
Rädle, Stefan; Mast, Johannes; Gerlach, Joachim; Bringmann, Oliver

Article  —  Published Version

Computational intelligence based optimization of
hierarchical virtual power plants

Energy Systems

Provided in Cooperation with:
Springer Nature

Suggested Citation: Rädle, Stefan; Mast, Johannes; Gerlach, Joachim; Bringmann, Oliver (2020) :
Computational intelligence based optimization of hierarchical virtual power plants, Energy Systems,
ISSN 1868-3975, Springer, Berlin, Heidelberg, Vol. 12, Iss. 2, pp. 517-544,
https://doi.org/10.1007/s12667-020-00382-z

This Version is available at:
https://hdl.handle.net/10419/288504

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s12667-020-00382-z%0A
https://hdl.handle.net/10419/288504
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Vol.:(0123456789)

Energy Systems (2021) 12:517–544
https://doi.org/10.1007/s12667-020-00382-z

1 3

ORIGINAL PAPER

Computational intelligence based optimization 
of hierarchical virtual power plants

Stefan Rädle1   · Johannes Mast1   · Joachim Gerlach1   · Oliver Bringmann2 

Received: 2 December 2019 / Accepted: 11 March 2020 / Published online: 22 March 2020 
© The Author(s) 2020

Abstract
In the context of renewable energy sources, virtual power plants (VPP) are regarded 
as a key technology for an intelligent control of the complex, decentralized, distrib-
uted and heterogeneous power generation process. However, an economic and eco-
logical control of a VPP turns out to be a highly critical task: due to the strongly 
varying characteristics of VPPs, in terms of complexity, technology mix, environ-
mental conditions and target objectives to be optimized during operation, the control 
of an individual VPP needs to be able to effectively take into account all of those 
individual constraints. Therefore, we propose in this paper an abstract control meth-
odology for a VPP in combination with computational intelligence (CI) metaheuris-
tics, which is designed to be flexibly applicable for different VPP sizes, target objec-
tives and power plant types. The methodology furthermore provides the possibility 
to build hierarchical VPPs as they are often demanded by the system operators. To 
demonstrate the effectiveness of the control methodology, three exemplary optimi-
zation targets are considered and applied to different compositions of flat/hierarchi-
cal VPPs: the minimization of operating reserve requirements, the minimization of 
CO

2
 emissions and the maximization of the power plant flexibility. Furthermore, the 

methodology is combined and evaluated with three exemplary CI metaheuristics: 
simulated annealing (SA), particle swarm optimization (PSO) and ant colony opti-
mization (ACO). To legitimize the use of such advanced CI metaheuristics for the 
optimization problem, gradient descent optimization (GDO) as a traditional optimi-
zation technique is regarded as well. On the basis of concrete example scenarios as 
well as extensive, aggregated test runs, the results show that the control methodol-
ogy is capable of efficiently optimizing various compositions of VPPs towards the 
given objectives.

Keywords  Metaheuristic optimization · Renewable energy integration · Distributed 
power generation · Control optimization
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Abbreviations
ACO	� Ant colony optimization
CHP	� Combined heat and power unit
CI	� Computational intelligence
GDO	� Gradient descent optimization
IPCC	� Intergovernmental panel on climate change
PSO	� Particle swarm optimization
SA	� Simulated annealing
VPP	� Virtual power plant

Methodology symbols
Pi,min(t)	� Theoretical minimum power limit of sub-plant i at time point t
Pi,max(t)	� Theoretical maximum power limit of sub-plant i at time point t
P̃i,min(t)	� Actual minimum power limit of sub-plant i at time point t
P̃i,max(t)	� Actual maximum power limit of sub-plant i at time point t
Pi,s(t)	� Step size of sub-plant i at time point t
Ci(t)	� Specific CO2 emissions of sub-plant i at time point t
ki(t)	� Control coefficient of sub plant i at time point t
Pi(t)	� Power output of sub-plant i at time point t
�
�
(�)	� Step size vector for a VPP at time point t

�(�)	� Control coefficient vector for a VPP at time point t
P(t)	� Power output of a VPP at time point t
PVPP,min(t)	� Theoretical minimum power limit of a VPP at time point t
PVPP,max(t)	� Theoretical maximum power limit of a VPP at time point t
P̃VPP,min(t)	� Actual minimum power limit of a VPP at time point t
P̃VPP,max(t)	� Actual maximum power limit of a VPP at time point t
PVPP,s(t)	� Step size of a VPP at time point t
CVPP(t)	� Specific CO2 emissions of a VPP at time point t
L(t)	� Consumer load demand at time point t
O(t)	� Error function for the operating reserve objective
M(t)	� Total CO2 emissions of a VPP at time point t
NM(t)	� Error function for the CO2 emissions objective
Fi(t)	� Flexibility potential of sub-plant i at time point t
F(t)	� Error function for the flexibility objective of a VPP
WO	� Weighting factor for the operating reserve objective
WM	� Weighting factor for the CO2 emissions objective
WF	� Weighting factor for the flexibility objective
E(t)	� Error function to be optimized by the control methodology

SA symbols
�init	� Initial temperature
�j	� Temperature value after j iterations
�min	� Minimum temperature value
�	� Exponential cooling factor for the temperature value
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PSO symbols
xi(j)	� Position of particle i at iteration j
x̂i(j)	� Best found state for particle i until iteration j
g(j)	� Globally best found state until iteration j
vi(j)	� Velocity of particle i at iteration j
w	� Weighting factor for the current particle velocity
c1	� Weighting factor for the particle best found state velocity
c2	� Weighting factor for the globally best found state velocity
r1	� Random factor for the particle best found state velocity
r2	� Random factor for the globally best found state velocity

ACO symbols
ekl	� Directed edge leading from node k to node l in the graph
�kl	� Pheromone value for the edge from node k to node l
pkl	� Probability for choosing the edge from node k to node l
�	� Probability calculation constant
Sk	� List of all edges starting from node k
�	� Pheromone constant
�	� Evaporation constant

GDO symbols
�	� Step factor for the gradient value
��	� Step change applied after each iteration

1  Introduction

1.1 � Motivation

According to a report by the Intergovernmental Panel on Climate Change (IPCC), 
global warming must be permanently limited to 1.5 ◦C in order to minimize the risk 
of irreversible consequences for the environment [1]. A key driver is given by the 
reduction of CO2 emissions in the energy sector, which with 42% (in 2016) accounts 
for the largest share of the global CO2 production [2].

The reduction of these CO2 emissions requires a massive expansion of renewable 
energy sources such as wind turbines or solar power plants to replace the existing 
widespread generation of electrical energy from fossil fuels. However, the integra-
tion of such renewable energy sources into the existing electricity infrastructure also 
causes numerous technical problems. For example, their unstable and difficult to 
plan power generation causes an increasing instability of the power grid due to their 
weather dependency, which in turn has to be compensated by conventional power 
plants in a costly and environmentally damaging way.

In this context, the formation of so-called “virtual power plants” (VPP)—the 
logical combination of several power plants of different types—plays an increas-
ingly important role. The various power plants inside the VPP should balance each 
other and thus form a better controllable network. However, the optimization of such 
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power plant networks turns out to be a difficult task due to complex constraints such 
as power plant specific control requirements, different VPP sizes (e.g. within an 
urban area to cover local consumption or distributed over large areas as a regulation 
mechanism for transmission system operators—possibly also hierarchically struc-
tured) as well as different compositions (conventional power plants and/or renew-
able energy sources etc.) and various target objectives based on the use case. Our 
motivation was therefore to develop an abstract and flexible control methodology 
for such VPPs, which can be easily adapted to the various requirements mentioned. 
In order to implement this control methodology efficiently we used techniques from 
the field of Computational Intelligence (CI). According to the IEEE Computational 
Intelligence Society the field of CI can be defined as the “theory, design, application 
and development of biologically and linguistically motivated computational para-
digms” which are organized in three main pillars: neural networks, fuzzy systems 
and evolutionary computation [3]. In this paper we focus on the usage of evolution-
ary computation algorithms.

1.2 � Related work

Due to the growing importance of VPPs in energy technology, there has been 
a steady increase in the number of publications in this area in recent years [4, 5]. 
Therefore, the following sections give a representative overview of the existing 
approaches.

In the area of VPP optimization, most approaches focus on optimizing profit, for 
example by generating revenue on the electricity market or by selling to local con-
sumers. The applied optimization techniques include the active control of the con-
sumer load demand [6] as well as the control of the VPP itself [7, 8], optionally with 
the use of energy storage devices [9]. Other, less popular optimization goals are, for 
example, the adaptation of the local electricity production to the local consumption 
in order to minimize the operating reserve requirements by actively regulating the 
VPP and/or the consumers [10].

A representative approach for the optimized control of a VPP is given in [11]. 
The optimization is done by controlling the voltage buses in a VPP with a diesel 
generator, a solar power plant and an energy storage device with a matlab simula-
tion. To reach the goal of covering the local consumption, the electricity generated 
by the solar power plant is used primarily. If the current power output of the solar 
power plant is not sufficient, the diesel generator is switched on in a second step. 
This power plant prioritization is intended to produce the required electricity in a 
preferably climate-neutral way. Should the total electricity provided by the power 
plants be greater or smaller than the consumer load demand, the difference will be 
compensated in a third step by the energy storage device, if possible.

A second representative approach uses the optimization of the consumer side in 
order to achieve the highest possible coverage by renewable energy sources [12]. 
Here, the authors assume a decentralized server system of a cloud provider. Since 
there are large spatial distances between the server farms, different weather condi-
tions also occur between the farms at a given time. The presented approach therefore 
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tries to distribute the required computing load to the individual server farms in such 
a way that farms with a currently high availability of renewable energy power carry 
an increased computing load.

In [13] the authors present a central control approach for a VPP consisting of 
several wind turbines, solar power plants, bio power plants and an energy storage 
device. The approach regulates the power output of the individual power plants as 
well as the energy exchange with the energy storage device in order to optimize the 
entire power output of the VPP to a selected target objective. The authors present 
several target objectives that a system operator can select from including, but not 
limited to, profit maximization and operating reserve maximization.

The usage of CI techniques is also increasingly widespread in the field of VPPs. 
However, these are mainly used for dimensioning and prediction of VPPs. The 
dimensioning approaches are also mainly aimed at covering local consumption as 
well as possible [14–16] or maximizing the profit on the electricity market [17]. In 
the field of forecasting, artificial neural networks are increasingly used to determine 
the expected power output [18, 19] or the flexibility potential [20] of a VPP, for 
example.

A representative example for a CI based optimization approach is given in [21]. 
Here the authors use an evolutionary optimization algorithm called “Grenade Explo-
sion” to optimize the output of power buses against six target objectives. These 
objectives include, but are not limited to, fuel costs, the voltage deviation and green-
house gas emissions. Furthermore, several approaches are shown to consider the 
various objectives in a bundled way.

A second representative CI based optimization example is given in [22]. Here, the 
authors use a three-step optimization process using PSO, among other components. 
This process uses electric vehicles as energy storages and controllable consumers to 
optimize the compensation cost, the abandoned energy cost and the operation rev-
enue of the VPP. It is also possible to combine the three objectives in a weighted 
manner.

1.3 � Contribution of this paper

As previously mentioned we propose in this paper an abstract control methodology 
for a VPP that can easily be applied to any given (also hierarchical) VPP structure 
and target objectives. To demonstrate the effectiveness of the control methodology, 
three exemplary target objectives are considered: the minimization of operating 
reserve requirements, the minimization of CO2 emissions and the maximization of 
the power plant flexibility which will be explained in separate sections. To imple-
ment this control methodology efficiently, we used three metaheuristics form the CI 
field of evolutionary computation algorithms: simulated annealing (SA), particle 
swarm optimization (PSO) and ant colony optimization (ACO). To legitimize the 
use of such advanced CI metaheuristics, we also applied gradient descent optimiza-
tion (GDO) as an alternative non-CI approach.

Finally, we want to mention what in our opinion are the new contributions of this 
methodology compared to the state of the art:
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–	 Abstract view: Most of the existing optimization approaches for VPPs are based 
on a fixed power plant composition. The authors assume a given number of 
power plants with predefined power plant types, such as a combination of a solar 
power plant farm with a diesel generator as well as predefined, fixed target objec-
tives. This makes it difficult to transfer the approaches to VPPs that have different 
sizes, use different types of power plants or pursue different target objectives. In 
our approach, we present an abstract view that allows the neutral combination 
and optimization of different power plants types as well as a neutral formulation 
of the target objectives to be optimized. Thus, the approach can be easily trans-
ferred to VPPs of different sizes and power plant compositions.

–	 Robustness against large VPPs: Many of the approaches shown, such as in [13], 
have the problem that the complexity of the optimization process increases sig-
nificantly with larger VPPs. Through the abstract view in our approach and the 
usage of CI metaheuristics in the optimization process, we are able to efficiently 
control even larger VPPs.

–	 Active control of renewable energy sources: In the active control of VPPs, most 
approaches take the power output of renewable energy sources as “given” and 
only optimize the control of conventional power plants. However, this results in 
a loss of optimization potential, especially with regard to target objectives such 
as the operating reserve requirements. In our abstract approach, we don’t distin-
guish between the different power plant types inside the VPP and thus automati-
cally include the active control of renewable energy sources in the optimization 
process. Thereby we’re able to further increase the optimization potential of the 
VPP.

1.4 � Organization of the paper

The paper is structured as follows: Sect.  2 gives an overview of the developed 
abstract control methodology. Section  3 describes the exemplary target objectives 
pursued here as well as their weighted combination. Section 4 explains how the con-
trol methodology is built up to the different CI metaheuristics. In Sect. 5, an explo-
ration of the control methodology is done in two steps: first the functionality of the 
methodology is evaluated in terms of a concrete example scenario. Next, a com-
parison of the different metaheuristics is carried out. Finally, Sect. 6 summarizes the 
results and gives a brief outlook on future planned extensions.

This paper is an extension of our previously published control methodology for 
flat VPPs using SA [23].

2 � Methodology

2.1 � Optimization approach

This section explains the basic functionality of our control methodology proposed 
in this contribution. The basic goal is to create an optimized control configuration 
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for a VPP. In this context we define a VPP as the logical combination of several 
decentralized power plants of any type and in any number, which are individually 
controlled by a central unit (using the presented control methodology). In addi-
tion, it is possible to combine several power plants into a smaller VPP and thus 
generate a hierarchical structure. The main purpose of the control configuration 
generated by the methodology is to adapt the electric power output of the VPP 
so that any given target objective will be minimized. The generation of the con-
trol configuration is based on forecasts (e.g. weather forecasts for wind turbines 
and solar power plants) as well as simulations (e.g. load demand simulations for 
consumers and power output simulations for power plants). A typical time hori-
zon for this optimization would be 1 day: on a given day, the methodology col-
lects the forecast data for the next day, simulates the expected power output of the 
power plants in the VPP as well as any required consumer load demands on the 
basis of this data, and finally determines the control configuration for the next day 
based on the chosen target objectives to help the power plant operators with their 
planning work. If the actual environmental conditions of the next day differ from 
the forecasts made (e.g. different weather conditions), the power plant operators 
can decide at any time whether a new control configuration should be created on 
the basis of the updated data (e.g. if there is a high demand on the accuracy of the 
power output) or the old configuration should be retained.

This contribution is focused on the development of the control methodology. 
The forecast data required for this optimization were thus obtained from external 
sources, which are identified at the appropriate places. All simulations required 
for the optimization (both of power plants and consumers) were generated with 
a simulation environment developed in previous works [24]. The power output 
of the VPP is optimized in time steps of 15  min (according to the frequency-
response reserve), resulting in a total of 96 time points for 1 day, but other time 
intervals are also possible. The control methodology has been developed in such 
a way that it can handle any type of power plant. For the purpose of clarity, how-
ever, only three types of power plants are considered in this contribution: wind 
turbines, solar power plants and combined heat and power units (CHP). Power 
plants that are within the control logic of a VPP are referred to as sub-plants in 
the following.

Figure 1 shows an abstract representation of the optimization procedure. To alter/
optimize the total power output of the entire VPP (here: VPP one), each time point 
from left to right (here: t1–t6) is processed successively in a separate call of the con-
trol methodology. The control methodology optimizes the power output of VPP one 
at this time point by setting a desired power output for all its sub-plants (here: wind 
turbine one, VPP two and solar power plant one). If one or more of the sub-plants 
are another VPP (in a hierarchical structure; here: VPP two), the control methodol-
ogy is called recursively for these VPPs until the entire hierarchical tree has been 
processed. The desired power output for the sub-plants is determined according to 
the chosen target objectives. Once the control methodology has been called for all 
time points, an optimized power output for VPP one has been found and its dis-
tribution to the individual sub-plants has been carried out at the same time. The 
determined power outputs of the individual sub-plants inside the hierarchical tree 
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can then be used to generate control signals and thus implement the solution for the 
considered time period.

2.2 � Abstraction of power plant types

In order to enable the optimization of any VPP, each sub-plant type provides a series 
of functions dependent on the time t, defining an abstract interface for the usage of 
the methodology. These functions are explained below.

The functions Pi,min(t) and Pi,max(t) represent the theoretical minimum and maxi-
mum power production limits of a sub-plant i at a time point t (in Watt). The mini-
mum power limit of the sub-plants is usually zero—since they can all be switched 
off—but is still provided here as an independent function in order to maintain com-
patibility for any subsequent adjustments. In the case of a CHP unit, the maximum 
power limit at any time point corresponds to the rated power of the engine. In case 
of solar power plants and wind turbines, the maximum power limit is determined by 
the previously executed simulation of those power plants [23].

The functions P̃i,min(t) and P̃i,max(t) represent the actual minimum and maximum 
power production limits accordingly (in Watt). The differences to the theoretical 
limits are restrictions due to the control requirements of a sub-plant that arose from 

Fig. 1   Optimization process of the control methodology
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control decisions at earlier time points. Such restrictions can be, for example, the 
minimum running time and minimum cooling time of a CHP unit [23].

The function Pi,s(t) determines the step size of a sub-plant i at a time point t (in 
Watt) and corresponds to the minimum power quantum by which the power output 
of a sub-plant can be increased or decreased within its limits. In this way, the differ-
ent control methods of the various sub-plant types can be mapped [23].

Finally, the function Ci(t) determines the specific CO2 emissions of a sub-plant 
i at time point t. The specific CO2 emissions describe the amount of CO2 which is 
produced by the sub-plant’s power generation process over time (in g/kWh). For a 
CHP unit, this value depends on the fuel which is used to power the engine. Since 
wind turbines and solar power plants don’t produce any CO2 during power genera-
tion but only by their construction, this value would normally be fixed at zero for 
both sub-plant types in a real-world application scenario. However, the presented 
scenarios in this paper use values greater than zero (and thus assume that those sub-
plant types produce CO2 during power generation) in order to better demonstrate the 
effect of the various target objectives. To keep these fictional CO2 emissions as real-
istic as possible, the amount of CO2 produced during the construction was divided 
by the average amount of energy produced during their typical lifespan.

To illustrate these functions, Fig. 2 shows an exemplary power curve for a CHP unit 
with a rated power output of 100  kW and the associated function values. Since the 
theoretical power limits and the step size are constant over the entire time series, they 
are given only once (in the upper left corner). The actual power limits are given at any 
time point by a tuple of minimum and maximum limit. At the beginning of the time 
series it is assumed that the CHP unit is not yet affected by any control restrictions. 
Consequently, the theoretical and actual limits coincide. At 00:30, the control method-
ology decides to switch the CHP unit from off to on by adding the step size once to the 
power output value. From here on, the minimum running time of—for example—1 h 
takes effect. The CHP unit therefore must not be switched off again during the follow-
ing three time points. The CHP unit passes this information to the control methodology 
by setting the actual minimum power limit to 100 kW and thus reducing the power 
mobility (maximum minus minimum limit) to zero. The control methodology therefore 
cannot change the power output of the CHP unit during these time points. From 01:30 

Fig. 2   Exemplary curve of the functional values [23]
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on, the minimum running time is satisfied and the CHP unit resets the minimum power 
limit to zero: The power mobility of the sub-plant increases and the control methodol-
ogy can switch off the CHP unit again (if necessary). After the switch-off process at 
01:30, the minimum cooling time of—for example—1 h applies accordingly. Here, the 
CHP unit sets the actual maximum power limit to zero in order to prevent a switch-on 
process during the next time points. The CHP unit could do the same if it has to be 
switched on or off due to an additional thermal load demand that needs to be satisfied. 
A wind turbine or a solar power plant can use the actual power limit accordingly to 
transmit its simulated maximum possible power output to the control methodology at 
any time point [23].

The abstract usage of these functions allows a simple extension of the methodology 
by new power plant types, since a new type only has to provide these functions in order 
to be integrated into the process. This significantly increases the flexibility of the con-
trol methodology.

2.3 � Formal capturing of the power generation process

Using the previously defined abstract interface, it is possible to define the power output 
Pi(t) of a sub-plant i in general [23]:

The power output of a sub-plant i is the sum of its actual minimum power limit and 
a natural multiple ki(t) of its step size (Eq. 1), which is hereinafter referred to as the 
control coefficient. In order to not exceed the actual maximum power limit, an upper 
border is defined for the control coefficient ki(t) (Eq.  2). Assuming that the VPP 
consists of a total of N sub-plants, the total power output P(t) of the VPP is given by 
[23]:

The resulting sum contains N values for the step sizes and the control coefficients. 
These can alternatively be formulated as vectors to transform the problem into a 
solvable form for the CI metaheuristics [23]:

(1)Pi(t) = P̃i,min(t) + ki(t) ⋅ Pi,s(t)

(2)ki(t) ∈ ℕ0 ∶ ki(t) ≤

⌊

P̃i,max(t) − P̃i,min(t)

Pi,s(t)

⌋

(3)P(t) =

N
∑

i=1

Pi(t)

(4)P(t) = �(�) ⋅ �
�
(�) +

N
∑

i=1

P̃i,min(t)

(5)�(�) =
(

k1(t), k2(t),… , kN(t)
)
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In the shown form, the CI metaheuristics can control the sub-plants and therefore 
optimize the power output by simply modifying the coefficient vector �(�)

2.4 � Realization of the hierarchy concept

As already mentioned, it should be possible to consider hierarchical power plant struc-
tures in which a VPP can contain a combination of several smaller VPPs and/or simple 
power plants. The need of hierarchical VPPs results from the fact that often smaller 
VPPs already exist with their own, static control mechanisms. If such a VPP has to be 
combined with other power plants to form a larger VPP, the higher-level control system 
can only set target values for the smaller network as a whole and not directly influ-
ence its sub-plants. An example of this would be an existing network of solar power 
plants and CHP units in a village which should be combined with new built wind tur-
bines nearby the village: a higher-level control system can possibly only perform an 
optimization for the wind turbines and the smaller village network as a whole, but not 
for individual solar power plants/CHP units inside the village. In a hierarchical VPP 
model each sub-VPP can define whether the control methodology can also access its 
sub-plants or not. If not, a power output value is only determined for the sub-VPP as a 
whole and the recursive call of the control methodology (as shown in Fig. 1) is omitted.

To implement the hierarchical model, a sub-VPP must also provide the abstract 
interface for simple sub-plants presented in Sect. 2.2. Since the control methodology 
only uses this interface for the optimization, it doesn’t have to distinguish between a 
simple power plant and a smaller VPP if both provide the previously interface. The 
methodology therefore uses the idea of the composite pattern, which is a commonly 
used design pattern for hierarchical structures in computer science [25].

The theoretical and actual power output limits of a VPP refer to the sum of all its 
sub-plants:

(6)�
�
(�) =

(

P1,s(t),P2,s(t),… ,PN,s(t)
)

(7)PVPP,min(t) =

N
∑

i=1

Pi,min(t)

(8)PVPP,max(t) =

N
∑

i=1

Pi,max(t)

(9)P̃VPP,min(t) =

N
∑

i=1

P̃i,min(t)

(10)P̃VPP,max(t) =

N
∑

i=1

P̃i,max(t)
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However, the specific CO2 emissions of a VPP must be determined differently: since 
the actual emissions vary depending on the control state of the sub-plants, they can-
not be simply added up, but must be estimated during the optimization process.

Figure 3 shows an example of this problem for a hierarchical model. The top-
level VPP (VPP one) consists of two smaller VPPs (VPP two and three) which 
both in turn consist of one wind turbine and one CHP unit. The specific CO2 
emissions Ci(t) are given both for the CHP units and the wind turbines and are 
the same for VPP two and three. In the first optimization step, a load demand L(t) 
of 1000 W to be met by the VPP is split from VPP one to VPP two (400 W) and 
VPP three (600 W). In the second step VPP two splits the required power to wind 
turbine one (300 W) and CHP unit one (100 W). In the third step, the power is 
split from VPP three to wind turbine two (100 W) and CHP unit two (500 W). In 
order to minimize the overall CO2 emissions, the specific emissions of VPP two 
and three must be known at the first step to divide the load demand appropriately 
between them. However, those values can only be determined precisely after step 
two and three: since the load demand was stronger distributed to the CHP unit in 
VPP three than in VPP two, the specific CO2 emissions of VPP three are higher 
than those of VPP two, although they both have the same structure. In order to be 
able to carry out the optimization in step one, the specific CO2 emissions of VPP 
two and three must be estimated in advance.

The larger the difference between the actual minimum and maximum power 
limit of a sub-plant i is (i.e. the more electricity it can generate), the more likely 
the power output of this sub-plant will be increased by the control methodology 
to satisfy the target objectives. Therefore, the specific CO2 emissions of a VPP 
CVPP(t) can be approximated by a weighted sum of the specific emissions of its 
sub-plants, using the actual power limit difference of the sub-plants as a weight-
ing factor:

Fig. 3   Example of the hierarchical control methodology
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The situation is similar with the step size of a VPP PVPP,s(t) : since it represents the 
control methods of the various power plant types, these values also cannot simply be 
summed up. In this paper, the smallest step size among all the sub-plants is selected 
for the entire VPP as it turned out to produce the best results:

3 � Target objectives

Using the formulations in Sect. 2.3, the methodology aims to minimize a given target 
objective E(t) by adjusting the coefficient vector �(�) and thus manipulating the power 
output P(t) of the VPP:

To illustrate the methodology and how the abstract interface can be used to formu-
late objectives, we have opted for a weighted combination of three individual target 
objectives in terms of error functions: the minimization of operating reserve require-
ments, the minimization of CO2 emissions and the maximization of the power plant 
flexibility, which will be explained further in the following sections. To combine 
the individual objectives in a weighted manner, each objective will be scaled to the 
interval [0, 1]. A scaled value of zero represents the best matching result; a value of 
one represents the worst matching result.

3.1 � Minimization of operating reserve requirements

In order to compensate the increasing grid instability caused by renewable energy 
sources, transmission system operators need a large amount of operating reserves to 
buffer any fluctuations, which causes high costs. To minimize the need for operating 
reserves and thus the costs, a VPP should try to reproduce a predicted load demand as 
accurately as possible so that ideally no operating reserve is needed anymore. There-
fore, the following error function O(t) determines how much the power output of a VPP 
P(t) deviates from a given load demand L(t) [23]:

(11)CVPP(t) =

∑N

i=1

��

P̃i,max(t) − P̃i,min(t)
�

⋅ Ci(t)
�

∑N

i=1

�

P̃i,max(t) − P̃i,min(t)
�

(12)PVPP,s(t) = min
1≤i≤N

Pi,s(t)

(13)minimize
�(�)

E(t)

(14)O(t) =

(

P(t) − L(t)

max(P(t), L(t))

)2
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3.2 � Minimization of CO
2
 emissions

An additional target objective is the minimization of CO2 emissions. When repro-
ducing a load demand, sub-plants with low specific CO2 emissions should be regu-
lated up, whereas sub-plants with high specific CO2 emissions should be regulated 
down. One indicator for the objective error value therefore is the total amount of 
CO2 produced by the all sub-plants. To approximate the emissions of a sub-plant i, 
the power produced is multiplied by the specific CO2 emissions Ci(t) of the sub-plant 
i. The emissions of the entire VPP M(t) correspond to the sum of all its sub-plants 
(see Eq. 15) [23]. Finally, the emission amount M(t) is scaled by dividing it by the 
total possible amount of CO2 emissions for that time point (Eq. 16):

3.3 � Maximization of power plant flexibility

The maximization of the power plant flexibility has the purpose to define the control 
of a sub-plant i in such a way that it can act as freely as possible for subsequent time 
points. Examples of this are the minimum running time and the minimum cooling 
time of a CHP unit: if a CHP unit is switched on or off at a time point, it must not be 
switched again over a certain time period. This limits its flexibility, which leads to a 
loss of possibly better states for the following time points. This in turn may result in 
an overall worse outcome for the optimization of the entire time period. It therefore 
makes sense to keep power plants as flexible as possible.

In order to determine to what extent a control decision at a time point t affects the 
flexibility of the subsequent time points on average (with a total of T time points), 
the ratio between the theoretical and actual power limit of a sub-plant i is deter-
mined for all subsequent time points. Since the two limits differ only in the influence 
of control decisions, the greater the difference between the limits is, the more lim-
ited is the sub-plant. Based on the assumption that a control decision for a sub-plant 
i was made at time point t, the impact on the sub-plant flexibility Fi(t) is calculated 
as shown in Eq. (17) [23]:

The fractional term within the sum is formed so that a value zero results if the 
theoretical and actual power limits of sub-plant i coincide and thus there are no 

(15)M(t) =

N
∑

i=1

Pi(t) ⋅ Ci(t)

(16)NM(t) =
M(t)

∑N

i=1
P̃i,max(t) ⋅ Ci(t)

(17)
Fi(t) =

1

T − t
⋅

T
∑

t�=t+1

(

Pi,max(t
�) − Pi,min(t

�)

)

−

(

P̃i,max(t
�) − P̃i,min(t

�)

)

Pi,max(t
�) − Pi,min(t

�)
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restrictions due to the control decision made. In the other extreme case, when sub-
plant i can no longer be controlled at all in subsequent time points due to the control 
decision (the difference of the actual maximum and minimum power limit results in 
zero), a value of one is returned. This fractional term is calculated and averaged for 
all time points following the currently considered time point t (all time points that 
are potentially affected by the control decision).

The flexibility effects for the entire VPP F(t) can be determined as the average 
value of all sub-plants [23]:

3.4 � Combination of the target objectives

The final error function E(t) to be optimized by the methodology is made up of the 
weighted sum of the three target objectives presented above. For this purpose, three 
weighting coefficients ( WO,WM ,WF ) in the interval [0, 1] are defined which a sys-
tem operator could use to define what objectives have to be considered and to what 
extent [23]:

For the scenarios considered in this paper, a weighting of 80% for the operating 
reserve requirements WO , 10% for the CO2 emissions WE and 10% for the power 
plant flexibility WF was assumed. The minimization of the operating reserve require-
ments has the largest weighting because serving the load demand is considered as 
the main objective of a VPP here. This means that the VPP should always try to 
cover the load demand as good as possible. The other two objectives serve as sec-
ondary targets to fulfill the load demand as flexible and CO2-neutral as possible.

4 � Considered metaheuristics

According to Sect. 2.3, a VPP can be controlled by manipulating the coefficient vec-
tor �(�) . Therefore, the following sections explain how to adjust the coefficient vec-
tor to optimize the VPP power output using the three CI metaheuristics: SA, PSO 
and ACO. GDO is also considered as a traditional, non-CI algorithm to demonstrate 
the necessity of the other three CI metaheuristics. To illustrate the application to the 
optimization problem, the process for each metaheuristic is additionally displayed in 
pseudo code. Furthermore, a Grid Search parameter tuning process was performed 
for all four approaches in order to find the best configurations for the optimiza-
tion problem. The chosen parameters are presented at the end of the corresponding 
sections.

(18)F(t) =
1

N
⋅

N
∑

i=1

Fi(t)

(19)E(t) = WO ⋅ O(t) +WM ⋅ NM(t) +WF ⋅ F(t)



532	 S. Rädle et al.

1 3

4.1 � Simulated annealing

SA is a metaheuristic that mimics the cooling process of hot metals to iteratively search a 
state space. The cooling process is expressed by the fact that at the beginning also worse 
states (with regard to the target objective) found are adopted as the best state by chance. 
However, this probability decreases with the number of completed iterations. By adopting 
worse states at the beginning, local minima of an (to be optimized) error function can be 
overcome in order to increase the chance of finding the global minimum. The overall best 
state found represents the final solution of the optimization problem. For this purpose, SA 
randomly changes the current best state slightly in each iteration step. If the new state is 
better than the old one, it will be adopted in any case. If not, it will still be adopted with 
the probability described above. When determining the probability, a temperature value 
is included which is reduced after each iteration step, simulating the cooling process [26].

A possible coefficient vector of the VPP represents a state for the SA metaheuris-
tic. SA selects a random vector element at each iteration step and enlarges/reduces 
it. This increases/reduces the power output of the corresponding sub-plant in the 
VPP, which results in an alternative state to be evaluated with respect to the target 
objective E(t). An exponential variant was chosen for the cooling process as shown 
in Eq. (20). The optimization process terminates as soon as the current temperature 
at iteration j �j is smaller than the minimum temperature �min [23].

 

 
The pseudo code 1 illustrates the exact procedure. The tuned parameters for SA are: 
481.0 for the initial temperature �init and 2.76e−8 for the minimum temperature 
�min . The exponential cooling factor � is automatically determined to fit the desired 
number of iterations.

(20)�j = �init ⋅ �
j
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4.2 � Particle swarm optimization

PSO is a metaheuristic which—similar to SA—iteratively searches a state space 
for the best possible solution. However, PSO uses aspects of swarm intelligence by 
observing several states simultaneously; so-called particles. Each particle has a posi-
tion xi(j)—the currently selected state in the state space—and a velocity vi(j) that 
points in the direction of an expected better state. At the beginning of an iteration, 
each particle is shifted by its velocity to a different state in the state space, which is 
then evaluated against the target objective E(t). After doing this, each particle also 
updates its best state ever found if necessary. At the same time, the globally (across 
all particles) best found state is updated if necessary. Finally, the velocity of each 
particle is updated by the following Eq. (21). Here, both the position of the locally 
x̂i(j) and globally g(j) best found state as well as the current particle state xi(j) , vari-
ous weighting factors w, c1, c2 and random values r1, r2 are included. At the end the 
global best state found is the proposed solution for the optimization problem [27].

A possible state xi(j) of a particle is represented by the coefficient vector. The parti-
cle velocity vi(j) is represented by a difference vector of the same length. When add-
ing a difference vector to a coefficient vector (displacement of a particle), care must 
be taken that no element of the new coefficient vector exceeds its defined maximum 
value (as expressed in Eq. 2). 

(21)vi(j + 1) = w ⋅ vi(j) + c1 ⋅ r1 ⋅
[

x̂i(j) − xi(j)
]

+ c2 ⋅ r2 ⋅
[

g(j) − xi(j)
]
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The pseudo code 2 illustrates the exact procedure. The tuned parameters for PSO 
are: 14 particles, 1.1 for the weight of the old velocity (w), 0.62 for the weight of the 
local best state ( c1 ) and 0.94 for the weight of the global best state ( c2).

4.3 � Ant colony optimization

ACO is a metaheuristic that is based on the natural behavior of ant colonies. If—for 
example—ants are looking for food, each ant leaves a pheromone trail on its way, 
which evaporates over time. If an ant has found a particularly short (good) path, 
the concentration of the pheromone track increases faster, which leads other ants 
to take this path as well. Similarly, ACO uses a directed graph with several nodes 
and edges connecting those nodes. This graph is then traversed by several ants from 
node to node over the edges. The resulting node sequence generated by an ant repre-
sents a possible solution to the optimization problem. The structure of the graph is 
created specifically for the optimization problem and must be such that all possible 
solutions of the problem are represented by a path within the graph. The goal is to 
find a preferably good path through the graph (a good solution for the optimization 
problem). To increase the chance that an ant finds a good path, each edge ekl from 
node k to node l is provided with a pheromone value �kl which influences the prob-
ability pkl that an ant will choose that edge. The probability for an edge is calculated 
according to Eq. (22) using a probability constant � and the list of all edges starting 
from node k: Sk . After all ants have traversed the graph (one iteration), each ant a 
evaluates its found path with regard to the target objective E(t). Based on the objec-
tive score, each ant increases the pheromone values of all edges on its path using 
a pheromone constant � . The better the score of a path, the more the pheromone 
values of the corresponding edges are increased. At the same time, all pheromone 
values inside the graph are evaporated (decreased) using an evaporation constant � . 
These two steps to adjust the pheromone values are represented by Eq. (23). By iter-
atively increasing and evaporating the pheromone values, edges that are often part of 
a good solution get an increased probability over time. At the same time the proba-
bility of edges which are rarely part of a good solution is continuously reduced. This 
adaptive behavior should result in preferably good paths being found as the number 
of iterations increases. After all iterations are finished, the best path found overall is 
the solution to the optimization problem [28].

In order to adapt the presented methodology to the ACO metaheuristic, a graph 
with several layers is formed, whereby each layer represents a sub-plant of the 

(22)pkl =

�

�kl
��

∑

�km∈Sk

�

�km
��

(23)�kl =(1 − �) ⋅ �kl +

{ants with ekl in path}
∑

a

[(1 − E(t)) ⋅ �]
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VPP (see Fig. 4). The number of nodes in a layer corresponds to the maximum 
value of the control coefficient for the sub-plant. Each node of a layer has directed 
edges to all nodes of the next layer, allowing an ant to form any path between 
the layers. The nodes of a selected path represent the selected control coefficient 
values of the sub-plants and thus their power output. To generate such a path, an 
ant starts at a random node of the first layer and works its way up to the last layer. 
The pseudo code 3 illustrates the exact procedure. 

The tuned parameters for ACO are: 13 ants, 0.32 for the evaporation constant 
� , 0.25 for the probability constant � and 9.58 for the pheromone constant �.

Fig. 4   Structure of the ACO VPP graph
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4.4 � Gradient descent optimization

GDO is a common non-CI optimization algorithm and popular especially in the 
training process of neural networks. The idea of GDO is to find a minimum of a 
given function by altering the input variables in the direction of the negative gra-
dient. This causes the function settle around the closest minimum of the function 
from a given starting position [29].

One drawback of GDO is that it can’t overcome any local minima of the func-
tion to be optimized and thus stays at the nearest minimum. This especially may 
lead to poor results when optimizing functions which have many local minima.

For the given optimization problem, a vanilla gradient descent variant was 
chosen which manipulates the input variables of a given function by the product 
of the negative gradient and a step factor � [29]. The algorithm manipulates the 
elements of the coefficient vector as shown in Eq. (24) using the gradient of the 
error function E(t).

Additionally, the step factor � is reduced by a step change �� after each iteration so 
that the size of the steps decreases over time. This should prevent the coefficients 
from oscillating around the minimum.

The tuned parameters for GDO are: 0.154 for the step factor � and 0.057 for the 
step change ��.

5 � Validation

The validation of the optimization described in the previous sections will take place 
in two steps: in the first step, the general functionality of the control methodology—
both with a flat and a hierarchical VPP—is demonstrated in terms of an example 
scenario using the PSO metaheuristic. In the second step, a comparison of all the 
selected metaheuristics takes place in order to examine their suitability for the opti-
mization problem.

5.1 � Validation of functionality

To validate the functionality, Fig. 5 shows an exemplary curve for 1 day of a load 
demand to be met, the optimized power curve of a flat VPP as well as the power 
curves of its three sub-plants: a wind turbine, a solar power plant and a CHP 
unit. A rated output of 100 kW and a minimum running time and cooling time 
of 90  min each were assumed for the CHP unit. The maximum possible power 
output of the solar power plant and the wind turbine is based on simulation data 
for the concrete weather conditions on 08-25-2016 in the region of Stuttgart, Ger-
many [30] and shown in Fig.  6. The load demand is based on a simulation for 

(24)k�
i
(t) = ki(t) − � ⋅

�E(t)

�ki(t)
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residential areas [24]. For the optimization of the CO2 emissions, the specific CO2 
emissions of the sub-plants listed in Table 1 were assumed.

Comparing the load demand with the power curve of the VPP in Fig. 5, it can 
be seen that the power output reproduces the load demand very well at times 
when there is sufficient power available at all. The range from approximately 
13:00 is of interest: as soon as the weather conditions make it possible to increas-
ingly receive power from the wind turbine, the control methodology decides to 
gradually reduce the output of the solar power plant for this purpose, since its 
specific CO2 emissions are higher than those of the wind turbine. An alternative 
could be to switch off the CHP unit to further reduce the CO2 emissions. How-
ever, this would contradict the target objective of the power plant flexibility, since 
the occurring minimum cooling time would limit the CHP unit for several time 
points. Looking at the curve from approximately 15:15 on, an area can be seen in 
which the load demand can be completely covered by the wind turbine. Here even 
the CHP unit was switched off (despite the fact that this results in a limited flex-
ibility), since the exclusive covering of the load demand by the wind turbine can 
massively reduce the CO2 emissions. As soon as the available power of the wind 
turbine drops, the control methodology switches the CHP unit on again, although 
this leads to a further restriction of its flexibility (minimum running time) and an 
increase of CO2 emissions. However, this is necessary in order to be able to suf-
ficiently cover the load demand, which is the dominant part with a weighting of 
80%. These examples clearly demonstrate the trade offs of the target objectives 
and thus the importance of their chosen weightings.

In order to evaluate the results in relation to the structure of a VPP, a compari-
son between a flat and a hierarchical VPP is given in Fig. 7. Both VPPs consist 
of the same 30 sub-plants: ten wind turbines, 15 solar power plants and five CHP 

Fig. 5   Exemplary power curves for 1 day
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units. The sub-plants have the same characteristic features as in the previously 
described scenario. The load demand has been upscaled so that the ratio of aver-
age consumption and average production is the same in both scenarios. In the flat 
VPP variant, all 30 sub-plants were evenly combined into one VPP. The hierar-
chical VPP consists of seven smaller sub-VPPs: one sub-VPP containing the ten 
wind turbines, one sub-VPP containing ten solar power plants and five sub-VPPs 
each containing one solar power plant and one CHP unit. This design represents 
a rural structure with several private houses and/or company buildings with CHP 
units and solar power plants on the roof as well as some extra-local, bigger solar 
power plants and wind turbines.

As it can be seen in Fig.  7, the optimized power output of the hierarchical 
VPP reaches almost the same values as the flat variant, which demonstrates that 
the control methodology is able to optimize an estimation-based hierarchical VPP 
nearly as efficiently as a flat VPP. The average error value E(t) for a time point 
is 0.057 for the flat VPP (0.022 for O(t), 0.251 for NM(t) and 0.135 for F(t)) and 
0.077 for the hierarchical VPP (0.044 for O(t), 0.231 for NM(t) and 0.204 for 
F(t)).

Fig. 6   The maximum available renewable energies

Table 1   Assumed specific CO
2
 

emissions of the sub-plants [31]
Power plant type Specific CO

2
 

emissions (g/
kWh)

CHP unit 607.6
Wind turbine 15.7
Solar power plant 55.8
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5.2 � Comparison of the metaheuristics

To compare the selected metaheuristics, a scalable test environment with a collec-
tion of flat and hierarchical VPPs containing different numbers of sub-plants was set 
up. The more sub-plants a VPP contains, the larger is the possible state space and 
the complexity for the control methodology. Furthermore, each of the four selected 
approaches was applied to all VPPs with different iteration numbers.

Figure 8 shows the results obtained from that test environment. The figure con-
sists of four sub-charts for each approach (SA, PSO, ACO and GDO). For each 
approach, multiple combinations of a VPP and an iteration number are considered. 
A VPP consists of several wind turbines (“#WT”), solar power plants (“#SPP”) and 
CHP units (“#CHP”). Each of the three power plant types has either 10, 30 or 50 
units inside the VPP, resulting in 27 different VPP configurations per approach. Fur-
thermore, each VPP configuration was successively optimized with 100, 500 and 
2000 iterations (“#Iteration”), resulting in a total of 81 test cases per approach. For 
each test case, a time span of 1 day was optimized with 10 consecutive runs and the 
average error value E(t) over all time points and runs was stored. The stored error 
value for each test case is displayed in the figure with a number (rounded to two 
decimal places) and a color. The day to be optimized was randomly selected with a 
uniform distribution from the year 2016 and modelled analogously to the previous 
examples with weather data, power plant simulations and consumer simulations.

The comparison of the four approaches shows that PSO and ACO could reliably 
produce good results independent of the iteration number and VPP size with only 
small fluctuations of the error value due to the heuristic aspect of the algorithms. SA 
also achieves good error values, but requires more iterations as the size of the VPP 
increases. This is because the logic of SA only allows small changes of the state 

Fig. 7   Comparison of a flat and a hierarchical VPP
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within an iteration. When the size of the state space increases, SA therefore needs 
more such small changes to achieve a good result. The PSO and ACO logics ensure 
that the size of the state changes automatically adapts to the growing state space and 
thus perform better. GDO doesn’t manage to achieve comparable good results to the 
other three metaheuristics. Even with small VPPs and high iteration numbers, worse 
error values result. The randomly looking distribution of good and bad error values 
for GDO shows that the error function has several local minima which GDO cannot 
overcome.

Since PSO and ACO produce similarly good scores when comparing the optimi-
zation results, a further evaluation was done with these two approaches regarding 
the runtime to identify the faster approach.

Figure 9 shows the measured runtime values (in seconds) divided according to 
the number of sub-plants in the VPP (“#Power plant”) and the number of itera-
tions (“#Iteration”) used. The measured time for each combination of iteration 
number and count of sub-plants inside the VPP results as the average from ten 
consecutive runs. As it can be seen in the diagram, the runtime of ACO increases 
significantly more with increasing numbers of sub-plants and iterations. At the 
smallest combination (with three sub-plants in the VPP and 80 iterations) the 
PSO approach is twice as fast as the ACO approach (approximately 13–26  s). 
At the largest combination (with 150 sub-plants in the VPP and 2000 iterations) 
the PSO approach is already four times faster than the ACO approach (approxi-
mately 16–64 s). Thus, PSO represents the more efficient optimization approach, 
especially for larger VPP configurations and is—according to the opinion of the 
authors—also the overall best approach for this scenario.

Fig. 8   Comparison of the metaheuristics
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6 � Conclusion

This paper describes an abstract control methodology for a VPP that can be eas-
ily applied to VPPs of different size and composition which can potentially pur-
sue various target objectives. To apply the methodology to different power plant 
types, an abstract interface has been defined which each power plant type can 
implement according to its specific control constraints. Since the methodology 
only uses this interface to generate the control configuration, various power plant 
types in different (and hierarchical) compositions and sizes can be optimized 
neutrally. The three exemplary target objectives pursued by the methodology in 
this paper included the minimization of operating reserve requirements, the mini-
mization of CO2 emissions and the maximization of the power plant flexibility, 
which were combined in a weighted manner to perform a systematical trade-off 
analysis. To implement the methodology, three exemplary Computational Intel-
ligence metaheuristics where used: Simulated Annealing, Particle Swarm Opti-
mization and Ant Colony Optimization. To prove the necessity of such complex 
metaheuristics for the optimization problem, a more traditional approach was also 
regarded and compared to the others, Gradient Descent Optimization.

An exemplary scenario of a concrete VPP composition for 1 day showed that 
the methodology is able to perform a highly accurate trade-off optimization of the 
VPP based on the selected weighting of the target objectives. A similar example 
for 1 day with a comparison between a flat and a hierarchical VPP showed that 
the methodology achieved only slightly worse results when optimizing the hierar-
chical variant.

Finally, a test environment containing 27 different flat and hierarchical VPPs 
showed that the methodology is able to optimized various VPP sizes and compo-
sitions without knowing its exact structure. Since the test environment is further 

Fig. 9   Runtime comparison of PSO and ACO
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divided according to the optimization algorithm and iteration number used, it 
could be shown that Particle Swarm Optimization and Ant Colony Optimization 
generated good results for all test cases independent of the iteration number. A 
direct comparison of these two metaheuristics with respect to their running time 
showed that Particle Swarm Optimization has a higher performance and is there-
fore considered as the best choice.

To further increase the optimization potential of the methodology, a second 
abstract interface is to be integrated in the future, which allows the neutral con-
sideration of different energy storage technologies (e.g. battery storages, hydro-
gen storages etc.). The goal of this interface and the methodology will be to 
determine a temporal redistribution of the energy quantities between the energy 
storages and the VPP in order to fulfill the target objective even more accurately.
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