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Abstract
The combinatorial integral approximation (CIA) decomposition suggests solving 
mixed-integer optimal control problems by solving one continuous nonlinear control 
problem and one mixed-integer linear program (MILP). Unrealistic frequent switch-
ing can be avoided by adding a constraint on the total variation to the MILP. Within 
this work, we present a fast heuristic way to solve this CIA problem and investigate 
in which situations optimality of the constructed feasible solution is guaranteed. In 
the second part of this article, we show tight bounds on the integrality gap between 
a relaxed continuous control trajectory and an integer feasible one in the case of two 
controls. Finally, we present numerical experiments to highlight the proposed algo-
rithm’s advantages in terms of run time and solution quality.

Keywords Mixed-integer linear programming · Optimal control · Discrete 
approximations · Switched dynamic systems · Approximation methods and 
heuristics

Mathematics Subject Classification 49M20 · 49M27 · 90B35 · 90C11 · 90C59

1 Introduction

Mixed-Integer Optimal Control has been established as a useful tool for modeling 
real-world problems [6, 10, 22, 33]. In practice, only an optimal control policy is 
realistic that avoids frequent switching between the system modes. However, it 
remains an open research question as to how switching costs or a limited number of 
switches can be efficiently incorporated into the optimization problem.
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In this article, we follow a first-discretize-then-optimize approach because in con-
trast to indirect methods and dynamic programming, a more generic problem class 
can be solved for which efficient numerical methods, in particular, a decomposition 
approach used in this article, are available. By this approach, the control problem is 
discretized via, e.g., Direct Multiple Shooting [5] or Direct Collocation [29], which 
leads to a mixed-integer nonlinear program (MINLP). This problem class is NP-
hard in general, so that it has been proposed to reduce complexity by solving first the 
relaxed problem with dropped integrality constraint, which is a nonlinear program 
(NLP), before approximating relaxed controls in a second step with binary controls 
as part of a mixed-integer linear program (MILP). The second problem is usually 
referred to as combinatorial integral approximation (CIA) problem [27], whereas 
the whole algorithm is called CIA decomposition [31]. It is common to use the fast 
Sum-Up Rounding (SUR) heuristic [24] to find a feasible approximative solution 
for the CIA problem, so that this second step is also named rounding. However, 
standard SUR does not consider time-coupled combinatorial constraints, which is 
why the use of the CIA problem is necessary in this case. The variable time trans-
formation [2, 11, 21] method also avoids solving a MINLP by assuming a given 
sequence of the system modes so that only their durations as part of an NLP have 
to be computed. Recently, De Marchi extended this approach by including switch-
ing costs with sparse optimization methods [9]. As part of the CIA decomposition, 
Sager [24], Kirches [16], and Rieck [20] proposed to add penalty terms to the con-
trol problem objective in order to account for switching costs or to reduce the num-
ber of switches between active controls. Recently, Kirches et  al. [17] investigated 
this approach for the setting with implicit switches and where jumps of the differen-
tial state values may occur. One issue of the penalization approach is the appropri-
ate choice of the penalty factor since heavy penalization can in some instances [16] 
attract solutions involving frequent switching. Bestehorn et  al. [3, 4] presented an 
idea to incorporate switching costs into the problem by fixing a small control devia-
tion tolerance in the rounding problem and minimizing switching costs subject to 
this deviation tolerance.

This work builds on [27], where it has been proposed to solve the CIA prob-
lem with constraints that limit the total variation (TV) of the integer control. By 
this, the original optimal control objective remains untouched, and we require 
only the number of switches to be less than a desired threshold. Our idea is 
to use generally a Branch & Bound (BNB) scheme [7] for solving this CIA 
problem, but, as we will show in this article, this can be replaced for certain 
instances by a sequence of rounding scheme evaluations. Furthermore, we eval-
uate upper bounds on the CIA objective subject to these discrete TV constraints. 
It has been shown that the integer approximation error, i.e., the difference of 
relaxed optimal control objective value and CIA rounded objective value, can be 
driven to zero under mild conditions and if the grid length is driven to zero [19, 
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27]. This result does not hold anymore if discrete TV constraints are included. 
Still, we expect our approach to yield feasible solutions of the MIOCP with an a 
priori integer gap.

1.1  Contribution

To accelerate the CIA solving process, we propose the Maximum Dwell Rounding 
(MDR) scheme, which is a fast rounding heuristic. It is based on the idea to activate 
a chosen control mode as long as possible without violating a desired integrality gap 
� , i.e., the accumulated deviation of relaxed and binary controls, and then perform this 
with the next promising mode. We apply it iteratively as part of the Adaptive Maxi-
mum Dwell Rounding (AMDR) algorithm for finding binary controls that satisfy time-
coupled combinatorial constraints such as a TV bound and derive optimality conditions 
of the obtained binary control function with respect to the CIA problem. Based on this 
scheme, we prove the tightest possible upper bound on the integrality gap for equidis-
tant discretization and the case of two binary controls, which reads

where N denotes the number of intervals, �max the TV bound and Δ̄ the maximum 
grid length. We are going to establish further bounds for the situation of non-equi-
distant grids or more than two binary controls.

1.2  Outline

We give a problem definition of the MIOCP of interest in Sect.  2 and describe the 
proposed CIA decomposition algorithm with (CIA) as subproblem in Sect.  3. Next, 
we introduce auxiliary CIA problems and derive a lower bound for these problems in 
Sect. 4. We define the MDR scheme in Sect. 5 and show its usefulness with respect to 
solving the CIA problem subject to discrete TV constraints. We continue by analyzing 
the worst-case integrality gap for n� = 2 in Sect. 6, respectively for n𝜔 > 2 in Sect. 7. 
Finally, we present numerical experiments in Sect. 8 and conclusions in Sect. 9.

1.3  Notations

Let [n] ∶= {1,… , n}, [n]0 ∶= {0} ∪ [n], for n ∈ ℕ . We use Gauss’ bracket notation, 
i.e. ⌊x⌋ ∶= max{k ∈ ℤ ∣ k ≤ x}, x ∈ ℝ , and analogously for ⌈x⌉ . We indicate by ⌈x⌉0.5 
the rounding up of x ∈ ℝ to the next multiple of 0.5:

𝜃 ≤ N + 𝜎max + 1

3 + 2𝜎max

Δ̄,

⌈x⌉0.5 ∶= min{y ∣ y = n ⋅ 0.5, n ∈ ℕ, y ≥ x}.
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We write ”for a.e. t ∈ T  ” for abbreviating for all t ∈ T ⊂ ℝ except on a set of meas-
ure zero. Moreover, we write control to abbreviate a control realization �i(⋅), i ∈ [n], 
of a control function �(⋅) = (�1(⋅),… ,�n(⋅))

⊺.

2  Mixed‑integer optimal control problem

Mixed-integer optimal control problems (MIOCPs) can be equivalently reformu-
lated into problems with affinely entering binary controls in the right-hand side of 
the ordinary differential equation via the (partial) outer convexification method, 
see [24] for further details. Therefore, we declare this reformulated MIOCP as the 
problem of interest and provide the corresponding definitions in this section.

We consider problems on a given time horizon T ∶= [t0, tf ] ⊂ ℝ . Throughout 
this paper, we assume a problem involving n� ≥ 2 binary control realizations. We 
introduce the binary control function after defining the TV of a function and its 
associated space.

Definition 1 (Total Variation of a function and BV space) The TV of a function 
� ∶ T → ℝn� is defined to be the quantity

where P = (t0,… , tnP ) is a partition out of the set of all partitions P of the interval T  
and nP denotes the partition specific number of time points.

We group the functions � with finite TV into the space of bounded variation BV:

Definition 2 (Binary � and relaxed control functions �) Let the vector of binary 
controls � on the simplex and its corresponding vector of relaxed controls � defined 
by their function space domains

Definition 3 (Problems (MIOCP) and (OCP)) Let a maximum number of switches 
�max ∈ ℕ be given. We refer to the following general problem class as (MIOCP)

(2.1)TV(�) ∶= sup
P∈P

{
1

2

∑
i∈[n�]

∑
j∈[nP]

|�i(tj) − �i(tj−1)|
}

,

BV(T,ℝn𝜔) ∶= {𝜔 ∶ T → ℝ
n𝜔 ∣ TV(𝜔) < ∞}.

Ω ∶=

{
� ∈ BV(T, {0, 1}n� ) ∣

∑
i∈[n�]

�i(t) = 1, for a.e. t ∈ T

}
,

A ∶=

{
� ∈ BV(T, [0, 1]n�) ∣

∑
i∈[n�]

�i(t) = 1, for a.e. t ∈ T

}
.
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We minimize a Mayer term functional Φ ∈ C1(ℝnx ,ℝ) over the binary controls �i 
and differential states x ∈ W1,∞(T,Rnx) with fixed initial values x0 ∈ ℝnx . Constraint 
(2.2) expresses the dynamical system as a switched system in partial outer convexi-
fied form, i.e., as a sum of a drift term f 0 and control specific functions f i both out 
of C0(ℝnx ,ℝnx ) . We assume that there exists a solution x for the above problem; for 
this we may assume that a uniform Lipschitz estimate on f 0 and f i exists so that the 
theorem by Picard–Lindelöf is applicable. We limit the number of switches between 
active modes to be at most �max in the TV constraint (2.4). Finally, we define (OCP) 
as the canonical relaxation of problem (MIOCP) where we optimize over � ∈ A 
instead of � ∈ Ω.

Remark 1 When we write that control i is active, we indicate that �i(t) = 1 . In fact, 
we count the switches in (2.4), respectively in (2.1), twice since we sum up the con-
trol that has just been deactivated with the one that has just been activated. That 
explains the factor of one-half in (2.1). We remark that our study assumes no mode-
specific switching limits, but we may also impose them by splitting up (2.4) into n� 
inequalities and by dropping the first sum in (2.1).

Without loss of generality, we omit further constraints and continuous control 
functions u ∈ L∞(T,ℝnu) in our problem definition. See [28] how to cope with these 
and further extensions.

3  Combinatorial integral approximation decomposition

We propose to solve (MIOCP) with the CIA decomposition [27, 31], which relies 
on the use of direct methods (first discretize, then optimize approach). This section 
explains and defines the problem’s temporal discretization and the subproblems that 
constitute the decomposition algorithm.

Definition 4 (GN, Δ) Let the ordered set GN ∶= {t0 < … < tN = tf } denote a time 
grid with N intervals and lengths Δj ∶= tj − tj−1 for j ∈ [N] , Δ̄ ∶= maxj∈[N] Δj as 
well as Δ ∶= minj∈[N] Δj.

Next, we define the matrix sets of the discretized binary and relaxed binary con-
trol functions ΩN , AN.

(2.2)

min
x,𝜔∈Ω

Φ
(
x(tf )

)

s. t. ẋ = f 0(x(t)) +
∑
i∈[n𝜔]

𝜔i(t)f i(x(t)), for a.e. t ∈ T,

(2.3)x(t0) = x0,

(2.4)TV(�) ≤ �max
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Definition 5 (Convex combination constraint (Conv) and ΩN, AN) Let N ∈ ℕ . We 
express the requirement that the columns of a matrix (mi,j) ∈ [0, 1]n�×N sum up to 
one by

and call it convex combination constraint (Conv) in the remainder. Based on this 
constraint, we define

We introduce a discretized version of the TV constraint (2.4) that relies on w:

Definition 1 (Discretized version of  (2.4)) Let GN and �max ∈ ℕ be given. We use 
auxiliary variables �i,j ∈ ℕ for introducing a discretized version of the TV constraint 
that reads

In order to solve the upcoming subproblems efficiently, we have deliberately 
formulated the above constraints without an absolute value term. This and replac-
ing w with a in (3.2) results in a differentiable TV constraint. We define the dis-
cretizations of (MIOCP) and (OCP) below.

Definition 6 ((NLPrel), (NLPbin)) Consider (OCP) with the following modifications:

• We discretize (2.2) with GN and by using direct collocation or direct multiple 
shooting together with an appropriate integrator function (e.g. Runge-Kutta 
methods [18, 23]).

• The controls are piecewise constant functions on GN with (ai,j) ∈ AN : 

• The TV constraint (2.4) is replaced by the constraints (3.1) and (3.2). In (3.2), 
we replace w with a.

We denote the resulting discretized optimization problem with relaxed binary 
control functions a ∈ AN by (NLPrel) and by (NLPbin) for fixed binary control 
functions w ∈ ΩN.
Definition 7 [(CIA) problem, �(w) ] Let a ∈ AN be given. Then, we define the prob-
lem (CIA) to be

(Conv)
∑
i∈[n�]

mi,j = 1, for j ∈ [N],

Ω
N
∶=

{
w ∈ {0, 1}n�×N ∣ w satisfies (Conv)

}
, A

N
∶=

{
a ∈ [0, 1]n�×N ∣ a satisfies (Conv)

}
.

(3.1)�max ≥1

2

∑
i∈[n�]

∑
j∈[N]

�i,j,

(3.2)�i,j ≥ ± (wi,j − wi,j−1), i ∈ [n�], j ∈ [N].

�i(t) ∶= ai,j, for i ∈ [n�], t ∈ [tj−1, tj), j ∈ [N], tj ∈ GN .

(3.3)min
�,�,w∈ΩN

�
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            TV constraints (3.1) and (3.2).

We denote with �(w) the (CIA) objective value for a feasible solution w ∈ ΩN.
With these subproblem definitions we are able to summarize the CIA decom-

position in Algorithm 1. We first solve the relaxed problem (NLPrel ) and approxi-
mate the resulting relaxed binary controls with binary values in the (CIA) prob-
lem. The last step consists of evaluating (NLPbin ) with a fixed binary control 
function wCIA in order to obtain the objective value of (MIOCP).

We remark that the TV constraints (3.1)–(3.2) in (NLPrel) and (NLPbin) may be 
replaced by other TV reformulations, such as the ones presented in [17] or even 
dropped because (CIA) guarantees feasibility with 

 respect to bounded TV in any case. The algorithmic focus of this article lies on the 
(CIA) step, so that we omit further considerations of TV reformulations.

We stress that this algorithm solves two problems of which each one is less 
hard to solve than the original MINLP, which denotes the discretized (MIOCP). It 
yields only an approximation of the optimal solution of (MIOCP), but Sager et al. 
[26] showed that—without TV constraints and under certain regularity assump-
tions—the difference between the differential states based on relaxed and binary 
control values depends linearly on the difference of the integrals of their corre-
sponding control function. In particular, they proved that the so called integrality 
gap with feasible solutions constructed by (CIA) is linearly bounded by the maxi-
mum grid length Δ̄ in the sense of

where C(n�) is a constant depending on the number of controls. This implies 
that the differential state trajectories of (MIOCP) and (OCP)—without the TV 

(3.4)s. t. � ≥ ±
∑
l∈[j]

(ai,l − wi,l)Δl, for i ∈ [n�], j ∈ [N]

(3.5)sup
t∈T

‖‖‖‖‖�
t

t0

�(𝜏) − �(𝜏) d𝜏
‖‖‖‖‖∞

≤ C(n𝜔) ⋅ Δ̄,
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constraint—are arbitrarily close with vanishing grid length Δ̄ and by assumed Lip-
schitz continuity of the objective the same holds also for the objective values.1

In Sects. 6–7, we are going to show that in the presence of discrete TV constraints 
(3.1)–(3.2) the rounding error does not vanish in general with grid length going to 
zero. More precisely, Theorem 4 and Corollary 7 will present concrete results on the 
rounding error.

4  (CIA−�̄ ), (CIA−�̄−init) and an associated lower bound

In this section, we address a problem that minimizes the used switches subject to a 
given approximation error �̄� that shall not be exceeded by the accumulated control 
deviation. Afterward, we aim for a lower bound on its objective that will be useful 
in the next section and introduce useful auxiliary variables and definitions for this.

Definition 8 ((CIA−�̄�), (CIA−�̄�−init)) For given a ∈ AN , �̄� > 0 and initial active 
control i0 ∈ [n�] the problem (CIA−�̄�−init) is defined to be

We define the problem (CIA−�̄�) to be (CIA−�̄�−init) without the constraint (4.3).

Taking the fixed initial active control in (4.3) aside, the problems (CIA−�̄� ) and 
(CIA) from Definition  7 are closely connected with each other because the TV 
constraints (3.1) and (3.2) are reinterpreted as objective function subject to a fixed 
approximation error �̄� . This justifies the naming. We will introduce the MDR algo-
rithm in Sect.5 to (heuristically) solve (CIA−�̄�−init). By applying this algorithm to 
all i ∈ [n�] as initial active controls, we exploit this relationship to solve (CIA−�̄� ) as 
well, which will be used then as part of a bisection algorithm to solve (CIA).

We stress that fixing the initial active control i0 may seem odd, though this fix-
ing reduces the problem complexity, which later yields in Theorem  1, Section  5, 
an optimality result of the solution constructed by the MDR algorithm concerning 
(CIA−�̄�−init).

We notice that (CIA−�̄�−init) is very similar to (SCARP) from [3, 4]. The lat-
ter problem aims at minimizing the switching costs, representing a generalized 

(4.1)�∗ ∶= min
w∈ΩN

1

2

N−1∑
l=1

n�∑
i=1

|wi,l+1 − wi,l|

(4.2)s. t. �̄� ≥ ±

j∑
l=1

(ai,l − wi,l)Δj i ∈ [n𝜔], j ∈ [N],

(4.3)wi0,1
= 1.

1 For the sake of completeness we mention that an improved approximation result for this context has 
recently been proven by Manns and Kirches [19].
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objective function of (CIA−�̄�−init), whereas in (CIA−�̄�−init) the initial active con-
trol is fixed.

Remark 2 (Link to scheduling theory) On an equidistant grid, (CIA−�̄� ) can be refor-
mulated into the following, equivalent, scheduling problem: On a single machine, 
minimize the total setup costs (TSC) until the Nth processed job, N ≤ n , so that n 
jobs (f, k) are processed within f ∈ [n�] job families subject to release times rf ,k , 
deadlines df ,k , equal processing times Δ̄ and sequence-independent setup costs, 
which can be summarized in scheduling notation [13] as

In the following we will revert to scheduling-like concepts, but explicitly dispense 
with its notation to not distract the reader from the usual MIOCP notation.

Next, we need some definitions to derive a lower bound for (CIA−�̄�−init) at the 
end of this section. We stress that we establish our results on an equidistant grid but 
will sometimes drop this assumption in definitions used in later sections.

Definition 9 (Activations, release ri,k and deadline intervals di,k) For each control 
i ∈ [n�] on an equidistant grid GN , we introduce the number of possible activations 
ni as

Each activation k ∈ [ni] is associated with a release and deadline interval, which are 
defined by:

Finally, we call the kth activation of control i necessary, if di,k < ∞.

Definition 10 (Switch, activation block) Consider w ∈ ΩN . If we have on interval 
j ≥ 2 and for any i ∈ [n�]

then we say w switches on j. We introduce the set of switches

(
1|rf ,k, df ,k, SCsi,b = 1, pf ,k = Δ̄|TSC|N

1

)
.

(4.4)

(4.5)

(4.6)

wi,j−1 = 0, wi,j = 1,
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and set ns ∶= |S| . We denote by �j ∈ [N] the corresponding interval of the jth switch 
of w , where we set �0 ∶= 0, �ns+1 ∶= N . On an equidistant grid and if i ∈ [n�] is 
active between two consecutive switches or one switch and the first/last interval, we 
define the set of activations of i between these switches as an activation block 
B ⊂ [ni] . On a general grid, we further define the length of the jth activation block 
between the (j − 1) st switch on, i.e. �j−1 , and before the jth switch, i.e. �j − 1 , via the 
auxiliary variable �j =

∑�j−1

l=�j−1
Δl for j ∈ [ns + 1].

We notice that the switches actually occur on the grid points; however, we have 
indexed the variables wi,j according to the intervals, and therefore, for simplicity, 
we refer to switches on intervals. In the following, we will sometimes abbreviate 
activation block with block. In order to keep the number of used switches small and 
when deciding to set up a new block, it is highly relevant to know how many activa-
tions could be at most included in this block beginning with activation k. An activa-
tion j > k cannot be included in the block if its release interval begins later than 
the deadline interval of activation k plus the number of activations between k and j. 
We give a definition that formalizes these deadlines for initial activation-dependent 
deadlines of blocks. Based on these block deadlines, it is straightforward to intro-
duce the notion of a block deadline feasible partition of activations into blocks. The 
constraint  (4.3) imposes that the control i0 ’s first activation has to be executed on 
the first interval, for which we introduce the definition of fixed initial active control 
feasibility.

Definition 11 (dbi,k, block deadline and fiac feasible partition) Consider an equi-
distant grid. The deadline of a block for i ∈ [n�] that begins with the kth activation, 
k ∈ [ni], is defined by

Let Pi denote a partition of all activations [ni] for i ∈ [n�] . We call Pi block deadline 
feasible if for all subsets B ∈ Pi , i.e., all blocks, hold:

Furthermore, we refer to Pi as a fixed initial active control (fiac) feasible partition if 
for all k ∈ B1 hold

where B1 ∈ Pi denotes the first activation block of Pi.

In the last definition, we provided the concept of a control specific partition of all 
activations.

The kth activation of control i ∈ [n�] does generally not coincide with the kth 
interval. The following example illustrates the introduced concepts and, in particular, 

S ∶= {j ∈ {2,… ,N} ∣ w switches on j},

(4.7)dbi,k ∶= di,l, where l ∶= max{j ≥ k ∣ ri,j ≤ di,k + j − k}.

ri,max{k∈B} ≤ di,min{k∈B} + |B| − 1.

ri,k = k,
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that there may be in total more possible but less necessary activations than intervals 
N.

Example 1 Let the following matrices a ∈ AN and w ∈ ΩN for equidistant discretiza-
tion given:

where n� = 3,N = 9 . Consider i = 1 to be the fixed initial active control and a 
rounding threshold of �̄� = 1Δ̄ . Then, we deal with in total eleven possible activa-
tions with their release and deadline intervals:

There are 4, 3,  and 2 activations in w for the controls i = 1, 2, and 3, respectively. 
These activations are grouped into in total 4 activation blocks so that w uses 3 
switches. For instance, the first block of control i = 1 has a length of 𝛿1 = 3Δ̄ and 
its deadline is db1,1 = d1,3 = 9 . The partition P1 = {{1, 2, 3}, {4}} is fiac feasible 
for i = 1 . For control i = 3 , the partitions P3 = {{1, 2, 3}}, {{1, 2}, {3}} are amongst 
others block deadline feasible.

As illustrated in Example 1, a feasible solution w of (CIA−�̄�−init) may not use 
all possible activations. To this end, we define an extension of the set of blocks of w 
to become a partition of [ni] for all i ∈ [n�] in the following lemma. The extension 
may seem arbitrary, but is necessary to compare any w ∈ ΩN with partitions of [ni] . 
Thereby, we establish a connection between the above feasibility concepts and a fea-
sible solution w of (CIA−�̄�−init).

Lemma 1 For an equidistant grid, let w ∈ ΩN be feasible for (CIA−�̄�−init) and let 
P′
i
 denote the set of blocks of w for control i ∈ [n�]. We define 

P�
i
∶= {k ∈ [ni] | ∄ B ∈ P�

i
∶ k ∈ B} and Pi ∶= P�

i

⋃
k∈P�

i

{k} . Then, Pi is a block dead-

line feasible partition and if i = i0 , Pi is also fiac feasible.

Proof We first argue that Pi is by definition a partition of [ni] . We need to prove that 
these partitions are block deadline feasible, respectively fiac feasible. If for i ∈ [n�] 
and an activation block B ∈ Pi holds

this would imply that the (max{k ∈ B}) th activation of i has been processed before 
its release interval because B can not be interrupted by activations from other con-
trols. Therefore, the above inequality does not hold and block deadline feasibility 

a ∶=
⎛
⎜⎜⎝

1 1 0.8 0 0 0 0 0 0.5

0 0 0.2 0 0.1 0.8 1 1 0.5

0 0 0 1 0.9 0.2 0 0 0

⎞
⎟⎟⎠
, w ∶=

⎛
⎜⎜⎝

1 1 1 0 0 0 0 0 1

0 0 0 0 0 1 1 1 0

0 0 0 1 1 0 0 0 0

⎞
⎟⎟⎠
,

i = 1 ∶ [r1,k, d1,k] = [1, 1], [2, 3], [3, 9], [9,∞],

i = 2 ∶ [r2,k, d2,k] = [1, 6], [6, 7], [7, 8], [8,∞],

i = 3 ∶ [r3,k, d3,k] = [1, 5], [4, 6], [6,∞].

ri,max{k∈B} > di,min{k∈B} + |B| − 1,
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is established. We apply the same argument for confirming fiac feasibility. By con-
straint (4.3), the first activation of i0 is scheduled on the first interval. Hence, all acti-
vations k ∈ B1 of the first block B1 must be processed on the kth interval and require 
therefore a release interval that is no later than k.   ◻

Remark 3 (Necessary condition for feasibility of (CIA−�̄�−init) The formation of 
activations into block deadline and for i0 fiac feasible partitions is a necessary fea-
sibility criterion of w ∈ ΩN for (CIA−�̄�−init) by virtue of Lemma 1. Nevertheless, 
it is not a sufficient criterion since the order of the processing of blocks is not clari-
fied. In particular, one might order the blocks to contain an activation whose release 
interval is later than its executed interval.

Next, we formalize specific partitions of the control i’s possible activations ni 
whose blocks are constructed to include as many activations as possible without 
violating their block deadlines. These quantities serve as tools to derive a lower 
bound of necessary blocks per control independent of the other control’s blocks. 
This will result in a lower bound for (CIA−�̄�−init) in Proposition 2. We distin-
guish between the case that i is the fixed initial active control, i.e., i = i0 , or not.

Definition 12 Consider an equidistant grid and the controls i0, i ∈ [n�] . Let

We write (⋅) (init)
i

 to indicate that equations or inequalities each apply to the parame-
ters (⋅)i and (⋅) init

i0
 . We define the blocks B (init)

i,l
 recursively for l ≥ 2 and while 

k
(init)

l
< ni by

Let nb (init)

i,min
 denote the number of blocks B (init)

i,l
 and P (init)

i,min
 the partitions of [ni] con-

structed by the latter:

The MDR scheme from the next section creates switches that resemble the 
above k (init)

l
 terms. The latter, though, only expresses the grouping of activations, 

while the switches explicitly specify the corresponding intervals as well. It turns 
out that the partitions Pi,min and P init

i0,min
 are minimal in the number of blocks as 

indicated in the following proposition.

(4.8)k1 ∶= max{j ≤ ni ∣ di,j ≤ dbi,1}, Bi,1 ∶= {1,… , k1},

(4.9)k init
1

∶= max{j ≤ ni ∣ ri0,j = j}, B init
i0,1

∶=
{
1,… , k init

1

}
.

(4.10)
k
(init)

l
∶= max

{
j ≤ ni ∣ di,j ≤ db

i,k
(init)

l−1
+1

}
, B

(init)

i,l
∶=

{
k
(init)

l−1
+ 1,… , k

(init)

l

}
.

P
(init)

i,min
∶=

{
B

(init)

i,l
∣ l ∈ [nb (init)

i,min
]
}
.
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Proposition 1 For i0, i ∈ [n�], let the partitions Pi,min, P
init
i0,min

 be given as in Defini-
tion 12. For any partition Pi of [ni], with i = i0 included, we define its restriction to 
the first ñi ≤ ni activations as

Then, the partition Pi,min, respectively P init
i0,min

, consists for any ñi ≤ ni of a minimal 
number of blocks on the first ñi activations compared with all other block deadline 
feasible, respectively both block deadline and fiac feasible, partitions Pi:

Proof We consider first Pi,min
||ñi . It is block deadline feasible because the deadline of 

the last activation for each block is defined in (4.8) and (4.10) to be less or equal 
than the corresponding block deadline. Assume there is a block deadline feasible 
partition Pi for the control i ∈ [n�] with |||Pi

||ñi
||| <

|||Pi,min
||ñi
||| . In other words, there 

exists a subset of the first j blocks of Pi
||ñi that includes more activations than the 

ones included into the first j blocks of Pi,min
||ñi . We consider the minimal number of 

blocks j with this property:

The block index j is unique since the association of activations to blocks is mono-
tonically increasing, meaning that there are no k1th, k2 th activations, k1 < k2 , with 
k1 ∈ Bi,l1

, k2 ∈ Bi,l2
 and l1 > l2 . We conclude

so that block B′
i,j

 ’s first activation k′ is smaller or equal than k which marks the earli-
est activation of Bi,j . The definition of release intervals (4.54.6) implies ri,k′ ≤ ri,k for 
k′ ≤ k . Similarly, the definition of block deadlines (4.7) implies dbi,k′ ≤ dbi,k for 
ri,k′ ≤ ri,k and we find with (4.13) in particular

On the other hand, the definition of Pi,min in (4.10) implies

Then, the definition of j yields

Pi
||ñi ∶=

{
B ∩ [ñi] ∣ B ∈ Pi

}
.

(4.11)
||||P

(init)

i,min

|||ñi
|||| ≤

|||Pi
||ñi
|||.

(4.12)
j ∶= min

{
l ∈ [nbi,min] ∣ Bi,l ∈ Pi,min

||ñi , B�
i,l
∈ Pi

||ñi ∶ max{k ∈ Bi,l} < max{k ∈ B�
i,l
}
}
.

(4.13)min{k ∈ B�
i,j
} ≤ min{k ∈ Bi,j}, B�

i,j
∈ Pi

||ñi , Bi,j ∈ Pi,min
||ñi ,

(4.14)dbi,min{k∈B�
i,j
} ≤ dbi,min{k∈Bi,j}

.

(4.15)dbi,kj−1+1 = max{k ∈ Bi,j}.

(4.16)
dbi,min{k∈Bi,j}

(4.10)
= dbi,kj−1+1

(4.15)
= max{k ∈ Bi,j} < max{k ∈ B�

i,j
} ≤ dbi,min{k∈B�

i,j
},
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where the last inequality must hold due to the assumption of Pi being block dead-
line feasible. Inequality (4.14) contradicts inequality (4.16), or equivalently there 
is no such partition Pi and Pi,min uses indeed a minimal number of blocks on any 
[ñi] ⊂ [ni].

The same argumentation for j ≥ 2 in equation (4.12) can be applied in order to 
prove the result for P init

i0,min
 as Pi0

 is also assumed to be block deadline feasible in this 
case and the same holds for P init

i0,min
 from the second block on. We just need to take 

care of the case when j = 1 , i.e., if Bi0,j
 , respectively B′

i0,j
 , is the first block of the 

control i0 . Here, max{k ∈ Bi0,1
} < max{k ∈ B�

i0,1
} cannot appear, since Pi0

 is 
assumed to be fiac feasible and the construction of the first block of P init

i0,min
 implies 

that no further activation can be added to Bi0,1
 without violating fiac feasibility. 

Thus, j = 1 is impossible in (4.12) and P init
i0,min

 is also minimal in the number of 
blocks.   ◻

Corollary 1 Consider the setting of Proposition 1 and the controls i0, i ∈ [n�] . We 
define

There is no block deadline feasible partition, respectively block deadline and fiac 
feasible partition, that uses less than nbN

i,min
 blocks on [ñi,N] , respectively nbN,init

i0,min
 

blocks on [ñi0,N] .

Proof The result follows directly from Proposition 1 with ñi = ñi,N and ñi0 = ñi0,N .  
 ◻

As a final result for this section, we establish a lower bound for (CIA−�̄�−init) 
that will be useful in Theorem 1.

Proposition 2 (Lower bound for (CIA−�̄�−init)) Let �∗ be the objective of (CIA−�̄�−
init) with equidistant discretization and i0 the fixed initial active control as defined in 
Definition 8. Let nbN

i,min
 for all i ≠ i0 and nbN,init

i0,min
 be given as in Corollary 1. It results

Proof By virtue of Lemma 1, a feasible solution of (CIA−�̄�−init) satisfies the neces-
sary condition of generating only block deadline feasible partitions Pi and if i = i0 , 
the activation partition Pi is also fiac feasible. Moreover, all activations are executed 
no later than their deadline interval. That holds particularly for those that are due no 
later than N. Hence, we can apply Corollary 1 and conclude the minimum number of 
blocks of a feasible solution until the in total Nth activation is nbN

i,min
 , respectively 

ñi,N ∶= max{k ∣ di,k ≤ N}, nbN
i,min

∶=
|||Pi,min

||ñi,N
|||, nb

N,init

i0,min
∶=

||||P
init
i0,min

|||ñi0,N
||||.

(4.17)
∑

i∈[n�],i≠i0
nbN

i,min
+ nb

N,init

i0,min
− 1 ≤ �∗.
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nb
N,init

i0,min
 . Finally, we obtain the claim (4.17) by summing up over all controls and 

using that the setup of the first block does not count as switch.   ◻

5  Maximum dwell rounding

This section is dedicated to solving (CIA). Generally, we recommend a tailored 
BNB algorithm that has been proposed by Jung et al. [15, 27] and implemented in 
the open-source software package pycombina [7]. The BNB algorithm outper-
forms standard MILP solvers in a case study [14] by three orders of magnitude. 
However, in some instances, the algorithm struggles to find the optimal solution 
quickly because the node relaxation can be quite weak [8]. We, therefore, present 
a polynomial-time algorithm that constructs good initial guesses for BNB and, in 
some situations, solves (CIA) even to optimality. We proceed by giving the neces-
sary definitions of the algorithm itself and its auxiliary variables in the first subsec-
tion and investigate beneficial properties in the second subsection.

5.1  Definition of the algorithm

Definition 13 (Accumulated control deviation �i,j, �i,j) Let a ∈ AN and w ∈ ΩN . 
For control i ∈ [n�] and interval j ∈ [N] we define the accumulated control devia-
tion variables as

and set �i,0 ∶= 0.

The following lemma is useful for Proposition  3 on page  11 and Lemma  7 on 
page 17.

Lemma 2 Consider a ∈ AN and w ∈ ΩN, for each j ∈ [N] holds

Proof These equations follow directly from the definition of � and � as well as from 
the convexity property of a and w .   ◻

Definition 14 (Inadmissible, next forced and forced activation) Consider a round-
ing threshold �̄� > 0 and a ∈ AN . Let the values of w ∈ ΩN be given until interval 
j − 1 , with j ≥ 2 . The choice wi,j = 1 for i ∈ [n�], j ∈ [N] is admissible if we have 
that

�i,j ∶=

j∑
l=1

(ai,l − wi,l)Δl, �i,j ∶=

j∑
l=1

ai,lΔl −

j−1∑
l=1

wi,lΔl,

∑
i∈[n�]

�i,j = 0,
∑
i∈[n�]

�i,j = Δj.
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and we call the control i otherwise inadmissible. Similarly, the choice wi,j = 1 is 
forced if we have that

Let further Nj(i) ∈ {j,…N} denote the next interval on which control i would 
become forced without activation after interval j − 1:

Then, we define a control i∗ ∈ [n�] on interval j to be next forced if and only if

The above definition allows more than one control to be next forced or forced 
for an arbitrary interval j ∈ [N] . This is supposedly not the standard case in our 
discussion but will also be taken into account in our considerations. The guiding 
idea behind the above control activations is that we include more and more sum-
mands of w into the computation of � and can choose the next row of w accord-
ingly. With this definition we have introduced necessary activation properties of 
feasible solutions for (CIA−�̄�−init), but neglected so far the fixed initial active 
control constraint (4.3). The following definition fills this gap.

Definition 15 (Initially admissible control) We define a control i ∈ [n�] to be ini-
tially admissible if it is admissible on the first interval and if there is no other control 
i1 ≠ i that is forced on the first interval.

Now, we can define the MDR in Algorithm 2.
The MDR algorithm assumes a given initial control i0 and activates it until 

it becomes inadmissible or until there is another forced control. We require the 
control i0 to be initially admissible because otherwise wMDR would violate the 
control accumulation constraint (4.2). Otherwise, the control i with the maximum 
forward control deviation �i,j is set active and remains so until it becomes inad-
missible or another control becomes forced. This procedure is performed forward 
in time until the end of the time horizon N is reached. We named the algorithm 
“maximum dwell rounding” because it tries to stay in the current mode as long as 
possible without violating the given rounding threshold.

The AMDR is defined in Algorithm 3 and can be described as a bisection method. 
We initialize it with a trivial lower bound LB and upper bound UB for (CIA). The 
algorithm runs MDR iteratively with different threshold �̄� and initially admissible 
control as long as the difference of 

𝜃i,j ≥ −�̄�

𝛾i,j > �̄�.

Nj(i) ∶=

�
argmin
k=j,…,N

{𝜃i,j−1 +
∑k

l=j
ai,lΔl > �̄�}, if 𝜃i,j−1 +

∑N

l=j
ai,lΔl > �̄�,

∞, else.

Nj(i
∗) = min

i∈[n𝜔]
Nj(i) and Nj(i

∗) < ∞.
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 lower and upper bound is larger than the chosen tolerance TOL (lines 2–5). If the 
computed control function satisfies the TV constraint and exhibits a (CIA) objective 
value that is smaller than the current UB, we update UB, reset the rounding thresh-
old �̄� via interval halving of UB − LB and save the current best solution (lines 6-10). 
The evaluation �(w) is necessary since MDR may construct a control function with 
a rounding gap larger than the desired gap �̄� , as will be discussed in the next subsec-
tion. If no computed control function w with given initial control and �̄� fulfills the 
TV constraint, then we increase the LB (lines 11-14).

5.2  Solution quality and properties of MDR (Algorithm 2)

Although the MDR algorithm may seem simple, it generates optimal solutions w for 
(CIA−�̄�−init) under certain conditions, for which we need the following definition.

Definition 16 (Canonical switch) We define a switch j ∈ S as defined in Defini-
tion 10 to be canonical, if on interval �j holds: exactly one control i1 is inadmissible 
and exactly one control i2 ≠ i1 is forced.
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We build our theoretical results of this section mainly on the following 
assumption.

Assumption 1 (MDR uses only canonical switches) Suppose wMDR ∈ ΩN has been 
generated by MDR. We assume that all switches of wMDR are canonical.

5.2.1  Properties of the MDR algorithm

Assumption  1 may seem restrictive, although it is satisfied anyway under certain 
conditions.

Proposition 3 (MDR with n� = 2 and �̄� ≥ 1

2
Δ̄ uses canonical switches) Consider 

n� = 2 , a ∈ AN and any grid GN . If we choose �̄� ≥ 1

2
Δ̄, then the control function 

wMDR constructed by the MDR scheme uses only canonical switches.

Proof We have to prove: 

1. If control i1 is forced on interval j ≥ 2 , then it is admissible.
2. For all intervals j ≥ 2 hold: control i1 is inadmissible, if and only if i2 ≠ i1 is 

forced.

1. follows from the definition of forced activation and from �̄� ≥ 1

2
Δ̄:

For proving 2. let us assume i1 is forced on j ∈ [N] , i.e., 𝛾i1,j > �̄� . By virtue of 
Lemma 2 for �i2,j we derive

which means i2 is inadmissible on j. Conversely, if i1 is inadmissible on j, 
we conclude from 𝜃i1,j−1 + (ai1,j − 1)Δj < −�̄� and from the equation for � in 
Lemma 2𝛾i2,j = 𝜃i2,j−1 + ai2,jΔj > �̄� . Therefore, i2 is forced.   ◻

Remark 4 Assumption 1 is not necessarily true for a control problem that involves 
more than two binary controls. It may, however, hold for special cases of such a 
problem. For instance, if the relaxed values are of bang-bang type, i.e., ai,j ∈ {0, 1} , 
and �̄� is chosen smaller than the smallest activation block, then the situation resem-
bles the case n� = 2 and Assumption  1 may hold (without proof). On the other 
hand, Example 3 is going to demonstrate that this assumption can indeed be quite 
restrictive.

Assumption 1 allows us to prove strong properties of control functions obtained 
by MDR and AMDR. The first result expresses that the MDR scheme produces 
indeed control functions which exhibit a (CIA) objective value smaller or equal than 
�̄�.

𝜃i1,j = 𝜃i1,j−1 + ai1,jΔj − Δj>�̄� − Δj ≥ −
1

2
Δ̄ ≥ −�̄�.

𝜃i2,j−1 + ai2,jΔj = 𝛾i2,j < −�̄� + Δj,
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Lemma 3 (MDR solution satisfies �̄� bound) Let Assumption  1 hold and let 
wMDR ∈ ΩN be constructed by MDR with given threshold �̄� . Then, we obtain 
𝜃(wMDR) ≤ �̄�.

Proof As soon as the activated control becomes inadmissible or there is a forced 
control on interval j ≥ 2 , wMDR has a switch by the definition of MDR. By Assump-
tion 1, the newly activated control is both forced and admissible, hence 𝜃i,j ≥ −�̄� , 
and there is also no other forced control on j, thus 𝜃i,j ≤ �̄� .   ◻

The following example demonstrates that 𝜃(wMDR) > �̄� may generally appear 
without Assumption 1.

Example 2 Consider an equidistant discretization and a ∈ AN with the first val-
ues given as a1,1 = 1, a2,1 = 0, a1,2 = 0.5, a2,2 = 0.5 . For this relaxed value, let 
wMDR ∈ ΩN be the corresponding binary control function computed by MDR with 
given threshold �̄� = 0.4Δ̄ and initial control i = 1 . Then, wMDR

1,2
= 0, wMDR

2,2
= 1 holds 

since the second control becomes forced on the second interval. At the same time, 
control i = 2 is inadmissible on the second interval, hence Assumption 1 is violated, 
and it results 𝜃2,2 = −0.6Δ̄ < −�̄�.

We reuse concepts from the previous chapter, especially activations and their 
grouping into blocks.

Theorem 1 (Least switches property of MDR) Let Assumption 1 hold. For given 
a ∈ AN and an equidistant grid, let wMDR be constructed by MDR with i as initial 
control and any �̄� > 0, where we assume that i is initially admissible. Let �(wMDR) 
denote the number of switches used by wMDR . Then, for the optimal objective value 
�∗ of (CIA−�̄�−init) with i0 = i as initial control holds

Proof We can conclude wMDR is a feasible solution of (CIA−�̄�−init) by Lemma 3. 
Combining this with Proposition 2 yields

For proving optimality we note that wMDR constructs partitions of the activations 
[ni], i ∈ [n�] that are due no later than N and let PMDR

i
 denote these partitions. With 

the notation from Corollary 1 we want to show that these partitions coincide with 
the partitions constructed in Definition 12

because then Corollary 1 would imply wMDR has 
∑

i∈[n�],i≠i0 nb
N
i,min

+ nb
N,init

i0,min
 activa-

tion blocks or equivalently

(5.1)�∗ = �(wMDR).

(5.2)
∑

i∈[n�],i≠i0
nbN

i,min
+ nb

N,init

i0,min
− 1 ≤ �∗ ≤ �(wMDR).

(5.3)PMDR
i0

= P init
i0,min

|||ñi0,N , PMDR
i

= Pi,min
||ñi,N , for i ≠ i0,
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and the claim follows from inequality (5.2). Consider the first blocks B1 ∈ PMDR
i0

 and 
B init
1

∈ P init
i0,min

 . By Assumption 1, the MDR algorithm activates i0 until it becomes 
inadmissible on the interval �1 of the first switch:

We compare this inequality with the Definition 9 of release intervals and notice that 
either the next activation �1 of control i0 has a release interval that is later than �1 
or there is no further possible activation. So, if the �1 th activation exists, then its 
release interval has not yet been reached:

By the definition of P init
i0,min

 we conclude B1 = B init
1

 . Let us now consider the jth 
blocks Bj ∈ PMDR

i0
 and B init

j
∈ P init

i0,min

|||ñi0,N , where j ≥ 2 . Again by the definition of 

MDR and Assumption  1, i0 is forced on interval �j , which is equivalent to 
di0,min{k∈Bj}

= �j . The MDR scheme activates i0 either until N (then trivially 
Bj = B init

j
 ) or until it becomes inadmissible on interval �j+1 (by Assumption 1). With 

the argumentation for j = 1 , inadmissible means hereby the (max{k ∈ Bj} + 1) th 
activation has a release interval greater than �j+1 . Using that the block’s first activa-
tion �j is processed on its deadline interval di0,min{k∈Bj}

 , this yields

The above inequality expresses that Bj contains as many activations as possible 
without violating its block deadline dbi0,min{k∈Bj}

 and by construction of P init
i0,min

 this is 
equivalent to Bj = B init

j
 . This settles the case i = i0 in (5.3). We can reuse the above 

arguments about forced and inadmissible activation for j ≥ 2 in order to analogously 
prove the case i ≠ i0 in (5.3).   ◻

Remark 5 Theorem  1 is predicated on the assumption of an equidistant grid. We 
stress that after grid refinement of the optimal control problem, i.e., after several 
rounds of applying the CIA decomposition, this might be a restriction.

The following corollary establishes a way to find the optimum of (CIA−�̄�−init) 
in the setting of Theorem 1.

Corollary 2 (Using MDR to find a control function with minimum number of 
switches) Consider the setting of Theorem 1. A control function w∗ that uses a mini-
mum number of switches, i.e., �(w∗) = �∗, can be found by running MDR.

�(wMDR) =
∑

i∈[n�],i≠i0
nbN

i,min
+ nb

N,init

i0,min
− 1,

𝜃i0,𝜏1 =

𝜏1∑
l=1

ai0,l − wi0,l
< − �̄�∕Δ̄.

ri0,𝜏1 = ri0,max{k∈B1}+1
> max{k ∈ B1} + 1.

ri0,max{k∈Bj}+1
> di0,min{k∈Bj}

+ |Bj| − 1.
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Proof Let i be the initial control of w∗ . Execute MDR with i as initial control so that 
the result follows directly from Theorem 1.   ◻

It is not clear which control is the optimal initial active one in order to mini-
mize switches. In practice, MDR must be executed one after the other for all con-
trols i ∈ [n�] as initial active control. This expresses the following corollary.

Corollary 3 (Link between MDR and (CIA−�̄�)) Consider the setting of Theorem 1. 
We assume that the MDR algorithm constructs for all i ∈ [n�] as initial active con-
trols the control functions wMDR that use only canonical switches. Then, there is a 
minimizing control w∗ ∈ ΩN for (CIA−�̄� ) that only uses canonical switches. Moreo-
ver, there exists i0 ∈ [n�] such that running MDR with i0 as initial control produces 
wMDR ∈ ΩN that minimizes (CIA−�̄�).

Proof If the MDR algorithm produces wMDR that only uses canonical switches, wMDR 
is optimal by Theorem  1 for (CIA−�̄�−init) with the corresponding initial control 
fixed . Then, the result follows from the fact that the optimal solution of (CIA−�̄� ) is 
contained in the set of optimal solutions for the set of problems (CIA−�̄�−init) with 
each control i ∈ [n�] initially fixed.   ◻

Lemma 4 Consider a ∈ AN on an equidistant grid and assume n� = 2 . Let wMDR 
denote the control function constructed by MDR with �̄� > 0 and given initial control. 
If 𝜃(wMDR) > �̄� , then there is no control function w ∈ ΩN with the same initial active 
control and 𝜃(w) ≤ �̄�.

Proof We consider the first interval j on which the accumulated control deviation 
of wMDR is greater than �̄� . Let control i1 be active on j. By definition of the MDR 
scheme, |𝜃i1,j| > �̄� or |𝜃i2,j| > �̄� can only appear if there is a switch on interval j and 

1. i1 is on interval j both forced and inadmissible or
2. both i1 and i2 are inadmissible on interval j.

Proposition 3 establishes that wMDR uses only canonical switches for �̄� ≥ 1

2
Δ̄ and 

thus the above cases cannot appear for �̄� ≥ 1

2
Δ̄ . Let us focus on �̄� <

1

2
Δ̄ . In order 

to create a control function w that does fulfill 𝜃(w) ≤ �̄� , we need to change at least 
one activation of wMDR on an earlier interval l < j . However, we recognize that 
any earlier change of activation is not possible:

• We cannot extend an activation block at its end, since the active control is 
inadmissible.

• If the active control i1 is admissible on l, then the other control i2 is not 
forced on l – otherwise it would be active in the MDR scheme. This means 
𝜃i2,l−1 + ai2,lΔ̄ ≤ �̄� . Activating i2 on l results in 
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 where we applied �̄� <
1

2
Δ̄ . This indicates the (CIA) objective value of w is again 

greater than �̄�.
Hence, no previous activation wMDR can be changed so that there is no w with 
𝜃(w) ≤ �̄� .   ◻

5.2.2  Properties of the AMDR algorithm

Theorem 2 states that the AMDR Algorithm is able to find the optimal solution of 
(CIA) for n� = 2 and equidistant discretization. Otherwise, strict assumptions are 
required for optimality, and in general, the found feasible solution represents only a 
promising upper bound.

Theorem 2 (Properties of Algorithm 3) Algorithm 3 terminates for given a ∈ AN

, TOL > 0 and �max ∈ ℕ after a finite number of iterations. Furthermore, consider 
an equidistant grid GN . Let wAMDR denote the solution constructed by Algorithm 3. 
It follows:

1. wAMDR is a feasible solution of (CIA).

2. (a) If n� = 2, we have for the optimum �∗ of (CIA): �(wAMDR) ≤ �∗ + TOL.
(b) Let n𝜔 > 2 . We assume the MDR scheme uses in every run only canonical 

switches. Furthermore, suppose we have : If the MDR scheme constructs a solu-
tion with 𝜃(wMDR) > �̄� , then there is no control function w ∈ ΩN with the same 
initial active control and 𝜃(w) ≤ �̄� . With these assumptions we obtain for the 
optimum �∗ of (CIA): �(wAMDR) ≤ �∗ + TOL.

3. ADMR has time complexity O(n� ⋅ CMDR ⋅ log2(⌈(tf − t0)∕TOL⌉)), where 
CMDR ∈ O(N) denotes the time complexity of the MDR scheme.

Proof AMDR is a bisection algorithm that either decreases UB (line 7-8) or 
increases LB (line 12-13) by at least one half of (UB − LB) in every while loop 
iteration (line 2). From this and because of TOL > 0 , we conclude that the while 
loop and AMDR as a whole terminate after finitely many iterations. 

1. The objective of (CIA) cannot be greater than tf − t0 , even with no switches 
allowed, i.e., �max = 0 . Since we initialize the AMDR algorithm with UB = tf − t0 , 
it finds in any case a feasible solution.

2. Every in line 5 by MDR generated wMDR that satisfies the TV constraints together 
with 𝜃(wMDR) < UB represents an upper bound on �∗ , i.e., UB = �(wMDR) ≥ �∗ . 
For proving that AMDR constructs valid lower bounds LB on �∗ we exploit that 
wMDR only uses canonical switches for n� = 2 and by assumption for n𝜔 > 2 
so that Corollary 3 is applicable. If there is no initial control i ∈ [n�] for which 

𝜃i2,l = 𝜃i2,l−1 + (ai2,l − 1)Δ̄ ≤ �̄� − Δ̄ < −
1

2
Δ̄ < −�̄�,
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MDR produces wMDR for given �̄� that uses less or equal switches then by the TV 
constraints required, we conclude by Corollary 3 that there exists no such w ∈ ΩN 
for this specific threshold �̄� and, hence, LB = �̄� ≤ 𝜃∗ is a true lower bound on the 
optimal (CIA) objective value. Moreover, if MDR constructs for a given �̄� and 
all initial controls i ∈ [n�] control functions wMDR with 𝜃(wMDR) > �̄� , Lemma 4 
and the assumption in (b) guarantee that this �̄� is also a true lower bound on the 
optimal (CIA) objective value. Altogether, AMDR iteratively generates valid 
lower LB and upper bounds UB for �∗ and produces a feasible solution that is 
optimal up to the chosen tolerance TOL.

3. MDR runs forward in time and computes solely the accumulated control 
deviation � and � for all intervals j ∈ [N] , therefore CMDR ∈ O(N) . The inter-
val halving in AMDR ensures that we execute the while loop a maximum of 
log2((tf − t0)∕TOL) times. Inside this loop, we need to run the MDR scheme in 
the worst case with all n� controls as initial controls. Combining these findings 
yields the asserted complexity.

  ◻

Remark 6 Several meaningful modifications for the AMDR algorithm are available. 
We may use it also for finding control functions fulfilling other combinatorial con-
straints such as minimum dwell time constraints by checking them together with the 
TV constraint in line 5. As part of the MDR scheme, the control with maximum 
forward control deviation � is activated if the previously active control is inadmis-
sible. Instead, one may choose a less greedy variant. For instance, we could activate 
the next forced and admissible control. Lastly, the initial upper bound UB can be 
reduced, as we will point out in the next section.

Remark 7 If we drop the TV constraint on w , the AMDR scheme finds a control 
function with the same objective value as the one obtained by the control function of 
Sum-Up Rounding [24] (without proof).

Most results of this section are based on the assumption of an equidistant dis-
cretization, which is common in practice. However, the assumption of dealing only 
with canonical switches in the produced control function is critical. The following 
example illustrates that a control function generated by MDR with non-canonical 
switches may use more switches than needed or may not satisfy the rounding bound 
�̄�.

Example 3 Consider an equidistant grid. Let the following two relaxed values 
a1, a2 ∈ AN be defined as

Then, MDR with i = 1 as initial control and �̄�1 = 0.75Δ̄ , respectively 
�̄�2 = (0.6 + 𝜖)Δ̄ , constructs the following control functions:

(a1
i,j
)i∈[3],j∈[3] ∶=

⎛⎜⎜⎝

1 0.25 0

0 0.375 0.5

0 0.375 0.5

⎞
⎟⎟⎠
, (a2

i,j
)i∈[3],j∈[3] ∶=

⎛⎜⎜⎝

1 0.2 0

0 0.4 + 𝜖 0

0 0.4 − 𝜖 1

⎞
⎟⎟⎠
, 0 < 𝜖 < 0.4.
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In the first example, two controls are simultaneously forced on the third interval; the 
(CIA) objective value would be smaller if w3,2 = 1 was chosen. The MDR constructs 
in the second example a control function that uses two switches, although activating 
the third control on the second interval would result in only one switch with almost 
the same (CIA) objective value. Both examples have in common that non-canonical 
switches are used. Hence, the improved control functions would be

6  Upper bounds on (CIA) with n! = 2

In this section, we use the MDR algorithm and previous results to deduce bounds on 
(CIA). We consider a given (CIA) problem with grid GN , relaxed value a ∈ AN and 
maximum number of switches 𝜎max > 0 . The idea in the following is to construct a 
control function wMDR that bounds the objective of (CIA). For finding an appropriate 
initial active control for the MDR scheme, we introduce an auxiliary grid G̃N which 
ends at t̃f  and has Ñ intervals:

In the definition of G̃N we intersect two sets because we consider given GN and �max . 
To specify the rounding of a value t0 ≤ t down to the next grid point, we utilize the 
following brackets notation

Depending on whether we deal with an equidistant grid or not, we can prove a sharp 
bound for (CIA). We are going to distinguish between these two cases in the upcom-
ing results and introduce the following constant

We propose to apply the rounding threshold

(wMDR,1

i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 1 0

0 0 1

0 0 0

⎞
⎟⎟⎠
, (wMDR,2

i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
.

(wOPT,1

i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
, (wOPT,2

i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 0 0

0 0 0

0 1 1

⎞
⎟⎟⎠
.

G̃N ∶= GN ∩

[
t0, t0 +

5(tf − t0)

3 + 2𝜎max

]
, Ñ ∶= |G̃N| − 1, t̃f ∶= max{tj ∣ tj ∈ G̃N}.

⌊t⌋GN
∶= max{tj ∈ GN ∣ tj ≤ t}.

(6.1)C1 ∶=

{
1

3+2�max

, if GN equidistant,

0, else.

(6.2)�̄� ∶=
tf − t0

3 + 2𝜎max

+
1

2
Δ̄ −

C1

2
Δ̄
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in the MDR scheme and claim that this choice will be later beneficial for proving 
upper bounds on (CIA). Next, we establish useful properties of the rounding ⌊⋅⌋GN

 to 
the next grid point.

Lemma 5 (Distance to next grid points) Consider 𝜎max > 0 and the rounding 
threshold �̄� defined as above. The following holds true:

1. ⌊t0 + j�̄�⌋GN
≥ t0 + j�̄� − Δ̄ + C1Δ̄, j ∈ [2],

2. 
⌊
t0 +

5(tf−t0)

3+2𝜎max

⌋
GN

≥ t0 +
5(tf−t0)

3+2𝜎max

− Δ̄ + C1Δ̄.

Proof 

1. Let us first consider the non-equidistant case. If t0 + j�̄� ≤ tf  , we deduce that 
the maximum distance of t0 + j�̄� to the next smaller or equal grid point is Δ̄ . If 
t0 + j�̄� > tf  , we have ⌊t0 + j�̄�⌋GN

= tf  and obtain 

 This settles the non-equidistant case: ⌊t0 + j�̄�⌋GN
≥ t0 + j�̄� − Δ̄ . For the equidis-

tant case, we observe 

 We look at the right fraction and notice that the numerator consists of a product 
of an integer and Δ̄ , whereas the denominator is the integer 3 + 2�max . Thus, the 
maximum cut-off by rounding down to the closest grid point is 3+2𝜎max−1

3+2𝜎max

Δ̄ , 
which is equal to Δ̄ − C1Δ̄ and proves the claim.

2. This follows from a similar argumentation as for the claim “1.”. For the non-
equidistant case we need only to consider t0 +

5(tf−t0)

3+2�max

≤ tf  , for the equidistant case 
we take again advantage of tf − t0 = NΔ̄.

  ◻

We continue with a lemma that quantifies the length of activation blocks in 
wMDR.

Lemma 6 (Length of activation blocks �l) Consider a feasible control solution 
for (CIA−�̄�) that only uses canonical switches. Then, for the length of its activation 
block �l, 2 ≤ l ≤ �max, follows:

Proof Let i be the active control on activation block l. We are using the assumption 
regarding canonical switches twice. First, i is forced for the earlier switch l − 1:

t0 + j�̄� ≤ t0 + 2�̄� ≤ t0 + 2
tf − t0

3 + 2 ⋅ 1
+ Δ̄ =

3

5
t0 +

2

5
tf + Δ̄ < tf + Δ̄.

�̄� =
tf − t0

3 + 2𝜎max

+
1

2
Δ̄ −

1

2(3 + 2𝜎max)
Δ̄ =

NΔ̄ + (𝜎max + 1)Δ̄

3 + 2𝜎max

=
(N + 𝜎max + 1)Δ̄

3 + 2𝜎max

.

𝛿l ≥ 2�̄� − Δ̄ + C1Δ̄.
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and second, it is inadmissible on interval �l:

By definition of activation blocks we have �l =
∑�l−1

j=�l−1
Δj so that we obtain by rear-

ranging (6.4):

Plugging (6.3) into the above inequality yields

which settles the non-equidistant case. For an equidistant grid, we compute

and because �l is a multiple of Δ̄ , it follows from 𝛿l > 2�̄� − Δ̄

  ◻

Next, we propose in Algorithm 4 a specification of the initial active control i0 . We 
observe that a small number of switches on G̃N in terms of �̄� is sufficient, as quanti-
fied in the following lemma.

Lemma 7 The MDR algorithm applied to the auxiliary grid G̃N with rounding 
threshold �̄� , n� = 2 and i0 from Algorithm 4 as initial control constructs a control 
function wMDR that uses at most one switch on G̃N.

(6.3)𝜃i,𝜏l−1−1 + ai,𝜏l−1Δ𝜏l−1
>�̄�

(6.4)𝜃i,𝜏l−1−1 +

𝜏l−1∑
j=𝜏l−1

(ai,j − 1)Δj + (ai,𝜏l − 1)Δ𝜏l
= 𝜃i,𝜏l−1 + (ai,𝜏l − 1)Δ𝜏l

< − �̄�.

𝛿l > 𝜃i,𝜏l−1−1 + �̄� +

𝜏l−1∑
j=𝜏l−1

ai,jΔj + (ai,𝜏l − 1)Δ𝜏l
.

𝛿l > 2�̄� − ai,𝜏l−1Δ𝜏l−1
+

𝜏l−1∑
j=𝜏l−1

ai,jΔj + (ai,𝜏l − 1)Δ𝜏l
= 2�̄� +

𝜏l∑
j=𝜏l−1+1

ai,jΔj − Δ𝜏l
≥ 2�̄� − Δ̄

2�̄� − Δ̄ =
2NΔ̄

3 + 2𝜎max

+ Δ̄ − C1Δ̄ − Δ̄ =
2N − 1

3 + 2𝜎max

Δ̄,

𝛿l ≥ 2N − 1

3 + 2𝜎max

Δ̄ +
1

3 + 2𝜎max

Δ̄ = 2�̄� − Δ̄ + C1Δ̄.
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Proof We distinguish between the three possibilities of the initial control in 
Algorithm 4. 

1. If MDR is initialized with i2 and for i1 holds 
∑Ñ

j=1
ai1,jΔj ≤ �̄� , the latter does not 

become forced on G̃N . For this reason there is no switch.
2. If i1 with 

∑Ñ

j=1
ai1,jΔj ≤ 2�̄� − Δ̄ + C1Δ̄ is the initial active control, a switch has to 

occur in case i2 is forced on some interval 𝜏1 ∈ [Ñ] . We need to prove that i1 does 
not become forced after the first switch, which is equivalent to i2 does not become 
inadmissible due to n� = 2 and Lemma 2, because then there is no other switch. 
For this, we derive a lower bound on the length of the first activation block �1 , 
where i1 is active. The control i1 becomes at the earliest inadmissible when it has 
been active on intervals j with ai1,j = 0 whose lengths sum up to be more than �̄� , 
i.e., ⌊t0 + �̄�⌋GN

− t0 . With this observation and Lemma 5.1 we derive 

 Note that �i1,j is monotonically increasing with increasing interval j > 𝜏1 as long 
as i1 is inactive, i.e., wi1,j−1

= 0 . Hence, if we are able to prove 𝛾i1,Ñ ≤ �̄� in case 
of wi1,j

= 0 for j > 𝜏1 , we also have that 𝛾i1,j ≤ �̄� for any interval j > 𝜏1 meaning 
there is no second switch. Altogether, we get with the above inequality 

 so that wMDR switches no more than once on G̃N.
3. Otherwise we have 

 in the else case. We can argue similarly as in the previous case, which is why 
we only have to prove 𝛾i1,Ñ ≤ �̄� . Since i1 is a next forced control  on the first 
interval, there is an interval l ≤ �1 with 

∑l

j=1
ai1,jΔj > �̄� . This implies the interval 

�1 of the earliest possible switch is given by 

 from which we find 
∑𝜏1

j=1
Δj > 2�̄� . We conclude for the grid point 

t𝜏1 = ⌊t0 +∑𝜏1
j=1

Δj⌋GN
> ⌊t0 + 2�̄�⌋GN

 , which implies 
t𝜏1−1 = ⌊t0 +∑𝜏1−1

j=1
Δj⌋GN

≥ ⌊t0 + 2�̄�⌋GN
 . This is equivalent to ∑𝜏1−1

j=1
Δj ≥ ⌊t0 + 2�̄�⌋GN

− t0 and so 

𝛿1 =

𝜏1−1�
j=1

Δj ≥ ⌊t0 + �̄�⌋GN
− t0

Lemma 5.1≥ �̄� − Δ̄ + C1Δ̄.

𝛾i1,Ñ =

Ñ∑
j=1

ai1,jΔj − 𝛿1 ≤ 2�̄� − Δ̄ + C1Δ̄ − (�̄� − Δ̄ + C1Δ̄) ≤ �̄�

(6.5)
Ñ∑
j=1

ai,jΔj > 2�̄� − Δ̄ + C1Δ̄, i = i1, i2,

𝜏1 = argmin
l∈[N]

{
l∑

j=1

(ai1,j − 1)Δj < −�̄� ∣

l∑
j=1

ai1,jΔj > �̄�

}
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 Using the (Conv) property yields 
∑Ñ

j=1
ai1,jΔj =

∑Ñ

j=1
Δj −

∑Ñ

j=1
ai2,jΔj, and 

therefore 

 where we used t̃f =
⌊
t0 +

5(tf−t0)

3+2𝜎max

⌋
GN

 in the third equation. To conclude, there is 

also at most one switch.   ◻

The above three lemmata are crucial for the following theorem, which provides 
an upper bound on (CIA).

Theorem 3 Consider any grid GN, relaxed values a ∈ AN and a maximum number 
of switches 𝜎max > 0 . The objective of (CIA) is bounded by

Proof We want to prove that the control function wMDR constructed by MDR with 
rounding threshold �̄� from (6.2) and initial control from Algorithm  4 is feasible 
and satisfies the claimed bound. We observe �̄� ≥ 1

2
Δ̄ from its definition in (6.2) and 

the definition of C1 in (6.1). Thus, we can apply Proposition 3 in connection with 
Lemma 3 so that wMDR fulfills indeed the claimed bound:

What remains to be shown is that wMDR is a feasible solution for (CIA−�̄� ), i.e., it 
does not use more than �max switches. In the sequel, we write n = �max in varia-
ble indices to improve readability of the latter. We assume there are already �max 
switches taken in wMDR and calculate the maximum length of the possibly last acti-
vation block, i.e., �n+1 = tf − t�n−1 . In Lemma 7 we have derived that at most one 

(6.6)𝛿1 =

𝜏1−1�
j=1

Δj ≥ ⌊t0 + 2�̄�⌋GN
− t0

Lemma 5.1≥ 2�̄� − Δ̄ + C1Δ̄.

𝛾i1,Ñ ≤
Ñ∑
j=1

ai1,jΔj − 𝛿1

(6.5)≤
Ñ∑
j=1

Δj −

Ñ∑
j=1

ai2,jΔj − (2�̄� − Δ̄ + C1Δ̄)

6.5

< t̃f − t0 − (2�̄� − Δ̄ + C1Δ̄) − (2�̄� − Δ̄ + C1Δ̄)

=

⌊
t0 +

5(tf − t0)

3 + 2𝜎max

⌋

GN

− t0 −
4(tf − t0)

3 + 2𝜎max

≤ t0 +
5(tf − t0)

3 + 2𝜎max

− t0 −
4(tf − t0)

3 + 2𝜎max

=
(tf − t0)

3 + 2𝜎max

< �̄�,

𝜃 ≤ N

3 + 2𝜎max

Δ̄ +
1

2
Δ̄ −

C1

2
Δ̄.

𝜃(wMDR) ≤ �̄� =
tf − t0

3 + 2𝜎max

+
1

2
Δ̄ −

C1

2
Δ̄.
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switch is used on the reduced grid G̃N until t̃f  , but there may follow another switch 
shortly afterwards, i.e., 𝜏2 ≥ Ñ + 1 . For the remaining �max − 2 activation blocks 
until t�n−1 we can apply Lemma 6, since Proposition 3 states that MDR uses canoni-
cal switches for n� = 2 . Lemma 6 states

Combining these findings and using Lemma 5.2 results in

Let i denote the control that is active after the �max th switch of wMDR . Note that �i,j 
is monotonically decreasing with increasing interval j ≥ �n since i is chosen to be 
active on interval j. Hence, if we are able to show that i is admissible on interval N, 
then it is also admissible on earlier intervals. We want to prove the admissibility of 
control i on interval N as in this case there will be no further switch until N. For this, 
let us assume i is inadmissible on interval N. We obtain 

In the second inequality we used that control i is forced on the interval �n of the nth, 
respectively �maxth, switch. With this contradiction, there cannot be a further switch 
after �n ; in other words, wMDR uses at most �max switches and is a feasible solution of 
(CIA). This completes the proof.   ◻

𝛿l ≥ 2𝜃 − Δ̄ + C1Δ̄, for 3 ≤ l ≤ 𝜎max.

(6.7)

tf − t𝜏n−1 =tf −

𝜎max∑
j=1

𝛿j ≤ tf − (t̃f + (𝜎max − 2)(2�̄� − Δ̄ + C1Δ̄))

≤tf −
⌊
t0 +

5(tf − t0)

3 + 2𝜎max

⌋

GN

− (𝜎max − 2)(2�̄� − Δ̄ + C1Δ̄)

≤tf − (t0 +
5(tf − t0)

3 + 2𝜎max

− Δ̄ + C1Δ̄) − (𝜎max − 2)(2�̄� − Δ̄ + C1Δ̄)

=
(3 + 2𝜎max)(tf − t0)

3 + 2𝜎max

−
5(tf − t0)

3 + 2𝜎max

+ Δ̄ − C1Δ̄ − (𝜎max − 2)

(
2(tf − t0)

3 + 2𝜎max

)

=
2(tf − t0)

3 + 2𝜎max

+ Δ̄ − C1Δ̄.
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In the sequel, we are going to elaborate how sharp the upper bound from The-
orem  3 is, and we will thereby exclude the case �max ≥ N − 1 ; otherwise the TV 
constraint would be no longer restrictive. Before presenting the main result in this 
context, we need a technical lemma again.

Lemma 8 For N, �max ∈ ℕ, where 1 ≤ �max ≤ N − 2, let R ∈ ℚ be defined by

We have that

where we indicate by ⌈x⌉0.5 the rounding up of x ∈ ℝ to the next multiple of 0.5 as 
defined in Sect. 1.3.

Proof Since R is a rational number with 3 + 2�max in the denominator, we have

Moreover, using basic properties of floor and ceiling functions yields

Next, we calculate

R ∶=
N

3 + 2�max

.

(6.8)2⌈R⌉0.5 − 1 ≤
�
N − ⌈R⌉
�max + 1

�
,

(6.9)⌈R⌉0.5 ≤ N

3 + 2�max

+ 0.5

�
1 −

1

3 + 2�max

�
.

(6.10)⌈R⌉ ≤⌈R⌉0.5 + 0.5,

(6.11)
N − ⌈R⌉
�max + 1

−
�max

�max + 1
≤
�
N − ⌈R⌉
�max + 1

�
.



605

1 3

On mixed-integer optimal control with constrained total…

Both 2
�⌈R⌉0.5 − 1

�
∈ ℤ and 

�
N−⌈R⌉
�max+1

�
∈ ℤ are valid so that we can deduce from the 

above inequality

  ◻

Theorem 4 For N, �max ∈ ℕ, where 1 ≤ �max ≤ N − 2, there is an equidistant grid 
GN and an a ∈ AN so that (CIA) has an objective value of

Proof If 𝜎max + 2 ≤ N < 3 + 2𝜎max , then we define a by specifying the values of 
control i1 for the intervals j ∈ [N] by

Since there are more intervals N than the maximum number of switches �max plus 
one, there is an interval j on which the optimal solution w of (CIA) has the value 
wi1,j

= 1 , while ai1,j = 0 holds. This results in 𝜃 ≥ 1Δ̄ = ⌈ N

3+2𝜎max

⌉0.5Δ̄.
Otherwise, if N ≥ 3 + 2�max , we proceed as follows 

1. We construct a specific matrix a that depends on the choice of �max and N.
2. We prove that the MDR scheme constructs for both initial active controls, for this 

a value and with a rounding threshold of 

2
�⌈R⌉0.5 − 1

�
=

(2⌈R⌉0.5 − 1)(𝜎max + 1) − 1

(𝜎max + 1)
−

𝜎max

𝜎max + 1

=
(2⌈R⌉0.5 − 1)(𝜎max + 1) + ⌈R⌉0.5 − 1

(𝜎max + 1)
−

⌈R⌉0.5
(𝜎max + 1)

−
𝜎max

𝜎max + 1

=
⌈R⌉0.5(3 + 2𝜎max) − (𝜎max + 1) − 1

(𝜎max + 1)
−

⌈R⌉0.5
(𝜎max + 1)

−
𝜎max

𝜎max + 1

(6.9)≤
�

N

3+2𝜎max

+ 0.5 − 1

2(3+2𝜎max)

�
(3 + 2𝜎max) − (𝜎max + 2)

(𝜎max + 1)
−

⌈R⌉0.5
(𝜎max + 1)

−
𝜎max

𝜎max + 1

=
N − 0.5

(𝜎max + 1)
−

⌈R⌉0.5
(𝜎max + 1)

−
𝜎max

𝜎max + 1
−

1

2(𝜎max + 1)

(6.10)≤ N

(𝜎max + 1)
−

⌈R⌉
(𝜎max + 1)

−
𝜎max

𝜎max + 1
−

1

2(𝜎max + 1)

=
N − ⌈R⌉
(𝜎max + 1)

−
𝜎max

𝜎max + 1
−

1

2(𝜎max + 1)

(6.11)≤
�
N − ⌈R⌉
𝜎max + 1

�
−

1

2(𝜎max + 1)
,

<

�
N − ⌈R⌉
𝜎max + 1

�
.

2
�⌈R⌉0.5 − 1

� ≤
�
N − ⌈R⌉
�max + 1

�
− 1.

(6.12)𝜃 ≥
⌈

N

3 + 2𝜎max

⌉0.5

Δ̄.

ai1,j =

{
1, if j odd,

0, if j even.
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 control functions wMDR that use more than �max switches. Then, we can come 
back to the idea of the AMDR scheme and Theorem  2.1., which states that 
wAMDR is feasible for (CIA), i.e. uses at most �max switches, resulting in 

 Theorem 2 provides in 2. (a) also a statement about the relation to the optimal 
solution of (CIA): 

 Because the tolerance TOL can be arbitrarily small, we conclude the optimal 
solution of (CIA) involves an objective value of at least 

⌈
N

3+2𝜎max

⌉0.5
Δ̄.

1. We reuse the notation of R from Lemma  8 and introduce the auxiliary constant 
nI ∈ ℕ:

Next, we are interested in designing a specific a ∈ AN with the property to enforce 
an improper covering by any w ∈ ΩN that satisfies a (CIA) objective of at most �̄� . By 
improper covering we indicate w ∈ ΩN has to use more than �max switches in order 
to yield the desired (CIA) objective value of at most �̄� . We create sets of consecu-
tive intervals for a on which either ai1 or ai2 is set to one (and the other control is 
thereby set to zero). We call these sets of consecutive intervals with the same value 
here index sections. We generate �max + 2 index sections, where the two controls are 
alternately set to one in a , with the idea that a feasible solution w of (CIA) with at 
most �max switches shall contain at most �max + 1 activation blocks. The first index 
section will include ⌊R⌋ intervals, followed by index sections with nI intervals, and 
the last index section arises from the remaining intervals until N is reached. After 
conveying some intuition of the specific a ∈ AN , we continue with a technical defi-
nition of the index set J  that specifies the index sections on which ai1 is set to one:

With these definitions we introduce a by fixing the values of control i1.

(6.13)�̄� ∶=

⌈
N

3 + 2𝜎max

⌉0.5

Δ̄ − 𝜖, for any 0 < 𝜖 <

⌈
N

3 + 2𝜎max

⌉0.5

Δ̄,

⌈
N

3 + 2𝜎max

⌉0.5

Δ̄ ≤ 𝜃
(
wAMDR

)
.

𝜃
(
wAMDR

) ≤ 𝜃⋆ + TOL.

R ∶=
N

3 + 2�max

, nI ∶=

�
N − ⌈R⌉
�max + 1

�
.

Jeven ∶=
�⌊R⌋� ∪ �

j ∣ ⌈R⌉ + (2k − 1)nI + 1 ≤ j ≤ ⌈R⌉ + 2knI , k ∈ [⌊�max∕2⌋]
�
,

J ∶=

�
Jeven, if �max is even,

Jeven ∪ {j ∣ ⌈R⌉ + (2⌊�max∕2⌋ + 1)nI + 1 ≤ j ≤ N}, if �max is odd.
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The value of ai1 on the (⌈R⌉) th interval in the second and third case may seem unin-
tuitive. The idea of this construction is that it results �i1,⌈R⌉ = ⌈R⌉0.5 if control i1 is 
neither active on the first index section, nor on the (⌈R⌉) th interval. In this way, con-
trol i1 needs to be already active on the first index section in order to maintain a 
(CIA) objective value of at most �̄�.

2. We want to prove that the MDR scheme with the rounding threshold from 
(6.13) and with a defined in (6.14) constructs a control function that uses more than 
�max switches, independent of the initial active control. For this, we are going to 
establish the following claim: 

a) If i1 is the initial active control, the kth switch of wMDR happens before the �⌈R⌉ + knI
�
 th interval, where k ∈ [�max + 1].

b) If i2 is the initial active control, the kth switch of wMDR happens before the �⌈R⌉ + (k − 1)nI
�
 th interval, where k ∈ [�max + 1].

Assuming the claim is true, wMDR uses indeed more than �max switches because 
the 

�⌈R⌉ + (�max + 1)nI
�
 th interval exists, i.e., is smaller than or equal to N:

The inequality above shows that there are indeed �max + 2 index sections for a as 
described above. With this information we deduce that �̄� <

1

2
Δ̄ results directly in 

more than �max switches or in control solutions that does not satisfy the claimed 
optimal (CIA) objective value from (6.12) anyway:

– If a consists only of zeros and ones and �̄� <
1

2
Δ̄ , the MDR algorithm creates 

switches on all intervals j for which a
⋅,j ≠ a

⋅,j−1 holds true. Thus, the activation 
blocks of wMDR would match the index sections of a , i.e. wMDR = a . As we 
derived �max + 2 index sections for a , there are �max + 2 blocks for wMDR and 
therefore �max + 1 switches.

– If ai1,⌈R⌉ = 0.5 , then there is no w with 𝜃(w) < 1

2
Δ̄ regardless of which control 

is active on interval ⌈R⌉ since a is either zero or one on all other intervals. 
Hence, we can exclude the case �̄� <

1

2
Δ̄ from further consideration.

Thus, we are left with the case �̄� ≥ 1

2
Δ̄ . In this case, we can apply Proposition 3 

and conclude that we deal only with canonical switches. We return to prove the 
claim, and we proceed via induction.

Base case 

(6.14)ai1,j =

⎧
⎪⎨⎪⎩

1, if j ∈ J,

0.5, if j = ⌈R⌉, and ⌊R⌋ < R ≤ ⌊R⌋ + 0.5,

1, if j = ⌈R⌉, and R > ⌊R⌋ + 0.5,

0, else.

⌈R⌉ + (�max + 1)nI = ⌈R⌉ + (�max + 1)

�
N − ⌈R⌉
�max + 1

�
≤ ⌈R⌉ + (�max + 1)

N − ⌈R⌉
�max + 1

= N.
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(a) We consider k = 1 and conclude from N ≥ 3 + 2�max that ⌈R⌉0.5 ≥ 1 holds. Plug-
ging this into inequality (6.8) from Lemma 8 results in ⌈R⌉0.5 < nI , and thus 

 By construction of a , the values ai1,j are equal to one for 1 ≤ j ≤ ⌊R⌋ . The value 
ai1,⌈R⌉ is either 0.5 or 1. Therefore, −0.5 ≤ �i1,⌈R⌉ ≤ 0 holds for the accumulated 
control deviation of wMDR with i1 as initial active control. After the (⌈R⌉) th 
interval nI intervals follow on which ai1,j is zero. We conclude i1 becomes inad-
missible by (6.15) before interval ⌈R⌉ + nI and hence, the first switch appears 
before this interval.

(b) We show the claim for the first two switches because we take an interest in a 
switch that occurs after interval ⌈R⌉ in the induction step. Let k = 1 . Since 

 we conclude control i2 becomes inadmissible the latest on interval ⌈R⌉ when 
being the initial active control and, equivalently, wMDR has a switch on inter-
val ⌈R⌉ at the latest. This is equivalent to at least one activation of i1 up to and 
including interval ⌈R⌉ , which we use for proving the assertion in case of k = 2 . 
Let us assume the second switch happens on or after interval ⌈R⌉ + nI . This 
implies i1 would be admissible on that interval and we derive 

 Consequently, the second switch happens before the 
�⌈R⌉ + nI

�
 th interval.

Induction step
Assume the assertion holds for k − 1 ≤ �max , we show that it is also true for k. At 

first, we prove an auxiliary result. For i ∈ [2] and j ≥ ⌈R⌉ we have that

We prove the equation (6.16) by computing the accumulated control deviation:

For j > ⌈R⌉ we have defined ai1,j ∈ {0, 1} so that (6.16) holds with 
z =

�∑j

l=1+⌈R⌉ ai1,l −
∑j

l=1
wi1,l

�
 . On the other hand, for the other control i2 holds

(6.15)�̄� < nIΔ̄.

⌈R⌉�
j=1

(ai2,j − 1)Δ̄ =
�⌈R⌉ − ⌈R⌉0.5 − ⌈R⌉�Δ̄ < −⌈R⌉0.5Δ̄ + 𝜖 = −�̄�,

(6.16)𝜃i,j = ⌈R⌉0.5Δ̄ + zΔ̄, for some z ∈ ℤ.

𝜃i1,j = Δ̄

�⌈R⌉�
l=1

ai1,l +

j�
l=1+⌈R⌉

ai1,l −

j�
l=1

wi1,l

�
= ⌈R⌉0.5Δ̄ +

�
j�

l=1+⌈R⌉
ai1,l −

j�
l=1

wi1,l

�
Δ̄.
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and therefore (6.16) is satisfied with z =
�
⌈R⌉ − 2⌈R⌉0.5 +∑j

l=1+⌈R⌉ ai2,l −
∑j

l=1
wi2,l

�
.

In order to make use of the established auxiliary result, we need to argue that 
the (k − 1) st switch happens after the interval ⌈R⌉ . In case a) the MDR algorithm 
will not deactivate i1 due to ai1,j = 1 before the ⌈R⌉ th interval. So it does on the ⌈R⌉ th 
interval if ai1,⌈R⌉ = 0.5 because we have established �̄� ≥ 1

2
Δ̄ . In case b) we use the 

base case for the second switch. We consider the interval �1 of the first switch of 
case a) and compare the two accumulated control deviations for the two cases a) and 
b) on �1 and obtain �i1,�1 (b) ≥ �i1,�1 (a) because i2 has already been activated in case b) 
in contrast to case a). Since 𝜏1 > ⌈R⌉ , we are done.

Now, without loss of generality, let i1 be the active control after the switch on 
interval �k−1 . We know that i2 is active and thus admissible on interval �k−1 − 1:

which implies by Lemma 2 for the control i1

and by equation (6.16) we have for some zi1 ≥ 1

The control i2 is inadmissible on interval �k−1 as there are only canonical 
switches. If ai2,�k−1 = 1 would be true, then i2 would already have been inadmis-
sible on interval �k−1 − 1 . Also, ai2,�k−1 = 0.5 is not possible because we derived 
𝜏k−1 > ⌈R⌉ . We conclude ai2,�k−1 = 0 . From this and the induction hypothesis, 
which states that the (k − 1) st switch appears before the 

�⌈R⌉ + (k − 1)nI
�
 th inter-

val, follows ai1,j = 1 for the intervals j between �k−1 and 
�⌈R⌉ + (k − 1)nI

�
 . Hence, 

𝜃i1,⌈R⌉+(k−1)nI ≤ (⌈R⌉0.5 − 1)Δ̄ holds due to (6.17). Finally, we assume i1 can stay 
active up to and including interval ⌈R⌉ + knI without becoming inadmissible. This 
and ai1,j = 0 for ⌈R⌉ + (k − 1)nI + 1 ≤ j ≤ ⌈R⌉ + knI imply 

𝜃i2,j = Δ̄

�⌈R⌉�
l=1

ai2,l +

j�
l=1+⌈R⌉

ai2,l −

j�
l=1

wi2,l

�
= (⌈R⌉ − ⌈R⌉0.5)Δ̄ +

�
j�

l=1+⌈R⌉
ai2,l −

j�
l=1

wi2,l

�
Δ̄

−�̄� ≤ 𝜃i2,𝜏k−1−1,

𝜃i1,𝜏k−1−1 ≤ �̄� = ⌈R⌉0.5Δ̄ − 𝜖,

(6.17)𝜃i1,𝜏k−1−1 = ⌈R⌉0.5Δ̄ − zi1Δ̄ ≤ (⌈R⌉0.5 − 1)Δ̄.
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Thus, i1 is not active until the (⌈R⌉ + knI) th interval, respectively with an analogous 
computation for case b) i1 is not active until the (⌈R⌉ + (k − 1)nI) th interval. Thereby, 
we showed that indeed the assertion holds for k. Altogether, the constructed control 
function wMDR uses more than �max switches for the chosen rounding threshold �̄� so 
that the (CIA) objective value is at least �̄� and we conclude the claimed theorem is 
true.   ◻

We complete this section by drawing a conclusion from the Theorems 3 and 4.

Corollary 4 Consider an equidistant grid GN , a ∈ AN and 1 ≤ �max ≤ N − 2 . The 
objective of (CIA) is bounded by

which is the tightest possible bound.

Proof The inequality (6.18) is achieved by Theorem 3 applied to the equidistant case 
and rearranging terms:

It is the tightest possible bound by Theorem  4 and the case 
N = k(3 + 2�max) + 2 + �max , k ∈ ℕ0:

  ◻

(6.18)𝜃 ≤ N + 𝜎max + 1

3 + 2𝜎max

Δ̄,

𝜃 ≤
(

N

3 + 2𝜎max

+
1

2
−

1

2(3 + 2𝜎max)

)
Δ̄ =

N + 𝜎max + 1

3 + 2𝜎max

Δ̄.

𝜃 ≥
⌈
k(3 + 2𝜎max) + 2 + 𝜎max

3 + 2𝜎max

⌉0.5

Δ̄ = (k + 1)Δ̄ =
N + 𝜎max + 1

3 + 2𝜎max

Δ̄.
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7  Upper bounds on (CIA) with n! > 2

Deriving bounds for the (CIA) problem with more than two controls is more dif-
ficult compared to the last chapter as the number of possibilities increases signifi-
cantly. Let �max denote the maximum possible objective value of (CIA) for any given 
a ∈ AN and GN in this section. We will first use known results to derive lower and 
upper bounds for �max . Then, we dedicate ourselves to the continuous relaxation of 
(CIA), which allows us to prove a sharper lower bound. Based on this, we state a 
conjecture about the actual value of �max.

Corollary 5 Let 1 ≤ �max ≤ N − 2 and n𝜔 > 2 . We have that 𝜃max ≥ N+𝜎max+1

3+2𝜎max

Δ̄.

Proof This bound has been established in Theorem 4 and Corollary 4 for the case 
n� = 2 . The provided example in the proof of Theorem 4 can be also applied to the 
case n𝜔 > 2 by setting the values of the relaxed controls ai , for all i ∈ [n𝜔], i > 2, to 
zero.   ◻

Corollary 6 Let 1 ≤ �max ≤ N − 2 and n𝜔 > 2 . We have that 
𝜃max ≤ 2n𝜔−3

2n𝜔−2

(
tf−t0

𝜎max+1
+ Δ̄

)
.

Proof For the (CIA) problem without TV constraints, but with minimum up time 
constraints the sharp bound

is proven in Theorem 2 in [32], where the constant CU ≥ 0 represents the given min-
imum up time. If we require for (CIA) that an activated control remains active for a 
time period of at least tf−t0

�max+1
 , at most �max switches take place. Thus, the TV con-

straint serves as a relaxation of the minimum up time constraint.   ◻

We tighten the above results by investigating the continuous version of the (CIA) 
problem.

Definition 17 (CCIA) Let � ∈ A and �max ∈ ℕ be given. Then, we define the con-
tinuou s CIA problem to be

𝜃 ≤ 2n𝜔 − 3

2n𝜔 − 2

(
CU + Δ̄

)

(7.1)min
�,�∈Ω

�

(7.2)s. t. � ≥ ±

t

�
t0

(�i(s) − �i(s)) ds, for all i ∈ [n�], t ∈ T,

(7.3)�max ≥ TV(�).
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Obviously, the problem (CCIA) is a reformulation of

We stress that the given data � lives for (CCIA) in A not as usually in AN and analo-
gously we try to find a binary control function � ∈ Ω , not w ∈ ΩN . We obtain a 
lower bound for the maximum objective �max of (CCIA) over all � ∈ A by con-
structing a specific instance, as indicated in the following theorem.

Proposition 4 The following lower bound holds true for the maximum objective �max 
of (CCIA):

Proof Let us first prove the bound for �max ≤ n� − 2 . We abbreviate t̃ ∶= tf−t0

𝜎max+2
 and 

construct the following instance

We conclude � ∈ A since the convex combination constraint is satisfied on the 
whole time horizon T  . It results ∫

T
𝛼i(s) ds = t̃ for all i ∈ [𝜎max + 2] . Thus, we 

would need to activate each control �i for some time to achieve a lower objective 
than t̃ . But, because the number of switches is restricted to be at most �max , this is 
not possible. Hence, 𝜃 ≥ t̃.

Next, we consider 𝜎max > n𝜔 − 2 and we will again construct a specific instance 
with the claimed objective value of � ≥ tf−t0

2�max+4−n�
 . We abbreviate t̄ ∶= tf−t0

2𝜎max+4−n𝜔
 . 

Similar to the above example, we first let the relaxed controls �i be active one after 
the other for a period of t̄ . After all relaxed controls have been active once and the 
end of the time horizon has not yet been reached, we activate each control for a 
period of 2t̄ according to the ascending index i ∈ [n�] until we reach the end of the 
time horizon. We express this idea by introducing the domains of activation for all 
i ∈ [n�]:

Based on these domains we define the functions �i(t) via

min
�∈Ω

max
t∈T

‖‖‖‖‖∫
t

t0

(�(s) − �(s)) ds
‖‖‖‖‖
, s.t. TV constraint(7.3).

(7.4)�max ≥
⎧
⎪⎨⎪⎩

t
f
−t0

�max+2
, if �max ≤ n� − 2,

t
f
−t0

2�max+4−n�
, else.

𝛼i(t) ∶=

{
1, for t ∈ [t0 + (i − 1) ⋅ t̃, t0 + i ⋅ t̃),
0, else,

for all i ∈ [𝜎max + 2],

𝛼i(t) ∶=0 for all i = 𝜎max + 3,… , n𝜔.

Ii ∶=[t0 + (i − 1) ⋅ t̄, t0 + i ⋅ t̄)

∪
{
[t0 + (n𝜔 + 2(j − 1))t̄, t0 + (n𝜔 + 2j)t̄) ∣ j ∈ [𝜎max + 2 − n𝜔], j ≡ i mod n𝜔

}
.

�i(t) ∶=

{
1, for t ∈ Ii,

0, else,
for all i ∈ [n�].
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Fig.   1 gives a visualization of this specifically defined control function � . We 
have

so that ∪i∈[n�]
Ii = T  follows and because the intervals Ii are all disjoint, we obtain 

�i(t) = 1 for exactly one control i and for all t ∈ T  . Hence, � ∈ A . The next observa-
tion about � is that it consists of n� + (�max + 2 − n�) = �max + 2 activation blocks 
(interpreted in this continuous setting), meaning there are �max + 1 changes of the 
active control. Now, let us assume we can approximate � with a binary control func-
tion � ∈ Ω resulting in an (CCIA) objective value of less than t̄ . We have

So, each control �i , i ∈ [n�] needs to be active for some time until t0 + i t̄ resulting 
in at least n� − 1 switches up to and including t0 + n𝜔 t̄ . Then, we have that

This, and using that the next activation blocks of � last for a period of 2 t̄ , imply each 
control �i needs to be activated again up to and including t0 + (n𝜔 + 2i)t̄ . If it were 
possible for some i ∈ [n�] to skip the activation of �i without violating the control 
deviation bound t̄ , this would result in

n𝜔 t̄ + (𝜎max + 2 − n𝜔)2t̄ = tf − t0

t0+it̄

∫
t0

𝛼i(s) ds = t̄, for all i ∈ [n𝜔].

t0+n𝜔 t̄

∫
t0

𝛼i(s) − 𝜔i(s) ds < t̄, for all i ∈ [n𝜔].

Fig. 1  Exemplary visualization of the relaxed binary control function � from the proof to Proposition 4 
resulting in a (CCIA) objective value of t̄  . Since i = 2 is in this example the last activated control, the 
maximum number of allowed switches is �max = kn� + 2 − 2 = kn�, for k ≥ 2
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and at the same time, it would hold

which implies

because of ∫ t0+(n𝜔+2i)t̄

t0+(n𝜔+2(i−1))t̄
𝛼i(s) ds = 2 t̄ . We apply this argument for all activation 

blocks of � until tf  and conclude that � must use at least one switch for each activa-
tion block of � after t0 + n𝜔 t̄ , i.e., it must use at least (�max + 2 − n�) switches. Over-
all, there are at least n� − 1 + (�max + 2 − n�) = �max + 1 switches. Therefore, any 
� ∈ Ω that uses at most �max switches involves an (CCIA) objective value of at least 
t̄ , which settles the lower bound for the case 𝜎max > n𝜔 − 2 .   ◻

(CIA) can be interpreted as a discretized version of (CCIA). Thereby, we can 
deduce the following corollary.

Corollary 7 Let 1 ≤ �max ≤ N − 2 and n𝜔 > 2 . We obtain for the maximum optimal 
objective value �max of (CIA):

Proof (CCIA) is a relaxation of (CIA) since every feasible solution of (CIA) corre-
sponds to a feasible solution of (CCIA). Thus, the claim follows from Proposition 4.  
 ◻

The lower bound in Corollary 7 is generally sharp in the sense that there are 
combinations of n� , �max and GN so that �max equals the claimed lower bound. The 
following example illustrates this relationship.

Example 4 Let the grid be equidistant with N = 3 and n� = 3 . Consider the follow-
ing two instances:

|||||||

t0+(n𝜔+2i)t̄

∫
t0

𝛼i(s) − 𝜔i(s) ds

|||||||
< t̄

t0+(n𝜔+2i)t̄

∫
t0+(n𝜔+2(i−1))t̄

𝜔i(s) ds = 0,

|||||||

t0+(n𝜔+2(i−1))t̄

∫
t0

𝛼i(s) − 𝜔i(s) ds

|||||||
> t̄

(7.5)�max ≥
⎧
⎪⎨⎪⎩

t
f
−t0

�max+2
, if �max ≤ n� − 2,

t
f
−t0

2�max+4−n�
, else.
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Consider �max = 1 in the first example. Then, 𝜃 = Δ̄ and 𝜃max ≥ Δ̄ follows from the 
above corollary. Any asymmetric modification of (a1

i,j
) with unequal control accumu-

lation 
∑3

j=1
a1
i1,j

≠ ∑3

j=1
a1
i2,j

 would result in a binary control function wOPT that acti-
vates the controls with highest control accumulation and hence 𝜃 < Δ̄ . We conclude 
that the claimed bound is sharp, i.e., 𝜃max = Δ̄.

Let us assume �max = 2 for the second instance. Then, wOPT
i,j

= 1 for 
(i, j) = (1, 1), (1, 2), 2, 3) and thus 𝜃 = 0.75Δ̄ . Therefore, the bound in Corollary 7, 
which amounts to 𝜃max ≥ 3

5
Δ̄ , is not tight for this instance.

Finding the exact value of �max is difficult due to the nonconvex objective 
maxa minw maxi∈[n�],j∈[N] and the tremendously increased number of different � ∈ Ω 
when n𝜔 > 2 , but we conjecture that the lower bound in Proposition  4 cannot be 
improved. We recognize the symmetry of the constructed � in the proof: Any modi-
fication of � that alters the length of its activation blocks would result either in less 
than �max + 2 activation blocks or in at least one block with a smaller length com-
pared with the previous length. The latter block length would be smaller than 

tf−t0

2�max+4−n�
 if the block is the first control’s activation, respectively smaller than 

2 ⋅
tf−t0

2�max+4−n�
 else. With the argumentation from the proof of Proposition  4, this 

would allow us to choose a control function � ∈ Ω with a (CCIA) objective value 
smaller than tf−t0

2�max+4−n�
 . Furthermore, we argue that the optimal objective value of 

(CCIA) is at most by 1
2
Δ̄ smaller than the one of (CIA) because the switching times 

of the optimal � ∈ Ω differ at most by one half of the maximum grid length from 
the optimal w ∈ ΩN . We close this section by summarizing these thoughts in the fol-
lowing conjecture.

Conjecture 1 Let 1 ≤ �max ≤ N − 2 and n𝜔 > 2 . We obtain for (CIA)

8  Numerical experiments

We test the proposed algorithm with a benchmark example from the https ://mintO 
C.de library [25], with a real-world adsorption cooling machine problem [7] and 
with generic data. We use the CIA decomposition in order to solve these problems, 
where we applied CasADi v3.4.5 [1] to parse the nonlinear program (NLP) with 

(a1
i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
, (a2

i,j
)i∈[3],j∈[3] ∶=

⎛
⎜⎜⎝

1 0.5 0

0 0.25 0.5

0 0.25 0.5

⎞
⎟⎟⎠
.

(7.6)𝜃max =

⎧⎪⎨⎪⎩

tf−t0

𝜎max+2
+ 1

2
Δ̄, if 𝜎max ≤ n𝜔 − 2,

tf−t0

2𝜎max+4−n𝜔
+ 1

2
Δ̄, else.

https://mintOC.de
https://mintOC.de
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efficient derivative calculation to the solver Ipopt 3.12.3 [30]. We implemented 
the AMDR algorithm into an add-on as part of the open-source software pack-
age pycombina2 [7] and used its BNB solver for benchmarking reasons. The BNB 
scheme is based on the idea to branch forward in time and exploits that an evaluation 
of the objective function up to the current grid point yields a valid lower bound that 
is extremely cheap to compute, see [15, 27] for further details. We set the tolerance 
parameter of the ADMR algorithm to TOL = 0.0001 . All computational experiments 
are executed on a workstation with 4 Intel i5-4210U CPUs (1.7 GHz) and 7.7 GB 
RAM.

8.1  Multimode MIOCP

We consider the following MIOCP, which is a modified version of the Egerstedt 
standard problem from https ://mintO C.de:

Obviously, we deal with 3 different modes, i.e., n� = 3 . We use as initial values 
x
0
∶= (0.5, 0.5)T . Furthermore, we add the TV constraints (3.1)–(3.2) to (P1), with 

varying maximum number of switches �max . Fig. 2 illustrates the differential state 
and control trajectories for �max = 20 and with relaxed binary controls as well as 
binary controls based on SUR, BNB and AMDR. We remark that the control func-
tion constructed by SUR uses 70 switches and is therefore infeasible with respect to 
�max = 20 . The relaxed control values are greater than zero and less than one around 
t ≈ 0.45 and for t ≥ 0.8 so that the corresponding approximated state trajectories of 
BNB and AMDR are slightly different from the relaxed one from t ≈ 0.45 on. We 
set the BNB iteration limit to 5 ⋅ 106 so that it stopped after 15.3s with (CIA) objec-
tive value � = 9.1 ⋅ 10−3 and Φ = 0.991855 as (P1) objective value. The execution 
of AMDR took 0.2s and resulted in the improved objective values � = 4.6 ⋅ 10−3 , 
respectively Φ = 0.991509 , which can be explained by more uniformly distributed 
switches compared with the BNB solution.

Table  1 shows that the BNB algorithm constructs for small instances, e.g. 
N = 200 , better (CIA) objective values than AMDR if enough time is available. If 
the BNB scheme finds a good solution, it will usually do so after a few million itera-
tions. While the � values of AMDR are close to the ones from BNB for N = 200 , 
they are clearly outperforming the latter for bigger instances. Its run time is only 
slightly increasing with a grid’s refinement, from about 0.1 seconds to at most 0.6 

(P1)

min
x,𝜔∈Ω

x1(tf )
2 + x2(tf )

2

s.t. for a.e. t ∈ [0, 1] ∶

ẋ1(t) = −x1(t)𝜔1(t) + (x1(t) + x2(t))𝜔2(t) + (x1(t) − x2(t))𝜔3(t),

ẋ2(t) = (x1(t) + 2x2(t))𝜔1(t) + (x1(t) − 2x2(t))𝜔2(t) + (x1(t) + x2(t))𝜔3(t),

x(0) = x
0
.

2 see https ://githu b.com/adbue rger/pycom bina

https://mintOC.de
https://github.com/adbuerger/pycombina
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seconds. A C++ implementation could still improve the run time as we used so far a 
prototype implementation in python. It appears that selecting the next-forced con-
trol rather than the one with a maximum � value is beneficial as part of the AMDR 
algorithm and tends to yield the solution with the smallest (CIA) objective value.

8.2  Dualmode adsorption cooling machine problem

In [6, 7], a complex renewable energy system in the form of a solar thermal climate 
system with nonlinear system behavior is introduced as an MIOCP. The system’s 
core is an adsorption cooling machine, which can be switched on to intensify the 
cooling down of ambient temperature. The goal is to control the room temperature 
in a comfort zone and at the same time to minimize the energy costs. We skip a 
detailed system’s description but refer to [7], and consider the relaxed binary control 
values as given, as illustrated in Fig. 3 in the left plot. We assume two modes of the 
adsorption cooling machine, i.e., n� = 2 , and a whole day time horizon with control 
adjustment every four minutes, i.e., N = 360.

Fig. 2  Differential state and control trajectories for the test problem (P1). The problem has been discre-
tized with Multiple Shooting and N = 400 intervals. The state trajectories based on SUR are very similar 
to the relaxed one (i.e., based on � ), so that we skip their presentation
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We use the AMDR scheme to calculate a candidate solution of the (CIA) problem 
depending on �max , which is optimal by virtue of Theorem 2.2. (a). The right plot 
in Fig. 3 compares these optimal solutions with the (CIA) objective values of BNB 
solutions with increasing iteration limit. For a small and large number of allowed 
switches, the deviation of the BNB solutions is small. One explanation for this is 
the limited degree of freedom for a small �max , so that the width of the BNB tree is 
very limited. With a large �max , on the other hand, solutions with a small � value can 
be found quickly, with which many nodes can be pruned. The deviation from the 
optimal solution is particularly striking for medium-sized �max . For some instances, 
especially for 10 ≤ �max ≤ 20 , an increase of the iteration limit hardly leads to an 
improvement because the BNB algorithm seems to remain in a suboptimal branch. 
We also compare the optimal solution of (CIA) with the upper bound from Corol-
lary 4 and see that the latter appears between 200 and 600 percent larger.

8.3  Comparison of optima for (CIA) with upper bounds based on generic data

The two investigated MIOCPs showed a relatively large deviation of the optimal 
(CIA) objective value compared with the derived upper bounds. Therefore, we gen-
erated uniformly distributed random values a ∈ AN for N = 40 equidistant intervals, 
n� = 2, 3 controls, and examined how the ratio of these two values results here. We 
illustrate this comparison in Fig. 4, where we use the upper bound from Corollary 4 
for n� = 2 and the one from Conjecture  1 for n� = 3 . The objective values �, �∗ 
and bounds �max decrease logarithmically with the increase of �max , as expected. In 
contrast to the above MIOCPs, the (CIA) objective values come close to the upper 
bounds, particularly for small �max , but a relevant gap remains for larger �max . This 
gap may be further reduced utilizing a larger sample size; we considered here only 

Fig. 3  Left: Relaxed binary control values � for the adsorption cooling machine problem for the whole 
time horizon of a day and exemplary approximated binary values � obtained by AMDR and with 
�max = 8 . Right: Comparison of the (CIA) objective values based on the upper bound �max from Corol-
lary 4 and BNB solutions with the optimal solutions constructed by AMDR and varying �max values. We 
report the deviation in percent. The number next to BNB indicates the maximum number of iterations, 
e.g. 2 million
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1000 (CIA) instances per �max value. We also note that the values generated by the 
AMDR algorithm are very close to the optimal ones.

8.4  Discussion

As expected by the polynomial run time complexity, our prototype implementa-
tion of AMDR constructs (CIA) feasible solutions very quickly. Their � values are 
mostly outperforming the ones obtained by the BNB algorithm or are at least close 
to the latter for a problem with more than two binary controls. Consequently, the 
AMDR solution is itself a promising (CIA) feasible solution or is a fast option to ini-
tialize the BNB with a competitive upper bound. As stated in Remark 6, the AMDR 
algorithm may also be used to include combinatorial constraints other than the TV 
constraints.

For comparison with the BNB method, we restrict that we only used the depth-
first node selection strategy and could have tuned it a bit more to achieve more 
competitive feasible solutions of (CIA). Besides, the BNB algorithm can include 
a variety of combinatorial conditions of the (CIA) problem, so it is generally 
advantageous.

We also note that our calculations mainly examine the (CIA) objective value 
because it correlates with the (MIOCP) objective value. With very similar or large 
(CIA) objective values, however, the smaller value may lead to a worse (MIOCP) 
objective value—and vice versa. There may be several binary control functions with 
the same (CIA) objective value but different (MIOCP) objective values. In some 
instances, we observed that the AMDR algorithm generates a control function with 
suboptimal (MIOCP) objective value since its switches are structurally delayed 
compared to the switches on bang-bang-arcs of the relaxed binary values. In this 
case, we tested, as a heuristic, shifting the AMDR binary values backward in time 

Fig. 4  Optimal objective values �∗
k
 of (CIA) for randomly generated values a ∈ A

N
 with k ∈ [1000] sam-

ples, N = 40 and varying �max values compared with derived upper bounds �max . We display the maxi-
mal, median and minimal objective values of the samples for each given �max . Left: The optima are com-
puted with the AMDR algorithm for the case n� = 2 . Right: Comparison of the values constructed by the 
AMDR algorithm with the optimal values obtained by BNB
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by ⌊𝜃∕Δ̄⌋ intervals so that the control function is more similar to the relaxed binary 
values, which worked well.

9  Conclusions

In this paper, we have devised a fast rounding method for the MIOCP with con-
strained TV of the integer control. The proposed algorithm constructs under certain 
assumptions, e.g., n� = 2 , an optimal solution of the (CIA) subproblem. Based on 
this, we have proven bounds on the integrality gap of (CIA) for the constrained TV 
case. Our numerical results have shown that the computed control function’s quality 
outperforms in many cases the BNB solution, for which an iteration limit has been 
set up. Due to the very short run time, we recommend the proposed method, espe-
cially for the mixed-integer model predictive control setting or for instances with a 
vast number of binary variables. In the future, this algorithmic proposal could be 
compared with a penalty alternating direction method [12] or extended to switching 
costs as in [3].
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