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Abstract
A bi-criteria scheduling problem for parallel identical batch processing machines 
in semiconductor wafer fabrication facilities is studied. Only jobs belonging to 
the same family can be batched together. The performance measures are the total 
weighted tardiness and the electricity cost where a time-of-use (TOU) tariff is 
assumed. Unequal ready times of the jobs and non-identical job sizes are consid-
ered. A mixed integer linear program (MILP) is formulated. We analyze the special 
case where all jobs have the same size, all due dates are zero, and the jobs are avail-
able at time zero. Properties of Pareto-optimal schedules for this special case are 
stated. They lead to a more tractable MILP. We design three heuristics based on 
grouping genetic algorithms that are embedded into a non-dominated sorting genetic 
algorithm II framework. Three solution representations are studied that allow for 
choosing start times of the batches to take into account the energy consumption. 
We discuss a heuristic that improves a given near-to-optimal Pareto front. Compu-
tational experiments are conducted based on randomly generated problem instances. 
The �-constraint method is used for both MILP formulations to determine the true 
Pareto front. For large-sized problem instances, we apply the genetic algorithms 
(GAs). Some of the GAs provide high-quality solutions.

Keywords Scheduling · Batch processing · Semiconductor manufacturing · Energy 
consumption · Total weighted tardiness · Grouping genetic algorithm
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1 Introduction

Semiconductor manufacturing deals with producing integrated circuits (ICs) on 
wafers, thin discs made of silicon or gallium arsenide. The manufacturing process 
takes place in semiconductor wafer fabrication facilities (wafer fabs) by a process 
where ICs are built layer by layer on top of a raw wafer. Up to several thousands 
of ICs can be manufactured on a single wafer. The moving entities in a wafer 
fab are called lots, a set of wafers with ICs that belong to the same product. In 
this paper, we call lots jobs to align with the deterministic scheduling literature. 
Wafer fabs can be modeled as a job shop with a couple of unusual features such 
as a large number of machine groups with machines that offer the same function-
ality, reentrant process flows, (i.e., some of the machine groups are visited by 
the same job many times), and a mix of single wafer, lot, and batch processing 
(Mönch et al. 2013). A p-batch is a group of jobs that are processed at the same 
time, i.e. in parallel, on the same machine (Potts and Kovalyov 2000). Up to one-
third of all operations in a wafer fab are performed on batch processing machines. 
The processing times on these machines generally are very long compared to 
times on other machines. Up to 24 h are possible for the longest processes. Since 
batch processing machines process several jobs at the same time, they tend to off-
load multiple lots on machines that are able to process only single wafers or jobs. 
This leads to long queues in front of these serial machines. Therefore, scheduling 
batch processing machines in an appropriate manner is crucial for the overall per-
formance of a wafer fab (Mönch et al. 2011).

The semiconductor industry is extremely energy-intensive due to the required 
clean room condition and the extremely complicated machinery. It consumes 
more electricity than other industries such as steel or petrochemical (Yu et  al. 
2017). Diffusion furnaces, typical batch processing machines in a wafer fab, are 
the machines with the largest energy consumption in wafer fabs (cf. Scholl 2017; 
Singapore Government 2019) due to the fact that the diffusion process is a high 
temperature process that disperses material on the wafer surface.

Therefore, in this paper, we study a model problem for scheduling jobs on par-
allel batch processing machines where we take two important, but contradicting 
performance measures into account, namely total weighted tardiness (TWT) of 
the jobs and electricity cost (EC) of the batch processing machines. We assume 
a TOU tariff, i.e., the energy price depends on the time when the energy is con-
sumed. Although the effects of TOU tariffs are discussed controversially in the 
literature, there is some evidence that TOU tariffs can positively affect sustain-
ability (Che et al. 2017). For instance, Finn et al. (2011) and Pina et al. (2012) 
demonstrate via use cases in Ireland and the Azores islands that demand response 
programs, among them TOU tariffs, lead to a higher penetration of renewable 
electricity. Stoll et al. (2014) demonstrate that the environmental impact of shift-
ing consumption from on-peak to off-peak hours can be both positive and nega-
tive. A positive effect of the shifting is observed for Ontario and UK, but not for 
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Sweden. The impact depends on how dirty the generation of electricity during 
peak hours is. This observation is also confirmed by Zhang et  al. (2014) who 
discuss a situation where electricity providers use gas-fired generation plants 
to support the coal-fired generation plants during peak hours. Albadi and El-
Saadany (2008) argue that demand response programs allow for a better utili-
zation of the current infrastructure. Wang and Li (2013) indicate that building 
costly backup infrastructure for peak hours can be avoided by demand response 
programs. Although a TOU tariff setting is still not a reality in many wafer fabs, 
the expected penetration of renewable energy sources in the high-tech industry 
(Ziarnetzky et al. 2017; Taiwan Semiconductor Manufacturing Company Limited 
(TSMC) Annual Report 2019) makes such a setting likely in the future. In addi-
tion to the EC performance measure, the TWT measure is also extremely impor-
tant since it is related to on-time delivery performance which is important in the 
fierce competition of the semiconductor industry (Chien et al. 2011).

In the present paper, we propose heuristic approaches for the bi-criteria schedul-
ing problem that are based on grouping genetic algorithms (GGAs) that are embed-
ded into a non-dominated sorting genetic algorithm (NSGA) II-type framework. 
We also show that the �-constraint method can be used to compute the entire set of 
Pareto-optimal schedules for medium-sized problem instances of a special case of 
the general scheduling problem. To the best of our knowledge, the batch scheduling 
problem addressed in the present paper is not studied so far in the literature. This 
paper generalizes the problem studied in Rocholl et al. (2018) by changing from the 
total weighted completion time (TWC) measure to the TWT measure.

The paper is organized as follows. The bi-criteria scheduling problem is 
described in Sect. 2 and a mixed integer linear program (MILP) formulation is pre-
sented. Moreover, structural properties of Pareto-optimal solutions for a special case 
are stated. Related work is discussed in Sect. 3. Different heuristics are designed in 
Sect. 4. The results of computational experiments are presented in Sect. 5. Finally, 
conclusions and future research directions are discussed in Sect. 6.

2  Problem formulation and related work

2.1  Problem setting

The bi-criteria batch scheduling problem is based on the following assumptions:

 1. There are F incompatible job families. Only jobs of the same family can be 
batched together due to the different chemical nature of the processes.

 2. All jobs that belong to family 1 ≤ f ≤ F have the same processing time ps(j) ≡ pf  
where s(j) ∶= f  is a mapping that assigns the family to a given job.

 3. There are nf  jobs in family f  . In total, n =
∑F

f=1
nf  jobs must be scheduled. Jobs 

are labeled by j = 1,… , n.
 4. Job j has a weight wj to model the importance of the job.
 5. The size of job j , measured in number of wafers, is sj.
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 6. Each job j has a ready time rj ≥ 0.
 7. Each job j has a due date dj.
 8. There are m identical parallel machines, labeled by k = 1,… ,m . All the 

machines are available at time t = 0.
 9. All the machines have the same maximum batch size B , measured in number of 

wafers.
 10. Preemption of the batch machines is not allowed, i.e., once a batch is started, it 

cannot be interrupted.
 11. We assume that a finite scheduling horizon is divided into periods of equal 

size. The periods are labeled by t = 1,… , T  . The EC is modeled as a piecewise 
constant function over the scheduling horizon.

We show an example for three furnace machines and jobs, each with five 
wafers, belonging to three incompatible families in Fig. 1. The different families 
are indicated by different colors of the wafers and the maximum batch size is 
B = 10 wafers, i.e. two jobs. Note that the batch on the second machine only has 
a single job of family A. Forming such batches is reasonable in certain situations 
due to the ready times of the jobs and tight due dates. Seven additional jobs wait 
for processing in front of the three furnaces. They belong to the families A, B, 
and C. The time axis indicates that period-dependent energy costs are assumed.

The TWT measure of a schedule S is defined as follows:

family A

family C

family B

family B

family C

family C

family B

0 T

Fig. 1  Overall scheduling setting
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where Tj ∶=
(
Cj − dj

)+ is the tardiness, Cj the completion time of job j in S , and 
the abbreviation �+ ∶= max(� , 0) is used for an arbitrary real number � . If we have 
dj ≡ 0, j = 1,… , n then we obtain TWT =

∑n

j=1
wjCj = TWC , i.e., we get the TWC 

measure. It is a surrogate measure for the weighted cycle time, an important key 
performance indicator in wafer fabs (Mönch et al. 2013). The second performance 
measure of interest is the EC. We assume that the EC values are constant in each 
period, i.e., we have a mapping e ∶ [0, T] → IR+ that is piecewise constant in each 
period, to model the TOU tariff. If e(t) is the corresponding EC value in period t 
then the EC value of schedule S can be expressed as follows:

where zk
t
 is 1 if a batch is processed in period t on machine k in S and zero otherwise. 

Note that the two objectives are in conflict. Minimizing TWT leads typically to non-
delay schedules, while minimizing EC requires determining periods for processing 
within the scheduling horizon where the e(t) values are low. The EC measure is a 
surrogate measure for sustainability efforts since low e(t) values offered by TOU 
tariffs are often considered as a prerequisite to increase the penetration of renewable 
energy (Finn et al. 2011; Pina et al. 2012; IRENA 2019). Note that minimizing the 
EC measure in the case of a constant EC for the entire scheduling horizon is equiva-
lent to minimizing the number of batches which clearly leads to a reduction of the 
energy consumption. But even in the case of a general TOU tariff a small EC value 
often leads to a small number of formed batches.

Using the three-field notation from deterministic scheduling theory (Graham 
et al. 1979), the scheduling problem at hand can be represented as follows:

where P indicates identical parallel machines, p-batch, incompatible refers to batch 
processing machines with incompatible families, rj to unequal ready times, and sj to 
non-identical job sizes. The notation ND(TWT ,EC) refers to the set of all Pareto-
optimal solutions, i.e., a schedule S is called non-dominated when no other feasible 
schedule S′ exists with TWT

(
S�
)
≤ TWT(S) and EC

(
S�
)
≤ EC(S) , and at least one 

of the two inequalities is strict. The entire set of all non-dominated solutions for a 
problem instance is called the Pareto frontier.

Note that scheduling problem (3) is NP-hard since the scheduling problem 
P|p − batch, incompatible|TWC , a special case of problem (3), is NP-hard due to 
Uzsoy (1995). Hence, we have to look for efficient heuristics if we want to tackle 
large-sized problem instances in a reasonable amount of computing time.

(1)TWT(S) =

n∑
j=1

wjTj,

(2)EC(S) ∶=

T∑
t=1

m∑
k=1

e(t)zk
t
,

(3)P|p − batch, incompatible, rj, sj|ND(TWT ,EC),
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2.2  MILP formulation

A MILP formulation for scheduling problem (3) is presented in this section. A time-
indexed formulation for the scheduling horizon t = 1,… , T  is used. The following 
indices and sets are used in the model:

j = 1,… , n : job indices
i = 1,… , b : batch indices
k = 1,… ,m : machine indices
t = 1,… , T  : period indices.
The following parameters are included in the model:
wj : weight of job j
rj : ready time of job j
sj : size of job j (in wafers)
B : maximum batch size B (in wafers)
s(j) : family of job j
f (i) : family of batch i
ps(j) : processing time of job j
Pf (i) : processing time of batch i
e(t) : electricity cost in period t.
The following decision variables belong to the model:

xij =

{
1, if job j is assigned to batch i

0, otherwise

yitk = xij =

{
1, if batch i is started in period t onmachine k

0, otherwise
.

Cj : completion time of job j
Tj : tardiness of job j
Cbi : completion time of batch i.
The model can be formulated as follows:

(4)
min

⎛⎜⎜⎝

n�
j=1

wjTj,

b�
i=1

T�
t=1

m�
k=1

t+pf (i)−1�
�=t

e(�) yitk

⎞⎟⎟⎠
subject to

(5)
b∑
i=1

xij = 1 j = 1,… , n

(6)
n∑
j=1

sjxij ≤ B i = 1,… , b

(7)xij(f (i) − s(j)) = 0 j = 1,… , n, i = 1,… , b
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We are interested in determining all Pareto-optimal solutions with respect to the 
TWT and the EC measures. This is modeled by (4). The constraint set (5) ensures 
that each job is assigned to exactly one batch. The maximum batch size is mod-
eled by constraint set (6). The constraints (7) model that only jobs belonging to the 
same family can be used to form a batch. The family of a batch is determined by 
its jobs. When at least one job is assigned to a batch then this batch has to start 
in some period on some machine. This is modeled by constraint set (8). Constraint 
set (9) makes sure that the completion time of a batch is not larger than the end of 
the scheduling horizon. The constraints (10) model the fact that each batch starts at 
most once before the end of the scheduling horizon and no overlapping occurs in 
the processing of batches on a machine. The constraints (11) enforce that the ready 
time of the jobs are respected, i.e., a batch can only start if all jobs that belong to the 
batch are ready. The completion of a batch is calculated by Eq. (12). The constraint 
sets (13) and (14) ensure that the completion time of a batch and the completion 
time of the jobs that belong to this batch are the same. The tardiness of a job is lin-
earized by the constraints (15). The domains of the decision variables are respected 
by constraints (16).

(8)xij ≤

T∑
t=1

m∑
k=1

yitk j = 1,… , n, i = 1,… , b

(9)Cbi ≤ T i = 1,… , b

(10)
b∑
i=1

t∑
�=(t−Pf (i))

+
+1

yi�k ≤ 1 k = 1,… ,m, t = 1,… , T

(11)rjxij + Pf (i) ≤ Cbi j = 1,… , n, i = 1,… , b

(12)Cbi =

m∑
k=1

T∑
t=1

t yitk + Pf (i) i = 1,… , b

(13)Cbi ≤ Cj + T
(
1 − xij

)
j = 1,… , n, i = 1,… , b

(14)Cj ≤ Cbi + T
(
1 − xij

)
j = 1,… , n, i = 1,… , b

(15)Cj − dj ≤ Tj j = 1,… , n

(16)
Cbi,Cj, Tj ≥ 0, xij, yitk ∈ {0, 1} j = 1,… , n, i = 1,… , b, t = 1,… , T , k = 1,… ,m.
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Determining the Pareto front for instances of problem (3) can be based on the 
(equidistant) �-constraint method (cf. Ehrgott 2010) if the quantities pj , wj , dj and 
the e(t) values are integers. A single objective is optimized within each iteration 
while the remaining objectives are transformed into constraints. The application of 
the �-constraint method to the MILP (4)–(16) is shown in the Appendix.

2.3  Analysis of a special case

For the sake of completeness, we recall important results for the special case rj ≡ 0 , 
dj ≡ 0 from Rocholl et al. (2018). In addition, all jobs have the same size, i.e., with-
out loss of generality we assume sj ≡ 1 and B ∈ IN . This leads to the scheduling 
problem

Due to Uzsoy (1995), problem (17) is still NP-hard. The following property holds 
that generalizes a result from Uzsoy (1995) for single regular performance measures.

Property 1 There is a Pareto-optimal schedule for each point of the Pareto front of 
an instance of problem (17) where all batches except maybe the last scheduled batch 
of a family contain B jobs.

We refer to (Rocholl et al. 2018) for a proof of this property. Note that Property 1 
is not necessarily true for problem (3). It follows from Property 1 that a Pareto-opti-
mal schedule exists for each point of the Pareto front where the number of batches 
in family f  is 

⌈
nf
/
B
⌉
 . A second property holds where the structure of batches in 

Pareto-optimal schedules for instances of problem (17) is considered.

Property 2 For each point of the Pareto front of instances of problem (17) there is a 
Pareto-optimal schedule where for each pair of batches �1 and �2 of the same fam-
ily with completion times Cb1 ≤ Cb2 the weight of each job belonging to �1 is not 
smaller than any weight of a job from �2.

A proof of this property can be again found in Rocholl et  al. (2018). The jobs 
in each family are sorted with respect to non-increasing values of the job weights. 
These job sequences are then used to form batches for each family according to 
Property 1. The total number of batches is known and denoted by b . The following 
compact MILP formulation is possible for problem (17). Only additional notation 
compared to the MILP formulation (4)–(16) is introduced:

wbi  sum of the weights of the jobs that form batch i.

The MILP model can be formulated as follows:

(17)P|p − batch, incompatible|TWC.
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Constraint set (19) makes sure that each batch is used only once, whereas the con-
straint set (20) ensures that at most one batch is processed in each period on a single 
machine. The formulation (18)–(21) is easier to solve than (4)–(16) since the batches 
are already formed in the former formulation. This leads to less binary decision vari-
ables. The (equidistant) �-constraint method can be applied to the MILP (18)–(21) 
in the same way as shown in the Appendix for the MILP (4)–(16). The �-constraint 
method is able to determine all Pareto-optimal solutions for medium-sized problem 
instances with up to 90 jobs in a short amount of computing time. Therefore, we can 
assess the quality of the proposed heuristics based on these instances.

3  Discussion of related work

Next, we discuss the literature with respect to multi-criteria batch scheduling in 
semiconductor manufacturing and energy-aware scheduling for parallel batching 
and serial machines, especially for TOU tariffs. There are many papers that deal 
with single-criterion parallel batch scheduling in semiconductor manufacturing. 
For related surveys we refer to Mathirajan and Sivakumar (2006) and Mönch et al. 
(2011).

It turns out that multi-criteria scheduling approaches with parallel batch-
ing machines for semiconductor manufacturing are rarely discussed in 
the literature. We are only aware of Reichelt and Mönch (2006), Mason 
et  al. (2007) and Li et  al. (2009). In the first paper, the scheduling problem 
P|rj, p − batch, incompatible|ND(Cmax, TWT

)
 is solved using an NSGA-II approach 

that is hybridized by a list scheduling approach, while the second paper proposes a 
NSGA-II scheme for a similar parallel batch machine scheduling problem for TWT, 
cycle time variation, and time constraint violation. Here, Cmax is the makespan. 

(18)
min

⎛⎜⎜⎝

b�
i=1

T�
t=1

m�
k=1

wbi
�
t + Pf (i)

�
yitk,

b�
i=1

T�
t=1

m�
k=1

t+Pf (i)−1�
�=t

e(�) yitk

⎞
⎟⎟⎠

subject to

(19)
T+1−Pf (i)∑

t=1

m∑
k=1

yitk = 1 i = 1,… , b

(20)
b∑
i=1

t∑
�=(t−Pf (i))

+
+1

yi�k ≤ 1 k = 1,… ,m, t = 1,… , T

(21)yitk ∈ {0, 1} i = 1,… , b, t = 1,… , T , k = 1,… ,m.
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The third paper uses ant colony optimization to deal with a similar problem which 
requires additional consideration of qualification runs and sequence-dependent setup 
times. Problem (3) is different from these settings since it might be reasonable to 
consider schedules that are not necessarily non-delayed due to the TOU tariffs.

Energy-aware scheduling has recently attracted a number of researchers from aca-
demia and industry. Recent surveys of this topic are (Giret et al. 2015, Merkert et al. 
2015, Gahm et al. 2016, Akbar and Irohara 2018, and Gao et al. 2019). They con-
clude that scheduling with energy-related objectives and constraints is an important 
research direction.

We start by discussing related work for single and parallel batch processing 
machines with EC-related objectives. The problem 1|p − batch, pj ≡ p|ND(Cmax,EC

)
 

is discussed by Cheng et  al. (2014). All jobs have the same processing time, i.e., 
there is only a single job family. A TOU tariff is assumed. The ε-constraint method 
is used. Improved MILP formulations for this problem are discussed by Cheng 
et  al. (2016b). Cheng et  al. (2017) propose a heuristic variant of the ε-constraint 
method for the same scheduling problem, but on/off switching of the machines is 
allowed. A similar single-machine batch scheduling problem is considered by Wang 
et al. (2016). The energy consumption depends on the selected temperature of the 
machine. The ε-constraint method is applied for small-sized instances whereas 
constructive heuristics are designed to solve large-sized instances in a reason-
able amount of computing time. Cheng (2017) and Cheng et al. (2016a) study the 
1|p − batch|ND(Cmax,EC

)
 problem where p-batch means that the processing time 

of a batch is determined by the longest processing time of the jobs that belong to the 
batch. The ε-constraint method is used to solve this problem. The resulting single-
objective problems are solved by considering a series of successive knapsack prob-
lems or multiple knapsack problems. Fuzzy logic is used to recommend a preferred 
solution to decision-makers. The problem 1|p − batch|ND(Lmax,NB

)
 is studied 

by Cabo et al. (2018). Here, Lmax and NB are the maximum lateness and the num-
ber of formed batches, respectively. Note that a small number of batches lead to a 
small energy consumption too. The ε-constraint method is used to solve small-sized 
instances, while a biased random-key genetic algorithm is use to tackle large-sized 
instances. Since problem (3) contains parallel machines, the scheduling techniques 
from these single-machine papers cannot directly be applied to the present problem.

The problem P|rj, p − batch|ND(TWT ,CO2

)
 is studied by Liu (2014). The  CO2 

performance measure is considered. Its value is obtained from multiplying the total 
EC by a constant factor. A NSGA-II approach is used to solve large-sized instances. 
The problem P|rj, sj, p − batch|ND(Cmax,EC

)
 is studied by Jia et al. (2017) using a 

bi-criteria ant colony optimization (ACO) approach. Jia et  al. (2019) consider the 
same problem as in (Jia et al. 2017), but the energy consumption of the machines 
in parallel can be different. Moreover, the ACO approach and the local search (LS) 
scheme are improved compared to the previous work. Cheng (2017) consider the 
scheduling problem Q|sj, p − batch, |ND(EC,NEM) , where Q refers to uniform par-
allel machines and NEM is the number of enabled machines. A two-stage heuristic 
scheme is proposed. Batches are formed on the first stage, whereas the batches are 
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assigned and sequenced on the parallel machines in the second stage. None of these 
papers except the paper by Liu (2014) considers the TWT performance measure. 
The scheduling problem discussed by Liu (2014), however, does not have incompat-
ible families and a TOU tariff. Hence, the proposed techniques in these papers can-
not be directly applied to problem (3). Problem (17), a special case of problem (3), is 
studied by Rocholl et al. (2018). A MILP formulation is presented. The ε-constraint 
method is used in preliminary computational experiments for medium-sized prob-
lem instances. No heuristic approaches are considered. In the present paper, we 
will use the ε-constraint method for the problem studied by Rocholl et al. (2018) to 
assess the proposed GA-type approaches. The main contributions of this paper are 
twofold:

1. We consider a bi-criteria energy-aware scheduling problem for parallel batching 
machines and incompatible job families with a due date-related objective func-
tion, namely the TWT performance measure. It is well-known that this class of 
scheduling problems even for a single machine is strongly NP-hard (Brucker et al. 
1998). Although it has applications in wafer fabs, to the best of our knowledge, 
this problem is not considered in the literature so far.

2. From a methodological point of view, we design three representations for GA-type 
algorithms that can be used in more general situations where non-delay schedules 
are not of interest. It is well-known that determining starting points given the 
sequence of activities is a nontrivial task (cf. Vidal et al. 2015). However, we are 
only aware of the papers by Goncalves et al. (2008) and Moon et al. (2013) where 
delay times are systematically incorporated in GAs for scheduling problems.

4  Heuristic solution approaches

4.1  Basic design ideas

Various metaheuristics are designed for multi-objective optimization problems. 
Among them, the NSGA-II approach proposed by Deb et  al. (2002) is widely 
used (Landa Silva and Burke 2002). That is why we use a NSGA-II scheme in this 
research. More details of the major NSGA-II principles are discussed in Sect. 4.2. 
Scheduling problem (3) requires the formation of groups of jobs, i.e., a single batch 
is represented by a group. Grouping problems can be solved efficiently by GGAs (cf. 
Falkenauer 1998). Successful applications of GGA to bin packing problems (Falk-
enauer 1996), single-machine batch scheduling (Sobeyko and Mönch 2011), and 
single-machine multiple orders per job (MOJ) scheduling problems (Sobeyko and 
Mönch 2015) are known (cf. Sect.  4.2 for a more detailed discussion of GGAs). 
Therefore, we use a GGA-based representation within the NSGA-II scheme. We 
have to design more problem-specific representations to refine the GGA standard 
representation. Therefore, three representations will be proposed in Sect.  4.3. LS 
is crucial to improve the solutions determined by NSGA-II-type algorithms (Deb 
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and Goel 2001). Moreover, it is an important ingredient in metaheuristics for batch 
scheduling problems. This includes memetic algorithms, GAs where each chromo-
some is improved by LS (Chiang et  al. 2010). LS procedures proposed for batch 
scheduling problems by Sobeyko and Mönch (2011) and Jia et  al. (2017) are 
adapted to problem (3) in Sect.  4.4. Due to considering non-delayed schedules, it 
is likely that different non-dominated solutions can be found in the proximity of an 
already known Pareto-optimal solution. In the case of large Pareto frontiers, due 
to the resulting huge search space it may be inefficient or even impossible to fully 
explore the neighborhoods of all already determined solutions using a metaheuris-
tic approach like NSGA-II. Therefore, an improvement heuristic is proposed in 
Sect.  4.5 to enlarge the set of non-dominated solutions with adjacent solutions 
within the same front.

4.2  NSGA‑II and GGA principles

4.2.1  NSGA‑II

The NSGA-II approach is designed to ensure diversity by exploiting information of 
solutions from the entire population. The set of solutions that corresponds to a popu-
lation is sorted into distinct fronts of different domination levels in each iteration. 
The first front contains all solutions which are not dominated by any other solution. 
The second front contains those which are only dominated by solutions from the 
first front, and so on. The fitness value of an individual is determined by the front its 
solution belongs to. For solutions belonging to the same front a crowded-compari-
son operator is used that assigns a higher fitness value to solutions in less crowded 
regions of the solution space. Binary tournament selection is used, i.e., two individ-
uals of a population are randomly chosen and the one with higher fitness is selected 
for crossover (Goldberg 1989; Michalewicz 1996). Offspring are generated by 
recombination until the population size is doubled. An elitist strategy (cf. Michale-
wicz 1996) is applied. Individuals are inserted into the new population by non-
increasing fitness values, i.e., solutions are accepted starting from the first front until 
the original population size is reached. Solutions from the least crowded regions of 
the solution space are preferred from the last front to be accepted. In the present 
paper, we apply a NSGA-II procedure to deal with the two criteria of problem (3). 
We will describe the encoding and decoding schemes in the next subsections.

4.2.2  GGA 

GGAs are introduced by Falkenauer (1996, 1998) since conventional encoding 
schemes for grouping problems often do not work well. This is caused by the fact that 
a direct encoding of grouping decisions often leads to highly redundant representa-
tions. Furthermore, recombination operations usually disrupt the formed group and 
require sophisticated repair actions. A GGA is a GA with a representation in which 
the genetic operations are not applied to the jobs but rather to the formed groups. One 
gene encodes one or more jobs of the same family and represents a group, i.e. a batch, 
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formed by these jobs. The number of formed groups may vary for different solutions. 
As the batch formation is a major decision in solving problem (3), we choose a group-
ing representation as the base for the encoding and decoding schemes described in the 
next subsection. Each genome consists of a given set of groups (batches). An exam-
ple for the grouping representation is provided in Fig. 2. Four batches are formed that 
belong to three different families.

Recombination of two individuals can be carried out by a two-point crossover (cf. 
Goldberg 1989; Michalewicz 1996). First, the selected genes from both parents are 
copied to the offspring, only a single chromosome due to the NSGA-II principles (see 
Sect. 4.2.1). Possible duplicate jobs are then deleted from the genes of the second par-
ent. To ensure feasibility, jobs missing in the offspring must be reinserted. It is well 
known (cf. Brown and Sumichrast 2003) that the chosen reinsertion strategy highly 
influences the performance of a GGA for a given problem. The reinsertion operation is 
designed in such a way that a missing job j is inserted in the first batch i of family s(j) 
for which the rj value is less or equal to the ready time of at least one job that already 
belongs to i and 

∑
k∈i sk + sj ≤ B . In contrast to Falkenauer (1998), we do not use any 

mutation for the GGA-type part of the encoding scheme.

4.3  Additional encoding and decoding schemes

4.3.1  First representation

The LIST representation is based on the idea to schedule each batch in such a way 
that its impact on only one of the two objectives is small. Therefore, we use a random 
key � ∈ [0, 1] in addition to the groups in each individual to encode which batches are 
scheduled with respect to TWT and which ones with respect to EC. If we have b groups 
in a chromosome (see Fig. 2) then the batches labeled by 1,… , ⌊�b⌋ are scheduled in 
such a way that the corresponding partial schedule has a small TWT value, while the 
batches ⌊�b⌋ + 1,… , b are scheduled such that their EC value is small. During crosso-
ver, the value � is inherited from the first parent chromosome to the child chromosome. 
If mutation is applied to an individual, its � value is randomly reinitialized.

Next, we describe how we decode the batches in the two subsets. The decoder is 
given by two list scheduling algorithms that assign batches to machines and to time 
slots. The first algorithm, applied to the batches 1,… , ⌊�b⌋ and abbreviated by LIST-
ASAP, can be summarized as followed. Here, LIST refers to list scheduling and ASAP 
indicates that batches are started as soon as possible.

1

2

9
7 3 6

4

8

5

Fig. 2  Example for the grouping representation
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LIST-ASAP procedure

1. Whenever a machine becomes available, the first batch from the list is assigned to 
it and set to be started as soon as possible respecting the ready times of the jobs 
that belong to the batch.

2. Update the availability time of the machine.
3. Remove the batch from the list of unscheduled batches.
4. Go to Step 1 if the remaining list is non-empty.

The LIST-ASAP procedure produces non-delay schedules with rather small com-
pletion times, while the EC value is completely neglected.

The second list scheduling algorithm for the batches ⌊�b⌋ + 1,… , b , abbreviated 
by LIST-MEC, determines a partial schedule with a small EC value. In the abbrevia-
tion, MEC is used to indicate minimum EC values. The procedure can be summa-
rized as follows:

LIST-MEC procedure

1. Consider the first batch from the list.
2. Calculate the EC value for the batch for all feasible starting times of the batch by 

respecting machine availability, ready times of jobs that belong to the batch, and 
its processing time.

3. The batch is then scheduled on a machine at a starting time that leads to the small-
est EC value. Ties are broken by considering the smallest starting time.

4. Update the machine availability of the chosen machine.
5. Remove the batch from the list of unscheduled batches.
6. Go to Step 1 when the remaining list is non-empty.

When electricity tariffs are used which are not increasing over the entire schedul-
ing horizon, the EC measure is not regular, i.e., the objective value does not always 
increase with larger completion times. As a consequence, the search for Pareto-opti-
mal solutions cannot be limited to the class of non-delay schedules. Although espe-
cially LIST-MEC may lead to schedules with idle times between batches, the com-
pletion times of batches will be limited to only a subset of all periods. The first batch 
to be assigned, for instance, will either be started immediately after its ready time 
or in the least expensive periods with respect to the EC value. Therefore, it is likely 
that certain parts of the search space are not explored by the LIST representation.

4.3.2  Second representation

This limitation of the LIST representation motivates a second encoding scheme 
which allows for inserting idle times between the processed batches. This represen-
tation is abbreviated by batch delayed (BD) to indicate that the processing of batches 
can be delayed. Given a fixed scheduling horizon, determining intervals of possible 
delays for the processing of a batch is non-trivial due to the strong interdependency 
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of the involved scheduling decisions. To allow a feasible schedule, the inserted idle 
times have to be smaller or equal to the total idle time of a machine which depends 
on the formed batches and their sequence on the machine. Moreover, the interval of 
possible delay for a single batch depends not only on the total idle time but also on 
the delays inserted before all other batches on the machine.

The assignment of batches to machines is encoded by a random value 
�i ∼ DU[1,m] for each batch i. Here, DU[a, b] is a discrete uniform distribution 
over the set of integers {a,… , b} . The presence and length of idle times before 
the processing of a batch i is encoded by a random key �i ∈ [0, 1) . Additional ran-
dom keys 𝜃k ∈ [0, 1), k = 1,… ,m , are used to represent the amount of idle time 
that is inserted after the last batch on machine k. Let Bk be the sequence of batches 
assigned to machine k, and Cmax(k) the completion of the last batch on machine k if 
the first batch of Bk can start at t = 0 . The amount of idle time inserted before batch i 
assigned to machine k is then calculated as follows:

On the one hand, as the amount of idle time is relatively encoded, this informa-
tion is context-sensitive to a large extent. Thus, we expect that crossover and LS 
operations will have a disruptive effect on the timing information. Therefore, this 
information cannot be passed along to later generations well. On the other hand, 
virtually all solutions from the solution space can be encoded and recombination 
always yields feasible schedules, provided that the encoded batch formation and 
assignment allow for one.

We expect that a random choice of the �i values will only rarely lead to non-delay 
schedules. But since non-delay schedules are favorable with respect to small com-
pletion times, we generate a certain amount � of individuals in each generation with 
�i = 0, i ∈ {1,… , b} and 𝜃k > 0, k = 1,… ,m . The crossover operator passes on the 
genes with the �i and �i values since each �i and �i value belongs to a group. The set 
of values 𝜃k, k = 1,… ,m is inherited from the first parent chromosome. The muta-
tion operator randomly reinitializes the �i values for i = 1,… , b.

4.3.3  Third representation

A third representation, abbreviated by hybrid (HYB), is designed as a hybrid of 
LIST and BD. A chromosome of HYB contains all the features of the two encod-
ing schemes. Moreover, a random key � ∈ [0, 1] determines how the chromosome 
is decoded. The decoding scheme of LIST is applied if 𝛾 < 0.5 holds, otherwise 
the BD decoding scheme is used. Only the components relevant for that particu-
lar encoding scheme are interpreted during decoding. Still, the other components 
are passed on to offspring because the scheme to be applied might be changed by 
recombination or mutation. Given the �1, �2 values from two chromosomes chosen 
for recombination, � ∶=

(
�1 + �2

)/
2 is chosen for the single child chromosome by 

crossover. The mutation operator sets the � value as follows:

(22)p̃i =
(
T − Cmax(k)

)
𝜃i

/(∑
h∈Bk

𝜃h + 𝜃k

)
.
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4.4  Local search schemes

We propose a two-phase LS approach. In a first phase, the work load of the machines 
is balanced. The batch sequenced last on the machine with the largest completion 
time of a batch is reassigned to the machine with the lowest completion time if the 
objective values do not increase. This operation is repeated until no further improve-
ment can be achieved. The described workload balancing procedure is also used to 
repair chromosomes with the BD representation if certain batch assignments lead to 
infeasible schedules.

We start by describing a LS scheme which is applied in the second phase. The LS 
scheme can be summarized as follows:

LS procedure

1. Job insert All jobs in a schedule are considered for being removed from one batch 
and inserted into another batch of the same family with enough available capacity 
and a starting time that is not smaller than the ready time of the job to be inserted. 
A job is reassigned to another batch if that leads to a reduced total completion 
time (TC) value. The TC measure is considered in this situation because even if 
reassigning a job does not lead to a reduced TWT value, it may allow that other 
delayed jobs are processed earlier. A single pass through all jobs in the order of 
non-decreasing completion times in the original schedule is performed.

2. Job swap The batch formation can be altered by exchanging two jobs of the same 
family between two different batches. All jobs are considered for a swap opera-
tion if the batches are not started before the ready times of the jobs. A swap is 
performed if the TWT value is reduced. All jobs are considered in a single pass 
through the list of jobs ordered with respect to non-decreasing completion times 
in the original schedule.

3. Batch postpone If a batch is completed before the smallest due date of the jobs 
that form the batch then the batch can be postponed without affecting the TWT 
value. Postponing a batch might even reduce the EC value if it is moved to a less 
expensive time slot. Each batch is considered in a single pass from the right to the 
left starting with the last batch on each machine. A batch is postponed as much 
as possible as long as both objective function values are not increased.

4. Batch pull It might be possible to shift batches to the left to reduce the TWT value 
without increasing the EC value. Therefore, a single pass from the left to the 
right through the list of batches processed on each machine is made. Each batch 
is shifted to the left as much as possible as long as the EC value is not increased.

(23)𝛾 ∶=

{
𝛾 + 0.5, if 𝛾 < 0.5

𝛾 − 0.5, otherwise.
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A second LS procedure, applied within the NSGA-II scheme, is composed of 
batch postpone and pull operations. An integrated objective function is used for a 
given schedule S as follows:

where the weights are given by

Here, fmax and fmin are the maximum and minimum value of the objective func-
tion values f  for the entire population. The batch postpone and pull moves are 
applied with respect to the integrated objective function F instead of using the TWT  
and the EC measures separately. We abbreviate this procedure by LS-NSGA-II.

4.5  Improvement heuristic

The main principle of this algorithm is to iteratively compute modified schedules by 
postponing, i.e. right-shifting, batches. Batches are only postponed when EC reduc-
tions occur and only a minimum impact on the TWT value can be observed. This is 
important in order to obtain new schedules for which it is likely that they are Pareto-
optimal. Because of these features we abbreviate the algorithm by MIN-POSP where 
MIN indicates the minimum impact on the TWT measure whereas POSP refers to 
a postponement of batches. The batch formation, batch assignment, and sequencing 
decisions remain unchanged.

Let k[n] be the batch in the n-th position on machine k and Ck[n] the completion 
time of this batch. In addition, �k is the last scheduled batch on machine k. The map-
ping t(k, n) provides the number of periods the batch k[n] can be postponed without 
interfering with the batch k[n + 1] or the scheduling horizon if k[n] =�k . We obtain:

The algorithm starts from a given schedule S . The notation Δf ∶= f
(
S�
)
− f (S) 

is introduced for a schedule S∗ that is obtained from S by modifying it. A modified 
schedule S∗ is returned if an EC value reduction is achieved by postponing at least 
one batch. The heuristic can be summarized as follows:

(24)F(S) ∶=
(
wS
1
TWT(S) + wS

2
EC(S)

)/(
wS
1
+ wS

2

)
,

(25)wS
1
∶=

TWTmax − TWT(S)

TWTmax − TWTmin
, w2

2
∶=

ECmax − EC(S)

ECmax − ECmin
.

(26)t(k, n) ∶=

{
Ck[n+1] − Ck[n] − pf (k[n+1]), if�k ≠ k[n]

T − Ck[n], otherwise
.
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Steps 6–8 ensure that only those EC reductions are considered which lead to 
the smallest TWT increase. The batches for moves to be implemented in the input 
schedule S are stored in Step 9. The computational effort for the MIN-POSP proce-
dure is O

(
b2T

)
.

Given an initial non-dominated set, the MIN-POSP is applied to each element 
of this set. The procedure is then applied in an iterative manner to the schedules 
obtained in the last iteration. Each schedule obtained in this way is inserted into 
the enlarged set of all solutions. Dominated solutions must be eventually removed 
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from this set after the application of the MIN-POSP procedure is completed. There-
fore, improving a frontier by applying MIN-POSP is time-consuming. However, we 
expect it can significantly increase the quality of the Pareto-optimal set obtained by 
the NSGA-II approach.

4.6  Overall approach

Three approaches based on the NSGA-II metaheuristic are considered. Each 
approach is based on the GGA encoding scheme described in Sect.  4.2.2. The 
basic GGA encoding scheme is extended by the encoding of additional informa-
tion for the decoding process, namely the LIST, BD, and HYB representations. 
The different encoding and decoding schemes are summarized in Table 1.

The three approaches are called GGA-LIST, GGA-BD, and GGA-HYB, 
respectively where the abbreviation after GGA is inherited from the correspond-
ing representation. They are depicted in Fig. 3.

The LS approach from Sect.  4.4 is applied within the three GAs each time 
a chromosome is changed by a crossover or mutation operation. Moreover, it is 
applied to each chromosome of the initial population after the chromosome is 
randomly generated. The LS-NSGA-II scheme is applied to each individual of a 
generation of the NSGA-II approach as soon as a population is completed. The 

Table 1  Summary of the encoding and decoding schemes

Representation Basic encoding Additional encoding Decoding scheme

GGA-LIST Groups of jobs (batches) Random key � LIST-ASAP for batches 
1,… , ⌊�b⌋ , LIST-MEC 
for the remaining batches

GGA-BD Groups of jobs (batches) Random keys �i for batch-
machine assignment, �i for 
the amount of idle time 
before starting batch i  , 
𝜃k for inserting idle time 
before the end of the sched-
uling horizon

Based on the random keys

GGA-HYB Groups of jobs (batches) Additional encoding from 
LIST and BD, random key 
� which determines whether 
GGA-LIST or GGA-BD 
is used

Depends on the � value
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MIN-POSP procedure is optionally used to improve the Pareto front obtained by 
the NSGA-II approach.

5  Computational experiments

5.1  Design of experiments

We expect that the quality of the proposed heuristics depends on the number of jobs, 
the number of families, the maximum batch size, the job sizes, and the ready time 
and due date setting. Since problem (3) is NP-hard, the �-constraint method can only 
be applied to small-sized problem instances. Therefore, in a first experiment, a set of 
small-sized problem instances is generated according to the design of experiments 
(DOE) shown in Table 2.

The ready time and due date setting is similar to Mönch et al. (2005). We use the 
average batch size B̄ = B∕ s̄ = 2 where s̄ is the average job size. The winter eW and 
the summer electricity tariffs es are defined as follows:

(27)eW (t) ∶=

�
10, 1 ≤ t <

1

2
T

8, otherwise
, eS(t) ∶=

⎧
⎪⎪⎨⎪⎪⎩

10, 1 ≤ t <
1

3
T

9,
1

3
T ≤ t <

1

2
T

8,
1

2
T ≤ t <

5

6
T

9, otherwise

.

Fig. 3  Proposed GGA-type representations
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These winter and summer tariffs mimic to some extent the TOU rate plans 
offered by the Pacific Gas and Electric Company (TOU Rates-Pacific Gas and Elec-
tric Company 2019) with respect to the time windows over the course of 1 day and 
the relative difference between price levels. Semiconductor manufacturers consider 
information on their manufacturing processes as highly confidential. Hence, actual 
values of the energy consumption caused by processing batches in a furnace are not 
available. Instead of striving for decision support for a particular wafer fab, we pro-
vide general guidelines for managers to uncover savings potential. The eW (t) and 
eS(t) functions can easily be adapted for a real wafer fab.

Overall, we have 80 small-sized instances. These instances can be used to deter-
mine the Pareto frontier. This allows us to check whether the three heuristics are cor-
rectly implemented. Note that for the small-sized instances all the problem data is 
integer. Hence, the TWT and EC values are also integer and the �-constraint method 
with a step size of 1 provides the entire Pareto front.

In addition, we consider large-sized instances. The corresponding design of 
experiments is shown in Table 3. Note that the largest instances contain 240 jobs. 
Such instances can be found in medium-sized wafer fabs (Mönch et al. 2013). The 
factors are the same as used for the small-sized instances.

We know from (Rocholl et  al. 2018) that medium-sized instances for problem 
(17) can be solved to optimality using the �-constraint method. Therefore, it is pos-
sible to compare the Pareto frontiers determined by the three heuristics with the true 
Pareto frontier. We consider problem instances with F = 2 , nf = 20 , B ∈ {2, 4, 8} 
and F = 3 , nf = 30 , B ∈ {4, 8} . The number of machines, processing times, and 

Table 2  DOE for small-sized problem instances

Factor Level Count

Number of families F 2, 3 2
Number of jobs per family nf 5 1
Maximum batch size B
 (in wafers)

4 1

Number of machines m 2 1
Job size sj ∼ DU[1, 3] 1
Family processing times pf 2 with probability 0.2

4 with probability 0.2
10 with probability 0.3
16 with probability 0.2
20 with probability 0.1

1

Job weights wj ∼ DU[1, 5] 1
Job ready time rj ∼ DU

�
0,
�
𝛼

�
B̄
�∑n

j=1
ps(j)

�
 , � ∈ {0.25, 0.50} 2

Job due dates dj − rj ∼ DU
�
0,
�
𝛽

�
B̄
�∑n

j=1
ps(j)

�
 , � ∈ {0.25, 0.50} 2

Electricity tariff Winter rate, summer rate 2
Number of independent replications 5 5
Total number of problem instances 80
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weights are taken from Table 3. The maximum batch size B is measured in number 
of jobs. This leads to 40 problem instances for problem (17).

The large-sized problem instances from Table 3 are solved in another experiment. 
A fractional design is considered to assess the solution quality and the required com-
puting time for the MIN-POSP procedure in an additional experiment. Therefore, we 
consider the design from Table 3 for nf = 20 . This leads to 192 problem instances 
with up to 120 jobs.

To examine the influence of the LS and LS-NSGA-II schemes described in 
Sect.  4.4, we conduct additional experiments with 20 instances randomly chosen 
from the set obtained by the design of experiments summarized in Table 3. Addi-
tional variants of each of the three heuristics are implemented where at least one 
of the LS and the LS-NSGA-II schemes are included. This leads to four variants of 
each heuristic to be compared.

The proposed bi-criteria heuristics determine an approximation of the Pareto 
frontier. Instead of comparing the heuristics based on objective function values, 
quality measures have to be derived from the approximation sets (Van Veldhuizen 
1999; Zitzler et al. 2003; Coello Coello and Lamont 2004). Let YH be the set of solu-
tions obtained by the heuristic H and Ytrue be the corresponding set of Pareto-optimal 
solutions. The overall non-dominated vector generation (ONVG) measure is given 
by

i.e., it is the number of non-dominated solutions found by H . The overall non-domi-
nated vector generation ratio (ONVGR) measure is calculated as follows:

(28)ONVG
(
YH

)
∶= ||YH||,

Table 3  DOE for large-sized problem instances

Factor Level Count

Number of families F 3, 6 2
Number of jobs per family nf 20, 30, 40 3
Maximum batch size B
 (in wafers)

25 1

Number of machines m 2, 5 2
Job size sj ∼ DU[1, 5] , sj ∼ DU[1, 12] , sj ∼ DU[1, 24] 3
Family processing times pf 2 with probability 0.2

4 with probability 0.2
10 with probability 0.3
16 with probability 0.2
20 with probability 0.1

1

Job weights wj ∼ DU[1, 5] 1
Job ready times rj ∼ DU

�
0,
�
𝛼

�
B̄
�∑n

j=1
ps(j)

�
 , � ∈ {0.25, 0.50} 2

Job due dates dj − rj ∼ DU
�
0,
�
𝛽

�
B̄
�∑n

j=1
ps(j)

�
 , � ∈ {0.25, 0.50} 2

Electricity tariff Winter rate, summer rate 2
Number of independent replications 2 2
Total number of problem instances 576
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Moreover, a distance measure is used that computes the mean distance of solu-
tions provided by H to the nearest solution of the true Pareto front. Therefore, we 
consider:

for y ∈ YH and ŷ ∈ Ytrue where f max
k

 and f min
k

 are the maximum and minimum of the 
k-th objective function component found among the solutions from YH and Ytrue . The 
average distance of a solution from YH to the closest solution in Ytrue is then given by

The set coverage (CS) indicator determines the percentage of individuals in 
one set dominated by the individuals of the other set, i.e., we have

Moreover, the hypervolume (HV) indicator proposed by Zitzler and Thiele 
(1998) is used. It is a measure for the volume of the objective space dominated by 
a solution set. The HV indictor value for a solution set Y  is given by

Here, y(i) refers to the i-th solution in Y  in descending order of TWT  and 
TWTmax, ECmax denote the maximum value found for the TWT  and the EC values, 
respectively and is used as reference point. The relative HV index, abbreviated by 
HVR and defined by HVR

(
YH , Ytrue

)
∶= HV

(
YH

)/
HV

(
Ytrue

)
 is applied.

We are also interested in looking at the EC savings potential in relation to the 
TWT impairment. Therefore, we define the two measures

and

(29)ONVGR
(
YH , Ytrue

)
∶= ONVG

(
YH

)/
ONVG

(
Ytrue

)
.

(30)
d(y, ŷ) ∶ = ((TWT(y) − TWT(ŷ))2∕(TWTmax − TWTmin)2 + (EC(y) − EC(ŷ))2∕(ECmax − ECmin)2)1∕2

(31)dist
(
YH , Ytrue

)
∶=

√√√√∑
y∈YH

(
min
ŷ∈Ytrue

d(y, ŷ)

)2
/

ONVG
(
YH

)
.

(32)CS
(
Ytrue, YH

)
∶=

|||
{
y|y ∈ YH , there is a ŷ ∈ Ytrue, ŷ dominates y

}|||
/||YH||.

(33)

HV(Y) ∶= (TWTmax − TWT(y(1)))(EC
max − EC(y(1)))

+

|Y|−1∑
i=1

(TWT(y(i)) − TWT(y(i+1)))(EC
max − EC(y(i))).

(34)�TWT (I) ∶= TWTmax(I)∕TWT
min

(I)

(35)�EC(I) ∶= ECmin(I)
/
ECmax(I)
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for the Pareto front of an instance I . The pair 
(
�TWT (I), �EC(I)

)
 indicates the increase 

of the TWT value relative to the smallest possible TWT value and the EC reduction 
relative to the largest occurring EC value.

When the �-constraint method can be applied, Ytrue is the set of Pareto-optimal 
solutions. For problem instances too large to be exactly solved in reasonable amount 
of computing time, the set Ytrue is formed by all known solutions for this problem 
instance where dominated solutions have been removed. All heuristics are per-
formed five times with different seeds for each instance since the NSGA-II approach 
has stochastic elements. The set of solutions is then formed by these five replications 
where dominated solutions are removed.

Instead of using a prescribed number of generations for the different GAs we 
allow a maximum computing time of 180 s for instances of Table 3, while the maxi-
mum of the remaining problem instances is only 60 s.

5.2  Parameter settings and implementation issues

Preliminary computational experiments with a limited set of problem instances 
are conducted to find appropriate parameter values of the different heuristics. We 
randomly choose 20 problem instances from the set presented in Table  3. The 
population size is taken from {150, 300, 450} , while the mutation probability 
pM ∈ {0.01, 0.05, 0.1} is considered. For the sake of simplicity, the overall average 
of the HVR values of the solution sets found by the three heuristics are chosen to 
determine the parameter settings. As a result, we use 300 as population size and 
pM = 0.01 within the experiments. We do not use a specific crossover probability in 
our NSGA-II approach. The parameter � in the GGA-BD is set to 10% of the indi-
viduals of a generation.

The C++ programming language is used to code all the algorithms. The CPLEX 
12.8 libraries are used to implement the �-constraint method. The NSGA-II approach 
is implemented using the MOMHLib++ framework by Jaszkiewicz (2019). All 
computational experiments are performed on an Intel Core i7-2600 CPU 3.40 GHz 
PC with 16 GB RAM.

5.3  Computational results

5.3.1  Overview

We start by discussing computational results for small-sized instances of problem 
(3). This allows us to compare the heuristics with the true Pareto frontier obtained 
by the �-constraint method. In a next step, results for experiments with the larger 
instances of problem (17) are presented. Again, the true Pareto frontier is obtained 
by the �-constraint method. Since the �-constraint method does not work for the 
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large-sized instances of problem (3), we next present results for large-sized instances 
where the set Ytrue is formed by all known solutions as described above. We provide 
results that allow us to study the impact of the improvement heuristic and the two 
LS schemes. Finally, we discuss some managerial implications of the computational 
results.

5.3.2  Results for small‑sized problem instances

Instead of comparing all instances individually, the instances are grouped according 
to the factor level values in all the tables found in this subsection. Results for the 
winter tariff, nf = 20, and F = 3 imply, for instance, that all other factors have been 
varied, but the tariff, the number of jobs per family, and the number of families have 
been constant at winter, 20, and 3, respectively. Table 4 shows the ONVGR and dist 
values for small-sized instances. The corresponding CS and HVR measure values 
are stated in Table 5. Best results are always marked in bold in the rest of the paper.

Figure 4 exemplifies sets of non-dominated solutions obtained by the NSGA-II 
approach with the different encoding schemes, namely GGA-LIST, GGA-BD, and 
GGA-HYB and the �-constraint method, abbreviated by OPT for a small-sized 
instance of problem (3).

The computational results from Tables 4 and 5 demonstrate that the NSGA-II 
approach with the GGA-BD representation is able to find near-to-optimal solu-
tions for small-sized instances. The GGA-BD representation outperforms the 

Table 4  ONVGR and dist values for small-sized problem instances

Tariff F � � ONVGR dist

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 2 0.25 0.25 0.216 0.910 0.696 0.011 0.001 0.002
0.5 0.231 0.941 0.712 0.018 0.002 0.004

0.5 0.25 0.283 0.890 0.663 0.036 0.002 0.008
0.5 0.316 0.901 0.689 0.008 0.002 0.002

3 0.25 0.25 0.339 0.882 0.607 0.005 0.061 0.070
0.5 0.263 0.831 0.405 0.013 0.006 0.016

0.5 0.25 0.268 0.820 0.364 0.002 0.002 0.002
0.5 0.261 0.788 0.341 0.003 0.003 0.003

Summer 2 0.25 0.25 0.285 0.916 0.691 0.024 0.003 0.006
0.5 0.259 0.980 0.820 0.014 0.003 0.002

0.5 0.25 0.264 0.909 0.739 0.022 0.001 0.007
0.5 0.418 0.961 0.693 0.011 0.001 0.004

3 0.25 0.25 0.422 0.969 0.703 0.006 0.036 0.070
0.5 0.293 0.860 0.433 0.012 0.003 0.005

0.5 0.25 0.304 0.792 0.480 0.007 0.001 0.004
0.5 0.310 0.809 0.526 0.009 0.001 0.004

Overall 0.301 0.885 0.598 0.013 0.008 0.013
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GGA-LIST representation for all performance measures under almost all experi-
mental conditions. The largest difference can be observed for the ONVGR meas-
ure. This indicates that the GGA-BD representation is able to encode a much 
larger portion of the solution space than the remaining representations. The aver-
age CS measure value reveals that on average around 68% of the solutions found 

Table 5  CS and HVR values for small-sized problem instances

Tariff F � � CS HVR

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 2 0.25 0.25 0.258 0.129 0.266 0.881 0.980 0.961
0.5 0.470 0.272 0.310 0.882 0.981 0.985

0.5 0.25 0.355 0.265 0.445 0.907 0.981 0.967
0.5 0.256 0.144 0.340 0.936 0.984 0.977

3 0.25 0.25 0.420 0.429 0.507 0.952 0.922 0.917
0.5 0.457 0.313 0.682 0.929 0.977 0.948

0.5 0.25 0.366 0.361 0.567 0.976 0.982 0.977
0.5 0.522 0.469 0.613 0.970 0.978 0.974

Summer 2 0.25 0.25 0.751 0.154 0.522 0.858 0.987 0.970
0.5 0.732 0.357 0.633 0.892 0.992 0.987

0.5 0.25 0.683 0.194 0.623 0.903 0.994 0.980
0.5 0.621 0.144 0.454 0.934 0.998 0.986

3 0.25 0.25 0.677 0.478 0.754 0.943 0.947 0.916
0.5 0.784 0.410 0.852 0.921 0.981 0.955

0.5 0.25 0.705 0.496 0.843 0.964 0.990 0.979
0.5 0.832 0.541 0.804 0.936 0.982 0.972

Overall 0.556 0.322 0.576 0.924 0.979 0.966

Fig. 4  Example of the non-dominated sets of a small-sized problem instance
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with the GGA-BD representation are Pareto-optimal. The GGA-BD representa-
tion again leads to the best average HVR value. However, for two sets of fac-
tor combinations, namely both tariffs, F = 3, � = 0.25, � = 0.25 , the GGA-LIST 
representation shows an almost equal or even better HVR value despite providing 
a much smaller set of non-dominated solutions. Apparently, in some situations it 
can be reasonable to search for a limited set of high-quality solutions. The GGA-
HYB representation shows average values close to the ones of the GGA-LIST 
for both the dist and the CS measures. Compared to the GGA-BD representa-
tion, fewer solutions are found but still the average HVR value is close to the 
one found by the GGA-BD representation. The non-dominated sets exemplified in 
Fig. 4 support these observations.

5.3.3  Results for problem (17)

Results of the computational experiments for problem (17) are presented in 
Tables 6 and 7.

Table 6  ONVGR and dist values for medium-sized problem instances (special case)

Tariff nf F M B ONVGR Dist

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 20 2 2 2 0.190 0.910 0.715 0.002 0.002 0.004
4 0.403 0.896 0.779 0.008 0.007 0.004
8 0.359 0.881 0.840 0.009 0.001 0.001

5 2 0.303 0.757 0.320 0.003 0.001 0.003
4 0.167 0.851 0.578 0.004 0.001 0.001
8 0.114 0.897 0.774 0.002 0.001 0.001

30 3 2 4 0.410 0.875 0.576 0.001 0.002 0.001
8 0.227 0.928 0.564 0.006 0.001 0.002

5 4 0.322 0.617 0.332 0.008 0.003 0.003
8 0.309 0.810 0.565 0.005 0.001 0.002

Summer 20 2 2 2 0.218 0.910 0.759 0.005 0.001 0.005
4 0.451 0.946 0.838 0.005 0.000 0.001
8 0.346 0.903 0.821 0.015 0.003 0.003

5 2 0.369 0.675 0.418 0.007 0.001 0.005
4 0.155 0.924 0.418 0.005 0.001 0.002
8 0.080 0.976 0.747 0.008 0.000 0.002

30 3 2 4 0.390 0.825 0.558 0.006 0.001 0.004
8 0.295 0.945 0.698 0.010 0.001 0.002

5 4 0.351 0.509 0.378 0.007 0.002 0.005
8 0.269 0.914 0.551 0.004 0.002 0.002

Overall 0.286 0.847 0.611 0.006 0.002 0.003
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The results in Tables 6 and 7 largely confirm the findings of the small-sized 
instances of problem (3) for experiments conducted for problem (17). The GGA-
BD representation outperforms the remaining representations with respect to the 
ONVGR and dist measures. Applying the GGA-LIST representation can provide 
a large fraction of Pareto-optimal solutions under some experimental conditions 
as can be seen from the average CS value.

5.3.4  Results for large‑sized problem instances

Computational results for the large-sized instances from Table  3 are shown in 
Tables 8 and 9. The interested reader is referred to the electronic supplement for 
detailed computational results for all factor combinations.

No clear superiority of one representation over the others can be found. Appar-
ently, the advantage of the GGA-BD representation cannot be confirmed here. 
In particular, a decline of the ONVGR values with a larger total number of jobs 
n = Fnf  can be observed. This indicates that the criteria space is too large to be 
searched efficiently by the GGA-BD approach.

Table 7  CS and HVR values for medium-sized problem instances (special case)

Tariff nf F M B CS HVR

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 20 2 2 2 0.200 0.186 0.375 0.822 0.977 0.940
4 0.133 0.073 0.167 0.928 0.961 0.938
8 0.188 0.068 0.120 0.890 0.960 0.938

5 2 0.358 0.803 0.413 0.948 0.963 0.952
4 0.325 0.196 0.562 0.913 0.948 0.924
8 0.111 0.128 0.320 0.936 0.976 0.980

30 3 2 4 0.339 0.391 0.477 0.972 0.968 0.977
8 0.202 0.177 0.242 0.950 0.983 0.975

5 4 0.630 0.968 0.628 0.916 0.937 0.932
8 0.513 0.308 0.541 0.981 0.919 0.981

Summer 20 2 2 2 0.627 0.188 0.639 0.812 0.977 0.918
4 0.724 0.066 0.214 0.957 0.992 0.976
8 0.558 0.104 0.084 0.858 0.975 0.947

5 2 0.902 0.964 0.920 0.920 0.974 0.941
4 0.744 0.480 0.860 0.948 0.987 0.968
8 0.200 0.147 0.600 0.905 0.998 0.978

30 3 2 4 0.867 0.471 0.850 0.929 0.959 0.948
8 0.851 0.118 0.570 0.922 0.989 0.961

5 4 0.923 0.990 0.930 0.904 0.953 0.918
8 0.747 0.426 0.807 0.970 0.980 0.965

Overall 0.507 0.363 0.516 0.919 0.969 0.953
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Considering the dist and the HVR measures, the GGA-HYB representation 
outperforms the remaining representations. We observe that the GGA-LIST rep-
resentation leads to higher-quality schedules for all performance measures when 
applied to instances with six job families compared to instances with only three 
families. On the contrary, the GGA-BD representation can produce better solu-
tions if the jobs are distributed over three families only. The number of families 

Table 8  ONVGR and Dist values for large-sized problem instances

Tariff nf F ONVGR Dist

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 20 3 0.669 1.039 0.804 0.006 0.004 0.003
6 0.828 0.837 0.890 0.004 0.006 0.002

30 3 0.758 0.929 0.583 0.004 0.005 0.003
6 0.883 0.719 0.528 0.003 0.008 0.002

40 3 0.862 0.895 0.543 0.004 0.007 0.003
6 0.916 0.620 0.588 0.003 0.009 0.002

Summer 20 3 0.710 0.845 0.880 0.005 0.002 0.003
6 0.843 0.618 0.902 0.003 0.004 0.002

30 3 0.812 0.748 0.848 0.004 0.003 0.002
6 0.902 0.579 0.850 0.002 0.009 0.003

40 3 0.875 0.675 0.891 0.003 0.006 0.003
6 0.922 0.480 0.870 0.003 0.015 0.003

Overall 0.832 0.749 0.765 0.004 0.007 0.003

Table 9  CS and HVR values for large-sized problem instances

Tariff nf F CS HVR

GGA-LIST GGA-BD GGA-HYB GGA-LIST GGA-BD GGA-HYB

Winter 20 3 0.740 0.576 0.470 0.972 0.941 0.991
6 0.581 0.757 0.469 0.979 0.844 0.991

30 3 0.601 0.611 0.583 0.978 0.908 0.985
6 0.492 0.786 0.528 0.978 0.784 0.987

40 3 0.543 0.731 0.543 0.975 0.857 0.986
6 0.438 0.805 0.588 0.988 0.727 0.987

Summer 20 3 0.730 0.423 0.606 0.977 0.936 0.988
6 0.559 0.556 0.626 0.977 0.816 0.986

30 3 0.612 0.471 0.673 0.977 0.889 0.984
6 0.375 0.679 0.725 0.985 0.745 0.980

40 3 0.508 0.640 0.647 0.980 0.832 0.982
6 0.352 0.743 0.703 0.989 0.665 0.982

Overall 0.544 0.648 0.597 0.980 0.829 0.986



1374 J. Rocholl et al.

1 3

does not influence the performance of the GGA-HYB representation which can 
be expected as it combines features of the two remaining representations.

5.3.5  Impact of the improvement heuristic and the local search schemes

The impact of applying the MIN-POSP procedure from Sect.  4.4 on the number 
of solutions in the corresponding Pareto frontier is shown in Fig. 5 as the average 
ONVG value over all problem instances described in Sect. 5.1. The MIN-POSP pro-
cedure is called improvement heuristic in this figure.

On the one hand, the procedure is able to find a large number of additional 
non-dominated schedules for all assessed representations. On the other hand, the 
computing time can become very long. It depends on the original number of solu-
tions being the input and the time horizon and number of batches of the corre-
sponding schedule. The additional computational burden per instance is between 
less than one second and one hour with an average value of 87 s. From the experi-
ments conducted it appears that the additional time requirement can be limited to 
around 2 min if the MIN-POSP procedure is applied to instances with not more 
than 60 batches.

Figures 6 and 7 depict the ONVGR and dist measure values for the heuristics 
with different levels of LS consideration. The average values obtained from the 
experiments with all the 20 instances are shown.

The leftmost group of bars presents the values of the variant of the heuris-
tics where both the LS and the LS-NSGA-II scheme are applied. The second 
and third groups from the left show the values for the variants where only the 
scheme shown under the group is used while “w/o LS” indicates that no LS at all 
is applied.

Figures 6 and 7 confirm that LS positively impacts the solution quality of NSGA-
II-type heuristics. From Fig. 6 we see that the number of solutions found increases if 

Fig. 5  Size of the Pareto 
frontiers depending on the MIN-
POSP procedure
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either one of the proposed schemes is applied. The largest number of non-dominated 
solutions is found when both LS schemes are used. The ONVGR measure improves 
most for the GGA-BD representation whereas the GGA-HYB representation does 
not profit as much with respect to this measure. However, Fig. 7 shows a positive 
impact of LS on the distance measure for all three heuristics. Obviously the applica-
tion of both LS schemes can move solutions closer to the true Pareto frontier.

5.3.6  Managerial insights from the computational experiments

Table 10 shows the EC savings in relation to the observed TWT increase. Note that 
we use only Pareto frontiers determined by the GGA-HYB since the differences 
between the different heuristics are fairly small.

The following managerial insights can be derived from the conducted experi-
ments and Table 10:

Fig. 6  Average ONVGR values for different levels of local search consideration

Fig. 7  Average dist values for different levels of local search consideration
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1. Schedules with a small EC value tend to schedule batches in periods with small 
e(t) values, i.e. into off-peak periods. These schedules contribute to better balanc-
ing demand and supply of electricity.

2. In a highly loaded wafer fab, the room for EC reduction is smaller than in a wafer 
fab with moderate load. Small � values mimic a high-load. The highest TWT 
impairment can be observed for tight due dates, represented by � = 0.25 , and 
wide-spread ready times dates given by � = 0.50 . In this situation, a formation 
of full batches, i.e. reaching small EC values, is often only possible if some jobs 
are delayed for a long time. This leads to large TWT values.

3. The smallest EC improvement potential can be observed for a small number of 
jobs within each family. In this situation, it is not very likely that most of the 
batches are fully loaded. Hence, the number of batches is high and the EC values 

Table 10  EC savings potential in relation to the TWT impairment

nf m � � Winter Summer

ONVG �TWT �EC ONVG �TWT �EC

20 2 0.25 0.25 47 3.051 0.868 82 2.812 0.906
0.50 49 4.381 0.848 78 3.928 0.891

0.50 0.25 87 3.899 0.785 117 2.999 0.837
0.50 71 4.713 0.793 93 3.338 0.841

5 0.25 0.25 89 3.782 0.710 127 3.415 0.779
0.50 73 4.130 0.779 86 3.720 0.803

0.50 0.25 85 2.479 0.603 120 2.499 0.578
0.50 79 2.657 0.628 102 2.652 0.644

30 2 0.25 0.25 46 3.295 0.849 81 3.373 0.891
0.50 56 4.680 0.842 74 4.147 0.880

0.50 0.25 79 3.858 0.782 98 2.908 0.834
0.50 74 4.555 0.792 92 3.263 0.839

5 0.25 0.25 97 3.910 0.763 117 3.503 0.831
0.50 82 3.942 0.766 92 3.573 0.799

0.50 0.25 85 2.587 0.573 106 2.597 0.570
0.50 79 2.579 0.606 97 2.558 0.609

40 2 0.25 0.25 52 3.225 0.850 73 3.232 0.892
0.50 49 3.994 0.850 70 3.537 0.889

0.50 0.25 74 4.409 0.799 77 3.135 0.834
0.50 80 4.554 0.795 79 3.463 0.835

5 0.25 0.25 93 4.110 0.754 112 3.600 0.807
0.50 78 4.119 0.785 83 3.557 0.816

0.50 0.25 84 2.744 0.580 100 2.663 0.589
0.50 74 2.440 0.613 91 2.419 0.632

Overall 73 3.671 0.751 93 3.204 0.784
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are large. This insight might be taken into account when product mix decisions 
are made by management.

4. A larger processing flexibility represented by a larger number of parallel machines 
increases the ability for EC reductions.

5. The EC improvement potential is slightly smaller for the winter tariff. However, 
at the same time the EC improvement is reached at the expense of a larger TWT 
impairment in comparison to the summer tariff. The summer tariff results in 
smaller EC improvement, however, the TWT impairment is also smaller. This is 
caused by the larger number of available options of the summer tariff. This is also 
reflected by a larger average number of non-dominated solutions in the case of the 
summer tariff. Therefore, TOU tariffs with more segments seem to be beneficial.

6  Conclusions and future research

In this paper, we discussed a bi-criteria scheduling problem for identical paral-
lel batch processing machines. The TWT and EC performance measures were 
used. A MILP formulation is proposed. In addition, we provided a second, much 
simpler MILP for a special case where structural properties of Pareto-optimal 
solutions were provided. Both MILP models were solved using the �-constraint 
method. To tackle large-sized problem instances within a reasonable amount 
of computing time, we proposed three GGAs that are embedded into a NSGA-
II-type framework. They differ in representations and decoding schemes. The 
performance of the GA variants was assessed using randomly generated prob-
lem instances. Moreover, the �-constraint method was used to assess the correct 
implementation of the heuristic approaches and to check the performance of the 
GA-type heuristics for medium-sized instances of the special case with the TWC 
performance measure instead of the TWT measure. Overall, we were able to dem-
onstrate by the computational experiments that some of the proposed heuristics 
perform very well. Senior operators in wafer fabs can apply the proposed algo-
rithms to choose furnace schedules that find a compromise between tardiness and 
sustainability goals. However, large EC reductions in highly loaded wafer fabs are 
only possible at the expanse of large TWT values. A larger number of incompat-
ible job families and of parallel machines are preferred from an EC reduction 
point of view.

This paper contributes to sustainable manufacturing from two points of view. 
First, it allows for computing schedules with small EC values, which might result 
in a small  CO2 emission. Second, schedules with small EC values tend to have 
many batches in the off-peak periods, i.e. they balance the demand and supply of 
electricity. As a result, less backup infrastructure (which often generates electric-
ity in a more dirty way) is required. Again, reduced  CO2 emissions are likely to 
be the result.

There are several directions for future research. First of all, although the �-con-
straint method used in this paper is able to compute the exact Pareto front for the 
used integer-valued problem instances, it is interesting to look at several recent 
efficient implementations of this method for the specific instances and general 
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instances, for example the one provided by Mavrotas and Florios (2013). Secondly, 
the problem setting can be generalized by considering unrelated parallel machines 
instead of identical ones as in the present paper. Moreover, the energy consumption 
can be made family-dependent. We believe that it is also desirable to model standby 
times and sequence-dependent warm-up and cool-down processes since they lead to 
a different amount of energy consumption. It is also interesting to explore in addition 
to TOU tariffs different types of real-time energy pricing in the context of the sched-
uling problem at hand. As a third direction, we are interested in designing sampling 
algorithms for the present problem to obtain robust schedules since the ready times 
are typically uncertain in a real-world wafer fab. Integrating the proposed schedul-
ing technique in a global scheduling approach for an entire wafer fab as, for instance, 
the one proposed by Mönch et al. (2007), is also desirable.
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Appendix

subject to (5)–(16)

The quantities ETWT ,EEC ∈ {0, 1} , ETWT + EEC = 1, and �TWC, �EPC ∈ IR are 
parameters of the model. For ETWT = 1 and EEC = 0 the model minimizes the 
TWT value whereas the EC value is restricted to �EC . In the case of ETWT = 0 
and EEC = 1 , the model aims for a EC minimization where the TWT value of 
the schedule is restricted to �TWT . The model (36)–(38) and (5)–(16) is itera-
tively solved. The first iteration starts with ETWT = 1, EEC = 0, �TWT = 0, and 

(36)min

⎡⎢⎢⎣
ETWT

n�
j=1

wjTj + EEC

⎛⎜⎜⎝

b�
i=1

T�
t=1

m�
k=1

t+Pf (i)−1�
�=t

e(�) yitk

⎞⎟⎟⎠

⎤⎥⎥⎦

(37)
(
1 − ETWT

) n∑
j=1

wjTj ≤ �TWT

(38)
(
1 − EEC

) b∑
i=1

T∑
t=1

m∑
k=1

t+Pf (i)−1∑
�=t

e(�) yitk ≤ �EC.
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�EC = M where M is determined using the piecewise constant EC function. 
The solution is a schedule S with objective function value TWT(S) where the EC 
value is restricted to M . The MILP is then solved a second time with the settings 
ETWT = 0,EEC = 1, �TWT = TWT(S) . The result is a Pareto optimal schedule. The 
next iteration starts from ETWT = 0,EEC = 1, �EC = 0 , and �TWT = TWT(S) − 1 . The 
setting �TWT = TWT(S) − 1 is reasonable since the TWT and EC values are integers 
due to the integer parameters (see Sect.  5.1). This procedure is repeated until the 
MILP becomes infeasible for the parameters �EC and �TWT.
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