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Abstract
Energy costs play an important role in industrial production and are closely related
to environmental concerns. As sustainability aspects are coming into focus in recent
years, energy-oriented objectives are increasingly being taken into account in schedul-
ing. At the same time, requirements for punctual delivery become more and more
important in times of just-in-time delivery and highly networked supply chains. In
this paper, a hybrid flow shop scheduling problem with variable discrete production
speed levels is considered with the aim of minimizing both energy costs and total
tardiness. Although lower speeds can reduce energy consumption, they also increase
processing times, which counteract the objective of punctual delivery. Two newmodel
formulations additionally taking time-of-use energy prices into account are presented
and compared. The influence of variable discrete production speed levels on energy
costs, energy consumption and punctual delivery as well as the interdependencies
between these objectives are analysed in a numerical case study.
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1 Introduction

Hardly any product is as socially relevant as electrical energy. Many everyday objects
only work with electricity while electrification is steadily increasing. In the course of
Industry 4.0, industrial companies rely on automated processes using robots, driver-
less transport systems or Auto ID technologies. In 2017, German industrial companies
consumed 248.6 TWh of electrical energy and overall, the industrial sector is respon-
sible for almost half of the total national electricity consumption (Ziesing 2018). The
resulting CO2 emissions amount to about one-fifth of total emissions (Dai et al. 2013).

The great importance of energy not only leads to a great social interest in effi-
cient and sustainable use, companies are also increasingly pressured to reduce their
energy costs in the face of global competition. Furthermore, they can benefit from
an environmentally oriented image. Consequently, energy costs are now being taken
into account in many approaches of production planning and control and thus also in
operative planning in the form of energy efficient scheduling (EES). Together with
approaches to reduce emissions or waste and preserve resources, a completely new
branch of green scheduling research has thus developed. A general overview about
different approaches to consider energy consumption in scheduling is given by Biel
and Glock (2016) or Gahm et al. (2016).

In this article we look at an extended flow shop problem, the hybrid flow shop (HFS)
problem. In a flow shop problem, all jobs are processed in a multi-stage production in
the same machine sequence, whereby only one machine is available at each stage. In
contrast, in an HFS problem several machines are available on at least one stage. This
allows, for example, to overcome step-related bottlenecks. The HFS problem can thus
be seen as a generalization of a parallel machine problem and a flow shop problem,
which can be found in many industrial processes such as electronics, paper, textile,
pharmaceutical, and sheet metal industry (Yu et al. 2018).

Among the EES approaches, variable production speeds are probably one of the
most promisingmethods in order to significantly reduce energy consumption (Mecrow
and Jack 2008). This article deals intensively with this topic. High savings potential
exists, for example, in pumpswhich have high energy consumption in injectionmould-
ing plants or for water supply in paper mills. If a pump or fan works at 50% of the
maximum volume flow, only 25% of the maximum pressure must be generated and
the required power drops to 12.5%. This is based on the affinity law, which states that
the power consumption of a pump is proportional to the cube of the speed. Thus, even
small changes in the flow rate can result in major energy savings (Lönnberg 2007).
Logically, the savings depend on the respective technical device. Even with industrial
motors, enormous energy savings can be achieved through speed reductions. Besides
lower energy consumption a reduction in energy costs can also be achieved through,
inter alia, the exploitation of time-dependent energy prices, which are also considered
in this work.

In addition to energy consumption and costs, other objectives are usually pursued.
In recent years, several multi-criteria problems were published in EES. Commonly
besides energy, utilization-oriented objectives as makespan are considered. In cases
of strongly networked supply chains with just-in-time requirements, however, time
criteria such as punctual delivery are playing an increasingly important role. Delayed
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Multi-objective hybrid flow shop scheduling with variable... 1317

production can lead to high contractual penalties and loss of confidence. Surprisingly,
tardiness is rarely taken into account in EES. For that reason, this paper examines total
tardiness and time depending energy costs as two separate objective functions using
the ideas of multi-criteria optimization. To the best of our knowledge, this setting has
not been addressed in HFS scheduling so far.

The article is structured as follows. Section 2 describes the current state of research.
Subsequently, the problem is defined inSect. 3 and possiblemathematical formulations
are discussed. Approaches of multi-criteria decision-making are also explained here.
A computational study follows in Sect. 4. Finally, a short conclusion is given.

2 Related literature

In the following, the current state of research in EES including the fact that tardiness
has hardly been taken into account so far is described. Due to the limited scope of the
article, we will limit ourselves to machine and production scheduling in the following.
However, it should be mentioned that the problem is basically similar to the multi-
mode resource-constrained project scheduling problem (MMRCPSP). Mathematical
problem formulations from this area can be found, for example, in Naber and Kolisch
(2014), Besikci et al. (2015) or Wauters et al. (2016). To the best of our knowledge, no
MMRCPSPmodel can be directly applied to the problem considered here. The concept
of multiple modes refers to the possibility to execute activities in different execution
modes which allows to vary required time and resource consumption (e.g. energy). In
addition to execution modes and variable speeds, the term different production rates
is sometimes used. Since the term “variable speeds” is often applied in the field of
machine scheduling and particularly for EES, we use it primarily in the article.

2.1 Energy efficient scheduling

There are various options to reduce energy costs in scheduling, whereby the possi-
bilities also depend on the respective production processes. Basically, either energy
consumption is reduced directly through intelligent planning (Sect. 2.1.2) or pricing
mechanisms are exploited to reduce expenses while energy consumption stays at the
same level (Sect. 2.1.1). An overview is shown in Fig. 1. The concepts (a)–(f) are
explained in detail in the following. The framed approaches in Fig. 1 will be taken
into account in the considered problem. In addition to the approaches listed here, there
are a few very specific contributions, which are not taken into account. For example,
Nolde and Morari (2010) as well as Hait and Artigues (2011b) examine load tracking
scheduling in a steel plant. Energy provider and consumer may agree upon a target
load curve. For deviations the company has to pay (called tracking errors). AlsoModos
et al. (2017) examine this problem.

Furthermore, this paper concentrates on electrical energy. The EES literature also
contains contributions that deal with heat, cold, water or emissions. A good overview
about all research trends in EES is given by Gahm et al. (2016). They also pro-
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Approaches of Energy 
Efficient Scheduling

Reducing Energy Consumption
Through Intelligent Planning

Utilisation of Market Mechanisms 
with Constant Consumption

(d) Increasing the utilization 
of more efficient machines 

(e) Making use of 
different machine 
states (on/off/idle)

(f) Increase Efficiency 
by adjusting the 
production speed

(a) Levelling the consumption 
to reduce peak power

(b) Variable electricity 
tariffs with 

time-of-use prices

(c) Direct purchase
on stock exchange
(Real-time price)

Fig. 1 Overview about different EES approaches

pose a classification framework. This contribution can be classified in this respect by
eCS, PS|T OU |FLX indicating:

• Energy coverage: external conversion system (eCS), production system (PS),
• Energy supply: price driven demand response by time-of-use prices (TOU),
• Energy demand: flexible (FLX) processing energy demand.

2.1.1 Utilisation of market mechanisms with constant consumption

While private consumers are bound to fixed tariffs, companies with an annual con-
sumption of 10MWhormore can negotiate special contractswith the respective energy
supplier. Most of these bilateral contracts are not publicly available. Nevertheless, it
is known that companies usually have to pay an electricity charge per kWh consumed
and a so-called demand charge for the respective maximum peak power within the
billing period (Bego et al. 2014).

(a) Peak power reduction
To reduce costs due to peak power consumption, peaks must be reduced or entirely
avoided. While the peak power fee normally covers at least a time period of several
weeks, scheduling is primarily dedicated to shorter production periods. Therefore, the
direct integration of the demand charge in a scheduling problem is not straightforward
possible. However, since the demand charge per kW is 200–400 times higher than the
electricity price per kWh (Nghiem et al. 2011), reducing the energy peak can be fairly
lucrative. The peak power is often considered as a constraint (e.g. Bruzzone et al. 2012;
Xu et al. 2014 or Schulz 2018) and set to a historical valuewhichmust not be exceeded.
A parametric optimization is also possible by varying the respective upper bound. A
direct minimization within the objective function is done for example by Nagasawa
et al. (2015) who present a simulation approach for a flow shop problem with random
processing times. Strong fluctuations in energy consumption does not only lead to
high peak power costs. Constant energy consumption is also important for internal
power generators or converters. Rager et al. (2014) publish an approach which aims
to minimize the sum of the squared deviations of each load from the expected average
energy consumption to improve the performance of an energy conversion system.
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(b) Time-of-use prices
Electricity charges may depend on the time the energy is used, which requires con-
sumption to be postponed in times of lower prices. These shifts are in contrast to the
levelling due to the demand charge. One of the first contributions dealing with time-of-
use tariffs (TOU) in production scheduling was published by Nilsson and Söderström
(1993). Castro et al. (2009) present a continuous-time scheduling formulation for an
EES model considering two different TOU energy prices. As a result, the energy costs
can be reduced by around 20% by moving consumption from on-peak to off-peak
times. Che et al. (2017b) consider an unrelated parallel machine problem and suggest
a constructive heuristic to minimize energy costs and makespan simultaneously.

(c) Real-time prices
While TOU tariffs usually have two (on-/off-peak) or three (on-/mid-/off-peak) differ-
ent time-depending price levels, Ding et al. (2016) analyse the influence of frequently
fluctuating TOU prices in an unrelated parallel machine scheduling problem. Such
problems with hourly fluctuating energy prices are often referred to as real-time prices
(RTP). Energy-intensive companies with annual consumption of more than 100MWh
may purchase electricity directly from the stock exchange. This means, they pay the
RTP for quantities that are not hedged by long-term derivatives. These prices fluctuate
at the European Energy Exchange (EEX) every 15 min, which increases the computa-
tional effort for optimization enormously. Mitra et al. (2012) describes mixed-integer
problem (MIP) formulations for the production planning of a week with hourly fluc-
tuating energy prices. In Küster et al. (2013), a complex production process with RTP
is visualised as a bipartite graph. The authors then present a simulation and optimiza-
tion approach. They explain that in times of lower electricity prices more renewable
energies are fed into the grid and thus not only costs are saved but the environment
can also be protected.

2.1.2 Reduce energy consumption through intelligent planning

Reducing energy costs by making use of market mechanism does not influence the
energy consumption and can even have a negative impact on CO2 emissions and other
environmental factors. Zhang et al. (2014) discuss the correlation between utilization
of TOU tariffs and CO2 emissions. They show that in times of low electricity prices,
emissions are on average higher than those in on-peak periods. Interestingly, this
contradicts the statement of Küster et al. (2013). Overall, both points of view can be
understood and it depends largely on the energy market under consideration whether
low prices are accompanied by lower emissions. For example, electricity prices are
usually low at night. Since only few renewable energy sources can be used at night, this
electricity is often generated by conventional power plants such as coal. The extent to
which renewable energies are freely traded on the market or are subsidised must also
be taken into account. In any case, from an environmental point of view, it may be
beneficial if scheduling also reduces energy consumption and considers environmental
impacts aswell. For this purpose, three different approaches are particularly considered
in literature as can be seen in Fig. 1.
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(d) Increase utilization of more efficient machines
In heterogeneous production environments with parallel machines which have differ-
ent energy consumptions and processing times for the same task, consumption can
be reduced through higher utilization of more efficient machines. Ji et al. (2013) con-
sider a uniform parallel machine problem in which machines with higher resource
consumption also work faster. The authors present an MIP as well as a particle swarm
heuristic to optimize resource consumption for a given maximummakespan, whereby
the term resource is not limited to energy.A particle swarmoptimization is also used by
Nilakantan et al. (2015) to minimize makespan and energy consumption in a robotic
assembly line system with differently efficient robots. Schulz et al. (2019) propose
an iterated local search algorithm to optimize three different objectives (makespan,
energy costs, peak power) in a heterogeneous hybrid flow shop problem. In this work,
however, we focus on identical parallel machines.

(e) Making use of different machine states
Various EES contributions take different machine states into account. The basic idea is
to optimize idle and standby times as well as making intelligent shut down decisions.
Liu et al. (2014) analyse a job shop problem with three different processing levels
(idle, runtime, cutting), whereby the energy consumption is a deterministic value
and can only be reduced by minimizing the non-processing time. Also in the HFS
problem considered by Dai et al. (2013) the basic idea is to minimize the idle energy
consumption. If it is possible to shut down machines, the amount of possible energy
savings increases. This concept is examined for example by Mashaei and Lennartson
(2013). They minimize energy consumption in a flow shop problem for a given cycle
time byweighing between switching off and idling in times of no production. Thereby,
switching on and off leads to higher energy consumption than short idle times, but is
advantageous during longer periods of standstill. Li et al. (2018) assume that setup
energy is required after idle times and the objective is to minimize makespan and total
energy consumption in an HFS. In Wu and Sun (2018) on/off decisions are not only
used to reduce energy consumption in a flexible job shop problem, but the total number
of turning-on/off machines is minimized as a third objective besides makespan and
total energy consumption.

(f) Variable production speed
Most EES articles consider discrete constant energy consumption depending on the
machine state, which is only an approximation of actual energy requirements. There-
fore, often data from energy audits are used, which provide average values (e.g.
Abdelaziz et al. 2011). Real production processes are subjected to various factors
and uncertainties (e.g. Le and Pang 2013). Only a few authors consider realistic mod-
els for energy consumption. For example, Yan et al. (2016) look at different cutting
machines within an HFS and propose a multi-level optimization approach to minimize
makespan and energy consumption when taking into account different cutting speeds.
Thus, in addition to random influences such as machine ageing, environmental effects
or material parameters, energy consumption can also be directly influenced by vari-
able production speed. That idea is used in different EES approaches to reduce energy
costs, energy consumption or emissions and is also considered in this work.
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For example, Fang and Lin (2013) propose an MIP formulation for flow shop
problems. A further approach with processing time depending energy consumption is
published by Zanoni et al. (2014). They consider a two-machine problem with three
storages to minimize the total costs of production, storage and energy. Liu et al. (2012)
examine the interdependencies between process efficiency and energy consumption of
an electroplating unit in a hoist scheduling problem. A stochastic problem with non-
linear energy cost function depending on variable production quantity is formulated
by Tang et al. (2012). In Hait and Artigues (2011a) the task duration depends on the
given power to a furnace. A model and constructive heuristic for a bi-objective two
stage flow shop with three different speed levels is described inMansouri et al. (2016).
Lei et al. (2017) examine a flexible job shop scheduling problemwith variable discrete
production speeds. To minimize total energy consumption and workload balance they
propose a shuffled frog-leaping algorithm. In a later work Lei et al. (2018) present
a novel teaching-learning algorithm to minimize total energy consumption and total
tardiness in a hybrid flow shop scheduling problem. The problem is basically similar
to the one we are investigating here. However, no TOU prices are considered, so the
decision problem is limited to semi-active schedules. In the following a fewmore EES
articles are described, which consider tardiness as objective.

2.2 Multi-criteria EES with total tardiness

EES approaches often consider further objectives besides energy demand or costs.
However, this is usually limited to makespan. In our opinion, it is desirable to include
energy costs and tardiness in an approach, especially since it is hardly been done so far.
To the best of our knowledge this is the first time that both objectives are considered
in an HFS. Besides HFS there are a few publications that investigate total tardiness in
multi-criteria EES.

Artigues et al. (2013)minimize energy andpower overrun costs in a parallelmachine
problem, and use maximum tardiness as decision criterion for the scheduling in the
first step of a two-phase solution approach. Also Liu et al. (2016) consider a paral-
lel machine problem. They propose a branch and bound algorithm to minimize the
resource consumption with maximum tardiness as a constraint. In Liu et al. (2017) a
fuzzy flow shop problem is described with tardiness costs and energy costs summa-
rized in one objective function. A similar cost function is used by Le and Pang (2013),
whereby uncertainties in energy consumption are taken into account. Tardiness is con-
sidered in the four publications mentioned, but does not appear as an independent aim
in the objective function.

A genetic algorithm for the multi-objective job shop problem with minimization of
energy consumption and total weighted tardiness is introduced by Zhang and Chiong
(2016). The same objectives are considered by Wang et al. (2016) in a batch schedul-
ing problem under energy consumption uncertainties. In Che et al. (2017a) energy
consumption and maximum tardiness are minimized in a single machine problem
with power down options. The last three approaches mentioned describe multi-criteria
approaches with energy consumption and tardiness as objective functions. However,
variable energy prices or discrete speeds are not taken into account.
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Table 1 Used notation for the MIP formulation in Sect. 3

Indices

i Machine in Mk = {1, . . . , μk }
j Job in J = {1, . . . , n}
k Production stage or task in S = {1, . . . ,m}
l Level of speed reduction as additional processing time in V = {0, . . . , o}
t Discrete time-interval in T = {1, . . . , τ }

Parameters
ed jk Maximum energy demand at maximum speed of task k of job j

es jkl Energy consumption of task k of job j at the speed reduction l

es∗jkl Relative energy saving if speed is reduced from (l − 1) to l

D j Due date of job j

ect Electricity cost during time period t
p jk Minimum processing time of task k of job j

Decision variables
c jk ∈ N

+ Completion time of task k of job j

etjk ∈ R
+ Energy consumption of task k of job j at time period t

EC jk ∈ R
+ Energy costs of task k of job j

E Pjk ∈ R
+ Energy consumption of task k of job j

g jkl ∈ {0, 1} The speed reduction l of task k of job j is set as individual variable

g∗
jkl ∈ {0, 1} The speed reduction l of task k of job j is set as special ordered set

Pjk Actual processing time of task k of job j

s jk ∈ N
+ Start time of task k of job j

T j ∈ N
+ Tardiness of job j

xtjk ∈ {0, 1} Task k of job j is performed at time t

ztjk ∈ {0, 1} Execution of task k of job j starts at time t

3 Problem description

In this section we will define the considered problem in detail. To analyse the interde-
pendencies between total tardiness and energy costs amulti-objectiveMIP formulation
is developed. An overview on notation with indices, parameters and variables is shown
in Table 1.

3.1 Assumptions

Weconsider anHFSproblemwhere n jobs go throughm stages (withm ≥ 2) following
the same processing sequence (flow shop). Each stage k consists of identical parallel
machines i (i ∈ {1, . . . , μk}). Thereby, each machine at a stage has the same technical
requirements but can differ in terms of speed. A typical machine layout can be seen
in Fig. 2.
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1
1

1
2

1

µ

… … ……

µ1

1
µ2

2

Stage 1 Stage 2 Stage m

Fig. 2 General machine layout in a HFS problem

For practical implementation of variable motor speeds, electronic voltage convert-
ers are connected upstream of an electric motor. As a result, speed, torque, as well as
the resulting power can be varied arbitrarily (Abdelaziz et al. 2011). Such technologies
are already used in various areas such as building management (see e.g. Saidur 2009).
Thus, an infinite number of speeds is theoretically possible. However, this cannot be
formulated in an MIP, as the solution space would also become infinitely large. Con-
sequently, a finite and discrete set of speed levels V = {0, . . . , o} is available for each
machine in order to control processing speed. The speed is determined individually
for each job and remains constant during the processing of a job.

Since we assume discrete integer production times, reducing the speed by one step
leads to one additional processing time unit. Thus, the variable l can simultaneously
represent additional processing time and a reduction in speed. To avoid ambiguity, l
is referred to as the level of speed reduction in the following. A higher l increases the
processing time but decreases energy consumption. The operation of task k of job j
needs at least a baseline processing time p jk which corresponds to maximum speed as
well as maximum energy demand. To reduce the maximum speed by one step, l is set
to 1. This increases the processing time by one unit. The resulting actual processing
time is called Pjk and would equal p jk + l with l = 1.

Through speed variations the energy consumption can be influenced. The energy
cost EC jk of job j at stage k is determined by the time-dependent energy prices
ect and the speed-dependent consumption EPjk . Thereby, energy consumption EPjk

does not depend linearly on the speed reduction, but the interdependencies are much
more complex. Often cubic relationships are assumed on the basis of the affinity laws
which are already mentioned in the introduction. In our model the maximum energy
consumption at highest speed is ed jk . Based on that value and the actual processing
time Pjk , the following relationship is assumed:

EPjk =
[
1 + 0.6 ·

(
Pjk

p jk
− 1

)2

− 1.4 ·
(
Pjk

p jk
− 1

)]
· ed jk · p jk

Pjk
∀ j, k. (1)

This equation is based on the work of De Almeida et al. (2005) and represents an elec-
tric motor for a pump with variable speed drive. A possible practical application could
be an injection moulding machine. The minimum energy consumption is achieved at
a ratio of Pjk over p jk of 2.09, which means that processing speed reduction up to
52.15%may reduce total energy consumption. This value meets practical experiences.
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Because of excessive wear and the inefficient working area, electric engines lose effi-
ciency if driven below 50% of rated load (see e.g. Saidur 2009). For that reason, in
our test instances speed reductions are only permitted up to 50%. Since Eq. (1) is
quadratic, it is helpful to linearise the expression in the course of MIP modelling.

Energy costs can be reduced on the one hand by reducing the production speed and
on the other hand by shifting the work to off-peak time periods with lower energy
prices. If only energy costs were minimized, jobs would be processed at very low
speeds and mainly times of low electricity prices would be used for production. This
could increase cycle times enormously. We assume, that each job j has a due date
Dj . If the completion time exceeds the due date the difference is called tardiness Tj

(see Eq. (11)). In order to obtain a time-efficient schedule despite the energy cost
optimization, we minimize the total tardiness of all jobs as a second objective. On the
basis of these assumptions, we consider the following two objectives (2) and (3).

Minimize: I. Total electricity costs: TEC =
m∑

k=1

n∑
j=1

EC jk (2)

II. Total tardiness: T T =
n∑
j=1

Tj . (3)

Besides the mentioned properties, the following general assumptions are made for the
HFS problem:

• All jobs and machines are available at time zero (no release dates).
• Each machine can process at most one job at a time.
• Each job can be processed by at most one machine at a time.
• Once a task has been started, no interruption is allowed.
• There are infinite buffers between stages.
• Set-up effort and transportation times are neglected.

3.2 Time-indexedmodel formulation

The described problemcan be formulated as anMIP. Sincewe consider time depending
energy cost, the model is set up using time-indexed variables. The planning horizon
is subdivided into τ time periods t(t ∈ {1, . . . , τ }). We introduce two binary decision
variables. The binary xtjk is equal to one, if job j is processed in t at stage k. Similarly,
the binary ztjk is one, if job j starts at stage k in period t. Based on that two decision
variables, the basic constraints can be formulated as follows.

n∑
j=1

xtjk ≤ μk ∀ k, t (4)

τ∑
t=1

xtjk = Pjk ∀ j, k (5)
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τ∑
t=1

ztjk = 1 ∀ j, k (6)

x1jk = z1jk ∀ j, k (7)

xtjk − xt−1
jk ≤ ztjk ∀ j, k, t > 1 (8)

s jk =
τ∑

t=1

(
ztjk · t

)
∀ j, k (9)

c jk = s jk + Pjk − 1 ∀ j, k (10)

Tj = max
{
0, c jm − Dj

} ∀ j (11)

s jk − c jk−1 ≥ 1 ∀ j, k > 1. (12)

Constraint (4) ensures that the number of parallel processes in each stage complies
with the number of parallel machines. Thus, no machine can be assigned multiple jobs
at the same time. By introducing (5) each job is scheduled for the entire processing
time needed. Furthermore, with (6) a job can start only once. Expressions (7) and (8)
connect both binary variables. These three equations operate together to ensure that
tasks cannot be interrupted.

In addition, we introduce two further dependent decision variables by Eqs. (9) and
(10). The integer s jk is the start time period of task k of job j and the integer c jk
represents the completion time of a job j at stage k. Both variables depend on ztjk as
well as the chosen speed and do not necessarily have to be introduced. However, it
simplifies the formulation of the model and accelerate the optimization by means of
solver. On the basis of c jk it is then possible to calculate the tardiness Tj of job j with
(11). Equation (12) ensures that a job can be processed at a stage only if the previous
step is completed.

Due to the quadratic function (1) and the dependence of the energy consumption on
the processing speed, neither direct proportionality nor additivity is given. For lineari-
sation, we make two modifications. Firstly, function (1) is calculated for all possible
levels of speed reduction l ∈ {0, . . . , o} and the result is saved as parameter es jkl .
Secondly, the interdependencies of decision variables are dissolved by introducing a
further binary auxiliary variable g jkl . Thereby, the binary g jkl is equal to 1, if job j is
processed at stage k at level of speed reduction l. The following constraints have to be
added.

o∑
l=0

g jkl = 1 ∀ j, k (13)

Pjk = p jk +
o∑

l=0

(
g jkl · l) ∀ j, k (14)
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etjk ≥
[

o∑
l=0

(
g jkl · es jkl

)] − ed jk ·
(
1 − xtjk

)
∀ j, k, t (15)

etjk ≥ 0 ∀ j, k, t (16)

EC jk =
τ∑

t=1

(
etjk · ect

)
∀ j, k. (17)

Constraint (13) assigns exactly one level of speed reduction l to each job j at each stage
k. Then Pjk can be calculated by (14). The respective consumption etjk is calculated
in Eq. (15) depending on the additional processing time. Since ed jk is always greater
than or equal to the actual energy consumption, it works similar to a BigM formulation
and there is only a positive value if actual production takes place. Furthermore, (16)
ensures non-negative energy consumption if not manufactured (xtjk = 0). Finally, (17)
sums up the energy costs for each job at each stage.

3.3 Model improvements

The formulation described in Sect. 3.2 is complete and can be solved by solver. How-
ever, the formulation can still be improved. The number of variables g jkl is very high.
The speed is selected by one single binary without any connection between individual
speed levels. If special ordered sets are used instead, the branch and bound procedure
can be significantly accelerated (formore information see e.g. Beale and Forrest 1976).
In doing so, Eqs. (13)–(15) are replaced by (18) to (20).

g∗
jkl−1 ≥ g∗

jkl ∀ j, k, l : l > 1 (18)

Pjk = p jk +
o∑

l=1

g∗
jkl ∀ j, k (19)

etjk ≥ ed jk ·
[
xtjk −

o∑
l=1

(
g∗
jkl · es∗

jkl

)]
∀ j, k, t . (20)

The basic idea is that the processing time is stepwise increased by g∗
jkl . If time is

increased by a certain level � all previous levels must also be activated. In the model
this means that not only g∗

jk� = 1 but all g∗
jkl = 1 with l ≤ �. This relationship is

established by constraint (18). Then, the additional processing time can be calculated
by the sum of all g∗

jkl in (19). Finally, the time depending energy consumption must
be calculated by Eq. (20). Here, es∗

jkl is the relative percentage energy saving for job
j at stage k if the level of speed reduction is changed from l − 1 to l.

With the reformulation described above, the computation time can be reduced by up
to 50% for certain test instances. Moreover, some other approaches have been tested
to speed up the solution finding. Various additional constraints were integrated, which
unfortunately did not lead to any significant improvement. In addition, optimization
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Table 2 New decision variables for the modified model

x j j ′k ∈ {0, 1} Job j starts after j ′ at stage k.
y jki ∈ {0, 1} Job j is executed by machine i at stage k

ztjkl ∈ {0, 1} Execution of task k of job j starts at time t with speed l

could be probably accelerated if starting solutions are generated. But finding initial
solutions does not seem to be a problem here. For example, an initial solution was
created with the earliest due date (EDD) rule. Thereby the jobs are scheduled based
on their due dates (job with the smallest Dj is scheduled first and so on). Interestingly,
computation time was even significantly extended by using initial solutions.

Since the described model cannot be further improved directly, other formulations
are investigated. The calculation of energy costs is quite complex due to the fluctuating
energy prices and the time dependency. Furthermore, it has to be repeated frequently
which requires a lot of computing time. One alternative is to calculate all possible
energy costs depending on job, stage, speed and starting time in advance. Combin-
ing this idea with a sequence-dependent formulation leads to another MIP, which is
described in the following.

3.4 Sequence-dependent model formulation

The new model is based on the parameter tectjkl which defines the energy costs for a
job j at stage k, if processing starts in time period t at level of speed reduction l. This
parameter is calculated in a pre-process. Since the determination takesmuch less than a
second for the considered problem sizes this calculation step is not analysed separately
in the following. Rather, we focus on the resulting novel model formulation. Just like
tectjkl , the processing time Pjkl depends on l. Thus, speed respectively extension of
the processing time is considered as an index in the following. The modified decision
variables are shown in Table 2. Further notation is similar to Table 1.

While the objective functions remain unchanged, constraints are mainly modified
as can be seen in Eqs. (21)–(30).

x j j ′k + x j ′ jk ≥ y jki + y j ′ki − 1 ∀ i, j, k, j ′ �= j (21)

μk∑
i=1

y jki = 1 ∀ j, k (22)

o∑
l=0

τ∑
t=1

ztjkl = 1 ∀ j, k (23)

s jk =
o∑

l=0

τ∑
t=1

ztjkl · t ∀ j, k, (24)
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c jk = s jk +
o∑

l=0

τ∑
t=1

ztjkl · Pjkl − 1 ∀ j, k (25)

s jk − c jk−1 ≥ 1 ∀ j, k > 1 (26)

c j ′k ≤ s jk + (1 − x j j ′k) · τ − 1 ∀ j, k, j ′ �= j (27)

c jm ≤ τ ∀ j (28)

Tj = max
{
0, c jm − Dj

} ∀ j (29)

EC jk =
o∑

l=0

τ∑
t=1

ztjkl · tectjkl ∀ j, k. (30)

Equation (21) specifies that each job j must be either predecessor or successor of job
j ′ if both jobs are processed on the same machine. With (22) each job is allocated to
a machine. Constraint (23) guarantees that each job starts at each stage exactly once
with a certain speed. In (24) and (25) start and completion time period are defined. On
that basis with (26) a job can only starts if the previous stage is finished. Similarly,
a job can start at a machine only if all jobs which are scheduled earlier are finished.
For this purpose, constraint (27) prevents overlapping of jobs allocated to the same
machine. Of course, the completion time of each job must not exceed τ which leads
to (28). In the time-indexed model equation (5) ensures that the complete processing
time is within the observation period. Similar to the first model the tardiness of each
job is calculated in (29). Finally, depending on the data of tectjkl , (30) calculates the
energy costs for each job at each stage.

The performance of this approach in comparison with the model presented first
will be evaluated in a computational study in Sect. 4. Beforehand, the problem of
multi-criteria decision making will be discussed briefly.

3.5 From lexicographic to eps-constraint method

Due to the different objective functions (2) and (3), the described problem can not be
solved directly by a solver. Basically, Branch and Cut algorithms are used to optimize
a single objective function. However, if there are several objectives, one possibility is
to combine them into a single function. For example, one could try to monetize the
values and thus obtain a global cost function. In the considered problem, unfortunately,
a weighted-sum approach is not possible to combine both criteria in one function.
Delays in particular are difficult to monetise. Contractual penalties often occur, but in
addition, trust and goodwill losses must also be taken into account.

Another possible approach is lexicographical optimization. Therefore, the objec-
tives are put into a certain order and then the criteria are optimized and fixed one
after the other according to their importance. In the problem under consideration,
for example, the minimum total tardiness could firstly be determined and then the
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Fig. 3 Visualization of lexicographic solution and pareto front with two objective functions

corresponding optimum energy costs are calculated. Conversely, it could also be pos-
sible to minimize TT for the lowest TEC calculated at the beginning. Both possible
lexicographic solutions are exemplarily shown in Fig. 3 with black dots.

In general, all pareto optimal solutions come into question for the decision-maker.
These solutions are also referred to as non-dominated solutions (NDS). A solution
is dominated if another solution is just as good in all objectives and at least in one
better. Vice versa, a solution is an NDS if it is better in at least one criterion compared
to any other solution. The eps-constraint method is a suitable approach for calcu-
lating all pareto optimal solutions (pareto front) or at least some NDSs by means of
mathematical modelling. Thereby, all lexicographical solutions are first identified. The
range between these solutions is then analysed depending on the type of eps-constraint
method. What all approaches have in common is that only one objective is optimized
and all other objectives are limited by constraints.

In this article the equidistant eps-constraintmethod is pursued. Therefore, we calcu-
late both lexicographic solutions. Then, TT is defined as a constraint at fixed intervals
and the model is optimized for TEC as a single objective. This approach has two main
weaknesses.

On the one hand, not every solution found is pareto optimal. The problem could
be circumvented by the augmented eps-constraint method (see e.g. Mavrotas 2009 or
Wang et al. 2018), in which the second objective is also included in the single objective
function with a very small part. However, since almost every increase in TT leads to
a reduction in energy costs and thus to an NDS, there is hardly any added value from
the additional effort.

On the other hand, probably unevenly distributed pareto front is achieved. Here a
dynamic approach like the bi-section eps-constraint method (Chircop and Zammit-
Mangion 2013) could help, which always searches in the area where the Euclidean
distance between two NDSs is greatest. Since we limit the computing time of the
models in the following, an optimal solution is not always found and the approaches can
lead to different results. This, in turn, would lead to searches in different areas, which
would make the evaluation of computing performance extremely difficult. Therefore,
we apply the equidistant eps-constraint methods in the following.
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Table 3 Numerical example Job 1 2 3 4 5 6

Processing time (h)

Stage 1 3 8 7 3 9 7

Stage 2 3 6 10 8 3 4

Energy consumption (105 W )

Stage 1 6 1 3 10 8 7

Stage 2 1 4 2 1 5 4

Due date

19 17 12 10 6 6

4 Numerical case study

In the following, a numerical example shall illustrate the scheduling problem under
consideration. Subsequently, a computational study is examined to evaluate the per-
formance of the two proposed models. All problems are solved by CPLEX 12.6 using
an Intel Xeon 3.3 GHz CPU with 768 GB memory. Even simple forms of HFS are
considered to be NP-hard (Dai et al. 2013). Consequently, only small instances can be
solved for the described problem. The biggest problem instances that will be consid-
ered here consist of ten jobs and 4 manufacturing stages. Real production processes
often have much larger sizes. Nevertheless, the following example is constructed as
realistic as possible.

4.1 Test data

Initially, we consider six jobs which have to be processed at two stages whereby
each stage consists of two parallel machines. The values for energy consumption and
processing times are generated randomly from a uniform distribution U as follows:

• Processing time (h): U {1; 10},
• Energy demand (105W ): U {1; 10}.
The exact values for the following example can be seen in Table 3.

The processing speed of each job can be reduced up to 5 times which results in
l ∈ {0, 1, 2, 3, 4, 5}. Furthermore, all jobs have a due date Dj , which is also shown
in Table 3. The definition of the due dates should be made in such a way that not all
orders are automatically delayed, but it should also not be simply possible to solve the
problem without a tardiness, as otherwise the scope for decision-making is restricted.
Thus, their calculation is an essential factor influencing the complexity of the problem.
On the basis of the work of Choi et al. (2005) we use the following formula:

Dj = max

(
0,U

[⌊
P

(
1 − T − R

2

)⌉
,

⌊
P

(
1 − T + R

2

)⌉])
, (31)

where P denotes makespan lower bound, T is a tardiness factor which influences the
general amount of delays and R as due date range defines the scatter of Dj . Symbol
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Table 4 TOU Prices for the
numerical example

Hour 1–7 8–15 16–20 21–22 23–24

TOU price (e/MWh) 80 160 240 160 80

	
 indicates the nearest integer. For the first example we set T to 0.4 which leads to a
fairly high average delay. R is set to 0.7 but will be varied in the following.

The estimation of the makespan is not only important to choose appropriate due
dates, but also to reasonably limit the observation period. Too high values for the
selected period under consideration of τ would lead to a situation where production
would only take place in times of low energy costs at very low speeds, which leads
to an enormous number of delays and does not represent a real alternative in practice.
In detail τ is determined in Eq. (32). We calculate the average processing time at one
stage k and add the maximum times of the previous and subsequent stages for one
job. The optimal makespan definitely cannot exceed this value. Since the solutions
for optimal TT does not necessarily lead to the optimal makespan and in addition, to
allow enough margin for speed adjustments, the value is increased by a factor α. For
the considered instances α is set to 0.1.

τ = (1 + α) · min∀k

⎡
⎣max∀ j

k−1∑
k∗=1

Pjk∗ +
n∑
j=1

Pjk

μk
+ max∀ j

m∑
k∗=k+1

Pjk∗

⎤
⎦. (32)

Based on formula (32) a lower bound can be determined for the makespan. This
corresponds to the average production time at a stage, extended by the minimum
processing times at the other stages. Thus, P for Eq. (31) is calculated by:

P = max∀k

⎡
⎣min∀ j

k−1∑
k∗=1

Pjk∗ +
n∑
j=1

Pjk

μk
+ min∀ j

m∑
k∗=k+1

Pjk∗

⎤
⎦. (33)

Finally, TOU energy prices need to be defined. The average price per MWh for
medium-sized industrial companies without major privileges in Germany is about
160 e (Fraunhofer 2015). In the following, this price will be set as mid-peak. For
on- and off-peak deviations of 50% are assumed. Similar prices in USD are used for
example by Ding et al. (2016). The exact prices depending on the corresponding time
are shown in Table 4.

4.2 Evaluation of the example

To determine the optimal pareto front, we first have to define the lexicographic solu-
tions. The corresponding schedules are shown in Fig. 4. For the considered problem
minimum TT is 36 h with energy costs of 4360 e. On the other side the minimum
TEC can be found by 1351.73 e with TT of 103 h. Of course, both solutions differ
significantly with regard to the two objectives but also in terms of computational effort.
While the minimum TT solution can be found in less than 6 s by the time-indexed
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Fig. 4 Optimal lexicographic solution for minimum TT (left) and minimum TEC (right)
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model, it takes 27.2 min to minimize TEC and to define the corresponding minimum
TT . The more TT increases the higher is the number of possible speed reductions
and time shifts for TOU prices. For minimum TT all processes are first performed at
maximum speed which also reduces the CPU time.

Logically, also the energy consumptions distinguish significantly. Total Energy
demand (TED) at minimum TT without any speed reductions lays at 28.4 MWh,
while at minimum TEC only 10.1 MWh are needed. Similarly the time periods the
energy is used differ which can be seen in Fig. 5. Not only the load curves but also
the energy prices can be seen here. While for minimum TT TOU prices are barely
used, for minimum TEC phases of higher energy consumption are mainly scheduled
in times of lower energy prices (off-peak).

The two lexicographic solutions are only a small part of all pareto optimal solutions.
By calculating the minimum TEC for all TT values between 36 and 103 we can
determine the optimal pareto front and the corresponding energy demand shown in
Fig. 6. Altogether 63 NDSs exist for the considered example with τ = 35. The
total energy costs can especially be reduced in the beginning when TT is very low.
First additional delays allow to exploit the highest energy cost savings through speed
reductions ormaking use of TOUprices. In the further process the curve flats gradually
down.

Additionally, it can be seen that the course of TEC and TED are pretty similar.
Nevertheless, a decreasing energy demand not necessarily leads to lower energy costs.
Sometimes, energy demand even increases and the total costs can be reduced by
shifting the consumption to times of lower TOU prices.
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Fig. 6 Optimal pareto front for the numerical example and resulting energy demand

Table 5 Overview of test
instances

Parameter Levels

Number of jobs n 6, 8, 10

Number of stages m 2, 4

Number of parallel machines μk at each stage 2, 3

Due date range R 0.4, 0.7, 1

Tardiness factor T 0.4

Table 6 Model size in terms of number of variables and constraints

Size Time-indexed formulation Sequence-dependent formulation

NBV nm(2τ + o) n
(∑

k∈S μk + m(n − 1 + τ(o + 1))
)

NCV n(m(τ + 3) + 1) n(3m + 1)

NC nm(5 + o + 2τ) + mτ n(m(n + 5) + (n − 1)
∑

k∈S μk + 1)

4.3 Performance analysis of different formulations

The computation of all pareto optimal solutions shown in Fig. 6 takes 8.48 h with
the time-indexed formulation while the sequence-dependent formulation needs only
0.49 h. Thus, the calculation of all energy cost scenarios within a pre-process seems
advantageous. In the following, differences in performance of both procedures shall
be examined in detail and the relationship between the different objectives will be
further discussed. Therefore, we generate test instances using the functions presented
in Sect. 4.1. The problem sizes are varied in the following according to Table 5.
Altogether, 36 different problems are considered.

The performance of different models can be analysed in terms of model size com-
plexity and computational complexity (cf. e.g.Meng et al. 2019). Regarding themodel
size Table 6 shows the number of binary variables (NBV), number of continuous vari-
ables (NBC) and number of constraints (NC). The resulting model size for the test
instances considered can be found in Table 7. The specified values for τ depend on
the respective processing times and are calculated with Eq. (32).
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Table 7 Model size of the
considered instances

Instance Time-indexed Sequence-dependent τ

n m μk NBV NCV NC NBV NCV NC

6 2 2 900 462 1030 2604 42 258 35

6 2 3 684 354 796 1968 42 318 26

6 4 2 2376 1206 2684 6936 78 510 47

6 4 3 2616 1326 2944 7680 78 630 52

8 2 2 1552 792 1724 4560 56 440 46

8 2 3 976 504 1112 2848 56 552 28

8 4 2 3936 1992 4332 11616 104 872 59

8 4 3 3360 1704 3720 9920 104 1096 50

10 2 2 1620 830 1796 4780 70 670 38

10 2 3 1460 750 1628 4320 70 850 34

10 4 2 4200 2130 4600 12440 130 1330 50

10 4 3 4520 2290 4936 13440 130 1690 54

Due to the variable etjk in the time-indexed model, significantly more continuous
variables are introduced. On the other hand, in the sequence-dependent formulation,
the adjustment of the processing intensity is directly taken into account by ztjkl , which
increases the number of binary variables enormously. With regard to the required
constraints, considerably fewer equations are required for the second formulation.

How well the models are solvable cannot be inferred directly from the problem
size but may be linked by analysing the computational complexity. Unfortunately, it
takes a lot of computational effort to calculate all pareto optimal solutions. Therefore,
computation time is limited to 10 min for each run. For that reason computation times
will not differ as significantly as for the example above. However, the quality of the
results should deviate. Furthermore, we calculate not all solutions but only a certain
amount. Usually in eps-constraint method, the number of calculated solutions is set
in the beginning. Thus, depending on the problem size the quality of the estimated
pareto front can vary greatly. As alreadymentioned in Sect. 3.5, wewant to bypass that
problem by using a predefined distance between two solutions. In detail we always
increase TT by � = 5 h. Thereby, the previous solution is always used as the initial
solution for the next iteration. Thus, the pareto front can be appropriately estimated
for each instance.

Since each problem instance has not only one optimal solution but different pareto
optimal solutions, we first have to define a performance criterion to compare both
approaches. In multi-objective optimization various concepts have been established.
Probably the most frequently used criterion is the number of NDSs (see Table 8).
Theoretically, the number of NDSs can be derived from the difference between the
two TT values of the lexicographic solutions divided by 5 (since TT is increased by
5 h in each iteration). However, the solver does not always succeed in reducing energy
costs within 10 min, which is why no new NDS is created in some cases. This results
in different numbers of NDSs between the two approaches. These deviations are rather
small and thus, this criterion is not very meaningful.
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Table 8 Detailed results of the computational study

Instance Problem size Time-indexed Sequence-dependent

n m μk R CPU (h) NNDS HV CPU (h) NNDS HV

1 6 2 2 4 1.64 15 0.757 0.156 15 0.758

2 6 2 2 7 1.546 14 0.747 0.126 14 0.747

3 6 2 2 10 1.334 12 0.698 0.117 12 0.699

4 6 2 3 4 0.079 11 0.629 0.007 11 0.629

5 6 2 3 7 0.077 10 0.601 0.007 10 0.601

6 6 2 3 10 0.077 10 0.601 0.006 10 0.601

7 6 4 2 4 3.22 19 0.666 1.344 18 0.709

8 6 4 2 7 2.933 17 0.616 1.192 17 0.677

9 6 4 2 10 3.407 20 0.692 1.318 17 0.728

10 6 4 3 4 2.974 19 0.66 0.146 20 0.677

11 6 4 3 7 3.066 19 0.655 0.156 19 0.674

12 6 4 3 10 3.049 19 0.663 0.144 20 0.677

13 8 2 2 4 2.7 15 0.665 2.678 14 0.695

14 8 2 2 7 3.027 16 0.667 3.238 17 0.707

15 8 2 2 10 3.234 11 0.702 2.963 16 0.753

16 8 2 3 4 0.813 15 0.721 0.146 15 0.721

17 8 2 3 7 0.863 16 0.738 0.131 16 0.738

18 8 2 3 10 0.657 14 0.728 0.118 14 0.728

19 8 4 2 4 5.517 29 0.695 5.851 32 0.793

20 8 4 2 7 5.551 30 0.679 5.74 32 0.783

21 8 4 2 10 5.596 32 0.626 5.64 32 0.74

22 8 4 3 4 4.852 27 0.664 3.259 26 0.734

23 8 4 3 7 4.994 17 0.678 3.768 27 0.747

24 8 4 3 10 4.772 27 0.696 3.025 26 0.743

25 10 2 2 4 2.116 11 0.648 2.561 13 0.692

26 10 2 2 7 2.678 15 0.7 2.57 14 0.741

27 10 2 2 10 2.607 15 0.628 2.694 15 0.693

28 10 2 3 4 3.695 20 0.714 3.488 21 0.738

29 10 2 3 7 3.414 19 0.722 2.897 16 0.737

30 10 2 3 10 3.451 21 0.758 2.437 23 0.771

31 10 4 2 4 3.34 15 0.553 4.683 25 0.768

32 10 4 2 7 2.336 7 0.409 4.183 22 0.666

33 10 4 2 10 2.671 12 0.412 3.855 20 0.634

34 10 4 3 4 7.88 44 0.669 7.534 42 0.769

35 10 4 3 7 5.226 28 0.653 5.35 29 0.739

36 10 4 3 10 6.046 33 0.675 4.516 24 0.773

Average values 3.096 18.7 0.661 2.446 19.8 0.716

The better values are shown in bold
CPU time to calculate all NDS, NNDS number of NDS, HV hypervolume
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Fig. 7 Hypervolume results for the two models

A much better criterion is the hypervolume (HV) (see e.g. Beume et al. 2007),
which is visualized in Fig. 3. The idea is, to calculate the relative amount of space
between theoretical optimum and anti-optimal point, which is covered by the found
NDSs. Thereby, the theoretical optimum is the combination of the best objective values
in the lexicographic solutions and vice versa the highest values for TT and TEC in
the lexicographic solutions form the anti-optimal point. Therefore, HV has a value
between 0 and 1, whereby higher values stand for a better solution quality since a
larger area of the potential solution space is covered. In detail, a value above 0.5
means that the pareto front is convex between the lexicographic solutions. The higher
the HV value, the more convexly curved is the pareto front and thus one gets closer
to the theoretically optimal solution.

All HV values listed in Table 8 are additionally shown in Fig. 7. There is no
instance where the time-indexed model finds a better pareto front than the sequence-
dependent formulation. With an average of 71.6% the second approach covers on
average around 5% more of the solution space. Since 7 of the first 18 instances can
be solved to optimality with the made adjustments, both approaches lead to the same
results in theses cases. It is noticeable that this occurs mainly when two production
stages with three parallel machines are considered. As is usual within HFS problems,
the computational effort increases with the number of stages and decreases with the
number of parallel machines. This can also be identified to a limited extent by the
computing time in the results.

A closer look at the computing times in Table 8 shows that the sequence-dependent
model also has advantages here. However, the values must be viewed with caution.
For larger problems, each optimization run is aborted after 10 min, which is why the
times here differ less. It can also be seen that the CPU times are proportional to the
number of NDSs. The time-indexed model leads especially to high computing times
for the proof of optimality. As a result, the sequence-dependent method has significant
advantages in computing time here. For example, for instances with 6 jobs, the average
time of 0.39 h is reduced by 80% compared to the first model with 1.95 h. Interestingly
the due date range R has no general influence on the used performance indicators and
computation time. Concerning the fluctuation of the results, the sequence-dependent
procedure seems to workmore robustly. For example, the standard deviation of the HV
values of the time-indexed model is 7.66% while the sequence-dependent procedure
varies only by 4.88%. Overall, the sequence-dependent approach appears much more
suitable for the problem under consideration.
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4.4 Evaluation of savings potentials

Finally, the possibilities of reducing energy costs will be explicitly analyzed. In partic-
ular, the influence of speed changes and TOU tariffs on the reduction of energy costs
will be examined. Therefore, themodel is solved oncewith constant (maximum) speed
and once with fixed energy costs (160 e/MWh). The sequence-dependent model for-
mulation is used exclusively for this purpose. Unfortunately, not all 36 pareto fronts
can be shown here and only the first 18 instances can be solved to optimality in reason-
able computing time. For illustration, we will concentrate in the following on instance
2 from Sect. 4.2 and three further randomly selected instances (4, 12, 17). The results
can be seen in Fig. 8.

All points shown in Fig. 8 are pareto optimal solutions. The filled circles are the
results when the original model is used. For the case of producing at maximum speed
(unfilled circles), the cost savings are significantly lower. In addition, the number of
NDSs is reduced. If fixed prices are used instead of the TOU tariffs (triangles), the TEC
for minimal TT are slightly increased. In comparison, the adjustment in production
speed leads to significant savings. The relative reduction of costs is even higher for
fixed electricity prices than for TOU tariffs. Overall, greater savings can be achieved by
varying the speed. This suggests that it is preferred to reduce electricity consumption
over purchase at more favourable conditions, which is also more sustainable.

Since speed changes seem to have a greater influence, it is interesting to examine
the extend of energy savings when the load curve of the electric motor has a different
course. For this purpose, we consider two less advantageous consumers. Fig. 9a) also
shows two curves with 25% and 50% less savings potential, respectively, in addition
to the original function. These differences can be identified almost to the same extent
in the resulting pareto fronts in Fig. 9. For the four instances considered, similar
tendencies through speed control can be observed—an average of 22.9% less energy
reduction for the 25%-case and 42.7% on average for the 50%-case. Considering
the consistent developments, it can thus be concluded that speed adjustments have a
significant influence on the energy costs.

Finally, it shall be discussed which of the various NDSs is a good solution from a
decision-maker’s point of view. Classical approaches ofmulti-criteria decisionmaking
such as minimizing the distance to the utopia point may not justify the importance of
TT. As mentioned in Sect. 4.2, greater energy cost savings can already be achieved
by small increases in TT. The average relative reductions of TEC and the associated
ranges are listed in Table 9. For this purpose, the delay for all 36 instances is increased
by up to 10 h, whereby each individual increase (by 1 h) is taken into account. The
computing time is limited to 10 min.

If the decisionmaker is willing to increase TT by one hour, energy costs can already
be reduced on average by 3.8%. For the second hour, further savings of 3% are possible
(see row “stepwise”). This potential falls significantly with further delays. At a certain
point, an additional delay is no longer economically justifiable. It can be observed
that the possibilities of cost reduction fluctuate strongly. The average coefficient of
variation is 41.03%. Nevertheless, it can also be seen from minimum and maximum
that the potential for cost reduction decreases with growing TT.
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Fig. 9 Influence of less energy savings due to speed reductions

Table 9 Average savings potential for small TT increases for the 36 instances

Average TEC reduction in % for increasing minimum TT by

1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h

Minimum (%) 0.8 2.8 4.1 5.1 6.8 7.6 8.4 9.3 10 10.6

Mean (%) 3.8 6.8 9.1 11.3 13.3 15.4 17.2 18.9 20.4 21.9

Stepwise (%) 3.8 3 2.4 2.2 2 2 1.8 1.7 1.5 1.5

Maximum (%) 15 20.9 22.7 24.5 26.3 29.6 31.6 33.7 35.9 37.7

5 Conclusion

The present article combines the ideas of energy efficiency and delivery reliability
in production scheduling. Two multi-objective MIP formulations are given for the
HFS scheduling problem considering variable production speeds to reduce energy
consumption at the expense of longer processing times. Energy costs can be reduced
not only by variable speeds but also by taking advantage of fluctuating TOU energy
prices. To solve the problem eps-constraint method is used. As far as we know, this is
the first time that energy costs and tardiness are considered as objectives in a hybrid
flow shop problem with the described properties.
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A numerical case study shows that energy costs can be enormously reduced by just
a few delays in delivery. In this case, energy cost savings reached 3.8% on average after
postponing by one hour. It can be stated, that energy costs can be reduced by shifting
loads to times of lower energy prices without reducing consumption. However, speed
control seems to have a much stronger impact on energy costs than load shifts due to
TOU prices. This suggests that it is preferred to reduce electricity consumption over
purchase at more favourable conditions. At the same time, speed changes are more
ecological as they also reduce energy consumption.

Based on the second (sequence-dependent) model formulation, it can be shown
that by calculating all energy cost scenarios in a pre-process, computation time can
be enormously reduced. Regardless of objectives or which model is used, very good
or even optimal solutions are found quickly by solver for the considered problems.
However, the proof of optimality takes a lot of time. Due to the high complexity
of the problem, the specification of good lower bounds seems to be very difficult.
Nevertheless, it might be possible to improve the solution finding by determining
better lower bounds in a future work.

Since the problem is NP-hard, the models are only able to solve small problem
instances. It is appealing for future work to develop heuristic solutions in order to
solve larger problems in reasonable computing time. Nevertheless, the models can
provide practical insights. On the one hand it can deliver reference solutions for the
development of heuristics. Also, existing heuristic solutions may be upgraded with
possible improvements by solvers. Furthermore, larger problems may be divided into
subproblems. For example, we may prioritize bottleneck machines, where sequences
are to be optimizedwith themodel.Moreover, decompositionmethods can be used. For
example, batches can be formedwhich consist of similar jobs. Once the problem size is
reduced, exact solution method can be applied. Next, each batch of jobs is considered
individually and broken up for detailed planning. Thus, the models described are not
only relevant from a research point of view, but can also be useful in practice to
combine low energy costs and punctual delivery.
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