 ≤ γ < 1/2. �
The next lemma gives a general conditions for the tightness of the sequence

(n−1/2Wh1,n) in Hölder spaces.

Lemma 9 Assume that the sequence (Xi )i∈N is a stationary and for a q > 2, there is
a constant cq > 0 such that for any 0 ≤ k < m ≤ n

E
∣∣∣ m∑
i=k+1

h1(Xi )

∣∣∣q ≤ cq(m − k)q/2. (11)

Then for any 0 ≤ γ < 1/2 − 1/q the sequence (n−1/2Wh1,n) is tight in the space
Ho

γ [0, 1].
Proof Fix β > 0 such that 0 ≤ γ < β < 1/2−1/q. By Arcela–Ascoli the embedding
Ho

β [0, 1] → Ho
γ [0, 1] is compact, hence, it is enough to prove

lim
a→∞ sup

n≥1
P(||n−1/2Wh1,n||β > a) = 0. (12)
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By Lemma 8,

P(||n−1/2Wh1,n||β > a) ≤ In(a),

where

In(a)=P
(

max
0≤ j≤ log n

2β j max
r∈D j

∣∣∣Wh1,n(�nr+n2− j�/n)−Wh1,n(�nr�/n)

∣∣∣ ≥ cβn
1/2a

)
.

with some constant cβ > 0. Since �nr + n2− j� − �nr� ≤ n2− j we have by condition
(11),

In(a) ≤ cn−q/2a−q
log n∑
j=1

2qβ j2 j max
r∈Dj

E
∣∣∣Wh1,n(�nr + n2− j�/n) − Wh1,n(�nr�/n)

∣∣∣q

= cn−q/2a−q
log n∑
j=1

2qβ j2 j max
r∈Dj

E
∣∣∣ �nr+n2− j �∑
i=�nr�+1

h1(Xi )

∣∣∣q

≤ cn−q/2a−q
log n∑
j=1

2qβ j2 j (n2− j )q/2

≤ ca−q
log n∑
j=1

2− j(q/2−qβ−1),

with some constant c > 0. Since q/2 − qβ − 1 > 0, we obtain In(a) ≤ ca−q and
complete the proof of (12) and that of the lemma. �

Summing up we have the following functional limit theorem for the process Uh,n .

Theorem 10 Assume that the sequence (Xi ) is stationary sequenceofS-valued random
elements. Let h be an antisymmetric kernel end E |h(X1, X2)|p < ∞ for some p > 2.
If

(i) there is a constant C > 0 such that for any 0 ≤ m1 < n1 ≤ m2 < n2 the
inequality (9) is satisfied;

(ii) for some 2 < q ≤ p the inequality (11) is satisfied;
(iii) there is a Gaussian process Uh such that

n−1/2Wh1,n
fdd−−−→

n→∞ Uh,

then

n−3/2Uh,n
D−→ Uo

h in the space Ho
γ [0, 1]

for any 0 ≤ γ < 1/q, where Uo
h = (Uh(t) − tUh(1), t ∈ [0, 1]).
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5.1 iid sample

In this subsection we establish the (h, γ ) − FCLT for independent identically dis-
tributed sequences (Xi )i∈N.

Theorem 11 Assume that (Xi ) are independent and identically distributed random
elements in S and the measurable function h : S × S → R is antisymmetric. If
E |h(X1, X2)|q < ∞ for some q > 2, then (Xi ) satisfies (h, γ ) − FCLT for any
0 ≤ γ < 1/2 − 1/q with the limit process Uh1 = σh B, where B = (B(t), t ∈ [0, 1])
is a standard Brownian bridge.

Particularly, if the kernel h is antisymmetric and bounded, then (Xi ) satisfies (h, γ )-
FCLT for any 0 ≤ γ < 1/2.

Proof We need to check conditions (i)–(iii) of Theorem 10. Starting with (i) we have

E

⎛
⎝ n1∑

i=m1+1

n2∑
j=m2+1

g(Xi , X j )

⎞
⎠

2

=
n1∑

i,i ′=m1+1

n2∑
j=m2+1

Eg(Xi , X j )g(Xi ′, X j ′)

and observe that Eg(Xi , X j )g(Xi ′ , X j ′) = 0 if either i �= i ′ or j �= j ′. Indeed, it is
enough to observe that Eg(X1, x) = 0 for each x :

Eg(X1, x) = E[h(X1, x) − h1(X1) + h1(x)]
= E[−h(x, X1) − h1(X1) + h1(x)]
= Eh1(X1) = 0.

Now, if i �= i ′, j = j ′ then we have

Eg(Xi , X j )g(Xi ′, X j ′) =
∫
S

Eg(Xi , x)Eg(Xi ′ , x)PX (dx) = 0.

Hence,

E

⎛
⎝ n1∑

i=m1+1

n2∑
j=m2+1

g(Xi , X j )

⎞
⎠

2

=
n1∑

i=m1+1

n2∑
j=m2+1

Eg2(Xi , X j )

= (n1 − m1)(n2 − m2)Eg
2(X1, X2)

≤ 4(n1 − m1)(n2 − m2)Eh
2(X1, X2).

Condition (ii) is obtained via Rosenthal’s inequality. Since the moment assumption
gives E |h1(X1)|q = E[|E[h(X1, X2)|X2]|q ] ≤ E |h(X1, X2)|q < ∞ we have
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E
∣∣∣ m∑
i=k+1

h1(Xi )

∣∣∣q ≤ cq
[( m∑

i=k+1

Eh21(Xi )
)q/2 +

m∑
i=k+1

E |h1(Xi )|q
]

≤ 2cq(m − k)q/2E |h1(X1)|q .

As the convergence n−1/2Wh1,n
fdd−−−→

n→∞ σh1W is well known, the proof is completed.
�

5.2 Mixing sample

In this subsection we establish the (h, γ ) − FCLT for β-mixing sequences (Xi )i∈N.
For A ⊂ Z we will denote by PA the joint distribution of {Xi , i ∈ A}. We write PX

for the distribution of Xi . We need some auxiliary lemmas:

Lemma 12 Let i1 < i2 < · · · < ik be arbitrary integers. Let f : S
k → R be a

measurable function such that for any j , 1 ≤ j ≤ k − 1,

∫
Sk

| f |1+δd
[
Pi1,...,ik + Pi1,...,i j ⊗ Pi j+1,...,ik

]
< M,

for some δ > 0. Then

∣∣∣ ∫
Sk

f d
(
PXi1 ,...,Xik

− PXi1 ,...,Xi j
⊗ PXi j+1 ,...,Xik

)

∣∣∣ ≤ 4M1/(1+δ)β
δ/(1+δ)
i j+1−i j

.

Proof The proof goes along the lines of the proof of Lemma 1 in Yoshihara (1976).
�

Lemma 13 Assume that for a δ > 0 there is a constant M such that

E |h(Xi , X j )|2(1+δ) ≤ M

for any 1 ≤ i, j ≤ n and

∞∑
k=0

kβδ/(1+δ)
k < ∞.

Then for any 0 ≤ m1 < n1 ≤ m2 < n2,

I (m1, n1,m2, n2) := E

⎛
⎝ n1∑

i=m1+1

n2∑
j=m2+1

g(Xi , X j )

⎞
⎠

2

≤ C(n1 − m1)(n2 − m2)
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Proof We have

I (m1, n1,m2, n2) =
n1∑

i1,i2=m1+1

n2∑
j1, j2=m2+1

J (i1, i2, j1, j2),

where

J (i1, i2, j1, j2) = Eg(Xi1, X j1)g(Xi2 , X j2).

First consider the case where i1 < i2 and j1 < j2. If j2 − j1 > i2 − i1 then by
Lemma 12 we have

∣∣∣J (i1, i2, j1, j2) −
∫
S4

g(x1, x2)g(x3, x4)dPXi1 ,Xi2 ,X j1
⊗ PX j2

∣∣∣ ≤ 4M1/(1+δ)β
δ/(1+δ)
j1− j2

.

If i2 − i1 > j2 − j1 then

∣∣∣J (i1, i2, j1, j2) −
∫
S4

g(x1, x2)g(x3, x4)dPXi1
⊗ PXi2 ,X j1 ,X j2

∣∣∣ ≤ 4M1/(1+δ)β
δ/(1+δ)
i1−i2

.

Note that for any y ∈ S,

∫
S

g(y, x)PX j2
(dx) =

∫
S

[h(y, x) − (h1(y) − h1(x))]PX j2
(dx) = 0

and ∫
S

g(x, y)PXi1
(dx) =

∫
S

[h(x, y) − (h1(x) − h1(y))]PXi1
(dx) = 0.

Treating the other cases in the same way, we deduce that for any m1 < i1, i2 ≤ n2 ≤
m2 < j1, j2 ≤ n2,

|J (i1, i2, j1, j2)| ≤ 4M1/(1+δ)β
δ/(1+δ)
min{|i2−i1|,| j2− j1|}.

This yields

|I (m1, n1,m2, n2)| ≤ C
n1∑

i1,i2=m1+1

n2∑
j1, j2=m2+1

β
δ/(1+δ)
min{|i2−i1|,| j2− j1|}.

If k := min{|i2 − i1|, | j2 − j1|} = |i2 − i1|, then there are less than n1 − m1 choices
for i1, at most 2 choices for i2, as i2 ∈ {i1 −k, i1 +k}. Furthermore, there are less than
n2 − m2 choices for j1, and, because | j2 − j1| ≤ k, at most 2k + 1 choices for j2. In
the case k := min{|i2 − i1|, | j2 − j1|} = | j2 − j1|, we can use a similar reasoning. In
total, there are less than 12(n1 − m1)(n2 − m2)k ways to chose the indices for given
k. We arrive at
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|I (m1, n1,m2, n2)| ≤ C(n1 −m1)(n2 −m2)

∞∑
k=0

kβδ/(1+δ)
k = C(n1 −m1)(n2 −m2)

provided that
∑

k kβ
δ/(1+δ)
k < ∞.

�
Lemma 14 Assume that

∫
S

(∫
S

h(x, y)PX (dy)

)r+δ

PX (dx) < ∞

for some r > 2 and δ > 0. If

∑
k

kr/2−1β
δ/(r+δ)
k < ∞

then there is a constant cr ,δ > 0 such that for any 0 ≤ k < m ≤ n,

E
∣∣∣ m∑
i=k+1

h1(Xi )

∣∣∣r ≤ cr ,δ(m − k)r/2.

Proof This lemma is proved in Yokoyama (1980) for real valued strongly mixing
random variables. We need to note that if (Xi ) is β-mixing then (h1(Xi )) is β-mixing
as well for any measurable h1 : S → R. Being such this sequence is also strongly
mixing. �
Theorem 15 Assume that (Xi ) is a strictly stationary β-mixing sequence of random
elements in S and the measurable function h : S × S → R is antisymmetric. If
E |h(X1, X2)|q < ∞ and

∑
k

kβ1−2/q
k < ∞,

∑
k

kr/2−1β
1−r/q
k < ∞, (13)

for some q > 2 and 2 < r < q, then (Xi ) satisfies (h, γ ) − FCLT for any 0 ≤
γ < 1/2 − 1/r with the limit process Uh = σ∞B, where B = (B(t), t ∈ [0, 1]) is a
standard Brownian bridge and

σ 2∞ = var
(
h1(X1)

) + 2
∞∑
k=2

cov
(
h1(X1), h1(Xk)

)
.

Particularly, if the kernel h is antisymmetric and bounded then condition (13) becomes∑
k k

r/2−1βk < ∞, and in this case (Xi ) satisfies (h, γ )-FCLT for any 0 ≤ γ <

1/2 − 1/r .
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Proof We need to check conditions (i)–(iii) of Theorem 10. First we check (i) using
Lemma 13 with δ = (q − 2)/2. Condition (ii) follows imediately from Lemma 14.
Finally, convergence of finite dimensional distributions can be deduced from invari-
ance principles for α-mixing sequences proved by a number of authors (see, e.g.,
(Herrndorf 1985) and references therein). �

6 Asymptotic distribution under null

In the following, we show how the asymptotic behaviour of the statistic Tn(γ, h)

follows from the functional limit results for U -processes:

Theorem 16 Let 0 ≤ γ < 1/2 and let the kernel h : S × S → R be antisymmetric.
Assume that (Xi ) is a stationary sequence and satisfies (h, γ )-FCLT with the limit
process Uh. Then

n−3/2Tn(γ, h)
D−−−→

n→∞ Tγ,h := sup
0≤s<t≤1

|Uh(t) − Uh(s)|
[(t − s)(1 − (t − s))]γ .

Proof Set for f ∈ Ho
γ [0, 1], and 0 ≤ s < t ≤ 1,

I ( f ; s, t) := | f (t) − f (s) − (t − s)( f (1) − f (0))|
ργ (t − s)

.

Consider the functions

Fn( f ) := max
0≤k<m≤n

I ( f ; k/n,m/n), and F( f )= sup
0≤s<t≤1

I ( f ; s, t), f ∈ Ho
γ [0, 1].

Since Uh(0) = Uh(1) we see that F(Uh) = Tγ . We have due to anti-symmetry of h,
for any 0 ≤ k < m ≤ n,

Uh,n(m/n) − Uh,n(k/n) =
m∑
i=1

n∑
j=m+1

h(Xi , X j ) −
k∑

i=1

n∑
j=k+1

h(Xi , X j )

=
m∑

i=k+1

n∑
j=m+1

h(Xi , X j )+
k∑

i=1

[ n∑
j=m+1

−
n∑

j=k+1

]
h(Xi , X j )

=
m∑

i=k+1

n∑
j=m+1

h(Xi , X j ) −
k∑

i=1

m∑
j=k+1

h(Xi , X j )

= �h,n(k,m).

Hence, Fn(n−3/2Uh,n) = n−3/2Tn(γ, h). We prove next that

Fn(n
−3/2Uh,n(·)) = F(n−3/2Uh,n(·)) + oP (1). (14)
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To this aim we apply the following simple lemma (the proof is given in Račkauskas
and Suquet (2004), see Lemma 13 therein).

Lemma 17 Let (ηn)n≥1 be a tight sequence of random elements in the separable
Banach spaceBand gn, g be continuous functionalsB → R. Assume that gn converges
pointwise to g on B and that (gn)n≥1 is equicontinuous. Then

gn(ηn) = g(ηn) + oP (1).

We check the continuity of the function F first. We have if t − s ≤ 1/2, ργ (t − s) ≥
2−γ (t − s)γ and this yields

I ( f ; s, t) ≤ 2γ sup
0≤s<t≤1

| f (t) − f (s) − (t − s)( f (1) − f (0))|
(t − s)γ

≤ 21+γ || f ||γ .

If t − s > 1/2 then 1 − (t − s) > 1 − t and 1 − (t − s) > s. This yields

I ( f ; s, t) ≤ 2γ

{ | f (t) − f (1)|
(1 − t)γ

+ | f (0) − f (s)|
sγ

+ (1 − (t − s))| f (1) − f (0)|
(1 − (t − s))γ

}
≤ 32γ || f ||γ .

Hence, F( f ) ≤ 6|| f ||γ and this yields the continuity since the inequality |F( f ) −
F(g)| ≤ F( f − g) can be easily checked. Similarly we have |Fn( f ) − Fn(g)| ≤
Fn( f −g) ≤ 32γ || f −g||γ , therefore the sequence (Fn) is equicontinuous onHo

γ [0, 1].
To check the point-wise convergence onHo

γ [0, 1] of Fn to F , it is enough to show that
for each f ∈ Ho

γ [0, 1] the function (s, t) → I ( f ; s, t) can be extended by continuity
to the compact set T = {(s, t) ∈ [0, 1]2, 0 ≤ s ≤ t ≤ 1}. As above we get for
t − s < 1/2 I ( f ; s, t) ≤ 2γ ωγ ( f ; t − s)+ 2γ | f (1)− f (0)|(t − s)1−γ , which allows
the continuous extension along the diagonal putting I ( f ; s, s) := 0. If t − s > 1/2
we get I ( f ; s, t) ≤ 2γ ωγ ( f , 1 − (t − s)) + 2γ | f (1) − f (0)|(1 + t − s)1−γ which
allows the continuous extension at the point (0, 1) putting I ( f ; 0, 1) := 0.

The pointwise convergence of (Fn) being now established, and observing that by
the (γ, h)-FCLT, the sequence n−3/2Un is tight, Lemma 17 gives (14). Since F is
continuous, continuous mapping theorem together with (h, γ )-FCLT yield

F(n−3/2Uh,n(·)) D−−−→
n→∞ F(Uh) = Tγ,h .

By (14) we get

n−3/2Tn(h, γ ) = Fn(n
−3/2Uh,n)

D−−−→
n→∞ Tγ,h .

This completes the proof. �
Combination of this general result with Theorems 11 and 15 gives the proofs of

Theorems 1 and 2 respectively.
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7 Behavior under the alternative

To discuss the behaviour of the test statistics Tn(γ, h) under the alternative we assume
that for each n ≥ 1 we have two probability measures Pn and Qn on (S,S) and a
random sample (Xni )1≤i≤n such that for k∗

n ,m
∗
n ∈ {1, . . . , n},

PXni =
{
Qn, for i ∈ I ∗ := {k∗

n + 1, . . . ,m∗
n}

Pn, for i ∈ In\I ∗.

We will write k = k
n , m

 = m
n and � = m − k for short. Set

δn = δ(Pn, Qn) =
∫
S

∫
S

h(x, y)Qn(dx)Pn(dy).

Note that δn measures in a sense the difference between the probability distributions
Pn and Qn . If Pn = Qn , then δn = 0. If h(x, y) = hc(x, y) then δn = ∫

sPn(dx) −∫
xQn(dx). If h = hW then δn = ∫

Pn(x)Qn(dx) − ∫
Qn(x)Pn(dx). The general

consistency result is in the following elementary lemma.

Lemma 18 If

1

ργ (�∗/n)
n−3/2

∑
i∈I ∗

∑
j∈In\I ∗

[
h(Xni , Xnj ) − δn

] = OP (1) (15)

and √
n
∣∣δn∣∣[�∗

n

(
1 − �∗

n

)]1−γ → ∞, (16)

then

n−3/2Tn(γ, h)
P−−−→

n→∞ ∞.

Proof of Theorem 3 Set for i ∈ I ∗, j ∈ In\I ∗,

Zi j = h(Xni , Xnj ) − δn .

Noting that EZi j = 0 and EZ2
i j = νn for any i ∈ I ∗, j ∈ In\I ∗, we obtain

E
( ∑
i∈I ∗

∑
j∈In\I ∗

Zi j

)2 =
∑

i,i ′∈I ∗

∑
j, j ′∈In\I ∗

E(Zi j Zi ′ j ′) ≤ n�∗(n − �∗)νn .

This yields (15) by (3) and completes the proof. �
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Table 2 Upper quantiles of T1 (upper half) and T2 (lower half)

50% 20% 10% 5% 2.5% 1% 0.5% 0.25% 0.1%

One-sided

γ = 0 1.101 1.360 1.515 1.647 1.769 1.922 2.029 2.121 2.244

γ = 0.05 1.199 1.466 1.631 1.770 1.899 2.041 2.161 2.251 2.370

γ = 0.1 1.230 1.591 1.764 1.914 2.045 2.211 2.324 2.437 2.567

γ = 0.15 1.416 1.712 1.897 2.057 2.213 2.379 2.505 2.611 2.760

γ = 0.2 1.551 1.871 2.061 2.231 2.387 2.571 2.695 2.817 2.999

γ = 0.25 1.705 2.033 2.232 2.411 2.569 2.757 2.906 3.031 3.169

γ = 0.3 1.903 2.238 2.445 2.623 2.784 3.00 3.167 3.309 3.444

γ = 0.35 2.148 2.475 2.687 2.880 3.069 3.271 3.419 3.578 3.753

γ = 0.4 2.508 2.814 3.015 3.192 3.367 3.581 3.717 3.850 4.023

γ = 0.45 3.121 3.387 3.560 3.723 3.877 4.079 4.223 4.388 4.585

Two-sided

γ = 0 1.213 1.460 1.612 1.741 1.857 2.012 2.104 2.195 2.311

γ = 0.05 1.314 1.573 1.732 1.862 1.987 2.143 2.242 2.334 2.476

γ = 0.1 1.423 1.708 1.876 2.016 2.148 2.306 2.417 2.501 2.638

γ = 0.15 1.544 1.839 2.017 2.172 2.309 2.485 2.596 2.720 2.859

γ = 0.2 1.684 1.995 2.175 2.344 2.498 2.677 2.812 2.947 3.085

γ = 0.25 1.846 2.172 2.357 2.527 2.684 2.862 2.998 3.104 3.219

γ = 0.3 2.042 2.372 2.572 2.748 2.906 3.122 3.262 3.372 3.562

γ = 0.35 2.294 2.621 2.825 3.017 3.196 3.387 3.541 3.695 3.860

γ = 0.4 2.654 2.961 3.150 3.330 3.499 3.695 3.852 4.002 4.208

γ = 0.45 3.268 3.529 3.697 3.852 4.011 4.216 4.362 4.486 4.627

Proof of Theorem 4 We will use a Hoeffding decomposition adjusted to the changing
distribution. To this aim we define

h1,n(x) :=
∫
S

h(x, y)Qn(dy) − δn,

h2,n(y) :=
∫
S

h(x, y)Pn(dx) − δn,

gn(x, y) := h(x, y) − h1,n(x) − h2,n(y) − δn .

Next we show that the following estimates hold with an absolute constant C > 0:

E

⎡
⎣( k∗+�∗∑

i=k∗+1

h2,n(Xi,n)

)2
⎤
⎦ ≤ C�∗, (17)

E

⎡
⎣( k∗∑

i=1

h1,n(Xi,n) +
n∑

i=k∗+�∗+1

h1,n(Xi,n)

)2
⎤
⎦ ≤ C(n − �∗), (18)
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E

⎡
⎣( k∗∑

i=1

k∗+�∗∑
j=k∗+1

gn(Xi,n, X j,n) +
n∑

i=k∗+�∗+1

k∗+�∗∑
j=k∗+1

gn(Xi,n, X j,n)

)2
⎤
⎦

≤ C�∗(n − �∗). (19)

These estimates yield

E

⎛
⎝∑

i∈I ∗

∑
j∈In\I ∗

[h(Xni , Xnj ) − δn]
⎞
⎠

2

≤ Cn�∗(n − �∗)

with an absolute constant C > 0 and (15) follows by (5). Hence, it remains to prove
(17)–(19).

Conditions (17) and (18) follow from Lemma 14, (19) follows from Lemma 13. �

8 Critical values

In Table 2, we give the upper quantiles of limit distribution of the one-sided and
two-sided test statistics, that is

T1 := sup
s,t∈[0,1],s<t

B(t) − B(s)

(t − s)γ (1 − (t − s))γ

T2 := sup
s,t∈[0,1],s<t

∣∣B(t) − B(s)
∣∣

(t − s)γ (1 − (t − s))γ
,

where B is a standard Brownian bridge. The distribution was evaluated on a grid of
size 10,000 and we run a Monte-Carlo-simulation with 30,000 runs.
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