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Abstract
We study the asymptotics of the ruin probability in the Cramér–Lundberg model 
with a modified notion of ruin. The modification is as follows. If the portfolio 
becomes negative, the asset is not immediately declared ruined but may survive due 
to certain mechanisms. Under a rather general assumption on the mechanism—satis-
fied by most such modified models from the literature—we study the relation of the 
asymptotics of the modified ruin probability to the classical ruin probability. This 
is done under the Cramér condition as well as for subexponential integrated claim 
sizes.

1 Introduction

The classical Cramér–Lundberg process (Ut)t≥0 with

is considered, where u ≥ 0 denotes the initial capital, c > 0 is the constant premium 
rate, (Nt)t≥0 a Poisson process with rate 𝜆 > 0 describing the number of claims until 
time t and the sequence of non-negative i.i.d. claim sizes is denoted by (Yk)k∈ℕ and 
is also independent of (Nt)t≥0 . The process (Ut)t≥0 describes the amount of surplus of 
an insurance portfolio indexed by time. Further, we assume that �[Y1] = 𝜇 > 0 and 
that the net profit condition c > 𝜆𝜇 is satisfied. We denote the distribution function 
of Y1 by F and set F(t) ∶= 1 − F(t).

In the classical setup, the time of ruin is defined by T ∶= inf{t > 0 ∶ Ut < 0} 
with inf � = ∞ . Typically, one is first interested in the analysis of the classical ruin 

Ut = u + ct −

Nt
∑

i=1

Yi
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probabilities 𝜓cl(u) ∶= ℙu(T < ∞) , as u → ∞ . For an overview of the classical the-
ory, we refer to [11] and [9].

Different ruin related quantities have attracted a lot of attention in the literature. 
Here, see for instance the well-cited work of Gerber and Shiu [12] and the vast num-
ber of papers that followed. Moreover, many extensions and modifications of the 
classical model have been established. Again, in many situations, one is first inter-
ested in the corresponding questions from the classical setup. In the recent literature, 
modified definitions of ruin are considered. For instance in [6], a model is studied 
where the insurance company can borrow money at a certain debit interest when Ut 
is negative. Further, the concept of Parisian ruin has attracted a lot of attention in the 
literature. Here, the surplus process is allowed to stay negative for a continuous time 
interval of a fixed or random length, see [7, 8, 15, 16] and for the cumulative situa-
tion [14]. In Omega models, the insurance company goes bankrupt at a random time 
at some surplus dependened bankruptcy rate when Ut is negative, see [3, 13] and 
[4]. This model is in turn linked to models where the insurance company can just go 
bankrupt at random observation times, see [1] and [2].

The aim of the present note is to study the asymptotics of the ruin probability of 
a large class of models with modified notion of ruin. In contrast to the approaches in 
the recent literature, our technique does not require a specific model. We start with a 
measurable function � ∶ ℝ → [0, 1] and assume only that, for u ≥ 0,

In this case, �(u) denotes the modified ruin probability for initial capital u. This 
assumption expresses that the mechanism that causes the ruin gets activated when 
the process hits the negative half-line. The general form of (1) allows us to gather 
most models from the literature as well as many new models under one umbrella.

In order to define such a model and to verify (1), it is often natural to define a 
corresponding time of ruin � . Then, we set 𝜓(u) ∶= ℙu(𝜏 < ∞) . For example, in 
the situation of cumulative Parisian ruin (at level r > 0 ), the modified ruin time is 
defined by 𝜏 ∶= inf{t > 0 ∶ ∫ t

0
�(−∞,0)(Us) ds > r} and it follows immediately from 

the strong Markov property that (1) is satisfied. However, note that also every choice 
of a measurable function �(u) , for u < 0 , with values in [0, 1], defines such a model. 
Further, note that the case �(u) = 1 , for u < 0 , coincides with the classical case.

We proceed as follows. In Sect. 2, we state and prove our main results. Then, we 
apply our results to a bunch of examples and give a short outlook in Sect. 3.

2  Results

We investigate the two classical situations: either the Cramér condition is fulfilled or 
the integrated claim sizes are subexponential. Recall that the Cramér condition is 
satisfied for a constant R > 0 , if ��[exp(RY1) − 1] = cR . Then, it is well-known that 
�cl(u) ∼ ke−Ru for some k > 0 , as u → ∞ , e.g. see Theorem 1.2.2 in [11]. Further, let 

(1)𝜓(u) = ∫
0

−∞

𝜓(y)ℙu(UT ∈ dy, T < ∞).



263

1 3

Ruin probabilities in the Cramér–Lundberg model with temporarily…

FI be the distribution function defined by FI(t) ∶=
1

�
∫ t

0
F(s) ds , for t ≥ 0 . A distribu-

tion function F is called subexponential if limu→∞
F∗2(u)

F(u)
= 2 . In this case, we write 

F ∈ S . If FI ∈ S , one has �cl(u) ∼
�

c−��
∫ ∞

u
F(z) dz =

��

c−��
FI(u) , as u → ∞ , e.g. see 

Theorem 1.3.6 in [11]. We refer to this situation as heavy-tailed in the following. For 
a discussion on subexponential distributions, see e.g. [11].

Our main theorem treats the relation of the asymptotics of modified ruin prob-
abilities to the classical ruin probability.

Theorem 1 Let � be any measurable function satisfying (1).

1. Suppose the Cramér condition is fulfilled with parameter R > 0 . If � is continuous 
or monotone on (−∞, 0) , then �(u) ∼ C�cl(u) , as u → ∞ , where 
C = ∫ 0

−∞
�(y)ℙ∞( dy) and ℙ∞ has distribution function �

c−��
∫ ∞

0
(eRz − 1)F(z − ⋅) dz.

2. If FI ∈ S and limu→−∞ �(u) = 1 , then �(u) ∼ �cl(u) , as u → ∞.

Proof Due to (1), we have

and the analysis of the asymptotic behavior of the modified ruin probabilities 
reduces to the analysis of the integral ∫ 0

−∞
𝜓(y)ℙu(UT ∈ dy ∣ T < ∞) , as u → ∞ . 

Our result is based on Theorem 2 in [17], which states that, if the limit

exists, then

Let us first assume that the Cramér condition is fulfilled for R > 0 . Since 
�cl(u) ∼ ke−Ru for some k > 0 , as u → ∞ , the limit in (3) exists with �(z) = e−Rz . 
Now, following Example 2 in [17], one obtains that ℙu(UT ∈ ⋅ ∣ T < ∞) converges 
weakly to the probability measure ℙ∞ with distribution function

(2)
𝜓(u) =∫

0

−∞

𝜓(y)ℙu(UT ∈ dy, T < ∞)

=𝜓cl(u)∫
0

−∞

𝜓(y)ℙu(UT ∈ dy ∣ T < ∞),

(3)�(z) = lim
u→∞

�cl(u + z)

�cl(u)

(4)

lim
u→∞

ℙu(−UT > x ∣ T < ∞)

=
1

c − 𝜆𝜇

(

c𝛾(x) − 𝜆∫
x

0

𝛾(x − z)F(z) dz − 𝜆∫
∞

x

F(z) dz

)

.

x ↦
�

c − �� ∫
∞

0

(eRz − 1)F(z − x) dz.
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If � is continuous on (−∞, 0) , the claim follows immediately from (2). Since the 
limit distribution is continuous, the claim follows as well if � is monotone on 
(−∞, 0).

Now, if FI ∈ S , one has �cl(u) ∼
�

c−��
∫ ∞

u
F(z) dz =

��

c−��
FI(u) , as u → ∞ . Since, 

by Lemma 1.3.5 in [11], FI is long-tailed, we have �(z) = 1 in (3). Therefore, for all 
x ≥ 0,

Thus, for any x ≥ 0,

as u → ∞ . Since x was arbitrary, we can let x → ∞ , and the claim follows.   ◻

Remark 2 Theorem  1 is particularly useful in the heavy-tailed case. One obtains 
exact asymptotic results for the modified ruin probabilities without computing �(u) 
explicitly for u < 0 , as long as one has limu→−∞ �(u) = 1 . This condition is very nat-
ural, since in most situations, it should become impossible to survive with negative 
surplus u, when u → −∞ . Likewise, without computing �(u) explicitly, for u < 0 , 
one obtains that modified and classical ruin probabilities differ asymptotically by 
a constant C, if the Cramér condition is fulfilled and � is continuous or monotone 
on (−∞, 0) . In contrast to the heavy-tailed case, in most situations, it is not obvious 
how the constant C can be computed. Thus, under the Cramér condition, the result 
can be used primarily to obtain a first classification of the asymptotic behavior of the 
modified ruin probability �(u) , as u → ∞ . Again, e.g. the monotonicity assumption 
is very natural, since in most situations, it should become harder to survive when the 
surplus becomes more negative.

Remark 3 The proof of Theorem  1 hinges on the limit theorem for the probabil-
ity measure ℙu(UT ∈ ⋅ ∣ T < ∞) , which leads to the asymptotic results. For more 
precise results, more information about these probability measures is required. For 
example, explicit results (in terms of �(u) for u < 0 ) can be obtained if the claim 
sizes are phase-type distributed. In this case, the classical ruin probability �cl(u) is 
again phase-type distributed and so is ℙu(UT ∈ ⋅ ∣ T < ∞) , see e.g. [10]. (For the 
special case of the exponential distribution, see e.g. [5].)

In many modified ruin models from the literature, the process starts renewed 
after surviving an excursion in the negative half-line. For instance, this is the case 
for all earlier mentioned examples except cumulative Parisian ruin. More pre-
cisely, in such situations, one has 1 − �(y) = py(1 − �(0)) with py ∶= ℙy(T0 < 𝜏) , 
for y < 0 , where T0 ∶= inf{t > 0 ∶ Ut = 0} . That means, if the process survives 
until it reaches zero after becoming negative, the process starts renewed and 

lim
u→∞

ℙu(−UT > x ∣ T < ∞) = 1.

�
0

−∞

𝜓(y)ℙu(UT ∈ dy ∣ T < ∞) ≥ inf
y<−x

𝜓(y)ℙu(−UT > x ∣ T < ∞)

→ inf
y<−x

𝜓(y),
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survives afterwards with probability 1 − �(0) . In the following proposition, we 
will give expressions for the modified ruin probability �(u) in terms of py.

Proposition 4 Let � satisfy condition (1). If 1 − �(y) = py(1 − �(0)) , for y < 0 , one 
has

with p0 = ℙ0(T0 < 𝜏, T < ∞) and

Proof By (1) and the assumption, we obtain

For u = 0 , it follows that

and thus,

with p0 = ℙ0(T0 < 𝜏, T < ∞) = ∫ 0

−∞
pyℙ0(UT ∈ dy, T < ∞) . Now, (5) follows 

from (6).   ◻

Remark 5 Since ℙ0(UT ∈ ⋅ ∣ T < ∞) has the distribution function FI , e.g. see Propo-
sition 8.3.2 in [11], an explicit expression for p0 in terms of py , for y < 0 , is avail-
able. Further, it is known that �cl(0) =

��

c
 , e.g. see p. 31 in [11]. This together with 

Proposition 4 gives an explicit expression for �(0) in terms of py , for y < 0.

Remark 6 The formulation of the modified ruin probability in (5) in terms of py 
leads to a new perspective: We can think of py , for y < 0 , as the probability of find-
ing an investor when the surplus drops below zero that pays until recovery. This 
perspective is also a natural starting point to build new models in the sense that any 
measurable function py ∈ [0, 1] on (−∞, 0) defines a model with modified definition 
of ruin and the preceding interpretation.

q0 ∶= 1 − �(0) =
1 − �cl(0)

1 − p0

(5)𝜓(u) = 𝜓cl(u)

(

1 − q0 ∫
0

−∞

pyℙu(UT ∈ dy ∣ T < ∞)

)

.

(6)

1 − 𝜓(u) = 1 − ∫
0

−∞

𝜓(y)ℙu(UT ∈ dy, T < ∞)

= 1 − 𝜓cl(u) + ∫
0

−∞

(1 − 𝜓(y))ℙu(UT ∈ dy, T < ∞)

= 1 − 𝜓cl(u) + (1 − 𝜓(0))∫
0

−∞

pyℙu(UT ∈ dy, T < ∞).

1 − 𝜓(0) = (1 − 𝜓cl(0)) + (1 − 𝜓(0))∫
0

−∞

pyℙ0(UT ∈ dy, T < ∞),

1 − �(0) =
1 − �cl(0)

1 − p0
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Remark 7 Proposition 4 gives us an exact expression for the modified ruin probabil-
ity �(u) in terms of py , for y < 0 , and the probability measure ℙu(UT ∈ ⋅ ∣ T < ∞) . 
Combining this result with Theorem 1, we obtain that, if the Cramér condition is 
fulfilled and if py is continuous or monotone, one has �(u) ∼ C�cl(u) , as u → ∞ , 
with C = 1 − q0 ∫ 0

−∞
pyℙ∞( dy) . The condition limu→−∞ �(u) = 1 in the second 

part of Theorem  1 translates now into the condition limy→−∞ py = 0 . In this case 
�(u) ∼ �cl(u) , as u → ∞ . Again, we emphasize at this point that the above assump-
tions are quite natural. For example, it is natural to assume that py is monotone, 
since it should be harder to find an investor when the surplus becomes more nega-
tive. Similarly, it should become impossible to find an investor with negative surplus 
y, as y → −∞.

3  Examples and outlook

We will give examples and show that our results can be applied to many established 
models from the literature.

Example 8 We choose py = p ∈ [0, 1] , for y < 0 . Then, p0 = p
��

c
 , and thus, by (5),

This example corresponds to the (for real-world applications rather unrealistic) situ-
ation where the probability of finding an investor does not depend on UT.

Example 9 If the claim sizes are exp(�)-distributed, one obtains straightforwardly 
from (5) for arbitrary py that

Next, we will see that our results can be applied to most models with a modified 
definition of ruin from the literature.

Example 10 First, let us recall the definitions of Parisian ruin and cumulative Paris-
ian ruin, respectively. Let gt ∶= sup{s ≤ t ∶ Us ≥ 0} . Then, the time of Parisian ruin 
(at level r > 0 ) is defined as

The time of cumulative Parisian ruin (at level r > 0 ) is defined as

�(u) = �cl(u)

(

1 − p
1 −

��

c

1 − p
��

c

)

.

�(u) = �cl(u)
1 − c�p0∕�

1 − p0
, with p0 =

�

c� ∫
0

−∞

py�e
�y dy.

𝜏 ∶= inf{t > 0 ∶ t − gt > r}.

𝜏 ∶= inf

{

t > 0 ∶ ∫
t

0

�(−∞,0)(Us) ds > r

}

.
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If the constant r is replaced by an independent exponentially distributed random var-
iable, one obtains the definition of exponential (cumulative) Parisian ruin. In these 
cases, it is straightforward to verify the assumption on �(u) , for u < 0 , in Theo-
rem 1. Recall that explicit expressions of the cumulative Parisian ruin probabilities 
are given in [14] for exponentially distributed claim sizes. Our results extend these 
results to asymptotic results for more general claim size distributions if the Cramér 
condition is satisfied or if FI ∈ S.

Example 11 Our results can be applied to Omega models. Let � ∶ ℝ → ℝ be a 
monotonically non-increasing function with �(y) = 0 , for y ≥ 0 , and 𝜔(y) > 0 , for 
y < 0 . Let e1 be an exp(1)-distributed random variable independent of (Ut)t≥0 . Then, 
in an omega model, the time of ruin is defined as

Thus, � describes the bankruptcy rate in the model. It is straightforward to verify 
that 𝜓(u) > 0 and limu→−∞ �(u) = 1 and we can apply Theorem 1. Thus particularly, 
we extend the results in [4] – where the authors restricted themselves to exponen-
tially distributed claim sizes – to asymptotic results if the Cramér condition is ful-
filled or if FI ∈ S.

Remark 12 If the bankruptcy rate in Example 11 is constant for y < 0 , the process 
can only stay exponential times in the negative half-line. Thus, we have the same 
situation as in the exponential (cumulative) Parisian ruin model in Example 10. Due 
to the memorylessness of the exponential distribution, this situation coincides fur-
ther with a model where the insurance company can only go bankrupt after inde-
pendent exponential times, see [1, 2]. For this connection and more motivation for 
Omega models, see [4]. Further, if � is constant for y < 0 , it is not hard to show that 
py = e�y , for y < 0 and some 𝛾 > 0 depending on the bankruptcy rate and F. Hence, 
we have four different pictures in this case: Omega model with constant bankruptcy 
rate, exponential (cumulative) Parisian ruin, random observation times (with expo-
nential times between observations) and a model where the probability of finding an 
investor decays exponentially.

Example 13 In the model considered in [6], the insurance company can borrow 
money at a fixed debit interest rate when Ut is negative. Clearly, if the surplus is 
below a certain negative level, the due interest exceeds the income of the insurance 
company and a recovery is impossible. Hence, in terms of our model, �(y) and py 
take the value 1 and 0, respectively, below this negative level. Thus, Theorem 1 can 
be applied. Moreover, we improve Theorem 4.1 in [6], since we can drop some of 
the technical assumptions there.

Finally, let us give a short outlook. In this paper, the Cramér–Lundberg model 
was considered to demonstrate our technique. We have proved that under the nat-
ural assumptions in Theorem  1, classical and modified ruin probabilities differ 

𝜏 ∶= inf

{

t > 0 ∶ ∫
t

0

𝜔(Us) ds > e1

}

.
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asymptotically by a constant factor if the Cramér condition is satisfied and are 
asymptotically equivalent if FI ∈ S.

There are many ways our results can be generalized. Generally, as soon as limit 
theorems similar to (4) are available for a process, corresponding results can be 
obtained. For instance, one can involve further quantities that affect the mechanism 
that causes the ruin. For example, the quantity UT− can be easily involved, e.g. see 
[17]. However, there are, to the knowledge of the authors, no modified ruin defini-
tions in the current literature using this quantity.

Another direction is to consider different types of processes. It seems natural to 
consider spectrally negative Lévy processes and processes that are perturbed by a 
Brownian motion. In the latter case, the process does not necessarily enter the nega-
tive half-line with a jump, and thus, this event would require additional techniques.
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