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Abstract
In this article a special class of nonlinear optimal control problems involving a 
bilinear term in the boundary condition is studied. These kind of problems arise for 
instance in the identification of an unknown space-dependent Robin coefficient from 
a given measurement of the state, or when the Robin coefficient can be controlled 
in order to reach a desired state. Necessary and sufficient optimality conditions 
are derived and several discretization approaches for the numerical solution of the 
optimal control problem are investigated. Considered are both a full discretization 
and the postprocessing approach meaning that we compute an improved control by 
a pointwise evaluation of the first-order optimality condition. For both approaches 
finite element error estimates are shown and the validity of these results is confirmed 
by numerical experiments.

Keywords  Bilinear boundary control · Identification of Robin parameter · Finite 
element error estimates · Postprocessing approach

1  Introduction

This paper is concerned with bilinear boundary control problems of the form

subject to

J(y, u) ∶=
1

2
‖y − yd‖2L2(�)

+
�

2
‖u‖2

L2(� )
→ min!

−�y + y = f in �,

�ny + u y = g on � ,

u ∈ Uad ∶= {v ∈ L2(� ) ∶ ua ≤ u ≤ ub a.e. on � },
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where 𝛺 ⊂ ℝ
n , n ∈ {2, 3} , is a bounded domain, 𝛼 > 0 is the regularization param-

eter, yd ∈ L2(�) is a desired state and 0 ≤ ua < ub are the control bounds.
As an application of bilinear boundary control problems we mentioned the iden-

tification of an unknown Robin coefficient from a given measurement yd of the state 
quantity. This is for instance of interest in the modeling of stem cell division pro-
cesses [16, 17], where u is the unknown parameter describing the chemical reactions 
between proteins from the cell interior and the cell cortex. For further applications, 
u can be interpreted as a heat-exchange coefficient in thermodynamics or as a quan-
tity for corrosion damage in electrostatics. There are many publications dealing with 
the identification of the Robin coefficient, see for instance [12, 23, 31, 34]. Only a 
few papers use an optimal control approach similar to the one considered in the pre-
sent article. We mention [22, 25], where the parabolic version of our model problem 
is considered. The authors prove convergence of a finite element approximation but 
no convergence rate is established. A similar problem is discussed in [21], dealing 
with the recovery of the Robin parameter in a variational inequality.

The aim of the present paper is to derive necessary and sufficient optimality con-
ditions for the optimal control problem and to investigate several numerical approxi-
mations regarding convergence towards a local solution. This complements a pre-
vious contribution of Kröner and Vexler [27] where the distributed control case, 
meaning that the bilinear term u y appears in the differential equation, is discussed. 
The main results in their article are error estimates for the approximate controls in 
the L2(�)-norm for several finite element approximations. To be more precise, the 
convergence rate 1 is shown for piecewise constant and 3/2 for piecewise linear 
approximations for the control. Moreover, advanced discretization concepts like the 
postprocessing approach [32] and the variational discretization [24] are investigated 
which allow an improvement up to a convergence rate of 2. It is the purpose of the 
present article to extend the results to the case of bilinear boundary control.

The numerical analysis of boundary control problems is usually more difficult than 
for distributed control problems as the adjoint control-to-state operator maps onto some 
Sobolev/Lebesgue space defined on the boundary. As a consequence, error estimates 
for the traces of finite element solutions have to be proved, more precisely, in the L2(� )

-norm. Here, we consider two different discretization approaches. The first one is a full 
discretization using piecewise linear finite elements for the states and piecewise con-
stant functions on the boundary for the control approximation. Under the assumption 
that the domain has a Lipschitz boundary we show that the discrete optimal control 
converges with the optimal rate 1. To show this result we exploit the local coerciv-
ity of the objective, best-approximation properties of the control space and suboptimal 
error estimates for the state and adjoint equation. In order to obtain a more accurate 
solution we also investigate the postprocessing approach where an improved control is 
computed by a pointwise application of the first-order optimality condition to the dis-
crete state variables. For this approach we have to assume more regularity for the exact 
solution and thus, we restrict our considerations to two-dimensional domains with suf-
ficiently smooth boundary. Under this assumption we show the optimal convergence 
rate of 2 − � with arbitrary 𝜀 > 0 which is the rate one would also expect in the case of 
linear quadratic boundary control problems and smooth solutions [3, 4, 33] (even with 
h−� replaced by | ln h| , where h is the maximal element diameter of the finite element 
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mesh). The proof relies on the non-expansivity of the projection onto the feasible set as 
well as sharp error estimates for the state and adjoint state in L2(� ) . To obtain estimates 
in these norms superconvergence properties of the midpoint interpolant, finite element 
error estimates for the Ritz projection in L2(� ) and a supercloseness result between the 
midpoint interpolant of the exact and the discrete solution are exploited. To show the 
L2(� )-norm error estimate we will, as we consider smooth solutions, derive a maxi-
mum norm estimate. To the best of the author’s knowledge these results are not avail-
able in the literature for problems with Robin boundary conditions. Based on the ideas 
from [18] we formulate the missing proof.

We moreover note that the setting discussed here does not fit into the well-known 
framework of the semilinear optimal control problems discussed e. g. in [5, 9, 11, 29], 
as these contributions deal with nonlinearities depending solely on the state variable. 
However, many techniques can be reused for the problem considered here. The only 
publication where more general nonlinearities depending both on the state and the con-
trol variable is, to the best of the author’s knowledge, [35]. Therein optimality condi-
tions are discussed but there is no theory on the numerical analysis of approximation 
methods for this problem class available yet. However, we think that the consideration 
of bilinear control problems may serve as a starting point for the investigation of a more 
general class of nonlinear optimal control problems.

The article is structured as follows. In Sect. 2 we discuss the solubility of the state 
equation and regularity results for its solution. In Sect. 3 we analyze the optimal control 
problem. In particular, necessary and sufficient optimality conditions are investigated. 
Section 4 is devoted to the finite element discretization of the state equation, where we 
show finite element error estimates required for the numerical analysis of the optimal 
control problem later. The discretization of the optimal control problem is considered in 
Sect. 5. In particular, we discuss convergence rates for the numerical solution obtained 
by a full discretization of the optimal control problem as well as for an improved con-
trol obtained by a postprocessing step. The latter result requires some auxiliary results 
that we discuss in the appendix. To be more precise, a maximum norm error estimate 
for the finite element solution of an elliptic equation with Robin boundary conditions is 
needed. A proof is given in Appendix 1. Moreover, a proof of local error estimates for 
the midpoint interpolant and the L2(� ) projection onto piecewise constant functions 
on the boundary is needed. To the best of the author’s knowledge these results are not 
available in the literature in case of domains with curved boundaries. Thus, we discuss 
these auxiliary results in Appendix 2. Finally, we will compare the theoretical results 
with numerical experiments in Sect. 6.

2 � Analysis of the state equation

We consider the boundary value problem

on a bounded Lipschitz domain 𝛺 ⊂ ℝ
n , n ∈ {2, 3} , with data f ∈ L2(�) and 

g ∈ L2(� ) . The corresponding weak formulation reads

−�y + y = f in �, �ny + u y = g on � ,
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with

First, we show an existence and uniqueness result for (1). Therefore, we 
introduce a decomposition of the control into positive and negative parts 
u+, u− ∈ L2

+
(� ) ∶= {v ∈ L2(� ) ∶ v ≥ 0 a. e. on � } such that u = u+ − u− . The 

following result then relies on the Lax–Milgram–Lemma. However, an assumption 
on the coefficient u is required.

Lemma 1  Assume that u ∈ L2(� ) satisfies

with the constant c∗ which is due to the estimate ‖v‖L4(� ) ≤ c∗‖v‖H1(�) . Then, the 
solution y of (1) belongs to H1(�) and satisfies the a priori estimate

with 𝛾u ∶= 1 − c2
∗
‖u−‖L2(𝛤 ) > 0.

Proof  The boundedness of au follows directly from the Cauchy–Schwarz inequality 
and the continuity of the trace operator � ∶ H1(�) → L4(� ) . This implies

To show the coercivity we take into account the decomposition u = u+ − u− to get

Here, the assumption (2) will ensure the coercivity. An application of the Lax–Mil-
gram Lemma leads to the desired result. 	�  ◻

Note that {v ∈ L2(𝛤 ) ∶ ‖v−‖L2(𝛺) < c−2
∗
} is an open subset of L2(� ) . This is the 

key idea which allows us to avoid the two-norm discrepancy for the optimal con-
trol problem as we will see that the reduced objective functional is differentiable 
with respect to the L2(� )-topology. In the following we will hide the dependency 
of the estimates on ‖u−‖L2(� ) and thus �u in the generic constant as we impose 
positive control bounds in the considered optimal control problem.

Later, we will frequently make use of the following Lipschitz estimate.

(1)Find y ∈ H1(�) ∶ au(y, v) = F(v) ∀v ∈ H1(�),

au(y, v) ∶= (∇y,∇v)L2(�) + (y, v)L2(�) + (u y, v)L2(� ),

F(v) ∶= (f , v)L2(�) + (g, v)L2(� ).

(2)‖u−‖L2(𝛤 ) <
1

c2
∗

‖y‖H1(�) ≤ 1

�u

�‖f‖H1(�)∗ + ‖g‖H−1∕2(� )

�

a(y, z) ≤ ‖y‖H1(�) ‖z‖H1(�) + ‖u‖L2(� ) ‖y‖L4(� ) ‖z‖L4(� )

≤ �
1 + c2

∗
‖u‖L2(� )

� ‖y‖H1(�) ‖z‖H1(�).

a(y, y) ≥ ‖y‖2
H1(�)

− �
�

u− y2 ≥ �
1 − c2

∗
‖u−‖L2(� )

� ‖y‖2
H1(�)

.
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Lemma 2  If u1, u2 ∈ L2(� ) satisfy the assumption (2), the corresponding states 
y1, y2 ∈ H1(�) solving

fulfill the estimate

Proof  Subtracting the variational formulations for y1 and y2 from each other leads to

The result follows from Lemma 1 and the continuity of the product mapping from 
L2(� ) × H1∕2(� ) to H−1∕2(� ) , see [20, Theorem 1.4.4.2]. 	�  ◻

In the following theorem we collect some regularity results for the solution of (1).

Lemma 3  Let 𝛺 ⊂ ℝ
n , n ∈ {2, 3} , be a bounded Lipschitz domain. By y ∈ H1(�) 

we denote the solution of (1). The following a priori estimates are valid, under the 
assumption that the input data possess the regularity demanded by the right-hand 
side:

(a)	� If  r > 2n∕(1 + n) and p > 2 for n = 2 and p ≥ 4 for n = 3 , then

(b)	� If r > n∕2, s > n − 1, and p ≥ 2 for n = 2 and p > 8∕3 for n = 3 , then

(c)	� Furthermore, if � is a convex polygonal/polyhedral domain, or possesses a 
boundary which is of class C1,1 , there holds

Proof  (a)
In [15, Theorem 1.12] it is shown that the problem

possesses a solution in H3∕2(�) provided that F ∈ Hs−2(�) for some s ∈ (3∕2, 2] 
and G ∈ L2(� ) , as well as ∫

�
F + ∫

�
G = 0 . The solubility condition is satis-

fied in our situation with F = f − y and G = g − u y and becomes clear when 
testing (1) with v ≡ 1 . The regularity required for F follows from the embedding 

aui(yi, v) = (fi, v)L2(�) + (gi, v)L2(� ) ∀v ∈ H1(�), i = 1, 2,

‖y1 − y2‖H1(�) ≤ �‖u1 − u2‖L2(� ) ‖y2‖H1(�)

+ ‖f1 − f2‖H1(�)∗ + ‖g1 − g2‖H−1∕2(� )

�
.

(∇(y1 − y2),∇v)L2(�) + (y1 − y2, v)L2(�) + (u1 (y1 − y2), v)L2(� )

= (f1 − f2, v)L2(�) + (g1 − g2, v)L2(� ) + ((u2 − u1) y2, v)L2(� ).

‖y‖H3∕2(�) + ‖y‖H1(� ) ≤ c
�
1 + ‖u‖Lp(� )

��‖f‖Lr(�) + ‖g‖L2(� )

�
.

‖y‖
C(�)

≤ c
�
1 + ‖u‖Lp(� )

�2�‖f‖Lr(�) + ‖g‖Ls(� )

�
.

‖y‖H2(�) ≤ c
�
1 + ‖u‖H1∕2(� )

�2 �‖f‖L2(�) + ‖g‖H1∕2(� )

�
.

−�y = F in �, �ny = G on �
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f ∈ Lr(�) ↪ H−1∕2+�(�) for sufficiently small 𝜀 > 0 . Moreover, the Hölder inequal-
ity and the continuity of the trace operator � ∶ H1(�) → Lq(� ) for q < ∞ ( n = 2 ) 
or q ≤ 4 ( n = 3 ) imply ‖u y‖L2(� ) ≤ c ‖u‖Lp(� ) ‖y‖H1(�) , from which we conclude 
G ∈ L2(� ) . From [15, Theorem 1.12] and Lemma 1 we then obtain

It remains to show the H1(� )-norm estimate. We split the solution into the parts yf  
and yg solving

Using [19, Theorem 5.4] we directly deduce

and Lemma 1 leads to the desired estimate for yg . For the function yf  , we get the 
desired estimate by an application of a trace theorem and the a priori estimate (3) 
which can in case of g ≡ 0 be improved to

provided that 𝜀 > 0 is sufficiently small. The validity of the second step can be con-
firmed by means of [15, Theorem 1.12] and [14, Theorem 23.3]. The decomposition 
y = yf + yg and the estimates shown above imply the desired estimate in the H1(� )

-norm.
(b) We prove the result for the case n = 3 . The two-dimensional case follows 

from the same arguments. From [8, Theorem 3.1] it is known that the solution of 
(1) belongs to C(�) if f ∈ Lr(�) , r > n∕2 , and g − uy ∈ Ls(� ) , s > n − 1 . The latter 
assumption can be concluded from the Hölder inequality, a Sobolev embedding and 
a trace theorem, which implies

for 1∕p + 1∕8 = 1∕(2 + �) . A simple computation shows that p > 8∕3 and s = 2 + � 
with 𝜀 > 0 sufficiently small guarantee the validity of the previous steps. It remains 
to show y ∈ H5∕4+�(�) . This can be deduced from [14, Theorem 23.3] where the a 
priori estimate

is stated. The regularity demanded by the right-hand side of (4) is confirmed with 
the embeddings f ∈ Lr(�) ↪ H3∕4−�(�)∗ and g ∈ Ls(� ) ↪ H−1∕4+�(� ) . Moreover, 
there holds ‖u y‖H−1∕4+�(� ) ≤ c ‖u‖Lp(� ) ‖y‖L4(� ) , see [20, Theorem 1.4.4.2]. Collect-
ing up the arguments above leads to

(3)
‖y‖H3∕2(�) ≤ c

�
‖F‖Lr(�) + ‖G‖L2(� ) +

������

y(x)dx
����
�

≤ c
�
1 + ‖u‖Lp(� )

��‖f‖Lr(�) + ‖g‖L2(� )

�
.

−�yf + yf = f −�yg + yg = 0 in �,

�nyf = 0 �nyg = g − uy on � .

‖yg‖H1(� ) ≤ c ‖g − u y‖L2(� ) ≤ c
�‖g‖L2(� ) + ‖u‖Lp(� ) ‖y‖H1(�)

�

‖yf‖H1(� ) ≤ c ‖yf‖H3∕2+�(�) ≤ c ‖f‖Lr(�),

‖u y‖Ls(� ) ≤ c ‖u‖Lp(� ) ‖y‖L8(� ) ≤ c ‖u‖Lp(� ) ‖y‖H5∕4+�(�)

(4)‖y‖H5∕4+�(�) ≤ c
�‖f‖H3∕4−�(�)∗ + ‖g − u y‖H−1∕4+�(� )

�
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and the assertion follows after insertion of the a priori estimate from Lemma 1.
(c) With an embedding we deduce from the assumption that u ∈ L4(� ) . Hence, 

(4) is applicable which implies y ∈ H3∕4(� ) and thus, u y ∈ H1∕2(� ) , see [20, Theo-
rem 1.4.4.2]. The H2(�)-regularity of y then follows from a shift theorem applied to 
the equation with boundary conditions �ny = g − uy ∈ H1∕2(� ) on �  , see [20, Theo-
rem 2.4.2.7] (for domains with smooth boundary) or [20, Theorem 4.4.3.8] (for con-
vex polygonal domains). 	�  ◻

3 � The optimal control problem

Due to the well-posedness of the state equation we may introduce the control-to-state 
operator S ∶ Uad → H1(�) defined by S(u) ∶= y , with y solving (1). This allows to 
reformulate the optimal control problem introduced in Sect. 1 and we arrive at

subject to u ∈ Uad ∶= {v ∈ L2(� ) ∶ ua ≤ v ≤ ub a. e. on � } . Here, 𝛼 > 0 is the 
regularization parameter, yd ∈ L2(�) the desired state and 0 < ua < ub the control 
bounds. Our aim is to derive necessary and sufficient optimality conditions as well 
as regularity results for local solutions. Note, that the operator S is non-affine and 
consequently, j is non-convex. The existence of at least one local solution can be 
concluded from standard arguments [39], taking into account that for a minimizing 
sequence {un} ⊂ Lq(𝛤 ) , q ∈ (2,∞) , the corresponding states converge strongly in 
Lp(� ) for each p < 4 , which is due the compact embedding H1(�) ↪ Lp(� ).

3.1 � Optimality conditions

To derive optimality conditions differentiability properties of the (implicitly defined) 
operator S are of interest.

Lemma 4  The operator S ∶ Uad → H1(�) is infinitely many times Fréchet differen-
tiable with respect to the L2(� )-topology. The first derivative �y ∶= S�(u)�u is the 
weak solution of the tangent equation

Proof  The result follows from an application of the implicit function theorem to the 
operator e ∶ H1(�) × U → H1(�)∗ with U ∶= {v ∈ L2(� ) ∶ v fulfills (2)} defined 
by

‖y‖
C(�)

≤ c
�‖f‖Lr(�) + ‖g‖Ls(� ) + ‖u‖Lp(� )‖y‖H5∕4+�(�)

�

≤ c
�
1 + ‖u‖Lp(� )

�2�‖f‖Lr(�) + ‖g‖Ls(�) + ‖y‖H1(�)

�

(5)j(u) ∶=
1

2
‖S(u) − yd‖2L2(�)

+
�

2
‖u‖2

L2(� )
→ min!

(6)
{

−��y + �y = 0 in �,

�n�y + u �y = −�u y on � .
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whose roots are solutions of (1). We choose �y ∈ H1(�) , �u ∈ U such that 
u + �u ∈ U (note that U is an open subset of L2(� ) ). First, we confirm that the linear 
operator e�(y, u) ∶ H1(�) × U → H1(�)∗ defined by

is the Fréchet-derivative of e. This is a consequence of

and the fact that the remainder term satisfies

where we applied the generalized Hölder inequality and H1(�) ↪ L4(� ) . The sec-
ond Fréchet derivative

is given by

and the mapping (y, u) ↦ e��(y, u) is continuous. The derivatives of order n ≥ 3 van-
ish. Hence, e ∶ H1(�) × U → H1(�)∗ is of class C∞.

Finally, due to Lemma 1 we conclude that the linear mapping

is bijective. The implicit function theorem implies the assertion and the derivative 
�y ∶= S�(u)�u is given by e�(y, u)(�y, �u) = 0 . This corresponds to the weak formu-
lation of (6). 	�  ◻

From the chain rule and Lemma 4 we directly conclude the following differen-
tiability result:

Lemma 5  The functional j ∶ Uad → ℝ is infinitely many times Fréchet differentiable 
with respect to the L2(� )-topology and the first derivative is given by

e(y, u)v ∶= (∇y,∇v)L2(�) + (y, v)L2(�) + (u y, v)L2(� ) − (f , v)L2(�) − (g, v)L2(�),

(7)e�(y, u)(�y, �u) ∶= (∇�y,∇⋅)L2(�) + (�y, ⋅)L2(�) + (u �y + y �u, ⋅)L2(� )

e(y + �y, u + �u) − e(y, u) = e�(y, u)(�y, �u) + (�u �y, ⋅)L2(� )

(8)

‖�u �y‖H1(�)∗ = sup
�∈H1(�)

(�u �y,�)L2(� )

‖�‖H1(�)

≤ c sup
�∈H1(�)

‖�‖L4(� )

‖�‖H1(�)

‖�u‖L2(� ) ‖�y‖L4(� )

≤ c ‖�u‖L2(� ) ‖�y‖H1(�) ≤ c
�
‖�u‖2

L2(� )
+ ‖�y‖2

H1(�)

�

= o(‖(�y, �u)‖H1(�)×L2(� )),

e�� ∶ H1(�) × U → L((H1(�) × L2(� ))2,H1(�)∗)

e��(y, u)(�y, �u)(�y, �u) ∶= (�u �y + �u �y, ⋅)L2(� )

�y ↦ ey(y, u)�y = (∇�y,∇⋅)L2(�) + (�y, ⋅)L2(�) + (u �y, ⋅)L2(� ) ∈ H1(�)∗
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The derivative of j can be simplified exploiting a precise representation of the 
adjoint S�(u)∗ ∶ H1(�)∗ → L2(� ) of the linearized control-to-state operator S�(u) . 
In order to compute this, we introduce the the adjoint state p ∈ H1(�) as the weak 
solution of the adjoint equation

Testing the variational problems for (10) and (6) with �y ∶= S�(u)�u and p, respec-
tively, leads to the relation

which implies

In the following we denote the control-to-adjoint mapping Z ∶ L2(� ) → H1(�) 
defined by u ↦ Z(u) ∶= p via (10) with y = S(u) . Finally, we are able to formulate 
the necessary optimality condition

and with (11) we get the equivalent representation

Taking into account the definitions of S and Z we can write this variational inequal-
ity in the form

The latter inequality is equivalent to the projection formula

with �ad the L2(� )-projection onto Uad.
As the problem (5) is not convex, we have to investigate second-order suffi-

cient conditions. To obtain the Hessian of j we apply the product rule and get

The function �p = Z�(u)�u ∈ H1(�) is the weak solution of the “dual for 
Hessian”-equation

(9)
⟨
j�(u), v

⟩
= (S(u) − yd, S

�(u)v)L2(�) + � (u, v)L2(� ), v ∈ L2(� ).

(10)
{

−�p + p = y − yd in �,

�np + u p = 0 on � .

(y − yd, �y)L2(�) = −(y p, �u)L2(� ),

(11)S�(u)∗(y − yd) ∶= −[y p]� .

⟨
j�(u), v − u

⟩
= (S(u) − yd, S

�(u)(v − u))L2(�) + � (u, v − u)L2(� ) ≥ 0 ∀v ∈ Uad

⟨
j�(u), v − u

⟩
= (� u − S(u) Z(u), v − u)L2(� ) ≥ 0 ∀v ∈ Uad.

(12)
−�y + y = f − �p + p = y − yd in �,

�ny + u y = g �np + u p = 0 on � ,

(� u − y p, v − u)L2(� ) ≥ 0 for all v ∈ Uad.

(13)u = �ad

(
1

�
[y p]�

)

(14)j��(u)(�u, �u) =
(
� �u + S�(u)�u Z(u) + S(u) Z�(u)�u, �u

)
L2(� )

.
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where �y = S�(u)�u . As in the proof of Lemma   3 this follows from the implicit 
function theorem. Note that also further representations of the Hessian are possible. 
For instance, a direct application of the product rule to (9) yields

with y = S(u) , �y = S�(u)�y , �y = S�(u)�u and ��y = S��(u)(�u, �u) . The latter rela-
tion means that ��y ∈ H1(�) is the weak solution of

Moreover, due to the definition of p and ��y there holds the relation 
(y − yd, ��y)L2(�) = −(p, �u�y + �u �y)L2(� ) and as a consequence, we can further 
simplify the representation of the Hessian and obtain

Next, we derive some stability and Lipschitz properties of S, Z, S′ and Z′ . As the 
following results require different assumptions on f, yd and g we simply assume the 
most restrictive ones, this is,

Moreover, we will hide the dependency on these quantities in the generic constant to 
simplify the notation.

Lemma 6  Let u ∈ L2(� ) satisfy the assumption (2). The control-to-state operator S 
satisfies the following inequalities:

with p1 > 2 and p2 ≥ 2 for n = 2 , and p1 ≥ 4 and p2 > 8∕3 for n = 3 . The estimates 
remain valid when replacing the operator S by the control-to-adjoint operator Z.

Proof  The inequalities for S are a direct consequence of Lemmata   1 and  3. The 
inequalities for Z can be derived with similar arguments, but the right-hand side of 
the adjoint equation involves the corresponding state S(u). However, in all cases the 
norms of S(u) − yd can be bounded by c (1 + ‖S(u)‖H1(�)) ≤ c . 	�  ◻

(15)
{

−��p + �p = �y in �,

�n�p + u �p = −�u p on � ,

j��(u)(�u, �u) = �(�u, �u)L2(� ) + (S�(u)�u, S�(u)�u)L2(�)

+ (S(u) − yd, S
��(u)(�u, �u))L2(�)

= �(�u, �u)L2(� ) + (�y, �y)L2(�) + (y − yd, ��y)L2(�),

{
−���y + ��y = 0 in �,

�n��y + u ��y = −�u �y − �u �y on � .

j��(u)(�u, �u) = �(�u, �u)L2(� ) + (�y, �y)L2(�) − (p, �u �y + �u �y)L2(� ).

f , yd ∈ L∞(�), g ∈ H1∕2(� ).

‖S(u)‖H1(�) ≤ c,

‖S(u)‖H3∕2(�) + ‖S(u)‖H1(� ) ≤ c (1 + ‖u‖Lp1 (� )),

‖S(u)‖L∞(�) ≤ c (1 + ‖u‖Lp2 (� ))
2,
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Lemma 7  Given are u, �u ∈ L2(� ) and it is assumed that u satisfies (2). Then, the 
following stability estimates hold true:

with p > 2 for n = 2 and p ≥ 4 for n = 3 . The estimates remain valid when replac-
ing S′ by Z′.

Proof  In the following we write y ∶= S(u) and �y = S�(u)�u . The stability in H1(�) 
follows directly from Lemma 1 and the estimate

which follows from the same arguments used already in (8). The boundedness of 
y ∶= S(u) in H1(�) can be found in the previous lemma. The estimate in the H3∕2(�)

-norm follows analogously with Lemma 3a) and

and the stability in L∞(�) proved in Lemma 6.
The estimates for Z′ are deduced with similar techniques. With the a priori esti-

mate from Lemma 3a) and the embedding H1(�) ↪ Lr(�) which holds for r < ∞ 
( n = 2 ) or r ≤ 6 ( n = 3 ) we get

with p = Z(u) . The stability of Z in L∞(�) is discussed in the previous lemma. 	�  ◻

Lemma 8  Let u, v ∈ L2(� ) satisfy assumption (2). Then, the following Lipschitz esti-
mates hold:

The estimates are also valid when replacing S by Z and Z by Z′.

Proof  The estimates for S and S′ follow directly from Lemma  2 and the stability 
estimates for S and S′ in H1(�) proved in the Lemmata 6 and 7. The Lipschitz esti-
mate for Z is proved in a similar way. In this case one has to apply the Lipschitz 
estimate shown for S to the term ‖S(u) − S(v)‖H1(�) appearing due to the differences 
in the right-hand sides. With the same idea we show the Lipschitz estimate for Z′ . 
Using again Lemma 2 we get

‖S�(u)�u‖H1(�) ≤ c ‖�u‖L2(� ),

‖S�(u)�u‖H3∕2(�) ≤ c
�
1 + ‖u‖Lp(� )

�3‖�u‖L2(� ),

(16)‖�u y‖H−1∕2(� ) = sup
�∈H1∕2(� )

�≢0

(�u y,�)L2(� )

‖�‖H1∕2(� )

≤ c ‖�u‖L2(� ) ‖y‖H1(�),

‖y �u‖L2(� ) ≤ c ‖y‖L∞(�) ‖�u‖L2(� )

‖Z�(u)�u‖H3∕2(�) ≤ c
�
1 + ‖u‖Lp(� )

��‖p �u‖L2(� ) + ‖�y‖H1(�)

�

≤ c
�
1 + ‖u‖Lp(� )

��
1 + ‖p‖L∞(� )

�‖�u‖L2(� )

‖S(u) − S(v)‖H1(�) ≤ c ‖u − v‖L2(� ),

‖S�(u)�u − S�(v)�u‖H1(�) ≤ c ‖u − v‖L2(� )‖�u‖L2(� ).
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It remains to bound the three terms on the right-hand side. To this end, we apply 
Lemma 7 to the first term, the Lipschitz estimate for S�(⋅)�u to the second term, and 
the multiplication rule (16) with y = Z(u) − Z(v) as well as the Lipschitz estimate 
for Z to the third term. 	�  ◻

As the optimal control problem is non-convex we have to deal with local solu-
tions. For some local solution ū ∈ Uad we require the following second-order suf-
ficient condition:

Assumption 1  (SSC) The objective functional is locally convex near the local solu-
tion ū , i. e., a constant 𝛿 > 0 exists such that

With standard arguments and the estimate we will prove below in Corollary 1 
one can show that each function ū ∈ Uad fulfilling the first-order necessary condi-
tion (12) and the second-order sufficient condition (17) is indeed a local solution 
and satisfies the quadratic growth condition

with certain constants 𝛾 , 𝜏 > 0 . Note that there are weaker assumptions which are 
sufficient for local minima, for instance one could formulate (17) for all directions 
v from a critical cone. However, with this assumption the convergence proof for the 
postprocessing approach presented in Sect. 5.3 requires some more careful investi-
gations, in particular the construction of a modified interpolant onto Uad . One pos-
sible solution for this issue can be found in [29].

Later, we will require the following Lipschitz estimate for the Hessian of j.

Lemma 9  Let u, v ∈ L2(� ) fulfilling (2) be given. Then, the Lipschitz-estimate

is valid for all �u ∈ L2(� ).

Proof  To shorten the notation we write yu = S(u) , pu = Z(u) , �yu = S�(u)�u and 
�pu = Z�(u)�u . From the representation (14) we obtain

‖Z�(u)�u − Z�(v)�u‖H1(�) ≤ c
�
‖u − v‖L2(� ) ‖Z�(u)�u‖H1(�)

+ ‖S�(u)�u − S�(v)�v‖H1(�) + ‖�u (Z(u) − Z(v))‖H−1∕2(� )

�
.

(17)j��(ū)(v, v) ≥ 𝛿 ‖v‖2
L2(𝛤 )

∀v ∈ L2(𝛤 ).

j(ū) ≤ j(u) − 𝛾 ‖u − ū‖2
L2(𝛤 )

∀u ∈ B𝜏(ū),

��j��(u)(�u, �u) − j��(v)(�u, �u)�� ≤ c ‖�u‖2
L2(� )

‖u − v‖L2(� ).

||j��(v)(�u, �u) − j��(u)(�u, �u)||
≤ |||(pu �yu − pv �yv + yu �pu − yv �pv, �u)L2(� )

|||.
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We estimate the right-hand side using the Cauchy–Schwarz inequality, the embed-
ding H1(�) ↪ L4(� ) and the Lipschitz estimates from Lemma 8 as well as the a 
priori estimates from Lemmata 6 and  7. This implies

With similar arguments we deduce

and conclude the assertion. 	�  ◻

Corollary 1  Let ū ∈ Uad be a local solution of (5) satisfying Assumption  1. Then, 
some 𝜀 > 0 exists such that the inequality

is valid for all �u ∈ L2(� ) and u ∈ L2(� ) with ‖u − ū‖L2(𝛤 ) ≤ 𝜀.

Proof  The assertion follows immediately from the previous lemma. For further 
details we refer to [27, Lemma 2.23]. 	�  ◻

In the next Lemma we will collect some basic regularity results for the solu-
tion of (5).

Lemma 10  Let 𝛺 ⊂ ℝ
n , n ∈ {2, 3} , be a Lipschitz domain. Each local solution 

ū ∈ Uad of (5) and the corresponding states ȳ = S(ū) , p̄ = Z(ū) satisfy

Proof  All regularity result, except ū ∈ H1(𝛤 ) , follow directly from Lemma  3. To 
show ū ∈ H1(𝛤 ) we apply the product rule

and confirm ȳ p̄ ∈ H1(𝛤 ) . The desired result then follows after an application of the 
Stampacchia-Lemma, [26, p. 50], to the projection formula (13). The fact that the 
Stampacchia-Lemma is also valid on the boundary �  is discussed in [28, Lemma 
2.8] and [30, Lemma 3.3]. 	� ◻

���(pu �yu − pv �yv, �u)L2(� )
���

≤ c
�‖pu − pv‖H1(�) ‖�yu‖H1(�) + ‖�yu − �yv‖H1(�) ‖pv‖H1(�)

�‖�u‖L2(� )

≤ c ‖u − v‖L2(� ) ‖�u‖2L2(� )
.

���
�
yu �pu − yv �pv, �u

�
L2(� )

���
≤ c

�‖yu − yv‖H1(�) ‖�pu‖H1(�) + ‖�pu − �pv‖H1(�) ‖yv‖H1(�)

�‖�u‖L2(� )

≤ c ‖u − v‖L2(� ) ‖�u‖2L2(� )
,

j��(u)(�u, �u) ≥ �

2
‖�u‖2

L2(� )

ū ∈ H1(𝛤 ) ∩ L∞(𝛤 ), ȳ, p̄ ∈ H3∕2(𝛺) ∩ H1(𝛤 ) ∩ C(𝛺).

‖ȳ p̄‖H1(𝛤 ) ≤ c
�‖ȳ‖H1(𝛤 ) ‖p̄‖L∞(𝛺) + ‖ȳ‖L∞(𝛺) ‖p̄‖H1(𝛤 )

� ≤ c
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Under additional assumptions on the geometry of � we can show even higher 
regularity. This is needed for the postprocessing approach studied in Sect. 5.3 where 
we will show almost quadratic convergence of the control approximations.

Lemma 11  Let 𝛺 ⊂ ℝ
2 be a bounded domain with a C1,1-boundary �  . Then, there 

holds

for all 𝛤 ⊂⊂ A or 𝛤 ⊂⊂ I  , where A ∶= {x ∈ � ∶ u(x) ∈ {ua, ub}} and I ∶= � ⧵A 
denote the active and inactive set, respectively.

Proof  With the regularity results obtained already in Lemma  10, in particu-
lar ū ∈ H1∕2(𝛤 ) , and Lemma  3c) we conclude ȳ, p̄ ∈ H2(𝛺) ↪ W1,q(𝛤 ) for all 
q < (1,∞) and a further application of the multiplication rule yields ȳ p̄ ∈ W1,q(𝛤 ) . 
From (13) we conclude the property ū ∈ W1,q(𝛤 ) . Furthermore, we confirm that 
ū ȳ, ū p̄ ∈ W1−1∕q,q(𝛤 ) and a standard shift theorem for the Neumann problem, com-
pare also the technique used in the proof of Lemma 3a), results in ȳ, p̄ ∈ W2,q(𝛺) . 
Repeating the arguments above, i. e., using the multiplication rule and the projection 
formula, we obtain ū ∈ W2−1∕q,q(𝛤 ) ↪ H2−1∕q(𝛤 ) . 	�  ◻

We chose the assumptions of the previous lemma in such a way that the regularity 
is only restricted due to the projection formula. Of course, when the control bounds 
are never active we could further improve the regularity results.

4 � Finite element approximation of the state equation

This section is devoted to the finite element approximation of the variational prob-
lem (1). While the results from the previous sections are valid for arbitrary Lipschitz 
domains (unless otherwise explicitly assumed), we have to assume more smoothness 
of the boundary �  in order to establish our discretization results: 

(A1)	� The domain 𝛺 ⊂ ℝ
n , n ∈ {2, 3} , possesses a Lipschitz continuous boundary 

�  which is piecewise C1.

This definition includes arbitrary (possibly non-convex) polygonal or polyhedral 
domains. Indeed, the regularity of solutions is in this case also restricted by cor-
ner and edge singularities. However, for the first convergence result we require only 
H3∕2(�) ∩ H1(� )-regularity of the solution. Later, we want to investigate improved 
discretization techniques for which more regularity is needed. Then, we will use a 
stronger assumption on the domain.

First, we introduce shape-regular triangulations {Th}h>0 of � consisting of trian-
gles ( n = 2 ) or tetrahedra ( n = 3 ). The elements T may have curved edges/faces such 
that the property

ū ∈ W1,q(𝛤 ) ∩ H2−1∕q(𝛤 ), ȳ, p̄ ∈ W2,q(𝛺), q < ∞,
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is valid for an arbitrary domain � . Moreover, we assume that the triangulations are 
feasible in the sense of Ciarlet [13].

The mesh parameter h > 0 is the maximal element diameter

The family of meshes {Th}h>0 is assumed to be quasi-uniform, this means some 
𝜅 > 0 independent of h exists such that each element T ∈ Th contains a ball with 
radius �T satisfying the estimate �T

h
≥ � . Each triangulation Th of � induces also a 

triangulation Eh of the boundary �
By FT ∶ T̂ → T we denote the transformations from the reference triangle or tetra-

hedron T̂ to the world element T ∈ Th . The transformations FT may be non-affine for 
elements with curved faces. Here, we consider transformations of the form

with some affine function F̃T (x̂) = B̃T x̂ + b̃T , B̃T ∈ ℝ
n×n , b̃ ∈ ℝ

n , chosen in such 
a way that if T is a curved boundary element, T̃ = F̃T (T̂) is an n-simplex whose 
vertices coincide with the vertices of T. The assumed shape-regularity implies 
‖B̃T‖ ≤ c hT and ‖B̃−1

T
‖ ≤ h−1

T
 , see [13, Theorem 15.2].

To guarantee the validity of interpolation error estimates we assume: 

(A2)	� The triangulations Th are regular of order 2 in the sense of [6], this is, for all 
sufficiently small h > 0 there holds 

 for all T ∈ Th.
There are multiple strategies to construct the mappings FT satisfying these assumptions 
and we refer the reader for instance to [6, 37, 41]. Therein, it is assumed that �  is piece-
wise C3 , only in the second reference C4 is required.

The trial and test space is defined by

Next, we introduce an interpolation operator onto Vh . We partly use the quasi-inter-
polant proposed by Bernardi [6], but use a modification for boundary nodes as in 
[36], see also [1, 2]. To each interior node xi , i = 1,… ,N in , of Th , we associate an 
element �i ∶= T ∈ Th with xi ∈ T  . For the boundary nodes xi , i = N in + 1,… ,N , 
we define instead �i ∶= E ∈ Eh with xi ∈ E . Instead of using nodal values as for the 
Lagrange interpolant, we use the nodal values of some regularized function com-
puted by an L2-projection over �i . The interpolation operator �h ∶ W1,1(�) → Vh is 
defined as follows. For each node i = 1,… ,N we define a local L2-projection 𝜋̂i onto 
P1(�i) by

� =
⋃
T∈Th

T

h = max
T∈Th

hT , hT ∶= diam(T).

FT = F̃T +𝛷T ,

(18)sup
x̂∈T̂

‖D𝛷T (x̂) ⋅ B̃
−1
T
‖ ≤ c < 1, sup

x̂∈T̂

‖D2𝛷T (x̂)‖ ≤ ch2,

Vh ∶= {vh ∈ C(𝛺) ∶ vh = v̂h◦F
−1
T
, v̂h ∈ P1(T̂) for all T ∈ Th}.
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with Fi the transformation from the reference element T̂  ( i = 1,… ,N in ) or Ê 
( i = N in + 1,… ,N ) onto �i . The interpolation operator is defined by

where {�i}i=1,…,N is the nodal basis of Vh . Note, that due to the modification for 
boundary nodes, this operator is only applicable to W1,1(�)-functions. The desired 
interpolation properties remain valid. In particular, for each T ∈ Th , there holds

where ST is the patch of elements adjacent to T, see [6, Theorem 4.1], [36, Theo-
rem 4.1]. Due to the special choice of the patches �i for the boundary nodes we get 
similar interpolation error estimates on the boundary elements E ∈ Eh , this is,

with the patch SE of that boundary elements E� ∈ Eh that touch E. The proof follows 
from the same arguments as in [36, Theorem 4.1].

The finite element solutions of (1) are characterized by the variational 
formulations

As in the continuous case one can show that (21) possesses a unique solution for 
each h > 0.

With the usual arguments we can derive an error estimate for the approxima-
tion error in the energy-norm.

Lemma 12  Assume that  (A1) and  (A2) are satisfied and that the solution y of (1) 
belongs to Hs(�) with some s ∈ [1, 2] . Then, there holds the error estimate

Proof  The proof follows from the Céa-Lemma and the interpolation error estimates 
(19). 	�  ◻

Of particular interest are error estimates on the boundary. This is required in 
order to derive error estimates for boundary control problems. To this end, we 
prove first a suboptimal result which is valid for arbitrary Lipschitz domains �.

∫
𝜎̂i

(𝜋̂i(u) − u◦Fi) q̂ = 0 ∀q̂ ∈ P1,

𝛱hv(x) =

N∑
i=1

(𝜋̂i(u)◦F
−1
i
)(xi)𝜑i(x),

(19)‖u −�hu‖Hm(T) ≤ ch�−m‖u‖H�(ST )
, m ≤ � ≤ 2, � ≥ 1,

(20)‖u −�hu‖Hm(E) ≤ ch�−m‖u‖H�(SE)
, m ≤ � ≤ 2,

(21)Find yh ∈ Vh ∶ au(yh, vh) = F(vh) ∀vh ∈ Vh.

(22)‖y − yh‖H1(�) ≤ c hs−1 ‖y‖Hs(�).
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Lemma 13  Let the assumptions  (A1) and  (A2) be satisfied. It is assumed that the 
solution y of (1) belongs to H3∕2(�) . Moreover, the parameter u fulfills (2) and 
belongs to Lp(� ) with p > 2 for n = 2 and p ≥ 4 for n = 3 . Then, the error estimate

holds, for all h > 0.

Proof  We introduce the dual problem

and obtain with the typical arguments of the Aubin-Nitsche trick

The last step is an application of Lemma  12 and the interpolation error estimate 
(19). The regularity required for the dual solution w can be deduced from Lemma 3 
with f ≡ 0 and g = y − yh . Taking into account the a priori estimate

we conclude the assertion. 	�  ◻

If the solution is more regular, we can also show a higher convergence rate. 
In this case we will use the Hölder inequality and a trace theorem to obtain 
‖y − yh‖L2(� ) ≤ ‖y − yh‖L∞(�) , and insert the following result.

Theorem 2  Consider a planar domain domain � ∈ ℝ
2 . Let u ∈ H1∕2(� ) with u ≥ 0 

a. e., and assume that  (A1) and (A2) are satisfied. Assume that the solution y of (1) 
belongs to y ∈ W2,q(�) with q ∈ [2,∞) . Then, the error estimate

is valid.

The proof requires rather technical arguments and is postponed to the appendix.

5 � The discrete optimal control problem

In the following we investigate the discretized optimal control problem:

subject to

‖y − yh‖L2(� ) ≤ c h
�
1 + ‖u‖Lp(� )

�‖y‖H3∕2(�) ≤ c h
�
1 + ‖u‖Lp(� )

�2

Find w ∈ H1(�) ∶ au(v,w) = (y − yh, v)L2(� ) ∀v ∈ H1(�)

‖y − yh‖2L2(� )
≤ c ‖y − yh‖H1(�) ‖w −�hw‖H1(�)

≤ c h ‖w‖H3∕2(�) ‖y‖H3∕2(�).

‖w‖H3∕2(�) ≤ c
�
1 + ‖u‖Lp(� )

�‖y − yh‖L2(� )

‖y − yh‖L∞(�) ≤ c h2−2∕q � ln h� ‖y‖W2,q(�)

(23)Find uh ∈ Uad
h

∶ Jh(yh, uh) ∶=
1

2
‖yh − yd‖2L2(�)

+
�

2
‖uh‖2L2(� )

→ min!
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The reduced objective functional is denoted by jh(uh) ∶= Jh(Sh(uh), uh) . We use 
piecewise linear finite elements to approximate the state y, i.  e., the space Vh is 
defined as in the previous section. The controls are sought in the space of piecewise 
constant functions,

where Eh is the triangulation of the boundary induced by Th.
As in the continuous case we can derive a first-order necessary optimality condition 

which reads

The discrete control-to-state operator Sh ∶ L2(� ) → Vh and the discrete control-to-
adjoint operator Zh ∶ L2(� ) → Vh are defined by yh = Sh(u) and ph = Zh(u) with

Analogous to the continuous case we compute the first and second derivatives of jh 
and obtain

and

where �yh = S�
h
(u)�u ∈ Vh and �ph = Z�

h
(u)�u ∈ Vh are the solutions of

with yh = Sh(u) and ph = Zh(u) . These are the discretized versions of the equations 
(6) and (15). The first-order optimality condition reads in the short form

yh ∈ Vh, auh(yh, vh) = F(vh) ∀vh ∈ Vh.

Uad
h

∶= {wh ∈ L∞(� ) ∶ wh|E ∈ P0 ∀E ∈ Eh} ∩ Uad,

(24)

⎧
⎪⎨⎪⎩

auh(yh, vh) = F(vh) for all vh ∈ Vh,

auh(vh, ph) = (yh − yd, vh)L2(�) for all vh ∈ Vh,

(� uh − yh ph,wh − uh)L2(� ) ≥ 0 for all wh ∈ Uad
h
.

au(yh, vh) = F(vh) ∀vh ∈ Vh,

au(vh, ph) = (yh − yd, vh)L2(�) ∀vh ∈ Vh.

(25)j�
h
(u)�u =

(
� u − Sh(u) Zh(u), �u

)
L2(� )

(26)j��
h
(u)(�u, �u) =

(
� �u − Sh(u) Z

�
h
(u)�u − S�

h
(u)�u Zh(u), �u

)
L2(� )

,

au(�yh, vh) = −(�u yh, vh)L2(� ) for all vh ∈ Vh,

au(vh, �ph) = (�yh, vh)L2(�) − (�u ph, vh)L2(� ) for all vh ∈ Vh,

(27)(� uh − Sh(uh)Zh(uh),wh − uh)L2(� ) ≥ 0 for all wh ∈ Uad
h
.
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5.1 � Properties of the discrete control‑to‑state/adjoint operator

In Sect. 3 we have derived several stability and Lipschitz properties for the opera-
tors S, Z, S′ and Z′ . Here, we will derive the discrete analogues that are needed in 
the following. Throughout this section we assume that (A1) and (A2) are fulfilled.

Lemma 14  There hold the following properties:

for p1, p2 > 2 for n = 2 and p1 ≥ 4 , p2 > 4 for n = 3 . These estimates remain valid 
when replacing Sh by Zh.

Proof  We start with the estimate in the H1(� )-norm. With the triangle inequality 
and an inverse estimate we obtain

The first two terms are bounded by the last one due to (20) and it remains to apply 
the stability estimate from Lemma 6. For the third term we apply the error estimate 
from Lemma  13. This implies the first estimate.

We prove the maximum norm estimate only for the case n = 3 . In the following, 
we write yh ∶= Sh(u) . We introduce the function ỹ ∈ H1(𝛺) solving the problem

Obviously, yh is the Neumann Ritz-projection of ỹ , i. e.,

Let x∗ ∈ T̄∗ with T∗ ∈ Th be the point where |yh| attains its maximum. With an 
inverse inequality and the Hölder inequality we get

where �h is a regularized delta function defined by 𝛿h(x) = |T∗|−1 sgn (ỹ(x) − yh(x)) 
if x ∈ T∗ and �h(x) = 0 otherwise. The second term on the right-hand side can be 
treated with the arguments used already in the proof of Lemma 3b), namely

‖Sh(u)‖H1(� ) ≤ c
�
1 + ‖u‖Lp1 (� )

�2
,

‖Sh(u)‖L∞(�) ≤ c
�
1 + ‖u‖Lp2 (� )

�2
,

‖Sh(u)‖H1(� ) ≤ c
�‖S(u) − Sh(u)‖H1(� ) + ‖S(u)‖H1(� )

�

≤ c
�‖S(u) −�hS(u)‖H1(� ) + h−1‖S(u) −�hS(u)‖L2(� )

+ h−1 ‖S(u) − Sh(u)‖L2(� ) + ‖S(u)‖H1(� )

�
.

−𝛥ỹ + ỹ = f in 𝛺, 𝜕nỹ = g − u yh on 𝛤 .

a N (yh − ỹ, vh) = ∫
𝛺

(
∇(yh − ỹ) ⋅ ∇vh + (yh − ỹ) vh

)
= 0 for all vh ∈ Vh.

(28)

‖yh‖L∞(𝛺) = �yh(x∗)� ≤ c �T∗�−1 ‖yh‖L1(T∗)

≤ c
��T∗�−1 ‖ỹ − yh‖L1(T∗) + ‖ỹ‖L∞(T∗)

�

= c (𝛿h, ỹ − yh)L2(𝛺) + c ‖ỹ‖L∞(𝛺),
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with r > 3∕2 and s = 2 + � with 𝜀 > 0 sufficiently small such that the following 
arguments remain valid. We estimate the last term with the Hölder inequality for 
p2 = 4 (2 + �)∕(2 − �) and p� = 4 (note that 1∕p2 + 1∕p� = 1∕s ) and the embedding 
H1(�) ↪ L4(� ) . This yields

It remains to exploit stability of Sh in the H1(�)-norm to conclude

The estimate for the first term on the right-hand side of (28) is based on the 
ideas from [40, Section  3.6]. First, we introduce a regularized Green’s func-
tion gh ∈ H1(�) solving the variational problem a N (z, gh) = (�h, z)L2(�) for all 
z ∈ H1(�) . The Neumann Ritz-projection of gh is denoted by gh

h
 . Using the Galerkin 

orthogonality we obtain

where the last step follows form the stability of the Ritz projection and the interpola-
tion error estimate (19). To bound the H1(�)-norm of gh we apply the ellipticity of 
a N , the definition of gh , the Hölder inequality and an embedding to arrive at

The last step follows from the property ‖�h‖L6∕5(�) ≤ c �T∗�−1∕6 ≤ c h−1∕2 that can be 
confirmed with a simple computation. Insertion into (30) and taking into account 
(28) and (29) yields the desired stability estimate.

The estimates for Zh follow in a similar way. One just has to replace f by Sh(u) − yd 
and the result follows from the estimates proved already for Sh(u) . 	�  ◻

Lemma 15  Assume that u, v ∈ L2(� ) satisfy the assumption (2). Then, the Lipschitz 
estimate

holds.

Proof  The proof follows with the same arguments as in the continuous case, see 
Lemmata  2 and 8. 	�  ◻

Next, we discuss some error estimates for the approximation of the control-
to-state and control-to-adjoint operator. While error estimates for Sh and Zh are a 

‖ỹ‖L∞(𝛺) ≤ c
�‖f‖Lr(𝛺) + ‖g‖Ls(𝛤 ) + ‖u yh‖Ls(𝛤 )

�

‖u yh‖Ls(� ) ≤ c ‖u‖Lp2 (� ) ‖yh‖L4(� ) ≤ c ‖u‖Lp2 (� ) ‖yh‖H1(�).

(29)‖ỹ‖L∞(𝛺) ≤ c (1 + ‖u‖Lp2 (𝛤 )).

(30)
(𝛿h, ỹ − yh) = a N (ỹ − yh, g

h) = a N (ỹ −𝛱hỹ, g
h − gh

h
)

≤ c h1∕2 ‖ỹ‖H3∕2(𝛺) ‖gh‖H1(𝛺),

c ‖gh‖2
H1(�)

≤ a N (gh, gh) = (�h, gh)L2(�)

≤ c ‖�h‖L6∕5(�) ‖gh‖L6(�) ≤ c h−1∕2 ‖gh‖H1(�).

‖Sh(u) − Sh(v)‖H1(�) ≤ c ‖u − v‖L2(� )
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direct consequence of Lemma 12, the results for the linearized operators S′
h
 and 

Z′
h
 require some more effort as for instance S�(u)�u − S�

h
(u)�u does not fulfill the 

Galerkin orthogonality.

Lemma 16  For each u ∈ Uad and �u ∈ L2(� ) the error estimates

are valid for p > 2 for n = 2 and p ≥ 4 for n = 3 . The results are also valid when 
replacing S and Sh by Z and Zh , as well as S′ and S′

h
 by Z′ and Z′

h
 , respectively.

Proof  The first estimate is just a combination of the Lemmata 6 and 12. To show the 
estimate for the linearized operators we introduce again the abbreviations y ∶= S(u) , 
yh ∶= Sh(u) , �y ∶= S�(u)�u and �yh ∶= S�

h
(u)�u . Moreover, define the auxiliary func-

tion 𝛿ỹh ∈ Vh as the solution of

This function fulfills the Galerkin orthogonality, i.  e., au(𝛿y − 𝛿ỹh, vh) = 0 for 
all vh ∈ Vh . Hence, we obtain with Lemma  12 and the Lipschitz-property from 
Lemma  2 (note that this Lemma is also valid for the discrete solutions)

For the first term we simply insert the second estimate from Lemma 7. The second 
term on the right-hand side is further estimated by means of [20, Theorem 1.4.4.2] 
and a trace theorem which yield

and the assertion follows after an application of the estimate shown already for 
S(u) − Sh(u) . The estimates for Z and Z′ follow with similar arguments. 	� ◻

5.2 � Convergence of the fully discrete solutions

Throughout this subsection we assume that the properties (A1) and (A2) are ful-
filled. These assumptions are needed to guarantee the required regularity of the 
solution and the validity of interpolation error estimates.

As the solutions of both the continuous and discrete optimal control prob-
lem (5) and (23), respectively, are not unique we have to construct a sequence of 
discrete local solutions converging towards a continuous one. The first question 
which arises is whether such a sequence exists. To this end, we introduce a local-
ized problem

‖S(u) − Sh(u)‖H1(�) ≤ c h1∕2 (1 + ‖u‖Lp(� )),

‖S�(u)�u − S�
h
(u)�u‖H1(�) ≤ c h1∕2 (1 + ‖u‖Lp(� ))

3 ‖�u‖L2(� )

au(𝛿ỹh, vh) = (y 𝛿u, vh)L2(𝛤 ) ∀vh ∈ Vh.

‖𝛿y − 𝛿yh‖H1(𝛺) ≤ c
�‖𝛿y − 𝛿ỹh‖H1(𝛺) + ‖𝛿ỹh − 𝛿yh‖H1(𝛺)

�

≤ c
�
h1∕2 ‖𝛿y‖H3∕2(𝛺) + ‖𝛿u (y − yh)‖H−1∕2(𝛤 )

�
.

‖�u (y − yh)‖H−1∕2(� ) ≤ c ‖�u‖L2(� ) ‖y − yh‖H1(�),
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where ū ∈ Uad is a fixed local solution of (5) fulfilling Assumption 1 and B𝜀(ū) is the 
L2(� )-ball with radius � around ū . The parameter 𝜀 > 0 is arbitrary but sufficiently 
small. First, we show that this problem possesses a unique local solution which 
would immediately follow if we could show that the coercivity discussed in Corol-
lary 1 is transferred to the discrete case. The following arguments are similar to the 
investigations in [11], in particular Theorem 4.4 and 4.5 therein.

Lemma 17  Let ū ∈ Uad be a local solution of (5). Assume that 𝜀 > 0 and h > 0 are 
sufficiently small. Then, the inequality

is valid for all u satisfying ‖u − ū‖L2(𝛤 ) ≤ 𝜀.

Proof  With the explicit representations of j′′ and j′′
h
 from (14) and (26), respectively, 

and Corollary 1, we obtain

with y = S(u) , p = Z(u) , �y = S�(u)�u and �p = Z�(u)�u , and the discrete analogues 
yh = Sh(u) , ph = Zh(u) , �yh = S�

h
(u)�u and �ph = Z�

h
(u)�u . It remains to bound the 

two norms in parentheses appropriately. Therefore, we apply the triangle inequality, 
the stability properties for S′ , Sh , Z′ and Zh from Lemmata 6, 7 and 14 as well as the 
error estimates from Lemma 16. Note that the control bounds provide the regularity 
for u that is required for these estimates. As a consequence we obtain

With similar arguments we can show

The previous two estimates together with (32) imply

(31)jh(uh) → min! s. t. uh ∈ Uad
h

∩ B𝜀(ū),

j��
h
(u)�u2 ≥ �

4
‖�u‖2

L2(� )

(32)

�

2
‖�u‖2

L2(� )
≤ �

j��(u)�u2 − j��
h
(u)�u2

�
+ j��

h
(u)�u2

≤ �
‖yh �ph − y �p‖L2(� ) + ‖�yh ph − �y p‖L2(� )

�
‖�u‖L2(� ) + j��

h
(u)�u2,

‖yh �ph − y �p‖L2(� )

≤ c
�‖y − yh‖H1(�) ‖�p‖H1(�) + ‖�p − �ph‖H1(�) ‖yh‖H1(�)

�

≤ c h1∕2 ‖�u‖L2(� ).

‖�yh ph − �y p‖L2(� )

≤ c
�‖�y − �yh‖H1(�) ‖ph‖H1(�) + ‖p − ph‖H1(�) ‖�y‖H1(�)

�

≤ c h1∕2 ‖�u‖L2(� ).

𝛿

2
‖𝛿u‖2

L2(𝛤 )
≤ c h1∕2 ‖𝛿u‖2

L2(𝛤 )
+ j��

h
(ū)𝛿u2.
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Choosing h sufficiently small such that c h1∕2 ≤ �

4
 leads to the assertion. 	�  ◻

Theorem 3  Let ū ∈ Uad be a local solution of (5) satisfying Assumption 1. Assume 
that 𝜀 > 0 and h0 > 0 are sufficiently small. Then, the auxiliary problem (31) pos-
sesses a unique solution for each h ≤ h0 denoted by ū𝜀

h
 , and there holds

Proof  The existence of at least one solution of (31) follows immediately from the 
compactness and non-emptyness of Uad

h
∩ B𝜀(ū) . Note that the L2(� )-projection 

Qhū of ū onto Uh , defined in (81) in Appendix 2, belongs to Uad
h

∩ B𝜀(ū) provided 
that h > 0 is sufficiently small. This means that the feasible set is not empty. Due to 
Lemma 17 this solution is unique.

Moreover, the family {ū𝜀
h
}h≤h0 is bounded and hence, a weakly convergent 

sequence {ū𝜀
hk
}k∈ℕ with hk ↘ 0 exists. The weak limit is denoted by ũ ∈ L2(𝛤 ) and 

from the convexity of the feasible set we deduce ũ ∈ Uad
h

∩ B𝜀(ū) . Without loss of 
generality it is assumed that ū𝜀

h
⇀ ũ in L2(� ) as h ↘ 0.

Next, we show that ũ is a local minimum of the continuous problem. First, we 
show the convergence of the corresponding states which follows with the arguments 
from [10]. First, we employ the triangle inequality to get

For the first term on the right-hand side we exploit convergence of the finite element 
method proved in Lemma 16 which yields

With similar arguments as in the proof of Lemma 2 we moreover deduce

The integral term on the right-hand side is non-negative due to the lower control 
bounds ū𝜀

h
≥ ua ≥ 0 . We can bound the first term on the right-hand side with the 

Cauchy–Schwarz inequality and the multiplication rule from [20, Theorem 1.4.4.2] 
which provides

for arbitrary s ∈ (0, 1∕2) . Note that there holds ‖ũ − ū𝜀
h
‖H−s(𝛤 ) → 0 for h ↘ 0 due to 

the compact embedding L2(� ) ↪ H−s(� ) , s > 0 . It remains to bound the second fac-
tor on the right-hand side by an application of Lemma  14 and to divide the whole 

lim
h→0

‖ū − ū𝜀
h
‖L2(𝛤 ) = 0.

(33)‖S(ũ) − Sh(ū
𝜀
h
)‖H1(𝛺) ≤ c

�‖S(ũ) − Sh(ũ)‖H1(𝛺) + ‖Sh(ũ) − Sh(ū
𝜀
h
)‖H1(𝛺)

�
.

‖S(ũ) − Sh(ũ)‖H1(𝛺) → 0, h ↘ 0.

‖Sh(ũ) − Sh(ū
𝜀
h
)‖2

H1(𝛺)
= −(ũ Sh(ũ) − ū𝜀

h
Sh(ū

𝜀
h
), Sh(ũ) − Sh(ū

𝜀
h
))L2(𝛤 )

= −((ũ − ū𝜀
h
) Sh(ũ), Sh(ũ) − Sh(ū

𝜀
h
))L2(𝛤 )

− ∫
𝛤

ū𝜀
h
(Sh(ũ) − Sh(ū

𝜀
h
))2.

‖Sh(ũ) − Sh(ū
𝜀
h
)‖2

H1(𝛺)

≤ ‖ũ − ū𝜀
h
‖H−s(𝛤 ) ‖Sh(ũ)‖H1(𝛤 ) ‖Sh(ũ) − Sh(ū

𝜀
h
)‖H1(𝛺)
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estimate by the third factor. After insertion of this estimate into (33) we obtain the 
strong convergence of the states, this is,

Next, we show that ũ is a local solution of the continuous problem (5). To this end 
we exploit (34) and the lower semi-continuity of the norm map to arrive at

The second to last step follows from the optimality of ū𝜀
h
 for (31) and the admis-

sibility of the L2(� )-projection Qhū for sufficiently small h > 0 . The last step fol-
lows from the strong convergence of the L2(� )-projection Qh in L2(� ) . Note that 
this implies limh↘0 ‖Sh(Qhū) − S(ū)‖L2(𝛺) = 0 . Due to Assumption 1 the solution ū 
is unique within B𝜀(ū) when 𝜀 > 0 is sufficiently small. This implies ũ = ū . Note that 
all “ ≤ ” signs in (35) then turn to “ = ” signs.

To conclude the strong convergence of the sequence {ū𝜀
h
}h>0 we show addition-

ally the convergence of the norms. This follows from (35) and the strong conver-
gence of the states from which we infer

	�  ◻

The previous lemma guarantees that every local solution ū ∈ Uad satisfying 
the second-order sufficient condition in Assumption  1 can be approximated by 
a sequence of local solutions of the discretized problems (31). Due to ū𝜀

h
∈ B𝜀(ū) 

and ū𝜀
h
→ ū for h ↘ 0 (i.  e., the constraint ū𝜀

h
∈ B𝜀(ū) is never active), the func-

tions ū𝜀
h
 are local solutions of the discrete problems (23) provided that h > 0 is 

small enough. Hence, we neglect the superscript � in the following and denote by 
ūh the sequence of discrete local solutions converging to the local solution ū.

Next, we show linear convergence of the sequence ūh.

Theorem 4  Let ū ∈ Uad be a local solution of (5) which fulfills Assumption 1, and 
{ūh}h>0 are local solutions of (23) with ūh → ū for h ↘ 0 . Then, the error estimate

holds.

Proof  Let 𝜉 = ū + t(ūh − ū) with t ∈ (0, 1) . From Corollary  1 we obtain for suffi-
ciently small h the estimate

(34)‖S(ũ) − Sh(ū
𝜀
h
)‖H1(𝛺) → 0 for h ↘ 0.

(35)j(ũ) ≤ lim inf
h↘0

jh(ū
𝜀
h
) ≤ lim sup

h↘0

jh(ū
𝜀
h
) ≤ lim sup

h↘0

jh(Qhū) ≤ j(ū).

𝛼

2
lim
h↘0

‖ū𝜀
h
‖2
L2(𝛤 )

= lim
h↘0

�
jh(ū

𝜀
h
) −

1

2
‖Sh(ū𝜀h) − yd‖2L2(𝛺)

�

= j(ū) −
1

2
‖S(ū) − yd‖2L2(𝛺)

=
𝛼

2
‖ū‖2

L2(𝛤 )
.

‖ū − ūh‖L2(𝛤 ) ≤ c√
𝛿
h
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where the last step follows from the mean value theorem for some t ∈ (0, 1) . Next, 
we confirm with the first-order optimality conditions that

with the L2(� ) projection Qh onto Uh . Note that the property Qhū ∈ Uad is trivially 
satisfied. Insertion into the inequality above leads to

An estimate for the second part follows from orthogonality of the L2(� )-projection, 
this is,

Furthermore, we exploit the Leibniz rule and the stability properties for S and Z 
from Lemma 6 to obtain

Next, we discuss the first term on the right-hand side of (36). Insertion of the defini-
tion of j′

h
 and j′ and the stability of Qh yield

In the last step we inserted the finite element error estimates from Lemma  13. 
Exploiting also the stability estimates from Lemmata 6 and  14 we obtain

Together with (36), (37) and (38) we arrive at the assertion. 	�  ◻

𝛿

2
‖ū − ūh‖2L2(𝛤 )

≤ j��(𝜉)(ū − ūh)
2

= j�(ū)(ū − ūh) − j�(ūh)(ū − ūh),

j�(ū)(ū − ūh) ≤ 0 ≤ j�
h
(ūh)(Qhū − ūh)

(36)
𝛿

2
‖ū − ūh‖2L2(𝛤 )

≤ (j�
h
(ūh) − j�(ūh))(Qhū − ūh) − j�(ūh)(ū − Qhū).

(37)

j�(ūh)(ū − Qhū) = (𝛼 ūh − S(ūh)Z(ūh), ū − Qhū)L2(𝛤 )

= (Qh(S(ūh)Z(ūh)) − S(ūh)Z(ūh), ū − Qhū)L2(𝛤 )

≤ c h2 ‖S(ūh)Z(ūh)‖H1(𝛤 ) ‖ū‖H1(𝛤 ).

(38)
‖S(ūh)Z(ūh)‖H1(𝛤 ) ≤ c

�
‖S(ūh)‖H1(𝛤 ) ‖Z(ūh)‖L∞(𝛺)

+ ‖S(ūh)‖L∞(𝛺) ‖Z(ūh)‖H1(𝛤 )

� ≤ c.

(j�
h
(ūh) − j�(ūh))(Qhū − ūh)

= (S(ūh)Z(ūh) − Sh(ūh)Zh(ūh),Qh(ū − ūh))L2(𝛤 )

≤ c
�
‖Z(ūh)‖L∞(𝛤 ) ‖S(ūh) − Sh(ūh)‖L2(𝛤 )

+ ‖Sh(ūh)‖L∞(𝛤 ) ‖Z(ūh) − Zh(ūh)‖L2(𝛤 )

�
‖ū − ūh‖L2(𝛤 )

≤ c h
�‖Z(ūh)‖L∞(𝛤 ) ‖S(ūh)‖H3∕2(𝛺) + ‖Sh(ūh)‖L∞(𝛤 ) ‖Z(ūh)‖H3∕2(𝛺)

�

× ‖ū − ūh‖L2(𝛤 ).

(j�
h
(ūh) − j�(ūh))(Qhū − ūh) ≤ c h ‖ū − ūh‖L2(𝛤 ).
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5.3 � Postprocessing approach

In this section we consider the so-called postprocessing approach introduced in 
[33]. The basic idea is to compute an “improved” control ũh by a pointwise evalu-
ation of the projection formula, i. e.,

where ȳh and p̄h is the discrete state and adjoint state, respectively, obtained by the 
full discretization approach discussed in Sect. 5.2. As we require higher regularity 
of the exact solution in order to observe a higher convergence rate than for the full 
discretization approach, we replace (A1) by the stronger assumption 

(A1’)	� The domain � is planar and its boundary is globally C3.

 The most technical part of convergence proofs for this approach is the proof of 
L2-norm estimates for the state variables. This is usually done by considering the 
following three terms separately:

In [33] Rh ∶ C(� ) → Uh is chosen as the midpoint interpolant. We will construct 
and investigate such an operator in Appendix 1. Note that a definition of a midpoint 
interpolant on curved elements is not straight-forward. The first term on the right-
hand side of (40) is a finite element error in the L2(� )-norm. We collect the required 
estimates in the following Lemma.

Lemma 18  For all q < ∞ there hold the estimates

Proof  The first estimate follows from the Hölder inequality and the maximum norm 
estimate derived in Theorem 2. The second estimate requires an intermediate step. 
We denote by ph(ū) ∈ Vh the solution of the equation

As ph(ū) is the Ritz-projection of p̄ we can apply Theorem 2 again and obtain

(39)ũh ∶= 𝛱ad

(
1

𝛼
[ȳh p̄h]𝛤

)
,

(40)
‖ȳ − ȳh‖L2(𝛤 ) ≤ c

�
‖ȳ − Sh(ū)‖L2(𝛤 ) + ‖Sh(ū) − Sh(Rhū)‖L2(𝛤 )

+ ‖Sh(Rhū) − ȳh‖L2(𝛤 )

�
.

‖ȳ − Sh(ū)‖L2(𝛤 ) ≤ c h2−2∕q � ln h� ‖ȳ‖W2,q(𝛺)

‖p̄ − Zh(ū)‖L2(𝛤 ) ≤ c h2−2∕q � ln h� �‖p̄‖W2,q(𝛺) + ‖ȳ‖H2(𝛺)

�
.

aū(p
h(ū), vh) = (S(ū) − yd, vh)L2(𝛺) ∀vh ∈ Vh.

‖p̄ − ph(ū)‖L2(𝛤 ) ≤ c h2−2∕q � ln h� ‖p̄‖W2,q(𝛤 ).
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To show an estimate for the error between ph(ū) and Zh(ū) we test the equations 
defining both functions by vh = ph(ū) − Zh(ū) , compare the proof of Lemma  2. 
Together with the non-negativity of ū we obtain

The last step follows from the estimate ‖S(ū) − Sh(ū)‖L2(𝛺) ≤ c h2 ‖S(ū)‖H2(𝛺) which 
is a consequence of the Aubin-Nitsche trick. With the triangle inequality we con-
clude the desired estimate for the discrete control-to-adjoint operator. 	�  ◻

To obtain an optimal error estimate for the second term we need an addi-
tional assumption which is used in all contributions studying the postprocessing 
approach. To this end, define the subsets K2 ∶= ∪{Ē ∶ E ∈ Eh, E ⊂ A, or E ⊂ I} 
and K1 ∶= � ⧵K2 . In the following we will assume that K1 satisfies

The idea of this assumption is, that the control can only switch between active and 
inactive set on K1 . Only due to these switching points the regularity of the control is 
reduced, see also Lemma 11. One can in general expect that this happens at finitely 
many points and thus, the assumption (41) is not very restrictive.

As an intermediate result required to prove estimates for Zh(ū) − Zh(Rhū) in 
L2(� ) , we need an estimate for Sh(ū) − Sh(Rhū) in L2(�).

Lemma 19  For all q < ∞ there holds the estimate

Proof  To shorten the notation we write eh ∶= Sh(ū) − Sh(Rhū) . Moreover, we intro-
duce the function w ∈ H1(�) solving the equation

This implies

Next, we discuss both terms on the right-hand side separately. The first one is treated 
with the Cauchy–Schwarz inequality and the interpolation error estimate (19). These 
arguments lead to

‖ph(ū) − Zh(ū)‖2H1(𝛺)

= −�
𝛤

ū (ph(ū) − Zh(ū))
2 + (S(ū) − Sh(ū), p

h(ū) − Zh(ū))L2(𝛺)

≤ c h2 ‖y‖H2(𝛺) ‖ph(ū) − Zh(ū)‖H1(𝛺).

(41)|K1| ≤ c h.

‖Sh(ū) − Sh(Rhū)‖L2(𝛺) ≤ c h2−2∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�
.

(42)aū(v,w) = (eh, v)L2(𝛺) ∀v ∈ H1(𝛺).

(43)‖eh‖2L2(𝛺)
= aū(eh,w −𝛱hw) + aū(eh,𝛱hw).

aū(eh,w −𝛱hw) ≤ c h ‖eh‖H1(𝛺) ‖eh‖L2(𝛺).
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The H1(�)-norm of eh is further estimated by the Lipschitz property from Lemma 15 
and the interpolation error estimate for the midpoint interpolant from Lemma 25. 
This yields

for all q ≥ 2.
Insertion into the estimate above taking into account the stability estimates from 

Lemma 14 yields

Next, we consider the second term on the right-hand side of (43). After a reformula-
tion by means of the definition of Sh we get

We can further estimate this term with the interpolation error estimate from 
Lemma 27

The last step follows from the embedding H1(� ) ↪ L∞(� ) and the multiplication 
rule ‖u v‖H1(� ) ≤ c ‖u‖H1(� ) ‖v‖H1(� ) , see [20, Theorem 1.4.4.2]. Both properties are 
only fulfilled in case of n = 2.

Let us discuss the terms on the right-hand side separately. For elements E ⊂ K1 
we can exploit the assumption (41) which provides the estimate 

∑
E⊂K1

�E� ≤ c h and 
the second interpolation error estimate from Lemma 25 to arrive at

On elements E ⊂ K2 the control has higher regularity, namely ū ∈ H2−1∕q(E) . To 
this end, we show by interpolation arguments in Banach spaces, see e. g. [7, Sec-
tion 14.3], that the two estimates from Lemma 25 (the second one with r = 1 and 
q = 2 ) also imply

‖eh‖H1(𝛺) ≤ c ‖ū − Rhū‖L2(𝛤 ) ≤ c h ‖ū‖W1,q(𝛤 )

(44)aū(eh,w −𝛱hw) ≤ ch2‖ū‖W1,q(𝛤 )‖eh‖L2(𝛺).

(45)

aū(eh,𝛱hw) = aū(Sh(ū),𝛱hw) − aū(Sh(Rhū),𝛱hw)

= aRhū
(Sh(Rhū),𝛱hw) − aū(Sh(Rhū),𝛱hw)

= ((Rhū − ū) Sh(Rhū),𝛱hw)L2(𝛤 ).

(46)

((Rhū − ū) Sh(Rhū),𝛱hw)L2(𝛤 ) ≤ c h2 ‖ū‖H1(𝛤 ) ‖Sh(Rhū)𝛱hw‖H1(𝛤 )

+ ‖Sh(Rhū)‖L∞(𝛤 ) ‖𝛱hw‖L∞(𝛤 )

�
E∈Eh

�����E

(ū − Rhū)
����

≤ c
�
h2 +

�
E∈Eh

����E

(ū − Rhū)
���
��

1 + ‖ū‖H1(𝛤 )

�‖Sh(Rhū)‖H1(𝛤 ) ‖𝛱hw‖H1(𝛤 ).

�
E∈Eh
E⊂K1

�����E

(ū − Rhū)
���� ≤ c h ‖ū − Rhū‖L∞(𝛤 ) ≤ c h2−1∕q ‖∇ū‖Lq(𝛤 ).

(47)�E

(v − Rhv) ≤ c h5∕2−1∕q ‖v‖H2−1∕q(E), v ∈ H2−1∕q(� ), q ∈ [1,∞].
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As a consequence, we deduce

The remaining terms on the right-hand side of (46) can be treated with stability esti-
mates for Sh (see Lemma 14) and Rh , the estimate ‖�hw‖H1(� ) ≤ c ‖w‖H1(� ) stated in 
(20) and the a priori estimate ‖w‖H1(� ) ≤ c ‖eh‖L2(�) from Lemma 3a). Insertion of 
the previous estimates into (46) yields

Note that we hide the of lower-order norms of ū in the generic constant as these 
quantities may be estimated by means of the control bounds ua and ub . Insertion of 
(44), (45) and (48) into (43) and dividing by ‖eh‖L2(�) implies the assertion. 	�  ◻

Lemma 20  Under the assumption (41) the estimates

are valid for arbitrary q ∈ [2,∞).

Proof  We will only prove the second estimate as the first one follows from the same 
technique and is even easier as the right-hand sides of the equations defining Sh(ū) 
and Sh(Rhū) coincide. This is not the case for the control-to-adjoint operator.

To shorten the notation we write eh ∶= Zh(ū) − Zh(Rhū) . As in the previous 
lemma we rewrite the error by a duality argument using a dual problem similar to 
(42) with solution w ∈ H1(�) , more precisely,

This yields

We rewrite the second expression in (49) and get analogous to (45)

Note that the first term would not appear when deriving estimates for Sh instead of 
Zh as the equations defining Sh(ū) and Sh(Rhū) have the same right-hand side.

�
E∈Eh
E⊂K2

�����E

(ū − Rhū)
���� ≤ c h5∕2−1∕q ‖ū‖H2−1∕q(K2)

� �
E∈Eh
E⊂K2

1
�1∕2

≤ c h2−1∕q ‖ū‖H2−1∕q(K2)
.

(48)
((Rhū − ū) Sh(Rhū),𝛱hw)L2(𝛤 )

≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�‖eh‖L2(𝛺).

‖Sh(ū) − Sh(Rhū)‖L2(𝛤 ) ≤ c h2−1∕q
�
1 + ‖ū‖H2−1∕q(K2)

+ ‖ū‖W1,q(𝛤 )

�
,

‖Zh(ū) − Zh(Rhū)‖L2(𝛤 ) ≤ c h2−1∕q
�
1 + ‖ū‖H2−1∕q(K2)

+ ‖ū‖W1,q(𝛤 )

�

aū(v,w) = (eh, v)L2(𝛤 ) ∀v ∈ H1(𝛺).

(49)‖eh‖2L2(𝛤 )
= aū(eh,w −𝛱hw) + aū(eh,𝛱hw).

(50)

aū(eh,𝛱hw)

= aū(Zh(ū),𝛱hw) ± aRhū
(Zh(Rhū),𝛱hw) − aū(Zh(Rhū),𝛱hw)

= (Sh(ū) − Sh(Rhū),𝛱hw)L2(𝛺) + ((Rhū − ū)Zh(Rhū),𝛱hw)L2(𝛤 ).
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The first term can be treated with the Cauchy–Schwarz inequality, Lemma 19 and 
the estimate ‖�hw‖L2(�) ≤ c ‖w‖H1(�) ≤ c ‖eh‖L2(� ) which can be deduced from (19) 
and Lemma 1 with g = eh . These ideas lead to

For the second term on the right-hand side of (50) we apply the same steps as for 
(48) with the only modification that the a priori estimate ‖w‖H1(� ) ≤ c ‖eh‖L2(� ) from 
Lemma 3a) has to be employed. From this we infer

In the last step we used the boundedness of Zh(Rhū) , see Lemma 14. Insertion of 
(51) and (52) into (50) leads to

It remains to discuss the first term on the right-hand side of (49). We obtain with the 
boundedness of aū , the interpolation error estimate (19) and Lemma 3a)

An estimate for the expression ‖eh‖H1(�) follows from the equality

which can be deduced by subtracting the equations for Zh(ū) and Zh(Rhū) from each 
other. Rearranging the terms yields

The second term on the right-hand side can be bounded by zero as ū ≥ 0 . An esti-
mate for the last term is proved in Lemma 19. For the first term we apply the esti-
mate (52) with �hw replaced by eh . All together, we obtain

Moreover, with an inverse inequality and a trace theorem we get

(51)
(Sh(ū) − Sh(Rhū),𝛱hw)L2(𝛺)

≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

� ‖eh‖L2(𝛤 ).

(52)

((Rhū − ū)Zh(Rhū),𝛱hw)L2(𝛤 )

≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�‖Zh(Rhū)‖H1(𝛤 ) ‖𝛱hw‖H1(𝛤 )

≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�‖eh‖L2(𝛤 ).

(53)aū(eh,𝛱hw) ≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�‖eh‖L2(𝛤 ).

(54)
aū(eh,w −𝛱hw) ≤ c h1∕2 ‖eh‖H1(𝛺) ‖w‖H3∕2(𝛺)

≤ c h1∕2 ‖eh‖H1(𝛺) ‖eh‖L2(𝛤 ).

‖eh‖2H1(𝛺)
+ (ū Zh(ū) − Rhū Zh(Rhū), eh)L2(𝛤 ) = (Sh(ū) − Sh(Rhū), eh)L2(𝛺)

‖eh‖2H1(𝛺)
≤((Rhū − ū)Zh(Rhū), eh)L2(𝛤 )

− (ū eh, eh)L2(𝛤 ) + ‖Sh(ū) − Sh(Rhū)‖L2(𝛺)‖eh‖L2(𝛺).

(55)
‖eh‖2H1(𝛺)

≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�

×
�‖eh‖H1(𝛤 ) + ‖eh‖H1(𝛺)

�
.

‖eh‖H1(� ) ≤ c h−1∕2 ‖eh‖H1∕2(� ) ≤ c h−1∕2 ‖eh‖H1(�).
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Consequently, we deduce from (55)

Insertion into (54) leads to

Together with (53) and (49) we conclude the desired estimate for Zh . 	�  ◻

Lemma 21  Under the assumption (41) there holds the estimate

with

Proof  We observe that each function 𝜉 ∶= t Rhū + (1 − t) ūh for t ∈ [0, 1] satisfies

for arbitrary 𝜀 > 0 provided that h is sufficiently small. This follows from the con-
vergence of the midpoint interpolant, see Lemma 25, and convergence of ūh towards 
ū , see Theorem  3. Hence, with the coercivity of j′′

h
 proved in Lemma  17 and the 

mean value theorem we conclude

For the latter term we exploit the discrete optimality condition and the fact that the 
continuous optimality condition holds even pointwise. This implies the inequality

Insertion into the estimate above implies

The right-hand side can be decomposed into two parts. With appropriate intermedi-
ate functions we obtain for the latter one

‖eh‖H1(𝛺) ≤ c h3∕2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�
.

aū(eh,w −𝛱hw) ≤ c h2−1∕q
�
1 + ‖ū‖W1,q(𝛤 ) + ‖ū‖H2−1∕q(K2)

�‖eh‖L2(𝛤 ).

‖Rhū − ūh‖L2(𝛤 ) ≤ c h2−2∕q � ln h�

c = c
�‖ū‖H2−1∕q(K2)

, ‖ū‖W1,q(𝛤 ), ‖ȳ‖W2,q(𝛺), ‖p̄‖W2,q(𝛺)

�
.

‖ū − 𝜉‖L2(𝛤 ) ≤ t‖ū − Rhū‖L2(𝛤 ) + (1 − t)‖ū − ūh‖L2(𝛤 ) < 𝜀,

𝛿

4
‖Rhū − ūh‖2L2(𝛤 )

≤ j��
h
(𝜉)(Rhū − ūh)

2

= j�
h
(Rhū)(Rhū − ūh) − j�

h
(ūh)(Rhū − ūh).

j�
h
(ūh)(Rhū − ūh) ≥ 0 ≥ (𝛼 Rhū − Rh(ȳ p̄),Rhū − ūh)L2(𝛤 ).

(56)
𝛿

4
‖Rhū − ūh‖2L2(𝛤 )

≤ �
Rh(ȳ p̄) − ȳ p̄ + ȳ p̄ − Sh(Rhū)Zh(Rhū),Rhū − ūh

�
L2(𝛤 )

.
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Moreover, we apply the triangle inequality and the estimates from Lemmata  18 
and 20 to deduce

Analogously, one can derive an estimate for the term ‖p̄ − Zh(Rhū)‖L2(𝛤 ) . Moreover, 
we apply Lemmata 6 and 14 to bound the norms of p = Z(ū) and Sh(Rhū) , respec-
tively. All together we obtain the estimate

Next we discuss that part of (56) which involves the term Rh(ȳ p̄) − ȳ p̄ in the first 
argument. Here, we again use the interpolation error estimate (47) exploiting regu-
larity in fractional-order Sobolev spaces and obtain

With [20, Theorem 1.4.4.2] and a trace theorem we conclude

Insertion of the estimates (57) and (58) into (56), and dividing the resulting estimate 
by ‖Rhu − uh‖L2(� ) , leads to the desired result. 	�  ◻

Now we are in the position to state the main result of this section.

Theorem 5  Let (ȳ, ū, p̄) be a local solution of (12) satisfying the assumption  (41). 
Moreover, let {ūh}h>0 be a sequence of local solutions of (27) such that for suffi-
ciently small 𝜀, h0 > 0 the property

holds. Then, the error estimate

is satisfied with c = c(‖ū‖W1,q(𝛤 ), ‖ū‖H2−1∕q(K2)
, ‖ȳ‖W2,q(𝛺), ‖p̄‖W2,q(𝛺)).

(ȳ p̄ − Sh(Rhū) Zh(Rhū),Rhū − ūh)L2(𝛤 )

= ((ȳ − Sh(Rhū)) p̄ + Sh(Rhū) (p̄ − Zh(Rhū)),Rhū − ūh)L2(𝛤 )

≤ c
�‖ȳ − Sh(Rhū)‖L2(𝛤 ) ‖p̄‖L∞(𝛤 )

+ ‖p̄ − Zh(Rhū)‖L2(𝛤 ) ‖Sh(Rhū)‖L∞(𝛤 )

� ‖Rhū − ūh‖L2(𝛤 ).

‖ȳ − Sh(Rhū)‖L2(𝛤 ) ≤ ‖ȳ − Sh(ū)‖L2(𝛤 ) + ‖Sh(ū) − Sh(Rhū)‖L2(𝛤 )

≤ c h2−2∕q � ln h�.

(57)(ȳ p̄ − Sh(Rhū) Zh(Rhū),Rhū − ūh)𝛤 ≤ c h2−2∕q � ln h� ‖Rhū − ūh‖L2(𝛤 ).

(58)

(Rh(ȳ p̄) − ȳ p̄,Rhū − ūh)L2(𝛤 ) =
�
E∈Eh

[Rhū − ūh]E �E

�
ȳ p̄ − Rh(ȳ p̄)

�

≤ c
�
E∈Eh

h1∕2 [Rhū − ūh]E h
2−1∕q ‖ȳ p̄‖H2−1∕q(E)

≤ c h2−1∕q ‖Rhū − ūh‖L2(𝛤 ) ‖ȳ p̄‖H2−1∕q(𝛤 ).

‖ȳ p̄‖H2−1∕q(𝛤 ) ≤ c ‖ȳ‖W2−1∕q,q(𝛤 ) ‖p̄‖W2−1∕q,q(𝛤 ) ≤ c ‖ȳ‖W2,q(𝛺) ‖p̄‖W2,q(𝛺).

‖ū − ūh‖L2(𝛤 ) < 𝜀 ∀h < h0

‖ū − ũh‖L2(𝛤 ) ≤ c h2−2∕q � ln h�
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Proof  With the projection formulas (13) and (39), respectively, the non-expansivity 
of the operator �ad and the triangle inequality we obtain

The assertion follows after insertion of (40) together with the estimates obtained 
in Lemmata 18, 20 and 21, as well as the stability estimates of Z and Sh from Lem-
mata 3 and 14, respectively. 	�  ◻

6 � Numerical experiments

It is the purpose of this last section to confirm the theoretical results by numerical 
experiments. To this end, we reformulate the discrete optimality condition (27) and 
use the equivalent projection formula

Here, RSimp

h
∶ C(� ) → Uh is a projection operator based on the Simpson rule, this is,

where xE1
 and xE2

 are the endpoints of the boundary edge E ∈ Eh and xE its midpoint. 
The numerical solution of (59) is computed by a semismooth Newton-method.

The input data of the considered benchmark problem is chosen as follows. The 
computational domain is the unit square � ∶= (0, 1)2 . We define the exact Robin 
parameter ũ by

and use the desired state yd = Sh(ũ) and the right-hand side f ≡ 0 . Moreover, the 
regularization parameter � = 10−2 and the control bounds ua = 0 , ub = ∞ are used.

We compute the numerical solution of our benchmark problem on a sequence of 
meshes starting with Th0 , h0 =

√
2 , consisting of two rectangular triangles only. The 

remaining grids Thi , i = 1, 2,… , are obtained by a double bisection through the long-
est edge of each element applied to the previous mesh. This guarantees hi =

1

2
hi−1 . 

In order to compute the discretization error we use the solution on the mesh Th11 as 
an approximation of the exact solution, this means,

‖ū − ũh‖L2(𝛤 ) ≤ c ‖𝛱ad

�
1

𝛼
ȳ p̄

�
−𝛱ad

�
1

𝛼
ȳh p̄h

�
‖L2(𝛤 )

≤ c

𝛼

�‖ȳ − ȳh‖L2(𝛤 ) ‖p̄‖L∞(𝛺) + ‖ȳh‖L∞(𝛺) ‖p̄ − p̄h‖L2(𝛤 )

�
.

(59)uh = �ad

(
1

�
R
Simp

h
(Sh(uh)Zh(uh))

)
.

[R
Simp

h
(v)]E =

1

6

(
v(xE1

) + 4v(xE) + v(xE2
)
)
,

ũ(x1, x2) ∶=

{
max(−0.01, 1 − 30(x1 − 0.5)2), if x1 = 0,

−0.01, otherwise ,

‖ū − ūhi‖L2(𝛤 ) ≈ ‖ūh11 − ūhi‖L2(𝛤 ), i = 0, 1,… , 10.
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Analogously, we compute the error for the approximation obtained by the post-
processing strategy. However, in this case the exact solution is approximated 
by ū ≈ 𝛱ad(

1

𝛼
ȳh11 p̄h11) . The error norms ‖𝛱ad(

1

𝛼
ȳh11 p̄h11) −𝛱ad(

1

𝛼
ȳhi p̄hi )‖L2(𝛤 ) , 

i = 0,… , 11 , are computed element-wise by the Simpson quadrature formula with 
the modification that elements E are split at those points where ȳhi p̄hi or ȳh11 p̄h11 
change its sign.

The optimal control and corresponding state of our benchmark problem is illus-
trated in Fig. 1 and the measured discretization errors as well as the experimentally 
computed convergence rates are summarized in Table 1. As we have proven in The-
orem 4 the numerical solutions obtained by a full discretization using a piecewise 
constant control approximation converge with the optimal convergence rate 1. More-
over, it is confirmed that the solution obtained with a postprocessing step, see Theo-
rem 5, converges with order 2 − � , 𝜀 > 0 . Note that we actually proved the results for 
the case that the boundary is smooth which is indeed not the case in our example. 
However, the corner singularities contained in the solution are for a 90◦-corner com-
paratively mild so that the regularity results from Lemma 11 remain valid.

Fig. 1   Optimal state (surface) and the optimal control (boundary curve) for the benchmark problem

Table 1   Experimentally 
computed errors for the 
full discretization and the 
postprocessing approach with 
the corresponding experimental 
convergence rates (in 
parentheses)

i DOF BD DOF ‖u − u
h
i
‖
L2(� ) (eoc) ‖u − ũ

h
i
‖
L2(𝛤 ) (eoc)

3 113 32 1.60e−2 (1.06) 1.81e−2 (1.15)
4 353 64 5.81e−3 (1.46) 4.43e−3 (2.03)
5 1217 128 2.56e−3 (1.18) 1.03e−3 (2.11)
6 4481 256 1.24e−3 (1.05) 1.65e−4 (2.64)
7 17,153 512 6.17e−4 (1.00) 7.52e−5 (1.13)
8 67,073 1024 3.06e−4 (1.01) 1.79e−5 (2.07)
9 265,217 2048 1.49e−4 (1.04) 4.31e−6 (2.05)
10 1,054,716 4096 6.67e−5 (1.16) 8.50e−7 (2.34)
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Appendix 1: Proof of Theorem 2

The proof of the maximum norm estimate presented in Theorem 2 follows basi-
cally from the arguments of [18, 38]. For the convenience of the reader we want 
to repeat the proof as the result of Theorem  2 is, for our specific situation, not 
directly available in the literature. The novelty of the present proof is that it 
includes curved elements as well as Robin boundary conditions. In the aforemen-
tioned articles, a representation of the error term based on a regularized Dirac 
function is used. This function forms the right-hand side of a dual problem whose 
solution is an approximation of Green’s function. The main difficulty is to bound 
this solution in appropriate norms.

To this end, we denote by T∗ ∈ Th the element where |y − yh| 
attains its maximum. The regularized Dirac function is defined by 
�h(x) ∶= |T∗|−1 sgn (y(x) − yh(x)) if x ∈ T∗ , and �h(x) ∶= 0 if x ∉ T∗ . The corre-
sponding Green’s function denoted by gh solves the problem

The Dirac function satisfies the properties

We start our considerations with some a priori estimates for the solution gh.

Lemma 22  The following a priori estimates hold:

Proof  (ii) To show the estimate in the H2(�)-norm we apply the a priori estimate 
from Lemma 3c) and ‖�h‖L2(�) ≤ ch−1.

(i) The weak form of (60) and the property (61) imply

(60)−�gh + gh = �h in �, �ng
h + u gh = 0 on � .

(61)‖�h‖L1(�) ≤ c, ‖�h‖L2(�) ≤ c h−1.

(i) ‖gh‖H1(�) ≤ c � ln h�1∕2 (ii) ‖gh‖H2(�) ≤ c h−1

(iii) ‖gh‖L∞(�) ≤ c � ln h�

(62)
�u ‖gh‖2H1(�)

≤ au(g
h, gh) = (�h, gh)L2(�) ≤ c ‖gh‖L∞(�)

≤ c
�‖gh − gh

h
‖L∞(�) + � ln h�1∕2 ‖gh

h
‖H1(�)

�
,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where the discrete Sobolev inequality was applied in the last step. The function 
gh
h
∈ Vh is the Ritz-projection of gh and satisfies the usual stability estimate

Next, we derive a suboptimal error estimate for the finite-element error in the L∞(�)

-norm. Using an inverse inequality, estimates for the interpolant �h from (19), the 
Aubin-Nitsche trick and the a priori estimate shown already in the H2(�)-norm we 
deduce

Note that we hide the dependency on u, or more precisely on ‖u‖H1∕2(�) and lower-
order norms, in the generic constant to simplify the notation. Insertion of (63) and 
(64) into (62) yields with Young’s inequality

The desired estimate follows form a kick-back-argument.
(iii) The L∞(�)-estimate follows directly from (62), (63) and (64) using the ine-

quality (i). 	�  ◻

Next, we show an a priori estimate for gh in a weighted norm. This is the key 
idea which allows us to bound second derivatives by a logarithmic factor only. 
The weight function we will use is defined by

with x∗ ∶= argmax x∈T∗ |y − yh|(x) . This function satisfies

which follows from a simple computation. With this weight function at hand we can 
prove the following regularity result:

Lemma 23  Assume that u ∈ H1∕2(� ) . There holds the estimate

Proof  We introduce the functions �i ∶= |xi − x∗
i
| , i = 1, 2 , which allow us to write

With the reverse product rule we obtain

(63)‖gh
h
‖H1(�) ≤ c ‖gh‖H1(�).

(64)

‖gh − gh
h
‖L∞(�) ≤ ‖gh −�hg

h‖L∞(�) + c h−1
�‖gh −�hg

h‖L2(�) + ‖gh − gh
h
‖L2(�)

�

≤ c h ‖gh‖H2(�) ≤ c.

�u ‖gh‖2H1(�)
≤ c � ln h� + 1

2
�u ‖gh‖2H1(�)

.

�(x) ∶=

√
|x − x∗|2

2
+ c h2,

(65)‖�−1‖L2(�) ≤ c � ln h�1∕2, ‖�−1‖L2(� ) ≤ c h−1∕2,

‖�∇2gh‖L2(�) ≤ c � ln h�1∕2.

(66)‖�∇2gh‖2
L2(�)

=

2�
i=1

‖�i ∇2gh‖2
L2(�)

+ c h2 ‖∇2gh‖2
L2(�)

.
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Moreover, we easily confirm that �i gh is the solution of the problem

where ni is the ith component of the outer unit normal vector on �  . Lemma 3c) using 
the property ‖�i �h‖L2(�) ≤ c , which follows from a simple computation, leads to

Insertion into (67) and using Lemma 22(i) leads to

An estimate for the second term on the right-hand side of (66) is derived in 
Lemma 22(ii). 	�  ◻

Next, we derive some error estimates for the approximation gh
h
 in several 

norms.

Lemma 24  Assume that u ∈ H1∕2(� ) . Then, there hold the error estimates

Proof  The first estimate follows directly from the H1(�)-error estimate stated in 
Lemma  12 and the Aubin-Nitsche trick. Moreover, the a priori estimate for the 
H2(�)-norm of gh from Lemma 22 has to be exploited.

In the second estimate one observes that the discrete function gh
h
 would vanish 

except on curved elements (note that gh
h
 is affine on the reference element only, but 

not on T). With the transformation result [6, Lemma 2.3] we obtain

where gh = ĝh◦F−1
T

 , gh
h
= ĝh

h
◦F−1

T
 . Taking into account infx∈T �(x) ∼ supx∈T �(x) , 

which holds due to the assumed shape-regularity, and |�(x)| ≤ c for all x ∈ � , we 
obtain

(67)‖�i ∇2gh‖2
L2(�)

≤ ‖∇2(�i g
h)‖2

L2(�)
+ ‖∇gh‖2

L2(�)
.

−�(�i g
h) + �i g

h = −2
�gh

�xi
+ �i �

h in �,

�n(�i g
h) + u �i g

h = gh ni on � ,

(68)
‖∇2(�i g

h)‖L2(�) ≤ c
�
1 + ‖u‖H1∕2(� )

��
1 + ‖∇gh‖L2(�) + ‖gh‖H1∕2(� )

�

≤ c
�
1 + ‖gh‖H1(�)

�
.

‖�i ∇2gh‖L2(�) ≤ c � ln h�1∕2, i = 1, 2.

h−1 ‖gh − gh
h
‖L2(�) + ‖∇(gh − gh

h
)‖L2(�) ≤ c,

‖�∇2(gh − gh
h
)‖L2

pw
(�) ≤ c � ln h�1∕2.

‖∇2(gh − gh
h
)‖L2(T) ≤ c �T�1∕2 h−2

2�
k=0

h4−2k ‖∇̂k(ĝh − ĝh
h
)‖L2(T̂)

≤ c
�‖∇2gh‖L2(T) + h ‖gh − gh

h
‖H1(T)

�
,

‖�∇2(gh − gh
h
)‖L2

pw
(�) ≤ c

�‖�∇2gh‖L2(�) + h ‖gh − gh
h
‖H1(�)

�
.



192	 M. Winkler 

1 3

The first term has been discussed in the previous lemma and the last term has been 
considered in the present Lemma already. 	�  ◻

Now we are in the position to prove Theorem 2.

Proof  With an inverse inequality and the Hölder inequality, the definition of �h and 
a maximum norm estimate for the interpolant �h , see e.  g. [6, Theorem 4.1], we 
obtain

where gh
h
∈ Vh denotes the Ritz projection of gh.

For the latter part on the right-hand side of (69) we get with the Galerkin orthog-
onality, the Hölder inequality, a trace theorem for the boundary integral term as well 
as ‖u‖L∞(� ) ≤ c

An estimate for the interpolation error is deduced in [6]. The L1(�)-norms can be 
replaced by weighted L2(�)-norms involving the weighting function � . Taking into 
account the properties (65) we obtain

In the following we will show that the expressions on the right-hand side of (71) are 
bounded by c h | ln h|1∕2 . Therefore, we apply the reverse product rule and get

From this we conclude

Here, we exploited that (u �2 (gh − gh
h
), gh − gh

h
)L2(� ) ≥ 0 due to u ≥ ua ≥ 0 . Next, we 

introduce the abbreviation z ∶= �2 (gh − gh
h
) . The Galerkin orthogonality of gh − gh

h
 , 

Young’s inequality and the trace theorem taking into account |�| + |∇�| ≤ c yield

and thus,

(69)

‖y − yh‖L∞(�) = ‖y − yh‖L∞(T∗)

≤ c
�‖y −�hy‖L∞(T∗) + �T∗�−1 ‖�hy − yh‖L1(T∗)

�

≤ c
�‖y −�hy‖L∞(T∗) + (�h, y − yh)L2(�)

�

≤ c
�
h2−2∕q ‖y‖W2,q(�) + au(y − yh, g

h)
�
,

(70)
au(y − yh, g

h) = au(y −�hy, g
h − gh

h
)

≤ c ‖y −�hy‖W1,∞(�) ‖gh − gh
h
‖W1,1(�).

(71)‖gh − gh
h
‖W1,1(�) ≤ c � ln h�1∕2 �‖�∇(gh − gh

h
)‖L2(�) + ‖gh − gh

h
‖L2(�)

�
.

‖�∇(gh − gh
h
)‖2

L2(�)

= (∇(�2 (gh − gh
h
)),∇(gh − gh

h
))L2(�) − ((gh − gh

h
) ∇�2,∇(gh − gh

h
))L2(�).

(72)
�2 ∶= ‖�∇(gh − gh

h
)‖2

L2(�)
+ ‖gh − gh

h
‖2
L2(�)

≤ au(�
2(gh − gh

h
), gh − gh

h
) − ((gh − gh

h
)∇�2,∇(gh − gh

h
))L2(�).

‖� v‖L2(� ) ≤ c
�‖� v‖L2(�) + ‖∇(� v)‖L2(�)

� ≤ c
�‖v‖L2(�) + ‖�∇v‖L2(�)

�
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Next, we derive local interpolation error estimates. In the following we use the nota-
tion �

T
∶= infx∈T �(x) and �T ∶= supx∈T �(x) . Due to the assumed shape-regularity 

there holds �
T
∼ �T for all T ∈ Th , and hence,

where ST is the patch of all elements adjacent to T (note that �h is a quasi-interpo-
lant). The Leibniz rule and the properties |∇�2| ≤ � and |∇2�2| ≤ c imply

Next, we combine the two estimates above and take into account the properties 
h �−1

T
≤ c and �T ∼ �ST

 which follows from the assumed quasi-uniformity. Summa-
tion over all T ∈ Th and an application of Lemma 24 yields

It remains to discuss the third term on the right-hand side of (73). With interpolation 
error estimates for �h on the boundary, compare also (20), and u ∈ L∞(� ) we obtain

where we exploited the product rule and the property ∇�2 ≤ 2�� in the last step. 
With a trace theorem and Lemma 24 we conclude

and with a multiplicative trace theorem, Young’s inequality, the product rule and the 
estimates from Lemma 24 we obtain

(73)

au(�
2(gh − gh

h
), gh − gh

h
) = au(z −�hz, g

h − gh
h
)

≤ 1

4
�2 + c

�
‖�−1 ∇(z −�hz)‖2L2(�)

+ ‖�−1 (z −�hz)‖2L2(�)
+ ‖�−1 u (z −�hz)‖2L2(� )

�
.

‖�−1 ∇(z −�hz)‖L2(T) + h−1 ‖�−1 (z −�hz)‖L2(T)
≤ c �−1

T
h ‖�2 (gh − gh

h
)‖H2(ST )

,

‖�2 (gh − gh
h
)‖H2(ST )

≤‖gh − gh
h
‖L2(ST ) + ‖�∇(gh − gh

h
)‖L2(ST )

+ ‖�2 ∇2(gh − gh
h
)‖L2(ST ).

(74)

‖�−1∇(z −�hz)‖L2(�) + h−1 ‖�−1(z −�hz)‖L2(�)

≤ c
�
‖gh − gh

h
‖L2(�) + h ‖∇(gh − gh

h
)‖L2(�) + h ‖�∇2(gh − gh

h
)‖L2

pw
(�)

�

≤ c h � ln h�1∕2.

(75)
‖�−1 u (z −�hz)‖L2(E) ≤ c h �−1

E
‖∇z‖L2(SE)

≤ c h
�‖gh − gh

h
‖L2(E) + ‖�∇(gh − gh

h
)‖L2(SE)

�
,

‖gh − gh
h
‖L2(� ) ≤ c ‖gh − gh

h
‖H1(�) ≤ c,
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The estimate (75) then simplifies to

Insertion of (74) and (76) into (73) leads to the estimate

It remains to show an estimate for the second term on the right-hand side of 
(72). Due to |∇�2| ≤ 2�� , Young’s inequality and the L2(�)-error estimate from 
Lemma 24 we get

Insertion of (77) and (78) into (72) yields

and with a kick-back-argument we conclude �2 = c h2 | ln h| . Finally, we collect up 
the previous estimates. To this end, we insert (79) into (71), the resulting estimate 
into (70) and this into (69). 	�  ◻

Appendix 2: Local estimates for the midpoint interpolant 
and the L2(�)‑projection

To the best of the author’s knowledge there are no error estimates for the midpoint 
interpolant defined on a curved boundary available in the literature. Thus, we prove 
the following Lemmata which are needed in the proof of Lemma 20.

Consider a single boundary element E ⊂ T̄  with corresponding ele-
ment T ∈ Th . A parametrization of the boundary element is given by 
E ∶= {�E(�) ∶= FT (�, 0), � ∈ (0, 1)} when assuming that the edge of T̂  with end-
points (0, 0), (1, 0) is mapped onto E. In the following we denote the length of a 
boundary element E ∈ Eh by LE = ∫ 1

0
|𝛾̇E(𝜉)| d𝜉.

‖�∇(gh − gh
h
)‖L2(� ) ≤ c

�
‖�∇(gh − gh

h
)‖L2(�) + ‖∇(�∇(gh − gh

h
))‖L2

pw
(�)

�

≤ c
�
‖∇(gh − gh

h
))‖L2(�) + ‖�∇2(gh − gh

h
)‖L2

pw
(�)

�

≤ c � ln h�1∕2.

(76)‖�−1 (z −�hz)‖L2(� ) ≤ c h � ln h�1∕2.

(77)a(�2(gh − gh
h
), gh − gh

h
) ≤ 1

4
�2 + c h2 | ln h|.

(78)

((gh − gh
h
)∇�2,∇(gh − gh

h
))L2(�) ≤ c ‖gh − gh

h
‖2
L2(�)

+
1

4
‖�∇(gh − gh

h
)‖2

L2(�)

≤ c h2 +
1

4
�2.

(79)�2 ≤ 1

2
�2 + c h2 | ln h|
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Lemma 25  For each function u ∶ � → ℝ there exists some piecewise constant func-
tion Rhu ∈ Uh satisfying the local estimates

for all E ∈ Eh , provided that u possesses the regularity demanded by the right-hand 
side.

Proof  Let us first construct a suitable interpolation operator. To obtain the desired 
second-order accuracy we have to guarantee that the property ∫

E
p = ∫

E
Rhp holds 

for all functions p(𝛾E(𝜉)) = p̂(𝜉) with some first-order polynomial p̂(𝜉) ∶= a + b 𝜉 . 
The transformation to Ê ∶= (0, 1) × {0} yields

The latter step holds true when choosing

To this end, we define our operator by Rhu|E ∶= (u◦�E)(�E) . Obviously, the defini-
tion of Rh depends on the transformations FT.

To show the interpolation error estimates we apply the property ∫
E
(p − Rhp) = 0 

for arbitrary p satisfying p̂ = p◦𝛾E ∈ P1 , the stability of the interpolant R̂hû = û(𝜉E) , 
the properties (18) of the transformation FT and the Bramble–Hilbert Lemma. This 
yields

For the transformation back to the world element E we apply the chain rule

and the properties (18) to arrive at

Finally, the norm of 𝛾̇E can be bounded by means of

�����E

(u − Rhu)
���� ≤ c h5∕2

�‖∇u‖L2(E) + ‖∇2u‖L2(E)
�
,

‖u − Rhu‖Lr(E) ≤ c h1+1∕r−1∕q ‖∇u‖Lq(E), r ∈ [1,∞], q ∈ (1,∞],

∫E

(p(x) − Rhp)dsx = ∫
1

0

(p̂(𝜉) − p̂(𝜉E)) |𝛾̇E(𝜉)| d𝜉 = b ∫
1

0

(𝜉 − 𝜉E) |𝛾̇E(𝜉)| d𝜉 = 0.

𝜉E ∶=
1

LE ∫
1

0

𝜉 |𝛾̇E(𝜉)| d𝜉

�E

(u − Rhu)dsx = �
1

0

(I − R̂h)(û − p̂)(𝜉) �𝛾̇E(𝜉)� d𝜉
≤ c h ‖û − p̂‖L∞(Ê) ≤ c h ‖𝜕𝜉𝜉 û‖L2(Ê).

𝜕𝜉𝜉 û(𝜉) = 𝛾̇E(𝜉)
⊤ ∇2u(𝛾E(𝜉)) 𝛾̇E(𝜉) + 𝛾̈E(𝜉)

⊤ ∇u(𝛾E(𝜉))

‖𝜕𝜉𝜉 û‖L2(Ê) ≤ c h2

�
max
𝜉

�𝛾̇E(𝜉)�−1
2�

�𝛼�=1�
1

0

(D𝛼u(𝛾E(𝜉)))
2 �𝛾̇E(𝜉)� d𝜉

�1∕2

≤ c h2
�
min
𝜉

�𝛾̇E(𝜉)�
�−1∕2�‖∇u‖L2(E) + ‖∇2u‖L2(E)

�
.
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Note, that the last step is valid for the spectral norm only.
An application of Lemma 2.2 from [6] which provides supx̂∈T̂ ‖DFT (x̂)

−1‖ ≤ ch−1 
leads to the first estimate.

The second estimate follows with similar arguments. For an arbitrary constant p̂ 
we then obtain

	�  ◻

A further operator that is needed in Sect. 3 is the L2(� )-projection onto Uh . In 
case of curved boundaries, this operator reads

for each E ∈ Eh . Again, this definition depends on the parametrizations �E of the 
boundary elements E ∈ Eh . By a simple computation one can show that this defini-
tion implies the orthogonality property

With similar arguments as in the previous lemma we obtain the following local esti-
mate which is standard in case of a boundary consisting of straight edges.

Lemma 26  Assume that u ∈ H1(� ) . Then the estimate

is fulfilled for all E ∈ Eh.

Proof  We introduce a further projection onto Uh , namely [Q̃hu]|E ∶= ∫ 1

0
u(𝛾E(𝜉)) d𝜉 . 

Using (81), the transformation to the reference element as in the previous lemma 
and the Poincaré inequality we obtain

where the last step is a consequence of the chain rule 𝜕𝜉u(𝛾E(𝜉)) = ∇u(𝛾E(𝜉)) ⋅ 𝛾̇E(𝜉) 
and |𝛾̇E(𝜉)| ∼ h for all � ∈ (0, 1) , see also (80). 	�  ◻

(80)

�𝛾̇E(𝜉)�−1 = �DFT (𝜉, 0)(1, 0)
⊤�−1 ≤

�
min�x�=1 �DFT (𝜉, 0)x�

�−1

= ‖DFT (𝜉, 0)
−1‖.

‖u − Rhu‖Lr(E) ≤ c h1∕r ‖(I − R̂h)(û − p̂)‖Lr(Ê)
≤ c h1∕r �û�W1,q(Ê) ≤ c h1+1∕r−1∕q ‖∇u‖Lq(E).

[Qhv]|E ∶=
1

LE ∫
1

0

v(𝛾E(𝜉)) |𝛾̇E(𝜉)| d𝜉

(81)(u − Qhu, vh)L2(� ) = 0 ∀vh ∈ Uh.

‖u − Qhu‖L2(E) ≤ c h ‖∇u‖L2(E)

‖u − Qhu‖2L2(E) ≤ ‖u − Q̃hu‖2L2(E)
= �

1

0

�
u(𝛾E(𝜉)) − �

1

0

u(𝛾E(𝜉
�)) d𝜉�

�2

�𝛾̇E(𝜉)� d𝜉
≤ c h ‖𝜕𝜉u(𝛾E(⋅))‖2L2(0,1) ≤ c h2 ‖∇u‖2

L2(E)
,
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We conclude this section with an estimate for an expression which is need in 
Lemma 20.

Lemma 27  Assume that the functions u and v belong to ∈ H1(� ) . Then the inequality

is valid.

Proof  First, we split the term under consideration using the L2(� )-projection onto 
Uh and obtain

The first term on the right-hand side can be treated with the local estimate from 
Lemma 26 which yields

For the second term we exploit the definition of Qh and Rh on the reference element. 
For each E ∈ Eh we then obtain

where we used ∫ 1

0
|𝛾̇E(𝜉�)| d𝜉� = LE in the second step. Consequently, we obtain

and conclude the assertion. 	�  ◻
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�����E

(u − Rhu)
����

(u − Rhu, v)L2(� ) = (u − Qhu, v − Qhv)L2(� ) + (Qh(u − Rhu), v)L2(� ).

(u − Qhu, v − Qhv)L2(� ) ≤ c h2 ‖∇u‖L2(� ) ‖∇v‖L2(� ).

‖Qh(u − Rhu)‖L1(E) = ∫
1

0

�����
1

LE ∫
1

0

(u(𝛾E(𝜉)) − u(𝛾E(𝜉E))) �𝛾̇E(𝜉)� d𝜉
�����
�𝛾̇E(𝜉�)� d𝜉�

=
�����∫

1

0

(u(𝛾E(𝜉)) − u(𝛾E(𝜉E))) �𝛾̇E(𝜉)� d𝜉
�����
=
����∫E

(u − Rhu)
����,

(Qh(u − Rhu), v)L2(� ) ≤ c ‖v‖L∞(� )

�
E∈Eh

�����E

(u − Rhu)
����

https://doi.org/10.1051/m2an/2013134
https://doi.org/10.1051/m2an/2013134
https://doi.org/10.1090/S0025-5718-2014-02862-7


198	 M. Winkler 

1 3

	 4.	 Apel, Th, Pfefferer, J., Winkler, M.: Error estimates for the postprocessing approach applied to Neu-
mann boundary control problems in polyhedral domains. IMA J. Numer. Anal. 38(4), 1984–2025 
(2018). https​://doi.org/10.1093/imanu​m/drx05​9

	 5.	 Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semi-
linear elliptic control problem. Comput. Optim. Appl. 23(2), 201–229 (2002). https​://doi.
org/10.1023/A:10205​76801​966

	 6.	 Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 
1212–1240 (1989). https​://doi.org/10.1137/07260​68

	 7.	 Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd ed. Texts in 
Applied Mathematics. Springer, New York (2008)

	 8.	 Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM 
J. Control Optim. 31(4), 993–1006 (1993). https​://doi.org/10.1137/03310​44

	 9.	 Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control prob-
lems. Comput. Optim. Appl. 39(3), 265–295 (2008). https​://doi.org/10.1007/s1058​9-007-9056-6

	10.	 Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control 
problems. Comput. Appl. Math. 21(1), 67–100 (2002)

	11.	 Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of bound-
ary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005). https​://doi.
org/10.1007/s1058​9-005-2180-2

	12.	 Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measure-
ments. Inverse Probl. 15(6), 1425–1438 (1999)

	13.	 Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite 
Element Methods, vol. 2. Handbook of Numerical Analysis, pp. 17–352. Elsevier, North-Holland 
(1991)

	14.	 Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, Berlin (1988). https​://
doi.org/10.1007/BFb00​86682​

	15.	 Dhamo, V.: Optimal Boundary Control of Quasilinear Elliptic Partial Diffierential Equations: The-
ory and Numerical Analysis. PhD thesis. TU Berlin (2012)

	16.	 Egger, H., et  al.: Analysis and numerical solution of coupled volume-surface reaction–diffiusion 
systems with application to cell biology. Appl. Math. Comput. 336, 351–367 (2018). https​://doi.
org/10.1016/j.amc.2018.04.031. ISSN: 0096-3003

	17.	 Fellner, K., Rosenberger, S., Tang, B.Q.: Quasi-steady-state approximation and numerical simu-
lation for a volume-surface reaction–diffiusion system. Commun. Math. Sci. 14(6), 1553–1580 
(2016). https​://doi.org/10.4310/cms.2016.v14.n6.a5

	18.	 Frehse, J., Rannacher, R.: Eine L 1-Fehlerabschätzung für diskrete Grundlösungen in der Methode 
der finiten Elemente. Bonn. Math. Schr. 89, 92–114 (1976)

	19.	 Gesztesy, F., Mitrea, M.: A description of all self-adjoint extensions of the Laplacian and Krein-
type resolvent formulas on non-smooth domains. J. Anal. Math. 113, 53–172 (2011). https​://doi.
org/10.1007/s1185​4-011-0002-2

	20.	 Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)
	21.	 Gwinner, J.: On two-coefficient identification in elliptic variational inequalities. Optimization 67(7), 

1017–1030 (2018). https​://doi.org/10.1080/02331​934.2018.14469​55
	22.	 Hào, D.N., Thanh, P.X., Lesnic, D.: Determination of the heat transfer coefficients in transient heat 

conduction. IOP Inverse Probl. (2013). https​://doi.org/10.1088/0266-5611/29/9/09502​0
	23.	 Hetmaniok, E., et  al.: Identification of the heat transfer coefficient in the two-dimensional model 

of binary alloy solidification. Heat Mass Transf. 53(5), 1657–1666 (2017). https​://doi.org/10.1007/
s0023​1-016-1923-1

	24.	 Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quad-
ratic case. Comput. Optim. Appl. 30(1), 45–61 (2005). https​://doi.org/10.1007/s1058​9-005-4559-5

	25.	 Jin, B., Lu, X.: Numerical identification of a Robin coefficient in parabolic problems. Math. Comp. 
81(279), 1369–1398 (2012). https​://doi.org/10.1090/S0025​-5718-2012-02559​-2

	26.	 Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applica-
tions, Vol. 88. Pure and Applied Mathematics. Academic Press, New York (1980)

	27.	 Kröner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with a bilin-
ear state equation. J. Comput. Appl. Math. 230(2), 781–802 (2009). https​://doi.org/10.1016/j.
cam.2009.01.023

https://doi.org/10.1093/imanum/drx059
https://doi.org/10.1023/A:1020576801966
https://doi.org/10.1023/A:1020576801966
https://doi.org/10.1137/0726068
https://doi.org/10.1137/0331044
https://doi.org/10.1007/s10589-007-9056-6
https://doi.org/10.1007/s10589-005-2180-2
https://doi.org/10.1007/s10589-005-2180-2
https://doi.org/10.1007/BFb0086682
https://doi.org/10.1007/BFb0086682
https://doi.org/10.1016/j.amc.2018.04.031
https://doi.org/10.1016/j.amc.2018.04.031
https://doi.org/10.4310/cms.2016.v14.n6.a5
https://doi.org/10.1007/s11854-011-0002-2
https://doi.org/10.1007/s11854-011-0002-2
https://doi.org/10.1080/02331934.2018.1446955
https://doi.org/10.1088/0266-5611/29/9/095020
https://doi.org/10.1007/s00231-016-1923-1
https://doi.org/10.1007/s00231-016-1923-1
https://doi.org/10.1007/s10589-005-4559-5
https://doi.org/10.1090/S0025-5718-2012-02559-2
https://doi.org/10.1016/j.cam.2009.01.023
https://doi.org/10.1016/j.cam.2009.01.023


199

1 3

Bilinear boundary control problems

	28.	 Krumbiegel, K., Meyer, C., Rösch, A.: A priori error analysis for linear quadratic elliptic Neumann 
boundary control problems with control and state constraints. SIAM J. Control Optim. 48(8), 5108–
5142 (2010). https​://doi.org/10.1137/09074​6148. ISSN: 0363-0129

	29.	 Krumbiegel, K., Pfefferer, J.: Superconvergence for Neumann boundary control problems gov-
erned by semilinear elliptic equations. Comput. Optim. Appl. 61(2), 373–408 (2015). https​://doi.
org/10.1007/s1058​9-014-9718-0

	30.	 Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in L 2 for a class of evolution equa-
tions. SIAM J. Control Optim. 46(5), 1726–1753 (2007). https​://doi.org/10.1137/06067​0110. ISSN: 
0363-0129

	31.	 Liu, J., Nakamura, G.: Recovering the boundary corrosion from electrical potential distribution 
using partial boundary data. Inverse Probl. Imaging 11(3), 521–538 (2017). https​://doi.org/10.3934/
ipi.20170​24

	32.	 Mateos, M., Rösch, A.: On saturation effects in the Neumann boundary control of elliptic optimal 
control problems. Comput. Optim. Appl. 49(2), 359–378 (2011). https​://doi.org/10.1007/s1058​
9-009-9299-5

	33.	 Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control 
Optim. 43(3), 970–985 (2004). https​://doi.org/10.1137/S0363​01290​34316​08

	34.	 Mohebbi, F., Sellier, M.: Identification of space- and temperature-dependent heat transfer coeffi-
cient. Int. J. Therm. Sci. 128, 28–37 (2018). https​://doi.org/10.1016/j.ijthe​rmals​ci.2018.02.007

	35.	 Rösch, A., Tröltzsch, F.: An optimal control problem arising from the identification of nonlinear 
heat transfer laws. Pol. Acad. Sci. Comm. Autom. Control Robot. Arch. Control Sci. 1(3–4), 183–
195 (1992)

	36.	 Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary 
conditions. Math. Comp. 54(190), 483–493 (1990). https​://doi.org/10.2307/20084​97

	37.	 Scott, R.: Finite Element Techniques for Curved Boundaries. PhD thesis. MIT (1973)
	38.	 Scott, R.: Optimal L∞ estimates for the finite element method on irregular meshes. Math. Comp. 30, 

681–697 (1976). https​://doi.org/10.2307/20053​90
	39.	 Tröltzsch, F.: Optimal Control of Partial Diffierential Equations: Theory, Methods, and Appli-

cations. Graduate Studies in Mathematics. American Mathematical Society (2010). ISBN: 
978-0-82-184904-0

	40.	 Winkler, G.: Control Constrained Optimal Control Problems in Non-convex Three Dimensional 
Polyhedral Domains. PhD Thesis. TU Chemnitz (2008)

	41.	 Zlamal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10, 229–240 
(1973). https​://doi.org/10.1137/07100​22

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1137/090746148
https://doi.org/10.1007/s10589-014-9718-0
https://doi.org/10.1007/s10589-014-9718-0
https://doi.org/10.1137/060670110
https://doi.org/10.3934/ipi.2017024
https://doi.org/10.3934/ipi.2017024
https://doi.org/10.1007/s10589-009-9299-5
https://doi.org/10.1007/s10589-009-9299-5
https://doi.org/10.1137/S0363012903431608
https://doi.org/10.1016/j.ijthermalsci.2018.02.007
https://doi.org/10.2307/2008497
https://doi.org/10.2307/2005390
https://doi.org/10.1137/0710022

	Error estimates for the finite element approximation of bilinear boundary control problems
	Abstract
	1 Introduction
	2 Analysis of the state equation
	3 The optimal control problem
	3.1 Optimality conditions

	4 Finite element approximation of the state equation
	5 The discrete optimal control problem
	5.1 Properties of the discrete control-to-stateadjoint operator
	5.2 Convergence of the fully discrete solutions
	5.3 Postprocessing approach

	6 Numerical experiments
	Acknowledgements 
	References




