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Abstract
We extend the bunching approach introduced by Saez (Am Econ J Econ Policy 
2:180–212, 2010) by proposing an intuitive, data-driven procedure to determine 
the bunching window. By choosing the bunching window ad hoc, researchers throw 
away informative data points for estimating the counterfactual income distribution in 
the absence of the kink. Assuming a descending bunching mass to both sides of the 
threshold, the proposed algorithm produces a distribution of lower and upper bounds 
for the bunching window. In each iteration, the bunching window is defined as all 
contiguous bin midpoints around the threshold that lie outside of the confidence 
band resulting from running a local regression through all data points outside of 
the excluded region. Monte Carlo simulations provide evidence that our data-driven 
procedure outperforms larger bunching windows in terms of bias and efficiency. In 
our application for the Netherlands, we find clear evidence of bunching behaviour at 
all three thresholds of the Dutch tax schedule with a precisely estimated elasticity of 
0.023 at the upper threshold, which is driven by self-employed, women and joint tax 
filers.
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1 Introduction

A central topic in public economics is the assessment of welfare losses caused by 
behavioural responses to income taxation. Following the seminal paper by Feldstein 
(1995), a large study emerged where welfare losses are inferred from the elastic-
ity of taxable income (ETI).1 Notwithstanding the large variation in identification 
strategies and data used in these studies, a common finding is that the elasticities 
and thus the tax-induced welfare losses are modest. Recent studies hint at different 
explanations for these modest estimates, such as optimisation frictions (Bastani and 
Selin 2014; Chetty et al. 2011), shifting of income over time (Le Maire and Schjern-
ing 2013) or shifting across tax bases (Harju and Matikka 2016). More fundamen-
tally, other papers claim that the structural parameter cannot be retrieved from these 
estimates, because the ETI depends on the institutional framework, such as the exact 
definition of taxable income (Slemrod 1998; Saez et  al. 2012; Doerrenberg et  al. 
2017).

A growing strand of the literature utilises the bunching method to obtain a non-
parametric estimate of the ETI (Saez 2010; Chetty et al. 2011). This method exploits 
the clustering behaviour of individuals at kinks in a nonlinear tax system to iden-
tify the ETI by the number of individuals that adjust their income to stay below the 
threshold of a tax bracket. Using the bunching method is attractive as it builds on a 
sound theoretical foundation and is not susceptible to endogeneity biases, a problem 
suffered by the previous ETI literature (Saez 2010; Gruber and Saez 2002; Weber 
2016).2

The aim of our study is twofold: first, we tackle the issue of selecting the “bunch-
ing window”, which is necessary as individuals are not able to perfectly adjust their 
taxable income to the tax threshold.3 The large number of robustness checks in pre-
vious studies already hints at the uncertainty regarding the optimal choice of the 
bunching window and the appropriate counterfactual model. In his seminal work, 
Saez (2010) already points out the importance of selecting the bunching window 
(which is labelled bandwidth in his application). On p. 196, he states that “[...] in the 
presence of clustering around a kink point instead of exact bunching, the choice of 
the bandwidth matters. In this paper, we use a simple graphical visual approach for 
selecting the bandwidth which is a significant limitation. As mentioned above, with 
larger datasets and hence smoother density estimates, it could be possible to devise 
a method to detect bunching humps statistically and hence choose the bandwidth � 
with a systematic econometric method”. The selection of the bunching window is 

1 See Saez et al. (2012) and Kleven (2016) for a comprehensive overview.
2 Please note that this method hinges on the assumption that the derivative of the counterfactual density 
function h0(z) with respect to z is continuous in z for all z. We thereby implicitly assume that the distribu-
tion of preference heterogeneity is restricted around the kink; otherwise, the bunching estimator would 
not be identified. See Blomquist and Newey (2017) for more details.
3 Saez (2010), in his seminal bunching paper, mentions three reasons why we observe a bunching win-
dow instead of a clear spike. First, individuals may not be able to perfectly control their taxable income. 
Second, they may be unable to predict their income correctly, and third, they may have imperfect infor-
mation.



953

1 3

A data-driven procedure to determine the bunching window:…

thereby crucial in terms of both efficiency and bias. As for fear of (i) omitting bunch-
ing individuals and/or (ii) including bunchers during the estimation of the counter-
factual distribution, researchers are often conservative in choosing the bunching 
window and thus throw away informative data points by using a too large bunching 
window which is inefficient.4 However, even more important, the unbiasedness of 
the ETI depends on the bunching window in two ways as it does not only enter the 
estimation of the excess mass of individuals around the threshold (by setting the 
outer boundaries) but also directly affects the estimation of the counterfactual den-
sity following Chetty et al. (2011) that is needed to derive the elasticity. We there-
fore propose a simple, data-driven procedure to determine the bunching window. 
This improves on the visual inspection that determines the bunching window in the 
previous literature. As a consequence, our method does not impose any restrictions 
on the (a)symmetry of the bunching window around the threshold which has been 
shown to be important in the literature (Devereux et al. 2014; Lediga et al. 2018). 
Furthermore, given that there seems to exist a publication bias in the ETI literature 
(Neisser 2017), an automated, data-driven procedure for at least one of the param-
eters within the estimation procedure seems to be a valuable contribution on its own.

The basic idea of our data-driven method to determine the bunching window is 
simple and follows a straightforward stepwise procedure. Assuming a uni-modal 
or equal distribution of optimisation frictions, we expect the bunching mass to be 
descending to both sides of the threshold. In a first step, one arbitrarily chooses an 
excluded region, runs a local polynomial regression through the remaining data 
points and predicts the frequencies including corresponding confidence intervals. 
We then define the bunching window as all contiguous bin midpoints around the 
threshold that lie outside of the confidence band. In a second step, by iterating 
through all possible combinations of excluded regions, one obtains a distribution of 
lower and upper bounds of the bunching window.

In the second part of the study, we estimate the compensated elasticity of tax-
able income with respect to the net-of-tax rate in the Netherlands using the refined 
bunching approach. We employ a unique longitudinal data set containing exact 
declared taxable income and tax deductions for a representative sample of the 
Dutch population (IPO data from 2003 to 2014). Information on taxable income and 
deductions is provided by the Dutch tax authority and, therefore, free of measure-
ment errors—something that is vital to obtain reliable estimates with the bunching 
method. The data also contain covariates, such as gender and marital status as well 
as information on self-employment, which enable us to analyse various sub-samples. 

4 Bastani and Selin (2014), for example, explicitly state in their paper that they employ a “wide bunch-
ing window” in a first step. Comparing the chosen bunching window (“a window of DKr 15,000 centred 
around the kink”) in Chetty et al. (2011) with the graphical bunching results, the bunching window has to 
be chosen ad hoc, because (1) the excess mass is not centred around the threshold and (2) the window of 
(− 7,7) seems to be too large. While Devereux et al. (2014) use an asymmetric window by eyeballing, the 
window seems also to be larger than necessary (at least for Panels A, B and D in Fig. 1, p. 38). Depend-
ing on the bunching window used, the point estimate for the ETI in their study varies between 0.10 and 
0.14, which is, in our view, a non-negligible difference.
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In addition, we are able to analyse the anatomy of responses using information on 
mortgage interest deductions.

Our main findings are as follows. First, Monte Carlo simulations show that our 
data-driven procedure delivers unbiased ETI estimates which are more precisely 
estimated compared to alternative bunching windows (i.e. show the smallest stand-
ard error). This key result is, in addition, robust to various changes in key param-
eters, such as different binwidths, degrees of optimisation frictions and functional 
form assumptions. The superiority of the approach is a valuable addition to the 
literature that has previously relied on visual inspection. Second, in our empirical 
application, we estimate an ETI with respect to the net-of-tax rate of 0.023 at the 
highest tax threshold which is highly significant. This result is in line with some of 
the bunching literature, such as in Chetty et al. (2011), who find an elasticity below 
0.02 for their full sample of Denmark, but differs from, for example, Bastani and 
Selin (2014) who report an elasticity of only 0.004 for Swedish taxpayers. Third, we 
find significantly higher compensated ETIs for women and self-employed individu-
als. However, contrary to most other studies, we are also able to identify a nonzero 
elasticity for individuals in paid employment. Fourth, by analysing the anatomy 
of response, we find that most employees reduce their taxable income by utilising 
mortgage interest deductions that can be shifted between joint filers. Since bunching 
is absent among single tax filers who do not have this shifting possibility, we con-
clude that income shifting drives the result and that real responses (hours or invest-
ment decisions) to taxation are modest. Our descriptive finding that hourly wages 
between bunchers and non-bunchers do not differ corroborates this conclusion.

The paper proceeds with Sect.  2, which explains our data-driven procedure to 
determine the bunching window. Subsequently, the institutional setting and the 
data are presented in Sects. 3 and 4, respectively. Section 5 presents our estimation 
results. Section 6 provides the conclusion.

2  Methodological extension on the bunching window

A major drawback of the nowadays well-established bunching method5 is its sen-
sitivity to the choice of several parameters, including the choice of the bunching 
window (Adam et al. 2015). The common practice in the literature is to select the 
window by visual inspection, which makes it vulnerable as it is selected at the 
researcher’s discretion.

To the best of our knowledge, we are the first to extend the common practice 
within the bunching estimation by relying on the data at hand rather than on visual 
inspection to determine the bunching window.6 Given the existing publication bias 

5 A short description of the bunching method is given in “Bunching method” section of Appendix 1.
6 The study by Kleven and Waseem (2013) is one notable exception. Exploiting notches instead of kinks, 
the authors emphasise the important role of the bunching window. These authors also propose to use an 
iterative procedure, but only for the upper bound of the window. As their identification strategy exploits 
notches, they use the “missing mass” as a source to identify this upper bound, which is impossible for the 
case of kinks.
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within the ETI literature (Neisser 2017), removing the researcher’s discretion in this 
matter is preferable in its own right, but we can also show that our method produces 
elasticity estimates not only which are closer to the true elasticity, but which are 
more precisely estimated. In the following, we define the “optimal” bunching win-
dow to comprise all income bins that contain individuals who would adjust their 
taxable income as a response to the tax change at the threshold (so-called bunchers). 
If the bunching window is set too small, this directly affects the estimation of the 
ETI as it omits bunchers and thus underestimates the response. If the bunching win-
dow is set too large, the researcher throws away very informative data points during 
the estimation of the counterfactual density.7 In addition, the existing literature typi-
cally implements symmetric bunching windows around the kink with varying sizes 
(again determined by graphical inspection). Our proposed method does not impose 
any restrictions on the (a)symmetry of the window as it is purely driven by the data 
at hand.

To determine the bunching window using binned data, we propose the following 
stepwise procedure: 

1. Start with an excluded region of (x−, x+) = (0, 0) around the threshold, i.e. only 
omitting the bin where the threshold is located.

2. Run a local regression through all observed data bins outside the excluded region 
and predict the frequencies.

Distance to the threshold

Fr
eq
ue

nc
y

0

Bunching window
One excluded region

-5-10-20 2 10 20

Fig. 1  Data-driven procedure to determine the bunching window. Notes This figure shows the bin mid-
points as well as the fitted values of a linear regression. The grey confidence band is calculated with the 
standard errors of the point prediction. Here, eight contiguous bin midpoints around the threshold lie out-
side the confidence band and therefore determine the relevant (asymmetric) bunching window, indicated 
by the red dotted line. An exemplary one of the excluded regions that we iterate over is shown by the 
outer grey dotted vertical lines (Color figure online)

7 This is (1) not efficient and (2) even more problematic if the shape of the income distribution is non-
linear which leads to the underestimation (in case of a concave function) or overestimation (in case of a 
convex function) of the counterfactual density. This has already been noticed by Saez (2010) in his notes 
to Fig. 2.
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3. Compute a confidence interval around the prediction.
4. Contiguous bin midpoints around the threshold bin that lie outside the confidence 

interval comprise the bunching window where the most left (right) bin point 
becomes the lower (higher) bound of the bunching window for this excluded 
region.

5. Repeat steps (2) to (4) for all other possible excluded regions (x−, x+) with 
x− ∈ {−X, (−X + 1),… , 0} and x+ ∈ {0, 1,… ,X} to obtain a distribution of lower 
and upper bounds of the bunching window.

6. The mode of each distribution delivers the final bunching window comprised of 
a lower bound l∗ and an upper bound u∗.

The formal derivation of this procedure is found in “Formal derivation bunching 
window” section of Appendix 1. A graphical intuition of our method for the sim-
ple case of a linear income distribution is given in Fig. 1.8 The figure plots taxable 
income bins (relative to the threshold) against the number of individuals per income 
bin for an exemplary excluded region going from x− = −10 to x+ = 10 . All contigu-
ous binpoints around the threshold that have a higher actual number of taxpayers 
than predicted (which are outside the confidence band, in red) comprise the bunch-
ing window, here going from − 5 to 2. This procedure is repeated for each and every 
excluded region (x−, x+) producing (X + 1)2 estimates of l and u where X denotes the 
last bin used as excluded region.9

As we propose to iterate through all possible combinations of upper and lower 
bounds of the excluded region, this hedges against concerns that the chosen excluded 
region could affect the determination of the bunching window. It is important to note 
that in the end, X (i.e. the last bin used as excluded region) only determines the num-
ber of iterations to obtain the distribution of lower and upper bounds of the bunch-
ing window. If X is, for example, set to X = 20, steps (2) to (4) have to be repeated 
(X + 1)2 = 441 times which will lead to 441 observations for each of the distribu-
tions.10 The confidence band should be set using standard significance levels, with 
higher levels tending to lead to a smaller bunching window. The benefit of shift-
ing the point of arbitrariness away from the bunching window, which is used in the 
actual estimation of the elasticity, to the excluded region is that through iterations 
over several excluded regions, the dependency of the result upon the arbitrarily cho-
sen parameter diminishes. Furthermore, the statistic of interest is no longer directly 
influenced by an arbitrarily chosen parameter.

8 For illustrative purposes, we depict a linear counterfactual model. In our empirical application, the 
counterfactual is allowed to be a higher-order polynomial model, determined by the minimum BIC value.
9 The size of X has to be chosen by the researcher ex ante. It might depend on the binsize, the tax sched-
ule (e.g. the distance to other thresholds) and the respective income distribution. In practice, this is also 
related to the estimation sample in previous bunching studies to run the local regression.
10 In the interest of computational time, we have restricted our simulation to the testing region from 
− 15 to 15 as our results indicated virtually no sensitivity of the final bunching window (l∗, u∗) if we fur-
ther increased the size of the excluded region. Stated differently, we set X = 15 and run (15 + 1)2 = 256 
regressions per analysis.
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The parameters for the optimal bunching window can then be used in the stand-
ard estimation technique as developed in Chetty et al. (2011). To estimate the ETI 
(see Eq. 4 in “Bunching method” section of Appendix 1), the excess mass b is the 
only parameter that needs to be estimated, as the other parameters are known policy 
parameters:

where B̂ denotes the number of bunchers within the bunching window. N̂j represents 
the counterfactual number of individuals within an income bin j that are determined 
by local polynomial regression of the form:

In essence, the bunching method relates the number of bunching individuals 
(numerator of Eq.  (1)) to the number of individuals who should be at the thresh-
old in the absence of the tax kink (which is the average counterfactual number of 
individuals within the bunching window per bin, see denominator of Eq.  (1)). By 
looking at Eqs. (1) and (2), one can see that the bunching window has a crucial role 
in determining the excess mass b. Potential bias from setting a wrong bunching win-
dow might arise from three distinct sources. First, setting a wrong bunching window 
directly affects the number of bunchers by summing over a wrong number of income 
bins to count them (summation bounds in the numerator of Eq.  (1)). Trivially, if 
the bunching window is set too small, this would underestimate the excess mass 
and therefore the elasticity. A naive approach would be to be cautious by setting 
the bunching window relatively large. However, this would neglect that the number 
of bunchers B̂ is also affected through the estimation of the counterfactual density. 
So a second source of bias might arise from a too low or too high counterfactual, 
again, entering the calculation of B̂ (see N̂j within the summation to get B̂ which also 
depends on the bunching window). Finally, Eq. (1) makes clear that the counterfac-
tual density also enters the denominator, which might be a third bias. Summing up, 
it is important to note that bounds of the bunching window are a central ingredient 
within the bunching estimation.

Next to the data-driven procedure for the determination of the bunching window, 
we rely on the Freedman–Diaconis rule to determine the bin size in each estimation. 
It states that the optimal binwidth is given by: 2 ⋅ IQR(x) ⋅ n−

1

3 , where IQR stands for 
interquartile range (Freedman and Diaconis 1981). Prior works have chosen a sin-
gle binwidth for their analysis and subsequently altered the binwidth in robustness 
checks to show that the estimates are robust to the choice of the binwidth. The size 
of the binwidth, however, should depend on the number of observations around the 
threshold and therefore be determined for each threshold separately. In addition, we 
use the BIC criterion to determine the optimal number of polynomials when running 
the local regression.

(1)b̂ =
B̂

∑u∗

l∗
N̂j

(u∗−l∗+1)

with B̂ =

u∗
�

l∗

(Nj − N̂j),

(2)N̂j =

q
∑

i=0

𝛽i ⋅ X
i
j
+

u∗
∑

s=l∗

𝛾s ⋅ I[Xj = s] + 𝜀j.
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2.1  Evaluation

In this section, we start by evaluating the performance of our endogenously deter-
mined bunching window by Monte Carlo simulations.11 We will, however, also 
assess the real-world performance of our proposed method within our application 
(see especially Sect. 5.1).

In our Monte Carlo simulation, we use a generalised version of the standard 
labour supply model where the individual does not choose his labour supply, but 
taxable income. The individual will supply taxable income until the marginal utility 
of leisure (or marginal disutility of supplying taxable income) equals the marginal 
net-of-tax rate. The supply function is derived from a quasi-linear and iso-elastic 
utility function as in Saez (2010):

Maximising this utility function with respect to the budget constraint 
c = (1 − t)z + R leads to the simple income supply function z = z0(1 − �)� where z 
is taxable income, z0 denotes “potential income”, � is the marginal tax rate and � 
the ETI. In the baseline simulation, we start with a triangular income distribution, 
where the functional form is known to be linear. To be more precise, the distribution 
of incomes z0 is drawn from the following triangular distribution:

where u is drawn from a random uniform distribution. Our simulation with 600 rep-
etitions draws N = 800,000 incomes from a range between 20,000 and 80,000, with 
a threshold k at z = 40,000, a binwidth of 100 and a tax change of 10 percentage 
points. To model optimisation frictions, we implement additive optimisation fric-
tions of 1% of k, which are distributed across the bunchers following a positively 
skewed beta distribution which—by construction—will lead to more mass to the left 
of the threshold. Observed taxable income choices are thus given by

Please note that any uni-modal or equal distribution of optimisation frictions 
would result in a situation where the bunching mass is finally descending to both 
sides of the threshold (which is what we observe in all bunching studies). Given 
that there is typically only one single threshold relevant for the respective individual 

u(c, z) = c −
z0

1 +
1

�

(

z

z0

)1+
1

�

.

z0 = 80, 000 − 60, 000
√

(1 − u),

zobserved = z∗ + 0.01k(� − 0.8) with � ∼ Beta(5, 2).

11 Our preferred method of validation for the endogenous procedure to determine the bunching window 
would be to replicate previous studies that detected the bunching window by eyeballing. In the taxation 
literature, however, most bunching studies rely on administrative data sets of personal taxable income, 
which are not freely available. For example, Danish micro data as used by Chetty et al. (2011) can only 
be accessed through a Danish partner institution and the restricted PSID files used by Saez (2010) sig-
nificantly differ from the public use files and are hard to obtain outside the USA.
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(who tries to reduce his income up to this point), assuming these kinds of optimisa-
tion frictions seems plausible to us.

We conduct our simulations for four true elasticities: e = 0.02, e = 0.05, e = 0.1 
and e = 0.5 which resemble in their magnitude the elasticities found in the previ-
ous ETI literature. Based on the form of optimisation frictions assumed, we will not 
compare our procedure to the usually implemented symmetric bunching windows, 
but rather to a specification, where the bunching window is two (four) binpoints 
larger on both sides.12

Figure 2 shows the distribution of the ETI for the four true elasticities (indicated 
by the vertical line in each graph) e = 0.02, e = 0.05, e = 0.1 and e = 0.5 using 
the 600 replications of our baseline simulation. The solid line represents the results 
when using our data-driven procedure, while the dashed and dotted lines show the 
results where two and four bins were added on each side, respectively.

Starting with Fig. 2a, one can see that all three bunching windows (data-driven, 
data-driven+2  bins, data-driven+4  bins) deliver elasticity distributions which are 
centred around the true elasticity of e = 0.02. However, it is already clear from the 
graph that the variance of the elasticity estimate is smallest when using our data-
driven procedure. This result can also be confirmed for the other cases (b) to (d) 
with larger true elasticities, albeit it is interesting to see that for the largest elasticity 
of e = 0.5, the distributions lie to the right of the true elasticity of 0.5 suggesting the 
bunching approach, on average, overestimates the elasticity. The graphical evidence 
is supplemented in Table 1, which shows the RMSE for all specifications. Here, the 
data-driven procedure always outperforms the other two procedures in the sense that 
it delivers the smallest value. The increase in the RMSE is roughly between 10 and 
25% when increasing the boundaries of the bunching window by two bins, which 
also holds for the subsequent increase by a further two bins.

Finally, we test three alterations to our simulation setup to provide evidence that 
our results hold for a variety of specifications. We test our data-driven procedure 
against two alternative bunching windows that are two and four bins larger on each 
side. Figure 3 plots the RMSE of these three bunching windows for each scenario, 
where the blue circle shows the result for our data-driven method, the red triangle 
shows the result for the two-bin larger window and the plus sign shows the RMSE 
for the case where we use a bunching window that is four bins larger on each side. 
Panel (a) of Fig. 3 provides the results of variations in the size of the optimisation 
frictions, which are implemented as a percentage of the kink point value. Having 
more optimisation frictions causes the bunching mass to be distributed along a 
larger stretch of the income distribution, resulting in a larger bunching window that 
should be harder to detect via eyeballing, as the distribution is smoother. Conversely, 
smaller optimisation frictions should result in a narrower bunching window. Panel 

12 As an example, if our procedure finds the bunching window to be from − 3 to + 1, the comparison 
will be with − 5 to + 3 (− 7 to + 5). Please note that in an ideal setting, we would like to compare our 
method with the standard practice of “visual inspection”. As this is not feasible, we compare our method 
against two artificial windows that are two and four bins larger on each side (which follows the intuition 
that researchers typically choose windows that are too large).
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(b) shows the results from varying the binwidth, and in Panel (c), we use a log-nor-
mal income distribution to hedge against any concerns that our results are driven by 
the choice of a triangular distribution in our baseline specifications. We set threshold 
values at k = 10,000, k = 20,000, k = 40,000 and k = 60,000, which are located in 
various parts of the income distribution (see Fig. 7 of Appendix 2).

In line with our baseline results, Fig. 3 shows that, across all specifications, our 
data-driven method in determining the bunching window has the smallest RMSE 
in each comparison, i.e. the elasticity is more precisely estimated. Interestingly, our 
method performs very well when we move to the more realistic setup of a log-nor-
mal income distribution. Especially for the case where the kink is set at the convex 
part of the income distribution, our method delivers a much smaller RMSE com-
pared to the other two bunching windows.

3  Institutional background

The Dutch tax system is almost fully individualised, and tax liabilities mainly 
depend on individual worldwide income. However, there are a few exceptions, two 
of which are relevant for our analysis. The first exception is that of means-tested 
subsidies, such as on health tax, child care and rent, which are all based on tax-
able household income. The second is that personal tax-favoured expenditures are 
transferable between partners, thus reducing taxable income. This last possibility is 
attractive under a progressive tax schedule.13

Since a major tax reform in 2001, income is treated in three different “boxes” 
dependent on its source, each with its own taxable income concept and tax sched-
ule. In Box 1, income from profits, employment and home ownership is taxed. This 
includes wages, pensions and social transfers. Box 2 consists of income from sub-
stantial shareholding such as dividends and capital gains. Any other income from 
savings and investments is taxed in Box 3. Regarding our analysis, it is important 
to know that income losses in one box cannot be used to counterbalance taxable 
income in one of the others. Income in Box  1 is taxed at progressive rates that 
jump up at certain thresholds and thus create kinks in the tax schedule, whereas 
income in Box 2 and Box 3 is subject to a flat tax, that, in 2014, was 25% and 30%, 
respectively.14 For our analysis, we exploit the kinks in the Box 1 tax schedule for 
identification.

Income in Box  1, minus personal deductions, is taxed at progressive tax rates. 
Tax rates in the first and second tax bracket also include a social security contribu-
tion of around 31% for old-age pensions and exceptional medical expenses. Figure 4 

13 From a labour supply perspective, a third exception is also relevant. A non-working spouse can trans-
fer the lump-sum tax credit to his or her partner. The moment this spouse starts working, their income 
will be taxed starting at the marginal tax rate. This, however, is not the focus of our study.
14 We are aware of the possibility of moving income between the boxes, which could be especially pro-
nounced for self-employed individuals. For information on the importance of shifting between tax bases 
see Harju and Matikka (2016). Because of data limitations, we are unable to extend our analysis in that 
way.
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provides an snapshot of the Dutch tax schedule in 2014. The marginal tax rate is 
represented by the solid line. In 2014, there is an increase in the marginal tax rate of 
8 percentage points at the first threshold and a large jump in the marginal tax rate, 
from 42 to 52%, in the last bracket.

While the upper two tax rates stayed constant over the whole sample period, there 
exists some variation over time for the lower two tax rates. Figure 8 in Appendix 2 
graphically illustrates the development of each marginal tax rate over time, again 
adding the social security contributions for the lower two tax brackets. Due to the 
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Fig. 2  Results Monte Carlo exercise. Notes The figures represent the results of our Monte Carlo simula-
tions using 600 repetitions each. The solid line represents our data-driven procedure and the dashed (dot-
ted) line the procedure where two (four) bins were added on each side

Table 1  RMSE of simulated 
elasticities

The table shows the RMSE for the three estimation procedures 
(data-driven, data-driven+2  bins and data-driven+4  bins) and four 
true elasticities

Elasticity

0.02 0.05 0.1 0.5

Data-driven 0.0011 0.0011 0.0015 0.0043
Data-driven+2 bins 0.0013 0.0015 0.0017 0.0049
Data-driven+4 bins 0.0016 0.0018 0.0020 0.0056
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stability of the two upper tax rates, the large jump of 10 percentage points at the 
highest threshold was existent in all years since 2001. It is also important to know 
that for the considered time period, the income thresholds were adjusted upwards 
to account for inflation and to avoid the phenomenon of “cold progression”15 (see 
Table 4 in Appendix 2). However, given the specific values of the thresholds, which 
are never a multiple of one hundred, we are less concerned with round number 
bunching (Kleven and Waseem 2013).

To better understand how individuals adjust their taxable income, it is essential to 
know its exact definition. An overview of the computation of taxable income in the 

Fig. 3  Monte Carlo simulation—RMSE robustness checks. Notes These three sub-graphs show the 
results of varying the size of optimisation frictions and binwidth in (a) and (b). In (c), we analyse the 
performance of our method for the case of a log-normal income distribution where we vary the location 
of the kink. The blue, hollow circles show the RMSE for our data-driven method, while the triangle and 
the plus show the case where a bunching window that is two and four bins larger on each side is used. All 
specifications have a true elasticity of e = 0.1 (Color figure online)

15 Cold progression (also known as “bracket creep”) describes the process by which individuals are 
shifted into higher tax brackets because tax thresholds are not adjusted for inflation. Stated differently, 
individuals have to pay more taxes although their real incomes have not increased.
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Netherlands is given in Table 2. One important channel of adjusting taxable income 
is legal tax avoidance by utilising deductions (Chetty et  al. 2011). In our setting, 
these deduction possibilities include alimonies paid, charitable giving, health expen-
ditures or mortgage interest deductions.16 In the Netherlands, the mortgage interest 
deduction is quite high and common among house owners. More importantly, all of 
these deductions can be shifted between partners.

Finally, important for any bunching analysis is the exact tax payment procedure 
which has an influence on the technical possibilities to avoid or evade taxes.17 Three 
things are worth noting here. First, it should be emphasised that for people in paid 
employment, their employer withholds income tax from the income taxed under 
Box  1. This third-party reporting is important for the interpretation of the results 
as it makes systematic tax evasion—one way of adjusting taxable income—more 
difficult (Kleven et  al. 2011). Second, an important distinction is single filing or 
joint filing of tax returns. Even though the Dutch tax system is rather individualised, 
married couples file their returns jointly. In addition, cohabiting couples are also 
allowed to jointly file their tax return, provided they have lived together for more 
than 6 months. Third, taxes can be filed digitally (computer-assisted) or on paper. 
The share of digital filers has increased dramatically from about 30% in 2003 to 
almost 95% in 2015. Digital filing of tax returns is not only helpful when deduct-
ing certain personal expenditures, but also facilitates the optimal shifting of income 
between partners. The exact threshold might become more salient and enables peo-
ple to locate at the threshold.

Taxable Income (in )

M
T
R

19, 645 33, 363 56, 531

10%

20%

30%

40%

50%

Fig. 4  Tax schedule of 2014, Box 1. Notes The figure shows marginal tax rates for the year 2014. At each 
threshold, denoted by the dashed lines, the marginal tax rate jumps up, except for the second threshold, 
where the tax rate and the social security contributions in the lower bracket equal the marginal tax rate in 
the higher bracket

16 These are (at least in part) common in other countries like Great Britain or Germany.
17 The tax thresholds in the Netherlands are known before the start of each fiscal year, as these are pub-
lished together with the governmental budget which is presented each year, on the third Tuesday of Sep-
tember (Prinsjesdag).



964 N. Bosch et al.

1 3

4  Data

The data used in this study are the income panel data (IPO) provided by Statistics 
Netherlands. This longitudinal data set covers the period from 2001 to 2014. It con-
tains administrative data on all possible sources of income, on an individual level, 
as well as a very detailed account of possible deductions from the tax base. Most 
importantly for this study, Statistics Netherlands provides the information on rele-
vant taxable income for Box 1 (see Table 2). The taxable income variable is obtained 
from the tax authority, representing the exact taxable income per individual. This 
circumvents the problem of measurement error, which is vital for bunching analyses. 
As our income measure includes all tax deductions, we do not have to rely on tax 
simulators that are used in other studies (Gruber and Saez 2002; Chetty et al. 2011).

The data set also includes demographic characteristics, which we exploit to study 
heterogeneity in the bunching behaviour of different socio-economic groups. We 
provide separate estimates for self-employed individuals, who theoretically would 
be more prone to bunching because of the lower costs and greater possibilities of 
adjusting their taxable income. Furthermore, we distinguish people according to 
gender and filing status. Our estimation sample is thereby restricted as follows: we 
exclude students as well as all people receiving governmental benefit payments. 
Because the tax is different for individuals aged 65 and over, we also exclude them 
from our estimation, as well as those below the age of 18. We omit the years 2001 
and 2002 to avoid the inclusion of any after effects of the 2001 major Dutch tax 
reform. Furthermore, we only retain individuals with a positive reported taxable 
income. The pooled sample consists of N = 1,219,572 individuals, which is roughly 
1% of the Dutch population per year. The sample is evenly balanced with respect to 
gender (55% male) and married individuals (65%). Furthermore, the sample con-
tains 14% self-employed individuals, including owners of small corporations, who 
would be in a position to decide on their own salary and are able to adjust it.

Table 2  Definition taxable income box 1

This table shows the computation of Box 1 taxable income. Gross wage includes pension benefits and 
received social transfers

Gross wage
    – Pension fund and unemployment insurance contributions employee
    + Health insurance contribution employer
= Taxable labour income
    + Income from housing
    + Freelance earnings
    – Alimony/maintenance paid
    – Charity donations
    – Mortgage interest deductions
    – Health expenses deduction
    – Other personal deductibles
= Taxable income Box 1
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5  Results

5.1  Bunching evidence

Figure 5 gives a first glance at the bunching behaviour within the complete income 
distribution for the most recent sample year where the data are collapsed into 
income bins of 200 euros. The income thresholds of 2014 are indicated by vertical 
lines. Clear bunching behaviour can be seen at the first and third threshold, in line 
with the incentives set by the tax schedule.

We start out with the upper threshold, where the change in the marginal tax rate 
is largest with 10 percentage points (or 23.81%). Here, the incentive to bunch is 
most pronounced. Figure 6 reports the results for our pooled sample from 2003 to 
2014 showing the number of observations per bin, relative to the threshold value. 
For this threshold, our proposed method delivers an asymmetric bunching window 
ranging from − 483 to + 207 euros.18 In addition, the BIC criterion suggests a sev-
enth-order polynomial counterfactual model for the upper threshold. In order to cal-
culate an elasticity according to Eq. (4), a weighted average threshold value is used 
(k = 54,163 euros). The weights are constructed by the number of taxpayers located 
exactly at the kink in each year. Standard errors are calculated using bootstrapping 
techniques.

We observe sharp bunching at the third threshold and estimate an excess mass of 
b = 1.67. The estimated excess mass translates into an ETI of 0.023, which is sta-
tistically significant at all usual significance levels. Quantitatively, a 10% decrease 
in the net-of-tax rate would induce a 0.23% reduction in taxable income. From an 
economic point of view, the tax response at this threshold is small, but in line with 
the recent findings of the bunching literature.

Following the simulation-based assessment of our data-driven procedure in com-
parison with larger bunching windows in Sect.  2.1, we first replicate the analysis 
depicted in Fig.  6 with a bunching window that is two (four) bins larger on each 
side. The results are shown in the second and third rows of Table 3. As apparent 
from the last two columns of this table, we are able to confirm the finding from 
the simulations that while all procedures deliver similar point estimates, i.e. there 
is no significant increase in the bias when using larger windows, the precision of 
the estimate drops considerably when utilising larger than optimal windows. The 
standard error of the estimate increases by around 25% (46%) when two (four) bins 
are attached to each side of the optimal bunching window. Thus, the efficiency of the 
estimator is severely hampered when a non-optimal bunching window is used in the 
estimation of the ETI.

In a second step, we also compare our data-driven procedure to determine the 
bunching window with the estimates of using two different, symmetric bunching 
windows, to further assess whether our procedure provides an improvement. The 

18 We use a 95% confidence interval for determining the bunching window throughout this study. We 
also tested a smaller confidence level, i.e. a one-standard deviation increase, which corresponds to a 68% 
confidence interval. The results are slightly larger but less precisely estimated.
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bottom two rows of Table 3 display the results using a small bunching window from 
−345 euro to +345 euro and a large bunching window from −897 euro to +897 
euro. Compared to Fig. 6, both the small and the large windows deliver smaller ETIs 
combined with larger standard errors, which supports the use of our data-driven 
methodology.

Finally, we estimate the excess mass for taxpayers and the ETI at the third thresh-
old for all years separately. This eases any concerns about using a weighted aver-
age threshold in the pooled sample and hedges against possible bias stemming from 
observing individuals multiple times. The results are provided in Appendix 1 (Panel 
(a) of Table 5). One striking observation is that the bunching behaviour of individu-
als is increasing and becoming more precise over time. We ascribe this to learning 
effects, as taxpayers became more familiar with the tax system that fundamentally 
changed in 2001. Another explanation for this increase in the amount and precision 
of bunching could be the emergence of digital filing of tax returns, which could have 
made the threshold more salient to the general public.

A case could be made for bunching at the other thresholds of the Dutch tax sys-
tem as well, albeit that the change in the net-of-tax rate is much smaller and there-
fore we would expect less reaction. Figure 9 shows the results for the pooled sam-
ple for the first and second threshold, respectively. Surprisingly, we observe clear 
bunching behaviour of individuals at both thresholds.

At the first threshold, the income levels are quite low, which might suggest that 
individuals are more dependent on their income and should therefore show little 
real responses to a change in the marginal tax rate. However, the estimate for the 
ETI is about four times higher when compared to the third threshold ( eth1 = 0.086 
vs. eth3 = 0.023 ). Note that exact estimates for the ETI at both thresholds cannot 
be depicted, because we have changing tax differences over time, in addition to the 
changing threshold values. To calculate the ETI for these two thresholds, we used 
a weighted average tax change on top of the weighted average threshold. However, 
taking the average of the single-year ETI estimates as a sensitivity check delivers 
similar results: an elasticity of 0.085 at the first threshold. Contrary to our hypothe-
sis, individuals with an income around the lower threshold seem to be more engaged 
in all kinds of tax-optimising behaviour in order to relocate at the threshold. In addi-
tion, the bunching behaviour is less precise and there is slightly more mass to the 
right of the threshold, suggesting that individuals are either less informed or less 
able to accurately adjust their income.

From an economic perspective, the second threshold might be of special inter-
est for two reasons. First, the total change in the net-of-tax rate (tax rate plus social 
security contributions) is comparably small, with 3.35 percentage points as a maxi-
mum in 2003. The gain of manipulating taxable income thus may not be larger than 
potential adjustment costs, which would lead to less bunching. Second, the jump 
in marginal tax rates vanished in some years due to the adjustments of the tax rate 
in tax bracket 2.19 Especially in these years, there is no incentive to bunch at the 
respective threshold. Despite these small incentives, the right graph of Fig. 9 clearly 

19 This phenomenon occurred in 2009, 2013 and 2014, respectively.
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shows that there is bunching behaviour at the second threshold. For the pooled 
sample, the estimated ETI amounts to 0.212 and is much higher compared to the 
other thresholds. This can be partly attributed to the small tax changes (frequently 
below 1 percentage point) that are used to derive the ETI. As expected, the result 
is largely driven by early periods of the sample, where the jump in the marginal 
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tax rate was still noticeable. Figure 10 shows, for example, the results for the years 
2008 and 2009, with 2009 being the first year where there was no jump at the sec-
ond threshold. In 2008, we could still observe a small excess mass of 0.29, but in 
2009, where the incentive to adjust taxable income vanished, we estimate a nega-
tive excess mass of merely −0.04, which is statistically insignificant.20 For the year 
2010, we are again able to identify a small excess mass of 0.18, which is significant 
at the 5% level. In accordance with the overestimation of small probabilities known 
from the behavioural economics literature (Kahneman and Tversky 1979), it might 
be the case that individuals overestimate benefits from small changes in the net-of-
tax rate and subsequently adjust their taxable income even though the economic gain 
is minimal.

5.2  Subgroup analysis

In a last step, we split the sample according to gender, employment status and filing 
status to see whether there is heterogeneity in the bunching behaviour. The results 
are shown in Panel (b) of Table 5. The ETI is larger for women (e = 0.041) than for 
men (e = 0.017). Since there are considerably more men than women at the third 
threshold, this indicates that the ETI at the upper threshold in the pooled sample is 
predominantly driven by males. Given that there are roughly three times as many 
men than women around the third threshold, the ETI here in the pooled sample can 
also be described by the weighted sum of the elasticities of men and women, i.e. 
(3 ⋅ emen + ewomen)∕4 = 0.023.

We then split the sample by employment status. Self-employed individuals have 
better possibilities to adjust their taxable income and are therefore more prone to 
bunching. The results confirm this hypothesis at the upper threshold. The ETI for 
self-employed is 0.042, which is about twice the size of the estimate in the full 
sample. In contrast to findings in many other studies, we also find a significant 

Table 3  Estimation results 
bunching analyses—third 
threshold

The table shows the estimates of the excess mass b and the respec-
tive elasticity of  taxable income with respect to the statutory net-of-
tax rate e, with window being the bunching window determined by 
our data-driven procedure. The binwidth is denoted by bw, and the 
order of polynomial is denoted by q

Window bw q b se e

Data-driven [− 4; 2] 138 7 1.6702 0.0965 0.0225
Data-driven+2 [− 6; 4] 138 7 1.6560 0.1209 0.0223
Data-driven+4 [− 8; 6] 138 7 1.6222 0.1408 0.0219
Symmetric small        [− 3; 3] 138 7 1.5128 0.0969 0.0204
Symmetric large [− 7; 7] 138 7 1.6225 0.1539 0.0219

20 Note that because the tax change is zero in 2009, we cannot compute a value for the ETI and therefore 
argue via the excess mass.
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elasticity for wage earners (e = 0.017). One explanation for the significant bunch-
ing behaviour of employed individuals could be that of trade unions jointly setting 
wage levels for groups of individuals. Collective wage bargaining is very common 
in the Netherlands. The observed bunching for wage earners might also be an indi-
cation of collusion between employers and employees at the individual level and of 
contracts being specifically designed to achieve a taxable income at the threshold 
(Chetty et al. 2011). However, the degree of flexibility depends on the wage system. 
A majority of Dutch employees’ wage payments are based on an industry-wide or 
company-wide wage schedule that resembles a staircase with fixed starting salaries 
and upper ceilings and fixed wage increments for each step in between (Deelen and 
Euwals 2014). On top of this general increase, employees and employers can decide 
on performance-related pay, which is at the heart of the individual wage differences.

Finally, we split the sample by filing status.21 Married filers have the possibility 
to shift deductions between them, an option that is not available to single filers. A 
recent study by Doerrenberg et al. (2017) shows the importance of tax deductions 
for welfare analyses with the ETI. If individuals exploit the shifting of deductions 
as a main channel to adjust taxable income, we would expect to see no spike for 
single filers, while the estimates of the ETI for the joint filers should be close to 
the estimates from the pooled sample. The results shown at the bottom of Table 5 
support this hypothesis. On the right, we can see no bunching behaviour of single 
filers, while for individuals that have the possibility to jointly file their tax returns, 
we clearly see bunching behaviour. The ETI is 0.026, which is similar to the 0.023 
in the full sample.

Due to the high presence of mortgage interest deductions in the Netherlands, it is 
interesting to examine this special kind of deduction, which can only be claimed for 
one, usually the main mortgage. We analyse the anatomy of response of wage earn-
ers for 2011 for which year we have additional information on the shifting behaviour. 
Interestingly, almost 88% of all wage earners in the vicinity of the third threshold 
claim mortgage interest deductions. The sharp shifting between partners is visible 
in Fig. 11. The graph shows the share of total mortgage interest deduction claimed 
by one partner within a couple.22 For high earners around the third threshold, the 
average share is around 80% of total mortgage interest deduction of the couple. The 
higher the income, the higher the share of the mortgage interest deduction claimed 
by the high-earning partner, which is in line with the common expectation that the 
tax advantage is higher for the highest earner. We would expect to see a jump at 
the third threshold, but we find a sharp dip in the share of mortgage interest deduc-
tion claimed by an individual at the upper threshold. This suggests that individuals 
strategically shift the mortgage interest deduction to their partners, as soon as they 
have located their taxable incomes at the threshold. Especially if both fiscal partners 

21 Married tax filers include both cohabiting unmarried couples who can choose to file tax returns 
together and married couples. In the Netherlands, married and cohabiting couples receive equal fiscal 
treatment.
22 Unfortunately, as we have individual-level data, we cannot see whether it is the high-income partner 
who actually uses this type of deduction. However, the incentive to shift the mortgage interest rate is 
higher for the one with higher earnings.
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earn more than the third threshold, this splitting of the mortgage interest deduction 
reduces the overall tax burden of the fiscal partners.

A second possible channel to reduce taxable income, other than shifting between 
partners, is that of a real response, for example in hours worked. Due to the structure 
of our data, identification of these types of responses in hours could only be done 
indirectly, for example, via hourly wages. We do not, unfortunately, observe actual 
working hours. As bunchers come from above the threshold and hourly wage can be 
assumed to increase with taxable income,23 an individual that bunches should have 
a higher hourly wage than other individuals that obtain a similar taxable income. 
However, looking at data from 2006 to 2011 for which we have hourly wage data, 
we cannot detect any significant difference between bunchers and non-bunchers 
left or right of the bunching window in terms of hourly wages, suggesting that real 
responses do not play a significant role in adjusting taxable income.

5.3  Relation to the literature

Our results relate to the literature in several ways, although one has to keep in mind 
that cross-country comparisons of elasticities might be difficult due to different insti-
tutional features (Bastani and Selin 2014). In line with other studies that implement 
the bunching approach, we find small but precise estimates of the compensated ETI 
with respect to the net-of-tax rate at the top tax threshold of 0.023. Chetty et  al. 
(2011) find an elasticity at the upper threshold below 0.02 for their full sample on 
Denmark, while Bastani and Selin (2014) find close-to-zero elasticities in Swe-
den at the top tax threshold. Evidence on the USA (Saez 2010) indicates an elas-
ticity between 0.1 and 0.2, depending on the methodology, at the first threshold of 
the federal income tax schedule, and no response at other thresholds. For married 
couples, a large part of the response is driven by itemised deductions, whereas for 
singles income responses are most important. Saez (2010) notes that these income 
responses are harder to adjust than itemised deductions. We also find a stronger 
shifting response for married individuals than for singles. Still, income adjustments 
are easier in the Netherlands than in the USA because of the social acceptance and 
federal legitimation of part-time work. Employees in the Netherlands are arguably 
more free to choose their working hours than workers in other countries because of 
the existence of the Dutch Working Hours Act. In the USA, only 19% of the work-
ing population was working part-time in 2013, whereas in the Netherlands this fig-
ure was almost twice as high, at 36%. The significantly larger proportion of women 
bunching can also be explained by this. In the USA, 26% of the female workforce 
worked part-time, whereas in the Netherlands, this was 58% and these women would 
likely earn an income close to the first threshold.24 This makes income adjustment 
through hours easier. In contrast to Saez (2010), we do find significant responses 

23 This can be justified for example by the higher skill level that high earners have compared to low 
earners.
24 Shares are calculated from the OECD Statistics database, where the labour force is measured by 
national criteria.
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at the higher tax brackets as well, which we attribute to the possibility to shift tax 
deductions between partners.

Earlier studies for the Netherlands find larger elasticities. Jongen and Stoel (2013) 
find an elasticity of around 0.1 for the short run and 0.2 for the medium run, with 
larger elasticities for women. The aforementioned study employs a panel approach 
and uses instrumental variable techniques to correct for endogenous taxes in line 
with Gruber and Saez (2002). In contrast to our study, they had to rely on a tax sim-
ulator to obtain marginal tax rates and determine taxable income. This can poten-
tially cause measurement error, which could explain some of the deviation between 
the results. Another explanation would be that the bunching approach identifies a 
local elasticity as opposed to an average elasticity derived from the IV approach 
(Chetty 2012).

A recent study by Bettendorf et al. (2017) for owners of small corporations25 finds 
elasticities between 0.06 and 0.11 for the upper threshold of the Dutch tax schedule, 
using bunching techniques. This is slightly larger than the elasticity of 0.04 that we 
identify for self-employed individuals, and could suggest that our results are partly 
driven by the DGA subgroup. Unfortunately, the limited number of owners of small 
corporations in our sample prevents us from running the estimation separately for 
this group.

In previous bunching studies, a distinction is made between real response and 
income shifting. In a study on the self-employed in Denmark, Le Maire and Schjern-
ing (2013) show that about 50–70% of the bunching in taxable income is due to 
income shifting over time. In a similar study for business owners in Finland, Harju 
and Matikka (2016) attribute two-thirds of the ETI to income shifting between tax 
bases. However, we find that a large share of bunching is driven by tax deductions in 
combination with shifting them between partners and we find no indication for real 
responses.

6  Concluding remarks

We proposed a purely data-driven procedure to find an “optimal” bunching window. 
Monte Carlo simulations showed that our data-driven procedure outperforms larger 
bunching windows, especially in terms of precision (i.e. show the smallest standard 
error). This key result is, in addition, robust to various changes in key parameters, 
such as different binwidths, degrees of optimisation frictions and functional form 
assumptions.

We also employed a unique longitudinal data set containing exact declared taxa-
ble income for a representative sample of the Dutch population (IPO data from 2003 
to 2014) to estimate the ETI. In our application to the Netherlands, we found an 
elasticity of 0.023 in the full sample at the upper threshold of the tax system, where 
the tax change is largest. Subgroup analysis revealed that self-employed individuals, 

25 These so-called DGAs (Directeur-Grootaandeelhouder) face a special tax scheme. In our study, this 
subgroup belongs to that of the self-employed.
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women and married tax filers drive this result. The improvements, especially in effi-
ciency, that were visible in the Monte Carlo simulation were also confirmed in the 
application: our proposed data-driven procedure outperformed both larger asymmet-
ric bunching windows as well as two symmetric bunching windows in delivering a 
more precise estimate of the ETI.

In summary, our simple data-driven procedure does not only take away the 
researcher‘s discretion in setting the bunching window, but was also shown to 
improve the efficiency of the bunching estimator when compared to alternative tech-
niques of determining the bunching window. Our modification thus fills a gap in the 
existing bunching literature.
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Appendix 1: Additional material on the bunching (window) method

Bunching method

The bunching theory underlying the empirical applications starts with the simple 
neoclassical model where individuals have well-behaved preferences over con-
sumption and leisure and where discontinuities in marginal tax rates create kinks 
or notches in their budget sets. Although it was initially developed in the field of 
taxation (Saez 2010), it has been applied to many other research question in the area 
of social insurance, energy economics, education and sports economics (see Kleven 
(2016) for an overview). Since our application uses changes in personal income tax 
rates, the theory is explained in terms of earnings responses to taxation, but our 
methodological contribution can be applied to any other setting as well.

To test the prediction from microeconomic theory and to quantify the welfare 
losses due to income taxation, we follow the literature and identify the compensated 
ETI in the spirit of Feldstein (1995), which is a summary statistic for all kinds of 
behavioural responses (real responses, tax avoidance and tax evasion). The ETI is 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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hereby defined as the percentage change in taxable income z due to an increase in 
the net-of-tax rate (1 − �) of one percentage:

The introduction of a kink in the budget set of individuals induces bunching 
behaviour within a certain income range, provided that preferences are convex and 
smoothly distributed among the population. This will lead to a spike in the income 
density exactly at the kink, but due to the inability of individuals to control or pre-
dict their incomes or imperfect information about the exact threshold value, a bunch-
ing window around the kink is observed more often in reality (Saez 2010).

Comparing the income density with a counterfactual scenario without a kink, one 
can show that the excess mass of taxpayers around the threshold can be exploited to 
determine the elasticity e(z) (Saez 2010). The compensated ETI, identified locally at 
the threshold k, is then given by

where the net-of-tax rate changes by log( 1−�1
1−�2

) percentage.26 The relative excess 
mass of taxpayers at the threshold k is given by b, which is the only parameter that 
needs to be estimated. A value of b = 2, for example, corresponds to twice more 
individuals being at the threshold than would have been the case in the absence of 
any tax change. In short, the main idea behind the bunching approach is that the 
observed amount of excess bunching is informative about the (compensated) income 
elasticity.

Formal derivation bunching window

The bunching window is formally derived as follows: let x− ∈ {−X, (−X + 1),… , 0} 
and x+ ∈ {0, 1,… ,X} be the respective lower and upper bound of the excluded 
region, where X represents the midpoint of an income bin. Furthermore, define 
l(x−, x+) as the lower bound of the bunching window and u(x−, x+) as the upper 
bound, given the excluded region from [x−, x+].27 For every tuple (x−, x+) , run a local 
regression of polynomial order q:

(3)e(z) =
dz

z

/d(1 − �)

(1 − �)
.

(4)e(k) =
b

k ⋅ log
(

1−�1

1−�2

) ,

26 It is identified if and only if the derivative of the counterfactual density function h0(z) with respect to z 
is continuous in z ∀z.
27 Please note again that the excluded region runs through all possible combinations starting from (0, 0) 
such that the excluded region is not always symmetric around the threshold. To give an example, using 
an excluded region going from − 15 to 15 would thus result in (15 + 1)2 = 256 regressions. Adding − 16 
and + 16 would increase the number of regressions by 33.
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Then, predict the counterfactual values N̂BW
j

:

As a next step, calculate the upper value of the confidence interval CI+
j
 for a given 

t-value using standard procedures. To determine whether there are more individuals 
than predicted in an income bin j, subtract the CI+

j
 from the observed number of tax-

payers for each j:

A positive Ej means that the number of individuals in income bin j exceeds the pre-
dicted number of individuals, as estimated by the polynomial regression. Put differ-
ently, if all Ej are negative, no bunching is present in the respective sample. Other-
wise, the lower bound of the bunching window is given by:

which is the smallest contiguous income bin j that still satisfies the condition Ej > 0 . 
Similarly, the upper bound is given by:

which is the largest contiguous income bin j that still satisfies the condition Ej > 0 . 
Following this procedure, two distributions of lower and upper bounds of the bunch-
ing window are obtained. Ideally, every excluded region that is tested will deliver 
the same optimal bunching window resulting in a deterministic distribution. But 
especially when considering excluded regions that are within the true bunching win-
dow, the confidence interval around the prediction could deliver a wrong bunching 
window. Because the mean is affected by such outliers, we advocate to use the mode 
or median28 to determine the optimal bunching window going from l∗ to u∗.

Appendix 2: Additional graphs and tables

See Figs. 7, 8, 9, 10 and 11 and Tables 4 and 5.

(5)ÑBW
j

=

q
∑

i=0

𝛽iX
i
j
+ 𝜀j ∀ j ∉ [x−, x+].

(6)N̂BW
j

=

q
∑

i=0

𝛽iX
i
j

∀ j.

(7)Ej = Nj − CI+
j
.

(8)l(x−, x+) = j∗
l
+ 1, where j∗

l
= max{j ∈ ℤ− ∶ Ej < 0},

(9)u(x−, x+) = j∗
u
− 1, where j∗

u
= min{j ∈ ℤ+ ∶ Ej < 0},

28 In our simulation, all three procedures (mean, mode, median) finally delivered the same optimal 
bunching window for a given true elasticity.
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Fig. 7  Sample income distribution for Monte Carlo simulation. Notes The figure shows the income dis-
tribution used in the Monte Carlo simulations. The analysed thresholds at 10,000, 20,000, 40,000 and 
60,000 euros are depicted by the vertical lines. The distribution is cut-off at 80,000 euros, which is 
roughly the 99th percentile of the simulated income distribution
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Fig. 8  Development of marginal tax rates. Notes The figure depicts the development of the marginal tax 
rates in the Netherlands from 2001 to 2014
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Table 4  Development of 
thresholds

The table reports the development of the thresholds of the Dutch tax 
system from 2001 to 2014

First threshold Second threshold Third threshold

2001 14,870 27,009 46,309
2002 15,331 27,847 47,746
2003 15,883 28,850 49,464
2004 16,265 29,543 50,652
2005 16,893 30,357 51,762
2006 17,046 30,631 52,228
2007 17,319 31,122 53,064
2008 17,579 31,589 53,860
2009 17,878 32,127 54,776
2010 18,218 32,738 54,367
2011 18,628 33,436 55,694
2012 18,945 33,863 56,491
2013 19,645 33,363 55,991
2014 19,645 33,363 56,531
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Fig. 9  Bunching at the first and second thresholds—pooled sample. Notes The figures show bunching 
at the first and second thresholds for the pooled sample from 2003 to 2014. The bunching window is 
between −  297.5 and +  2422.5 euros for the first threshold and between −  782 and +  690 euros for 
the second threshold. The counterfactual model is a third-order polynomial in both cases (Color figure 
online)
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Fig. 10  Bunching at the second threshold—2008 and 2009. Notes The figures show (non-)bunching 
behaviour at the second threshold of the Dutch tax system for the years 2008 and 2009. Because the tax 
change was zero in 2009 and it is part of the denominator in the elasticity formula, no value for the ETI 
can be estimated in 2009 (Color figure online)

Table 5  Additional bunching 
results third threshold

The table shows the estimates of the excess mass b and the respec-
tive elasticity of corporate taxable income with respect to the statu-
tory net-of-tax rate e, with window being the bunching window 
determined by our data-driven procedure. The binwidth is denoted 
by bw and the order of polynomial is denoted by q. Panel a) shows 
single-year estimates; panel b) shows subgroup analysis

Window bw q b se e

Panel (a): Single years
2003 [− 1; 1] 351 1 0.2033 0.1345 0.0076
2004 [− 1; 1] 353 1 0.5609 0.1258 0.0207
2005 [− 1; 1] 350 3 0.5658 0.1650 0.0202
2006 [− 1; 1] 347 1 0.6609 0.1233 0.0232
2007 [− 1; 1] 329 1 0.5801 0.0864 0.0190
2008 [− 2; 1] 311 1 0.8384 0.1129 0.0256
2009 [− 1; 1] 303 1 0.9068 0.0867 0.0265
2010 [− 1; 1] 297 1 0.5641 0.1131 0.0163
2011 [− 2; 1] 301 2 0.9132 0.1156 0.0261
2012 [− 1; 1] 289 1 0.9335 0.1143 0.0252
2013 [− 1; 1] 316 1 0.7471 0.1037 0.0223
2014 [− 2; 1] 290 1 1.2876 0.1234 0.0349
Panel (b): subgroups
Men [− 3; 1] 152 1 1.1391 0.0769 0.0170
Women [− 2; 1] 210 5 1.9902 0.1406 0.0407
Wage earners [− 3; 1] 150 7 1.2066 0.0738 0.0176
Self-employed [− 4; 7] 227 2 1.9069 0.1673 0.0423
Single filers [− 1; 1] 332 2 0.1084 0.1005 0.0035
Joint filers [− 4; 2] 142 1 1.9021 0.0788 0.0263



978 N. Bosch et al.

1 3

References

Adam, S., Browne, J., Phillips, D., & Roantree, B. (2015). Adjustment costs and labour supply: Evidence 
from bunching at tax thresholds in the UK. mimeo.

Bastani, S., & Selin, H. (2014). Bunching and non-bunching at kink points of the Swedish tax schedule. 
Journal of Public Economics, 109, 36–49.

Bettendorf, L., Lejour, A., & van’t Riet, M. (2017). Tax bunching by owners of small corporations. De 
Economist, 165, 411–438.

Blomquist, S., & Newey, W. (2017). The bunching estimator cannot identify the taxable income elasticity. 
Working Paper Series, No. 24136, National Bureau of Economic Research (NBER).

Chetty, R. (2012). Bounds on elasticities with optimization frictions: A synthesis of micro and macro 
evidence on labor supply. Econometrica, 80, 969–1018.

Chetty, R., Friedman, J. N., Olsen, T., & Pistaferri, L. (2011). Adjustment costs, firm responses, and 
micro vs. macro labor supply elasticities: Evidence from Danish tax records. The Quarterly Journal 
of Economics, 126, 749–804.

Deelen, A., & Euwals, R. (2014). Do wages continue increasing at older ages? Evidence on the wage 
cushion in the Netherlands. De Economist, 162, 433–460.

Devereux, M. P., Liu, L., & Loretz, S. (2014). The elasticity of corporate taxable income: New evidence 
from UK tax records. American Economic Journal: Economic Policy, 6, 19–53.

Doerrenberg, P., Peichl, A., & Siegloch, S. (2017). The elasticity of taxable income in the presence of 
deduction possibilities. Journal of Public Economics, 151, 41–55.

Feldstein, M. (1995). The effect of marginal tax rates on taxable income: A panel study of the 1986 tax 
reform act. Journal of Political Economy, 103, 551–572.

Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Probability 
Theory and Related Fields, 57, 453–476.

Gruber, J., & Saez, E. (2002). The elasticity of taxable income: Evidence and implications. Journal of 
Public Economics, 84, 1–32.

Harju, J., & Matikka, T. (2016). The elasticity of taxable income and income-shifting: What is “real” and 
what is not? International Tax and Public Finance, 23, 640–669.

Jongen, E. L. W., & Stoel, M. (2013). Estimating the elasticity of taxable labour income in the Nether-
lands CPB Background Document.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: 
Journal of the Econometric Society, 47, 263–291.

Kleven, H. J. (2016). Bunching. Annual Review of Economics, 8, 435–464.

.6
5

.7
.7

5
.8

.8
5

.9

S
ha

re

-2000 -1000 0 1000 2000
Distance to Threshold 3

2011

Fig. 11  Share mortgage interest deductions. Notes The figure shows the share of mortgage interest 
deductions within couples around the third threshold for the year 2011. The binsize is 200 euro (Color 
figure online)



979

1 3

A data-driven procedure to determine the bunching window:…

Kleven, H. J., Knudsen, M. B., Kreiner, C. T., Pedersen, S., & Saez, E. (2011). Unwilling or unable to 
cheat? Evidence from a tax audit experiment in Denmark. Econometrica, 79, 651–692.

Kleven, H. J., & Waseem, M. (2013). Using notches to uncover optimization frictions and structural elas-
ticities: Theory and evidence from Pakistan. The Quarterly Journal of Economics, 128, 669–723.

Le Maire, D., & Schjerning, B. (2013). Tax bunching, income shifting and self-employment. Journal of 
Public Economics, 107, 1–18.

Lediga, C., Riedel, N., & Strohmaier, K. (2018). The elasticity of corporate taxable income—Evidence 
from South Africa. Economics Letters, 175, 43–46.

Neisser, C. (2017). The elasticity of taxable income: A meta-regression analysis. IZA Discussion Papers, 
No. 11958, Institute of Labor Economics (IZA), Bonn.

Saez, E. (2010). Do taxpayers bunch at kink points? American Economic Journal: Economic Policy, 2, 
180–212.

Saez, E., Slemrod, J., & Giertz, S. H. (2012). The elasticity of taxable income with respect to marginal 
tax rates: A critical review. Journal of Economic Literature, 50, 3–50.

Slemrod, J. (1998). Methodological issues in measuring and interpreting taxable income elasticities. 
National Tax Journal, 51, 773–788.

Weber, C. (2016). Does the earned income tax credit reduce saving by low-income households? National 
Tax Journal, 69, 41–76.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	A data-driven procedure to determine the bunching window: an application to the Netherlands
	Abstract
	1 Introduction
	2 Methodological extension on the bunching window
	2.1 Evaluation

	3 Institutional background
	4 Data
	5 Results
	5.1 Bunching evidence
	5.2 Subgroup analysis
	5.3 Relation to the literature

	6 Concluding remarks
	Acknowledgements 
	References




