A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Drexl|, Michael

Article — Published Version

On the one-to-one pickup-and-delivery problem with time

windows and trailers

Central European Journal of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Drexl, Michael (2020) : On the one-to-one pickup-and-delivery problem with time
windows and trailers, Central European Journal of Operations Research, ISSN 1613-9178, Springer,

Berlin, Heidelberg, Vol. 29, Iss. 3, pp. 1115-1162,
https://doi.org/10.1007/s10100-020-00690-w

This Version is available at:
https://hdl.handle.net/10419/288461

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

-. https://creativecommons.org/licenses/by/4.0/

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10100-020-00690-w%0A
https://hdl.handle.net/10419/288461
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Central European Journal of Operations Research (2021) 29:1115-1162
https://doi.org/10.1007/s10100-020-00690-w

ORIGINAL PAPER

n

Check for
updates

On the one-to-one pickup-and-delivery problem with time
windows and trailers

Michael Drex!’

Published online: 20 June 2020
© The Author(s) 2020

Abstract

This paper studies an extension of the well-known one-to-one pickup-and-delivery
problem with time windows. In the latter problem, requests to transport goods from
pickup to delivery locations must be fulfilled by a set of vehicles with limited capacity
subject to time window constraints. Goods are not interchangeable: what is picked
up at one particular location must be delivered to one particular other location. The
discussed extension consists in the consideration of a heterogeneous vehicle fleet com-
prising lorries with detachable trailers. Trailers are advantageous as they increase the
overall vehicle capacity. However, some locations may be accessible only by lorries.
Therefore, special locations are available where trailers can be parked while lorries
visit accessibility-constrained locations. This induces a nontrivial tradeoff between
an enlarged vehicle capacity and the necessity of scheduling detours for parking and
reattaching trailers. The contribution of the paper is threefold: (i) it studies a practi-
cally relevant generalization of the one-to-one pickup-and-delivery problem with time
windows. (ii) It develops an exact amortized constant-time procedure for testing the
feasibility of an insertion of a transport task into a given route with regard to time
windows and lorry and trailer capacities. (iii) It provides a comprehensive set of new
benchmark instances on which the runtime of the constant-time test is compared with a
naive one that requires linear time by embedding both tests in an adaptive large neigh-
bourhood search algorithm. Computational experiments show that the constant-time
test outperforms its linear-time counterpart by one order of magnitude on average.

Keywords Vehicle routing - Pickup-and-delivery - Trailers - Insertion heuristic -
Constant-time feasibility test

B Michael Drexl
michael.drex] @th-deg.de

Faculty of Applied Natural Sciences and Industrial Engineering, Deggendorf Institute of Technology,
Deggendorf, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-020-00690-w&domain=pdf

1116 M. Drexl

1 Introduction

The one-to-one pickup-and-delivery problem with time windows and trailers
(PDPTWT) can be described as follows. There is a set of requests or tasks to transport
specified amounts of goods between paired pickup and delivery locations. To fulfil the
tasks, a set of capacitated vehicles consisting of single lorries and lorry—trailer com-
binations (LTCs) is available. Each vehicle has a given start and a given end location.
The start location of a vehicle may differ from the vehicle’s end location. A trailer has
the same start and the same end location as its associated lorry. Each single lorry and
each LTC has a fixed cost, incurred only if it fulfils at least one task, and a travel cost
for moving from one location to another. Fixed and travel costs may differ between
vehicles; for LTCs, travelling between two locations with the trailer attached may
be more expensive than without. Capacities may also differ between vehicles. LTCs
have a lorry capacity and a trailer capacity. After picking up and before delivering
the goods of a certain task, vehicles may visit other pickup and/or delivery locations.
All pickup and all delivery locations can be visited by a single lorry and by an LTC
lorry without its trailer. However, some pickup and some delivery locations may have
accessibility constraints in the sense that they cannot be visited by an LTC lorry when
the trailer is coupled. Because of these accessibility restrictions, there are also parking
and transshipment locations (PTLs). At PTLs, trailers can be decoupled, parked, and
re-coupled, and load can be transshipped between an LTC lorry and its trailer. In this
paper, a fixed lorry—trailer assignment is assumed. This means that each trailer can be
pulled only by one lorry, and only this lorry can transfer load to or from the trailer.
All task locations, i.e., all pickup or delivery locations, can be visited by any lorry, all
locations designated as reachable by trailer can be visited by any trailer, and PTLs can
be visited by all LTC lorries and trailers. Each task location is visited exactly once,
whereas PTLs can be visited more than once by the same or different LTCs. The load
to be picked up at a task location can be split arbitrarily between a lorry and its trailer
if the location is visited by an LTC.

Each location has a single, hard time window that may be equal to the length of
the planning horizon and thus nonrestrictive. In practice, most PTL time windows are
equal to the planning horizon, but there may be some PTLs with a restricted time
window. Hence, time windows are also assigned to PTLs. Arrival at a location before
the start of its time window is allowed and incurs waiting time but no cost. Waiting
time is not limited. There are fixed service times at all task locations and all PTLs. At
PTLs, there are two service times, one for the decoupling and one for the re-coupling
operation. Travel times between locations and service times are independent of the
current vehicle, of its current load and, for LTCs, of whether or not the traileris attached.
Travel and service times as well as fixed and travel costs are time-independent. All
vehicles are available throughout the complete planning horizon.

An LTC route may visit any location and is partitioned into the main route, which
is the part of the route where the lorry pulls its trailer, and zero or more subroutes
that start and end at a PTL where the lorry parks its trailer while visiting one or more
task locations. An LTC lorry may perform several consecutive subroutes starting and
ending at the same PTL before finally pulling away its trailer. If a delivery location is
visited on a subroute and the corresponding pickup location has been visited before

@ Springer

On the one-to-one pickup-and-delivery problem with time... 117

this subroute, it must be ensured that the entire amount of goods bound for this delivery
location is on the lorry at the start of the subroute. This may require a load transfer
from a trailer to its lorry at a PTL.

There is no congestion at PTLs: arbitrarily many trailers can be parked at a PTL
at the same time. Without loss of generality, it is assumed that a load transfer, if
any, between an LTC lorry and its trailer takes place only directly before a decoupling
operation, not when re-coupling. The duration (service time) of a decoupling operation
includes time for a potential load transfer.

The problem is static and deterministic, i.e., all data are known in advance.

The objective of the PDPTWT is to find a feasible solution with a minimal (or, at
least, low) sum of fixed and travel costs. A feasible solution consists of a set of feasible
routes, one for each single lorry and one for each LTC, so that each task is covered
by exactly one vehicle (single lorry or LTC). A route is feasible if and only if it starts
at the start depot of the vehicle that performs the route, fulfils zero or more tasks,
and ends at the vehicle’s end depot, while maintaining all time windows, accessibility
constraints, and lorry and trailer capacities. In a feasible solution, the following nine
cases are possible with regard to accessibility constraints:

Pickup can be visited with a trailer
yes yes no no
. yes 1 2 yes
Delivery canbe g 3 4 5 6 no Pickup is visited
visited with a :
. no 7 yes on main route
trailer
no 8 9 no
yes no yes no
Delivery is visited on main route
Figure 1 shows an example LTC route that fulfils the nine tasks 1, ..., t9. For
i =1,...,9, pi and d; respectively denote the pickup and the delivery location of

task #;. The route starts and ends at the depot bottom left and performs four subroutes,
two each at the parking and transshipment locations ptlj and ptl;. In the figure, task #;
corresponds to case i of the above table fori = 1,...,9. Blue triangles represent
locations that can be visited with a trailer; green ones can only be visited without.
Triangles pointing upwards represent pickups, those pointing downwards represent
deliveries.

There is no lack of practical applications of the PDPTWT. This author has seen
use cases in the supply of supermarkets, beverage stores, and apparel stores, in the
transport of ready-mixed concrete garages and commercial waste bins, and, most
notably, in the less-than-truckload business. As for supermarket and store supply, in
many cases loaded pallets, bins, or roll cages picked up at (different) warehouses are
delivered to stores, and empty transport equipment is picked up at stores and delivered
to warehouses. The transport of ready-mixed concrete garages is often performed in
two steps. LTCs are loaded at factories and bring the garages to appropriate parking
locations. Later on, other LTCs pick up the garages, possibly from different park-
ing locations, and install them at their final destinations. The situation is similar for
commercial waste bins. Empty bins are picked up at various depots and delivered to
factories, construction sites etc., from where full bins are picked up and delivered to
waste dumps or recycling stations. In the less-than-truckload business, ISO standard

@ Springer

1118 M. Drexl

pr1

Depot }

==> Main route (LTC lorry + trailer)

—> Subroute (LTC lorry only)

Fig. 1 Example LTC route

containers, swap-body platforms, or smaller collective consignments are picked up at
different locations (customer sites or freight forwarding terminals and hubs) and are
delivered to other terminals or directly to customers.

The contribution of this paper is threefold: (i) it studies a practically relevant
extension of the one-to-one pickup-and-delivery problem with time windows. Put
differently, it generalizes vehicle routing problems (VRPs, i.e., problems where either
all pickups or all deliveries take place at a central depot) with trailers to pickup-and-
delivery problems. (ii) It develops an exact amortized constant-time procedure for
testing the feasibility of an insertion of a task into a given PDPTWT route concerning
time windows and lorry and trailer capacities. ‘Exact’ means that the testing procedure
will declare the insertion as feasible if and only if the route resulting from the inser-
tion is feasible. ‘Amortized constant-time’ means that the test itself takes constant time
and is independent of the number of tasks (or, equivalently, the number of locations
visited) on the route, but that the test uses auxiliary data which must be computed
in a preprocessing step which does not run in constant time. (iii) The paper provides
a comprehensive set of new benchmark instances and empirically compares the run-
time of the constant-time test on these instances with a naive one that requires linear
time by embedding both tests in an adaptive large neighbourhood search algorithm
for the heuristic solution of the problem. The results of computational experiments
show that the constant-time test outperforms its linear-time counterpart by one order
of magnitude on average.

The rest of the paper is structured as follows. The next section gives a brief review
of related literature. Section 3 presents the adaptive large neighbourhood search pro-
cedure used to solve the PDPTWT. In Sect. 4, the insertion feasibility tests regarding
time and capacity are described. Section 5 presents the newly created benchmark
instances and discusses the computational results obtained on them. Finally, Sect. 6
gives a conclusion and proposes topics for further research.

2 Related work

This section briefly reviews pertinent literature, focussing on works concerned with
pickup-and-delivery problems, routing problems with trailers, and efficient feasibil-

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1119

ity tests in heuristics for routing problems. Pickup-and-delivery problems (without
trailers) exist in several variants (one-to-one, one-to-many-to-one, many-to-many,
simultaneous delivery and pickup) and have been extensively studied in the last
decades. Important surveys are presented by Parragh et al. (2008a,b), Doerner and
Salazar-Gonzalez (2014), and Battarra et al. (2014). These works also provide clas-
sification schemes for the different variants. The static, deterministic, multi-vehicle,
one-to-one variant with time windows is the most widely studied type. Exact algo-
rithms for this problem are presented by Ropke et al. (2007), Ropke and Cordeau
(2009), and Baldacci et al. (2011). According to Battarra et al. (2014), the most suc-
cessful heuristic procedures, by Bent and Van Hentenryck (2006) and Ropke and
Pisinger (2006), are both based on large neighbourhood search.

Routing problems with trailers have also attracted a lot of interest from researchers.
The surveys by Prodhon and Prins (2014) and Cuda et al. (2015) contain sections on
VRPs with trailers, which are commonly referred to as truck-and-trailer routing prob-
lems (TTRPs). Most works on TTRPs consider no time windows. Exact algorithms
for TTRPs with time windows (TTRPTWs) are presented by Parragh and Cordeau
(2017) and Rothenbicher et al. (2018). Heuristics for TTRPTWs are described by
Drexl (2011) (heuristic column generation), Lin et al. (2011) (simulated annealing),
Derigs et al. (2013) (hybrid local and large neighbourhood search, attribute-based hill
climber), and Parragh and Cordeau (2017) (adaptive large neighbourhood search).
Pickup-and-delivery problems with time windows and trailers are less well studied.
Most papers on this topic consider approaches for problems where vehicles consisting
of a tractor and a semi-trailer are employed to perform full-load tasks, i.e., where a
vehicle can transport only one task at a time. Examples are the problems examined by
Cheung et al. (2008) (attribute-decision model), Xue et al. (2014) (tabu search) and
Tilk et al. (2018) (branch-and-price-and-cut). Concerning the PDPTWT version stud-
ied here, this author is aware of only one paper: Biirckert et al. (2000) describe a holonic
multi-agent system heuristic for a generalization of the PDPTWT in the context of
long-distance transport. The authors take into account eight types of resource: driver,
lorry with loading capacity, lorry without loading capacity, tractor, trailer, semi-trailer,
chassis, and swap-body. Adequate combinations of these resources must be created to
fulfil tasks.

Seminal works on efficient feasibility tests for insertion or local search procedures
for different types of VRPs and PDPs are the ones by Savelsbergh (1985, 1990, 1992),
Kindervater and Savelsbergh (1997), Funke et al. (2005), Irnich et al. (2006), Irnich
(2008a,b), Masson et al. (2013b), Vidal et al. (2014), and Grangier et al. (2016). None
of these, however, considers routing problems with trailers.

3 Adaptive large neighbourhood search for the PDPTWT

Adaptive large neighbourhood search (ALNS) is a very widely and successfully used
metaheuristic, in particular for, but not limited to, many different types of routing prob-
lem. Pisinger and Ropke (2010) present a tutorial and a literature survey on (A)LNS.
The basic idea of large neighbourhood search (LNS), as introduced by Shaw (1997),
is to repeatedly perform the following steps. Given an incumbent solution, some of its

@ Springer

1120 M. Drexl

elements are removed (destruction step) and reinserted (reconstruction step) to create
a new solution that replaces the current incumbent if it either improves the best solu-
tion found so far or fulfils some other acceptance criterion. ALNS was first used by
Ropke and Pisinger (2006) and extends the LNS principle by adding different removal
and reinsertion operators and an adaptive operator selection scheme. In the context
of pickup-and-delivery or vehicle routing problems, given a complete route plan, a
subset of requests or customers is removed from their respective routes in the destruc-
tion step, and they are reinserted into the resulting partial routes in the reconstruction
step. A pseudocode of the ALNS procedure in general and of our implementation
in particular is presented in Fig. 1. The concrete ALNS implementation used for the
computational experiments described in this paper follows the set-up described by
Ropke and Pisinger (2006) for the PDPTW without trailers. Details on the method are
given below.

Algorithm 1 Basic Adaptive Large Neighbourhood Search

1 Construct an initial feasible solution x and save x as the current best solution x*, i.e., set x* :=x

2 repeat

3 Select a destruction and a reconstruction operator by roulette-wheel selection based on the current operator weights

4 Create a neighbouring solution x’ from x using the procedures corresponding to the selected destruction and reconstruction
operators // cf. Algorithm 2

5 Update the operator scores // cf. Subsection 3.3

6 if Solution x can be accepted, i.e., if a simulated annealing acceptance criterion is fulfilled // cf. Subsection 3.4
7 | Setx:=x

8 if x is better, i.e., has a lower objective function value, than x*

9 | Set x* :=x

10 until a termination criterion is reached (maximal number of iterations)
11 return x*

3.1 Destruction procedures

The destruction/removal operators described by Ropke and Pisinger (2006) (random,
worst and Shaw removal) are applied. In addition, three further removal strategies
are built into the ALNS. In the arc frequency history removal heuristic, proposed by
Masson et al. (2013a), the aim is to remove tasks that seem to be at bad positions
compared to the best known solutions. The heuristic keeps track of how often each arc
(connection between two locations) appears in any one of the solutions contained in
a fixed-size set composed of the best solutions found so far. In each ALNS iteration,
if a solution enters or leaves this set, the frequencies of the arcs in this solution are
incremented or decremented accordingly. When the arc frequency history removal
heuristic is selected, a frequency value is computed for each task by summing up the
frequencies of the arcs over which the pickup and the delivery locations of the task are
reached and left in the current solution. Then, the tasks with the lowest frequency val-
ues are removed. The zero-split removal heuristic, proposed by Parragh et al. (2010),
removes sequences of task locations where the vehicle is empty when reaching the first
location and when leaving the last. Longer sequences are preferred, and the removed
tasks are reinserted one by one. Finally, the subroute removal heuristic, as its name
implies, removes entire subroutes, which are selected at random. ‘Removing a sub-
route’ means that all tasks with at least one location on the subroute are removed. The
removed tasks are reinserted one by one in this heuristic, too.

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1121

The worst and Shaw removal heuristics exist in a static and a dynamic version. In
the static versions, the removal criteria are computed anew only once in an ALNS
iteration, in the dynamic versions, they are updated after each removal of a single task.
The removal criterion for a task in the worst removal heuristic is the difference in the
costs of the current solution with and without the task. The Shaw removal operator
uses, for each pair of tasks, a relatedness measure that takes into account the distances
between the pickup locations, the distances between the delivery locations, the overlap
of the time windows of the pickup locations, the overlap of the time windows of the
delivery locations, and the difference between the capacity requirements of the two
tasks.

The number m of tasks to be removed in each iteration is selected randomly in
the interval [min(30, 0.1 - n), min(60, 0.4 - n)], where n is the number of tasks in
the instance. All removal operators are randomized in a manner similar to the one
proposed by Ropke and Pisinger (2006). Given a list of tasks that contains / elements
and is sorted according to one of the criteria of the operators, if m tasks are to be
removed, then not necessarily the first m tasks in the list are removed. Instead, the
task at position / - y? is removed. In this formula, y is a uniform random number from
the interval [0, 1) and p is the randomization degree, which differs between operators
as specified in Table 3 in the “Appendix”. This is repeated until m tasks have been
removed.

3.2 (Re)Construction procedures

The (re)construction procedures are iterative (re)insertion operators that, in each iter-
ation, insert one task into a given empty or incomplete route plan. The heuristics used
for this purpose are the parallel greedy and the regret-2, -3, -4 and -M (re)insertion
operators. In each iteration, the parallel greedy heuristic inserts the pickup and the
delivery locations of a task ¢ at certain positions into a route r if this insertion causes
a smallest increase in the total cost of the current route plan. Regret heuristics insert a
task ¢ into a route if # has a maximal regret value over all tasks not currently performed.
The regret- p value of a task ¢ is the difference in the costs between a cheapest insertion
of t and a p-cheapest one. The initial feasible solution is computed with the greedy
heuristic.

In lieu of the noise mechanism used by Ropke and Pisinger (2006), insertion pref-
erence strategies are used. This means that, in each iteration of a reinsertion heuristic,
one of the following five strategies is randomly selected with equal probability and
applied before deciding which task to insert into which route: (i) make the insertion of
tasks where the pickup location can be visited with a trailer more attractive; (ii) similar
for tasks where this is not the case; (iii) make the insertion into single lorry routes more
attractive; (iv) similar for LTC routes; (v) make it more attractive to insert tasks where
the pickup location can be visited with a trailer into LTC routes. This is achieved by
appropriately modifying the insertion costs of tasks into particular routes.

All types of insertion heuristic for routing problems, i.e., all procedures for insert-
ing one or more locations into an existing route, test the feasibility of inserting the
location(s) at the respective position(s). In other words, they test whether the resource

@ Springer

1122 M. Drexl

windows of all relevant resources, such as time windows, vehicle capacities, and acces-
sibility constraints for the PDPTWT studied here, are maintained at each position in
the enlarged route. These tests can be performed in a naive manner by passing through
the enlarged route once, updating all resource consumptions along the way. How-
ever, in particular for instances where longer routes containing many locations are
possible, this approach is very time-consuming. Constant-time feasibility tests, such
as those presented in this paper, are a much more efficient approach. The efficiency
gains obtained by constant-time procedures during the actual feasibility tests must, of
course, be charged up against the preprocessing efforts needed to update a set of auxil-
iary data structures which store the information that enables a constant-time test. This
update, though, need be performed only after an actual insert of a task into a route has
been performed. This means that in each destruction—reconstruction sequence (line 4
in Algorithm 1), when n tasks are currently not on a route after the destruction step,
the update is performed n times, and each time, the update is performed for only one
route, namely, the one into which the last insert was performed. In each reconstruction
step, each currently unperformed task is first tested for insertability into each exist-
ing route as well as into a new route to be performed by a vehicle of each vehicle
class of which there is still an unused vehicle available. These insertability tests mean
testing, for each position on a route, whether the pickup location of a task can be
inserted directly behind this position and whether the delivery location of the task can
be inserted directly behind the pickup location or at any subsequent position. More-
over, after each actual insert into a certain route, all remaining unperformed tasks must
again be tested in this manner for insertability into the changed route. Compared to
the computational costs these operations require, the time for the update of the auxil-
iary data structures is negligible. The experimental results described in Sect. 5 clearly
confirm this.

When, in an insertion step, the creation of a new subroute must be tested, which is
necessary if a location not reachable by trailer is to be inserted directly after a location
that is left with the trailer coupled, a suitable PTL must be selected. The ALNS does not
necessarily choose the PTL closest to the task location in question. Instead, a certain
degree of randomness is introduced, with closer PTLs being selected with higher
probability. This mechanism is similar to what is done in the removal heuristics, as
explained in the preceding subsection. Details on how such an insertion is performed
are given in Sect. 4.

Algorithm 2 describes the reconstruction process more formally. It presents in detail
what happens in line 4 of Algorithm 1.

Algorithm 2 Destruction-Reconstruction Loop
1 Select the number 7 of tasks to be removed as described in Section 3.1
2 Remove n tasks from their routes using the selected destruction procedure; these tasks are now unplanned
3 // Reinsert the unplanned tasks one by one using the selected reconstruction procedure:
4 for each remaining unplanned task ¢
5 Determine the best (according to the selected reconstruction procedure) insertion positions for the pickup and the delivery
location of ¢ into each route r by trying each potential insertion position on r using either the linear- or the constant-time test
6 while unplanned tasks remain
7 Select the task ¢ to be inserted and the route r into which ¢ is to be inserted according to the criterion defined by the selected
reconstruction procedure and the selected insertion preference strategy
8 Insert ¢ into 7
9 if the constant-time procedure is used
10 \ Update the auxiliary data structures for the route r into which the selected task ¢ was inserted

11 Update, for each remaining unplanned task, the best insertion position into the changed route r

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1123

3.3 Adaptive weight adjustment

A roulette wheel procedure with adaptive weight adjustment, similar to the one
described in Ropke and Pisinger (2006), is used for selecting the destruction and
reconstruction operators in each iteration. This works as follows: during segments
of 100 iterations, performance scores are recorded for each operator. The scores are
initialized to zero and increased by 33 if an application of the operator yields a new
best solution, by 9 if the operator yields a solution x’ that is better than the current
solution x, and otherwise by 13 if the solution is accepted. The operator weights in a
new 100-iteration segment are computed as the sum of the weights used in the pre-
ceding segment, multiplied by a factor of 0.9, and the relative scores collected in the
preceding segment, multiplied by a factor of 0.1. The relative score of an operator in
a segment equals the absolute score obtained in this segment divided by the number
of times the operator was used in this segment. The destruction and reconstruction
operators to use in an iteration are then selected with a probability corresponding to
their weights.

3.4 Acceptance mechanism

A simulated annealing acceptance criterion is used. If a new solution x’ is better
than the one it was created from, it is accepted. Otherwise, if it has not already been
generated, it is accepted with a probability of D=1 @)/1 where f(s) is the
objective function value of a solution s and 7 is the temperature. The initial value for ¢
is set such that a solution that is five percent worse than the current solution is accepted
with probability 0.5. In the course of the algorithm, ¢ is decreased in each iteration
by a factor of 0.99975. The information about already generated solutions is stored in
compact form in a hash table.

Apart from the above elaborations, the decisive modification to the ALNS as described
by Ropke and Pisinger (2006) is that the time window and capacity feasibility tests
described in the next section are used; these take into account trailers and accessibility
restrictions.

4 Feasibility tests

In the following, techniques are proposed to test the temporal and capacitive feasi-
bility of task insertions into routes performed by single lorries or LTCs in constant
time, given appropriate auxiliary data computed in a preprocessing step. (In a slight
abuse of terminology, ‘amortized constant time’ is abbreviated by ‘constant time’ here
and in what follows.) As will be shown, the preprocessing to determine or update the
necessary auxiliary data for a route to test time window as well as capacity feasibility
takes time quadratic in the number of tasks fulfilled or locations visited on the route,
but it is performed only once for a given solution. The resulting data are then used
for all feasibility tests, i.e., for testing all potential insertion positions of all unplanned
tasks. The routines are embedded in the ALNS metaheuristic described in the pre-

@ Springer

1124 M. Drexl

vious section. They could, however, also be used within other metaheuristic or local
search approaches. In this section, the following notation is used. Each task ¢ from
pickup location p to delivery location d is denoted by t = (p, d) and has a capacity
requirement ¢' > 0, which means that ¢ units of load must be picked up at p and —g’
units must be delivered at d. The capacity requirement at each location u is denoted
by g,. Hence, g, > 0 for each pickup location p, g4 < 0 for each delivery location d,
and g, = 0 for each vehicle depot or PTL u. Each location u has a single, hard time
window [ay, b,],0 < a, < b, < T, where T is the length of the planning horizon.
The depot locations have a time window of [0, T']. Each task location u has a unique
service time (duration) s,, and each PTL u has a decoupling duration (including a
fixed time for a potential load transfer) of sg“' and a coupling duration of s;,”*”. For
each pair (u, v) of locations, #,,, denotes the travel time from u to v. Each single lorry,
each LTC lorry, and each trailer has a specified one-dimensional capacity, denoted by
Qi and Qj(respectively. For a single lorry &, Qf{ = 0. The symbol ‘==’ serves as
equality operator, ‘=" is the assignment operator, and ‘x += y’ is used as shortcut

for‘x =x+y’.
The descriptions assume that feasibility of an insertion of a task t = (p, d) into an
existing route r = (0, 1,...,n — 1, n), with p to be inserted directly after position

(zero-based index of the route) & and d to be inserted directly after position i, is to be
tested. If p cannot be reached with a trailer, r is performed by an LTC, and the trailer
is attached upon leaving h, a location triple p = ptl, — p — ptl, corresponding to
anew subroute is inserted after /; similar for i and d. ptl, is a suitable trailer parking
location; similar for d. Note that p, d, ptl,, ptly, p, and d are locations, whereas h
and i are indices on a route. To simplify notation, when referring to a location visited
at a certain position on a route, only the index is used: for example, the start of the
time window of index i, i.e., of the ith location visited on a route, is denoted by a;,
and the travel time between index i and a to-be-inserted location v is denoted by #;,
etc.

Indices and i indicate positions in the route before p and d are inserted. Hence, if
h == 1, then d is to be inserted directly after p, or, if a triple p = ptl, — p — ptl,
is to be inserted, directly after the triple. If, however, d cannot be reached with a
trailer and p is left with the trailer attached or a triple p is to be inserted, then a
triple d = ptly — d — ptly is inserted. In principle, if h == i and p or d must
be surrounded by a decouple—couple pair, it would also be possible to surround both
p and d by one pair. This might be useful for instances where many pickups are
close to their deliveries. For simplicity of exposition, this additional possibility is not
considered in the present paper. When this option is used, constant-time feasibility tests
are just as well possible with the auxiliary data structures described in the following
subsections; the formal description, though, is tedious. Moreover, in the course of an
ALNS, configurations where it is beneficial that the pickup and the delivery of a task
are surrounded by a decouple—couple pair will often be achieved automatically as a
result of the removal steps.

Several consecutive subroutes by one LTC lorry at the same PTL are modelled by
inserting a decouple—couple pair for each subroute. It is assumed that the fixed service
times at PTLs are incurred also in such cases.

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1125

4.1 Time windows

In this paper, neither route duration constraints nor time-dependent costs are considered
and thus there is no need to strive for minimization of route duration. Under these
conditions, it is optimal regarding feasibility to consider only as-early—as-possible
schedules, i.e., to assume that a vehicle always leaves a location at the earliest possible
point in time; this provides the maximum possible flexibility at subsequent positions
on the vehicle’s route.

Testing time-window feasibility of an insertion in linear time is trivial: the locations
of the to-be-inserted task are tentatively inserted (including PTLs for decoupling and
coupling, if necessary); the route is traversed, starting at the depot at time zero; travel,
service and waiting times are added; finally, the resulting earliest possible starts of
service are compared with the location time windows.

Testing time-window feasibility in constant time is a little more involved. To do so,
Savelsbergh (1992) introduced the concept of forward time slack (FTS). The FTS at
a position on a route indicates by how much the earliest possible start of service at
this position can be postponed without violating a time window at this or a subsequent
position on the route. This idea is adapted to test the feasibility of the insertion of a
pickup-and-delivery task (p, d) into a PDPTWT route r = (0, ..., n) as follows.

First, note that a triple u = ptl, — u — ptl, can be regarded as a meta-location
or segment (cf. Irnich 2008a; Vidal et al. 2014) and handled as if it were a single
location. Hence, whenever the insertion of a triple & needs to be fested because the
task location u cannot be reached with a trailer, the time window of the corresponding
meta-location is tested. (However, when an insertion of a triple for a location u is to
be actually performed, the sequence ptl, — u — ptl, must be inserted, because the
new subroute created by inserting the triple might be enlarged by an insertion of a
task location in a later iteration.) The time window [a;, b;] of a meta-location need
be precomputed only once, before the start of the ALNS, for each task location u and
each PTL prl. This can be done by setting

d
a; = max (apflv ay — Iptlu — Spflc) ,
. d \ d n
b; = min (bu —Ipilu — Sp;:[c’ bptl — Yy, ptl — Su — Iptlu — Spf;) .

If a; > by, then ptl cannot serve as parking location for visiting u. Otherwise, the
service time s; of a meta-location u is set to

coup

__ Jdec
Sa = Sy, t ptlyu + Su + tupri, S py,

The travel times to and from a meta-location u are those to and from ptl,. The travel
costs to u are those to ptl, for a lorry with its trailer plus those from ptl, to u plus
those from u to ptl,, both for a lorry without its trailer. The travel costs from i are
those from ptl, for a lorry with its trailer. Second, the following auxiliary data are
used:

e; Earliest point in time at which service at index i can begin.

@ Springer

1126 M. Drexl

w; Waiting time at index i, i.e., time period between arrival and beginning of service

ati.
w;; Cumulated waiting time between i and j, i.e., sum of waiting times at
indices i, ..., j.

sl; Slack time from 0 to i, i.e., maximal amount of time by which the departure at the
start depot can be postponed from ey without violating any time window between
Oandi.

fi Forward time slack from i to n, i.e., maximal amount of time by which e; can be
postponed without violating any time window from i up to the end of the route.

The first four quantities are computed for each route in a preprocessing step as follows:

ey = aop; e; =max(a;, e;—1 + Si—1 +ti—1,); i=1,...,n
woy = 0; w; = max(0,a; — (ej—1 +si—1 +ti—1.i)); i=1,...,n
woo = 0; wei = wo,i—1 + w;; i=1,....n
sly = bg — eq; sl; = min(sl;_1, b; —e; + wo,i); i=1,....,n

The FTS can then be computed as f; = minj—; . ,(sl;) fori = 0,...,n. The
computation or update of the first four auxiliary data structures requires linear time in
n; the FTS computation time is quadratic in n. Still, as the computational results in
Sect. 5 demonstrate, this preprocessing clearly pays off.

Given these data, time-window feasibility of an insertion can be tested as described
in Algorithm 3 (cf. Masson et al. 2013b). Note that it is sufficient to execute lines 1-7
of Algorithm 3 only once for each i with a given PTL ptl,. If TestTimeWin-
dows returns false in line 7, it makes no sense to test further insertion positions
for d with h as insertion position for p or p, because neither p nor p can be
inserted after & or later on r; hence, the next position for inserting p can be con-
sidered.

Due to the limited planning horizon, if a task location not reachable by trailer is to
be inserted at a certain position on a main route, i.e., when a new subroute must be
created, in principle all PTLs must be tested for whether an insertion at this position
is possible. This, of course, increases the runtime of an insertion heuristic. However,
if only a subset of all PTLs is considered, an insertion heuristic may miss some
feasible solutions, and the solution quality of the overall algorithm may deteriorate.
The time window feasibility test described in Algorithm 3 receives as input a particular
choice of PTL for the pickup and for the delivery location. Therefore, the test is exact
in the sense that it will correctly consider the insertion of a specific triple ptl, —
v — ptl, feasible if and only if the insertion of this specific triple is feasible. If
several PTLs shall be considered, Algorithm 3 must be embedded in a loop over these
PTLs.

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1127

Algorithm 3 TestTimeWindows(p, ,d,d,r,h,i)

Input: Pickup-and-delivery task ¢ = (p,d)

Route r=(0,1,2,...,n)

Indices of insertion positions i,i withO0<h<i<n-1

Meta-locations p = ptlp — p — ptlp and d =ptly — d — ptlg for p and d respectively, for a specific PTL ptlp for p and a
specific PTL ptl; for d (only if r is performed by an LTC)

Result: Returns true if and only if inserting p or f into r directly after index & and d or d directly after i (or, if and only if A ==,

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

after p or p) is feasible regarding all time windows, false otherwise
u=p
if p cannot be reached with trailer and trailer is currently attached
| u=p
// Test feasibility of inserting u after h
ey =max(ay,ep +8p +tpy)
if e, > by
‘ return false
// Ap41 is the time shift at h+1, the increase of e, caused by inserting u
Ap1 =max(0,ey +5y —ep1 +y 1)
if Api1 > fhe1
‘ return false
v=d
if d cannot be reached with trailer and trailer is currently attached
| v=d
// Test feasibility of inserting v after i
ifi>h // Delivery not directly after pickup
ey = max(ay,a; +max(0,Ay 11~ Wh11,;)+5; +1;,)
if ey, > by
‘ return false
// Ajy1 is the time shift at i+1 caused by inserting v
Ajy1 =max(0,ey +sy —ej1 +1tyi41)
if Ajy1 > fiva
‘ return false
else // i==h, i.e., delivery directly after pickup
ey =max(ay,ey + sy +tup)
ifey, > by
\ return false
Ajp1 =max(0,ey +5y +1, 41— €jy1)
if Ajy > fiva
\ return false
return true

4.2 Capacities

Time-window tests are the same for single lorry as well as LTC routes: at each position
on aroute, the earliest start of service must lie within the time window of the respective
location. By contrast, the presence of trailers requires additional capacity tests for LTC
routes compared to single lorry routes. In this section, it is first described verbally what
must be tested in linear- and constant-time capacity tests. Afterwards, the linear- and
constant-time test routines are presented.

At each position of single lorry routes and main routes of LTCs, the total load

balance, which is the difference between the load picked up on the route so far minus
the load delivered so far, must be less than or equal to the lorry plus the trailer capacity.

For capacity considerations on subroutes, the following two quantities are relevant:

— The minimal lorry load at decoupling, i.e., the minimal load that must inevitably

be in the lorry upon leaving the decoupling location. This load is equal to the
maximum of the following two values:

— The difference between the total load balance at the decoupling location and
the trailer capacity.

— The sum of the capacity requirements incurred by the deliveries on the subroute
whose pickups lie before the subroute. (This value is nonnegative, so that the
minimal lorry load at the decoupling location is nonnegative as well.)

@ Springer

1128 M. Drexl

— The subroute load balance at each position, i.e., the difference between the sum
of the load in the lorry at the start of the subroute plus the load picked up on this
subroute so far minus the load delivered on this subroute so far. (The subroute load
balance can be positive, zero, or negative.)

A subroute is capacity-feasible if and only if the first quantity is less than or equal to
the lorry capacity and the value of the second is nonnegative and less than or equal to
the lorry capacity at each position.

4.2.1 Testing capacities in linear time

To test capacity-feasibility of an insertion in linear time, the procedure detailed in
Algorithm 4 is used. For simplicity, the vehicle index k is omitted: Q' and Q' are used
instead of Qi and Q, to denote the lorry and the trailer capacity.

Testing capacity in linear time for single-lorry routes is simple: the to-be-inserted
task is tentatively inserted, one pass over the route is performed, and the capacity
requirement at each position is added to the total load and compared with the lorry
capacity (lines 2-6).

Testing capacity for LTC routes is not entirely straightforward even in linear time.
As discussed above, it must be known at the start of a subroute how much load must
be in the lorry to be able to perform the deliveries whose pickups are not on this
subroute. This information is gathered in one forward pass over the route (lines 10—
15). (In reality, it is of course not enough to have this amount of load in the lorry
at the start of a subroute. It is also necessary to have the right commodities aboard
the lorry, those that must be delivered on this subroute. This, however, has to be
ensured by the driver. For algorithmic planning, it is sufficient to test whether enough
loading capacity is available on the lorry.) The second pass (lines 19-36) then per-
forms the actual capacity test on main routes and subroutes (total load at all positions,
minimal load at decoupling positions, subroute load balance at all positions on sub-
routes).

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1129

Algorithm 4 TestCapacityLinear(r,k)

Input: Route r =(0,1,2,...,n) with to-be-inserted task tentatively inserted, including decoupling and coupling locations where

necessary, and capacity requirements g, € Z,v=0,1,2,...,n
Vehicle £ (single lorry or LTC) with lorry and trailer capacities Ql and Q?; for single lorries, Qi==0

Result: Returns true if and only if lorry and, where applicable, trailer capacity of 2 are maintained at each index of r, false

36
37

otherwise

TotalLoad =0
if @ ==0 // Test for single lorries
forv=0,1,2,...,n
TotalLoad += g,
if TotalLoad > Q'

| return false
else // Test for LTCs
LoadDeliveredButNotPickedUpOnSubroute = array of integers of length n + 1, initialized to 0
IndexOfLastDecouple =0
forv=0,1,2,...,n
if v corresponds to a decoupling location

| IndexOfLastDecouple = v

if Trailer is not attached upon leaving v
if v corresponds to a delivery and associated pickup is before current subroute
\ LoadDeliveredButNotPickedUpOnSubroute[IndexOfLastDecouple] +=(-1)- g,
MinLorryLoadSinceLastDecouple =0
MaxLorryLoad =0
MaxLorryLoadSinceLastDecouple =0
forv=0,1,2,...,n
TotalLoad += ¢y
if TotalLoad > Q! + Q!
return false

MaxLorryLoad = min(TotalLoad,Q")
if v corresponds to a decoupling location

MinLorryLoadSinceLastDecouple = max(TotalLoad - ¢, LoadDeliveredButNotPickedUpOnSubroute [v])
if MinLorryLoadSinceLastDecouple > Q'

| return false

MinLorryLoadSinceLastDecouple = max(MinLorryLoadSinceLastDecouple,0)
MaxLorryLoadSinceLastDecouple = MaxLorryLoad
if Trailer is not attached upon leaving v

MinLorryLoadSinceLastDecouple = max(MinLorryLoadSinceLastDecouple + gy, 0)
if MinLorryLoadSinceLastDecouple > Q'

| return false

MaxLorryLoadSinceLastDecouple = min(MaxLorryLoadSincelLastDecouple + qU,Ql)
if g, <0 and MaxLorryLoadSinceLastDecouple < 0

| return false
return true

4.2.2 Testing capacities in constant time

To test the feasibility of the insertion of a pickup-and-delivery task (p, d) in constant
time, the following data, computed for each route in a preprocessing step, can be used.

1.

2.

TrailerAttached: An array of boolean values. TrailerAttached[i] indicates whether
or not the trailer is attached upon leaving (the location corresponding to) index i.
MaxTotalLoadOfSegment: A two-dimensional array of nonnegative integers.
MaxTotalLoadOfSegment[i][offset] stores, for an index i on a route, the maximal
load balance from the start of the route at any index from i up to and including
i + offset. In particular, MaxTotalLoadOfSegment[i][0] stores the overall load
picked up but not delivered yet from the start depot to and including the location
at index i.

For example, consider the following route:

Index ‘01 2 3 4 5 6 7 8 9 10 11 12 13
Capacity 0 +40 +10 0 +10 +20 —40 +5 —10 0 —10 —20 =5 O
requirement

@ Springer

1130 M. Drexl

This route contains one subroute, which starts at index 3 and ends at index 9,
i.e., the zero value at index 3 corresponds to a decoupling process at some PTL,
and the zero value at index 9 represents the associated coupling process at this
PTL. The load balances at indices 2-6 are + 50, + 50, + 60, + 80, and + 40;
thus, MaxTotalLoadOfSegment[2][4] = + 80. Moreover, MaxTotalLoadOfSeg-
ment[8][0] = +35.

3. TotalLoadDeliveredButNotPickedUpOnSubroute: An array of nonnegative inte-
gers. If i is an index corresponding to a decoupling location, TotalLoadDelivered-
ButNotPickedUpOnSubroute[i] stores the overall load delivered but not picked
up on the respective subroute.

4. LoadBalanceFromStartOfSubroute: An array of integers. LoadBalanceFrom-
StartOfSubroute[i] stores, for an index i on a subroute, the positive, negative
or zero load balance from the start of the subroute up to and including i.

In the above example route, LoadBalanceFromStartOfSubroute[7] = —5 = 10+
20 — 40 + 5.

5. MaxLoadBalanceFromStartOfSubroute: A two-dimensional array of nonnegative
integers. MaxLoadBalanceFromStartOfSubroute[i][offser] stores, for an index i
on a subroute, the maximum of zero and the largest load balance from the start of
the subroute to any index from i up to and including i + offset.

In the above example, MaxLoadBalanceFromStartOfSubroute[6][2] = 0 =
max(0, —10, —5, —15) = max(0, LoadBalanceFromStartOfSubroute[7]).

6. IndexOfLastPrecedingDecouple: An array of nonnegative integers. IndexOfLast-
PrecedingDecouplel[i] stores the index where the last decoupling that precedes i
on the route occurs.

7. OffsetOfNextCoupling: An array of nonnegative integers. OffsetOfNextCou-
pling[i] stores the number of positions on the route from i until the next index of
a coupling process.

MaxTotalLoadOfSegment and MaxLoadBalanceFromStartOfSubroute can be filled
using a nested forward pass, i.e., by iterating over all indices j > i for each index i on
the route. All other data structures described above can be filled or updated by passing
through a route once. This means that all necessary preprocessing data for a route can
be computed in quadratic time in the number of tasks on the route.

Given these data, the capacity feasibility of an insertion of a task r = (p, d) into
an existing route », with p to be inserted directly after position (zero-based index of
the route) & and d to be inserted directly after position i, can be tested as described
in Algorithm 5. It is evident that the algorithm itself runs in constant time, i.e., its
runtime is independent of the number of tasks or the number of locations visited on
route r.

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1131

Algorithm 5 TestCapacityConstant(p,d,r,h,i,k)
Input: Pickup-and-delivery task ¢ = (p,d) with capacity requirement ¢ >0
Route r=(0,1,2,...,n)
Indices of insertion positions h,i with0<h<i<n-1
Vehicle % (single lorry or LTC) with lorry and trailer capacities QI and Q?; for single lorries, @ ==
Result: Returns true if and only if inserting p or a triple p = ptlp — p — ptl) into r directly after index 2 and d or a triple d=
ptlyg —d — ptly directly after i (o, if and only if 2 == i, after p or p) is feasible regarding lorry and trailer capacity, false
otherwise
1 // Evaluate feasibility of insertion regarding total capacity
2 if Q' + Q' < MaxTotalLoadOfSegment[hlli — h]+q
3 \ return false
4 elseif @' ==0
5 ‘ return true
6 // Evaluate feasibility of insertion regarding lorry capacity
7 ifi>h // Delivery not directly after pickup
8 // Evaluate feasibility of insertion of pickup
9 | if TrailerAttached[k] == false // Trailer not attached when leaving h

10 ind = IndexOfLastPrecedingDecouple[h]

11 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] - Q°,

12 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])

13 LoadAfterPickup = MinLoadAtDecouple + LoadBalanceFromStartOfSubroute[h]+ ¢

14 offset = OffsetOfNextCoupling[h + 1]

15 if i + OffsetOfNextCoupling[h] = i

16 | offset=i-h

17 if LoadAfterPickup + MaxLoadBalanceFromStartOfSubroute[A + 1][max(0,offset — 1)] > Q!
18 return false

19 // Evaluate feasibility of insertion of delivery
20 if TrailerAttached[i] == false

21 if i — h = OffsetOfNextCoupling[h] // Delivery not on same subroute as pickup
22 ind = IndexOfLastPrecedingDecouplel[i]

23 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] -Qt,

24 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])
25 if MinLoadAtDecouple + MaxLoadBalanceFromStartOfSubroute[indlli — ind] + g > Q'
26 | return false

27 else // i==h, i.e., delivery directly after pickup
28 | if TrailerAttached[%] == false

29 ind = IndexOfLastPrecedingDecouple[h]

30 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] - Q°,

31 TotalLoadDeliveredButNotPickedUpOnSubroute[ind])
32 if MinLoadAtDecouple + LoadBalanceFromStartOfSubroute[h]+ ¢ > Q'

33 | return false

34 return true

Note that, to test the capacity constraints, it is irrelevant whether or not the pickup
and/or the delivery location of the task to be inserted must be surrounded by a decouple—
couple pair for insertion at the position in question, as decoupling and coupling
processes have a capacity requirement of zero.

Note further that, similar to the situation in Algorithm 3, if TestCapacityConstant
returns false from line 3 or line 18, it is unnecessary to consider further potential
insertion positions for d for the current insertion position of p. Instead, the next
position for inserting p can be considered. Hence, it is sufficient here to execute
lines 2-20 of Algorithm 5 only once for each h.

5 Computational experiments

5.1 Benchmark instances

To this author’s knowledge, there are no benchmark instances for the PDPTWT as
studied in this paper. Therefore, a set of instances has been created to perform compu-
tational experiments with solution procedures. A well-known and widely used set of

benchmark instances for pickup-and-delivery problems with time windows and with-
out trailers has been proposed by Li and Lim (2003) and is available at www.sintef.no/

@ Springer

www.sintef.no/projectweb/top/pdptw/li-lim-benchmark

1132 M. Drexl

projectweb/top/pdptw/li-lim-benchmark. This set comprises six classes of instances,
with 100, 200, 400, 600, 800, and 1000 task locations, and thus with 50, 100, 200, 300,
400, and 500 tasks respectively. The instances have been derived from the Solomon
instances for the vehicle routing problem with time windows (Solomon 1987), and
in analogy to the original data, the Li and Lim instances are also partitioned into six
classes LC1, LC2, LR1, LR2, LRCI, and LRC2 according to structural characteris-
tics as follows: ‘C’ stands for geographically clustered tasks which, for the PDPTW
and the PDPTWT, also means that the pickup and the delivery location of a task are
close together; ‘R’ stands for geographically randomly distributed tasks; ‘1’ stands for
restrictive time windows so that only few tasks per route are possible; and ‘2’ stands
for less restrictive time windows and a longer planning horizon, which makes longer
routes (routes covering more tasks) possible. Each instance has a homogeneous fleet,
and start and end depot location of the vehicles coincide.

As pointed out by Derigs et al. (2013, p. 544), some benchmark instances for
vehicle routing problems with trailers are constructed such that there is no need to use
lorry—trailer combinations at all, because the capacity of the lorry is high enough for
transporting the entire demand and/or the time windows are so restrictive that a vehicle
cannot serve many customers. This has also been observed when trying to modify the
Li and Lim instances for use with trailers. Therefore, the benchmark instances for
the PDPTWT have two vehicle classes: lorry—trailer combinations and single lorries.
The single lorries have artificially high fixed cost, so that they are used only when
necessary to ensure that all tasks are covered. Such cases can occur when the time
windows of a task are so tight that there is not enough time to decouple the trailer to
visit the pickup or the delivery task.

With this in mind, the Li and Lim instances have been adapted to the PDPTWT as
follows:

— Every even-numbered location (as listed in the original Li and Lim instance file)
is reachable by trailer, i.e., locations 0, 2, 4, 6...; the odd-numbered ones are not.

— Starting with location 0 (the depot), every second location that is reachable by
trailer may be used for parking and transshipment; i.e., for locations 0, 4, 8, 12,...,
a PTL is created. This means that the number of PTLs is approximately half the
number of tasks.

— As mentioned, the time windows of task locations are generally too short in the
Li and Lim instances, so that no LTCs are used. Therefore, each original time
window [a,, b,] of a task location u is enlarged to a, = max(0, a, — TWShift)
and b, = min(b, + TWShift, T), where TWShift = | 100 + (AvgPickupTime +
AvgDeliveryTime) /2|, and AvgPickupTime and AvgDeliveryTime respectively
indicate the arithmetic mean of the service times at pickup and at delivery locations
as indicated in the original files, rounded down to the nearest integer.

— The time windows of parking and transshipment locations are set to the complete
planning horizon, i.e., to the time window of the depot. According to the author’s
practical experience, this is a mild and realistic assumption.

— The decoupling and coupling service times at PTLs are set to AvgPickupTime and
AvgDeliveryTime respectively.

— The number of single lorries as well as the number of LTCs is considered unlimited.

@ Springer

www.sintef.no/projectweb/top/pdptw/li-lim-benchmark

On the one-to-one pickup-and-delivery problem with time... 1133

— Single lorries are assigned a fixed cost of 1000; LTCs have no fixed cost.

— As in the Li and Lim instances, Euclidean distances are used for travel times as
well as travel costs. For LTCs, travel times and costs are the same whether or not
the trailer is currently attached.

— Capacities of single and LTC lorries are set to the vehicle capacity specified in the
respective original instance; trailer capacities are set to 150% of the lorry capacity.

There is an arc between two locations u and v, i.e., a location v can be visited directly
after a location u, unless a, + t;, + ty, > by, where £ = 0 for the depot location 0,
t; = s, for all task locations u, and ¢, = min(AvgPickupTime, AvgDeliveryTime) for
all PTLs u.

Table 1 shows the distribution of the number of instances of the different types and
basic instance characteristics. Note that the number of tasks differs slightly between
instances of the same size class in the Li and Lim instances. Therefore, the values
in the columns from ‘No. locations’ to ‘No. Arcs’ are averages, too. By construction
of the instances, the column ‘No. Tasks’ also indicates the number of task locations
reachable by trailer. Lorry capacities are the same for all instances of the same size
class for each type.

5.2 Results

The code was programmed in C++ and compiled with Microsoft Visual Studio Enter-
prise 2017, Version 15.5.3. The experiments were run on a workstation with the
Windows 10 Education operating system, an Intel Xeon E5-1660 v3 @ 3.00 GHz
CPU, and 64 GB RAM in single-thread mode. The parameters used in the ALNS are
listed in Table 3 in the “Appendix”.

To assess the relative performance of the linear- and the constant-time test,
10,000 ALNS iterations were performed with both tests for all instances of size
classes 100, 200, and 400, i.e., those with at most 200 tasks. For the larger
instances, computation times using the linear-time test became too long, so that,
for size classes 600, 800, and 1000, only the constant-time test was used. For
the linear-time test, the time windows are tested together with the capacities
in the loop of line 3 or 19 in Algorithm 4. The constant-time test first exam-
ines time window feasibility, then capacities. Aggregated results are shown in
Table 2; detailed results by instance are given in Tables 4, 5, 6, 7, 8 and 9 in the
“Appendix”.

The most important finding that can be read from Table 2 is that the speedup
of the constant-time test compared to the linear one is considerable for all instance
types and ranges from a factor of nine to a factor of 142, with an average of 38.
This demonstrates that the effort of implementing the constant-time tests is well jus-
tified.

Further insights that can be obtained from the data in Table 2 are:

— The larger the instance, the higher is the iteration number where the best solution
was found.

— The number of routes in the best solution found can differ significantly between
instances of the same size class and type.

@ Springer

M. Drexl

1134

0SS 81 LE 143 869 1881 ¥L9°6S (43 09¢ €01 09 v
0001 81 (U ol SSL SEST 686°SS IS 994 101 0l 2O¥1
00¢ 81 01 6 (413 €9 ¥TLY9 €S 99¢ 0 or 1091
0001 Ll 01 01 656 SEST 0€9°SS IS 94 101 01 [2:4!
00¢ L1 01 6 e €9 8EI‘E9 €S 9¢ SoI1 01 41
00L 61 06 L8 1611 86S€ TS8VS IS 9¢¢ 101 01 [0
00¢ 81 06 18 879 ISET €IL°€9 €S 99¢ So1 01 1071
00¢
£rs 91 143 [43 €IS 00IT 2TT91 Le (43! 43 9¢ v
0001 Ll 0l ol 108 096 8TS'SI 9¢ 0€l 1S 8 O¥1
00¢ Ll ol 6 0ce ovT 196°L1 Le 9fl (39 8 ID¥1
0001 Sl 01 0l 9¢ 0001 2T6¥°ST 9¢ 6¢l 159 Il [2:0!
00¢ Sl 01 6 60¢ 0€T €€9°L1 LT el €S Cl 191
00L 81 06 98 11T 06£€ ¥96°€1 9C (31 1s 8 1
00¢ 61 06 08 786 9€T1 60£°91 LT gel €S 6 1071
001
own oun MOpUIM
Juowaanbar QOTAIAS QOIAIIS un sole SLd SUOIBOO[SYSE)
Kyoede) K1oAT[9(q dnyoig P3ua "ON 'ON ‘ON 'ON
uozroy
Kyoedeo Suruuerd FER AN SSB[o
Ao a8er0Ay ySua] a8eroay ‘ON 2dAL, 71§

SONSLIddRIRD dueISU] | 9jqel

pringer

as

1135

On the one-to-one pickup-and-delivery problem with time...

0SS 81 LE 123 €88 S68T LIYTOS SSl SLL 60¢ 09 v
0001 81 01 01 9601 €8y LT8TLY (49! 09L €0¢ 0l ¢O¥1
00¢ 81 01 6 16€ 90TI LIT'LIS 8S1 88L 1413 or 1091
0001 81 01 01 LTST €87 8SSILY 4! 6SL £0¢ 01 [2:9!
00¢ 81 01 6 9LV 90T1 8+9°C1S 8S1 88L 1453 01 41
00L 6l 06 L8 L611 SI8E 9L6°C8Y €51 oL S0¢ 01 1
00¢ 81 06 I8 €59 9671 8LTISS 861 I6L Sle 01 1071
009
0SS 81 LE 123 sL €LIT TL1'TET Y01 LIS 90¢C 09 v
0001 81 01 01 L8 090€ $8L°0TT 01 60S €0¢ 0l ¢O¥1
00¢ 81 01 6 LEE S9L 0TI'9¥C SOl €¢s 80¢C (Ute): !
0001 81 01 01 SETT €I1Te LY0'8IT 01 LOS 0¢ 01 [2:9!
00¢ 81 01 6 8¢ 08 8I8‘I¥C SOt gcs 60T 01 191
00L 6l 06 L8 LLTT €69€ P0ELIT 01 01¢ €0¢ 01 1
00¢ 81 06 8 s9 10S1 296 °8¥C 901 LTS 01¢ 01 1071
0oy
own owmn MOpUIM
juswaabaz Q01AIOS Q01AIOS Eliiiel sore SLd ~ suoneoo] SYse)
Kyoede) K1oAT[9(q dnyoig lislic "ON 'ON ‘ON 'ON
uozroy
Kyoedeo Suruuerd FER AN SSB[o
Ao a8eroAy ySue] a8eroay ‘ON 2dAL, 71§

panunuod | 3jqe]

pringer

As

M. Drexl

1136

1% 81 9¢ 123 88 L19T LS8‘L6Y yel 0L9 L9¢C 1233 v
v
1239 81 8¢ 33 S601 L96€ 16T°60€°1 8SC 06¢l SIS 8¢ v
0001 81 01 01 covl ¥8TL 18T°CST'T €5¢C 99¢1 S0s 8 O¥1
00¢ 81 01 6 13974 1281 L88'8TT'I €9¢ 457! ¥Cs or 1091
0001 81 01 01 S6l1c L69L 88S°06T°1 £5¢ €9¢l ¥0S 01 [2:9!
00¢ 81 01 6 L19 ST61 L96°STET 9¢ 60¢T1 €Cs 01 41
00L 6l 06 L8 01¢I1 Y16€ LIL'STE'T 944 cLel 80S 01 1
00¢ 81 06 [89 ¥Z81 ¥06°0CTh‘1 €9¢ 1453 Scs 01 1071
0001
0SS 81 LE 123 9101 1€9€ 90€°798 LOT (430! (484 09 v
0001 81 01 01 el 6879 0€T°SI8 €0C 41! oV 0l ¢O¥1
00¢ 81 01 6 Iev €LST 080°8¥8 0lc 8¥01 8Iy (Ute): !
0001 81 01 01 6861 ISL9 8TI'9€8 €0¢ 410! Y0¥ 01 [2:9!
00¢ 81 01 6 €LS 8891 809°1L8 01¢ 6¥01 184 01 191
00L 6l 06 L8 00¢I 118¢ 818°6S8 ¥0¢ 8101 90 01 1
00¢ 81 06 8 9L9 9L91 ¥L6°9t6 0lc 1601 61y 01 1071
008
own owmn MOpUIM
juswaabaz Q01AIOS Q01AIOS Eliiiel sore SLd ~ suoneoo] SYse)
Kyoede) K1oAT[9(q dnyoig lislic "ON 'ON ‘ON 'ON
uozroy
Kyoedeo Suruuerd FER AN SSB[o
Ao a8eroAy ySue] a8eroay ‘ON 2dAL, 71§

panunuod | 3jqe]

pringer

as

1137

On the one-to-one pickup-and-delivery problem with time...

1C1/eyll L86/TTE/8Y1 L1/6/€ cells 1¢/6/€ 1e/6/c 0866/S€SL/TIT v
8/69/€S LS9/T8YIVIE L1/6/S 81/01/¢ 9/SIy 9/SIY 65L6/6989/C1C [4e). 4
LT/T/81 0€C/061/SLT €1/01/L S1/¢1/01 Cl/11/6 Cl/11/6 8L86/SL98/EET9 1091
1C1/06/69 L86/L19/SLE el/L/E S1/8/S Shle Sl 6¥66/66LL/V6T [2:9!
9T/Tel/6l 6CC/861/SL1 [1/6/L 9L/T1/8 11/01/8 [1/01/8 SY96/€99L/L6VY ;11
17/6£/9¢ 05€/08¢/0tC 8/9/v 6/L19 8/LI9 8/LI9 9096/9L95/T9LT (408!
440! 691/LS1/811 9lmwlrel e/1e/oe 1e/1e/oc 1e/1e/oc 0866/0€S8/911S 101

00¢
85/5T/6 951/89/6€ 11/6/1 vI/LIT cl/Lre cl/Lre 6666/9L79/T8T v
£V/6L/TE OrL1/c6/vL vI€IT Shvle 14743 124943 6666/VEES/VLYT AT
01/6/6 Ev/TrI6E 11/8/9 1474701 (44701 (4747081 9166/2908/8¢61 1091
8S/LYIEE 9SI/CIT/SL S/ell S/erc VIElC 1Z47(4 9166/LL6S/V1Y [2:9!
01/6/6 SvITvi6e 6/L/9 cl/11/01 LT/T1/T1 [RVARVARY 0S86/1118/v6LY 11
6¢€/LE/SE 06/8L/TL 4[4 vivie vivly viviv 6698/956£/C8C (408!
Cl/TLol1 Lylvvicy 01/8/9 [1/01/01 L1/11/01 [1/11/01 6¥C6/S0SS/0S81 1071

001

1891
QWIN-1ULISUOD punoj sem
JU)SUOD/TBIUT] mm SNV uonnjos 1saq
swnunl oney umnuny pasn sTId 'ON saIN0IqNS "ON SINOID T ON SAINOI ‘ON QIoyM UOTIRIAN] adAp, SSe[D 9ZIS

(wnuwrxew;/o3eIdAR/WNWIUTW) s)[nsal [euoneindwod pajesaI3sy g ajqel

pringer

As

M. Drexl

1138

€08S/TOLT/8LL €6/TE/LT §9/0%/0¢C ¥9/9¢/L ¥9/9C/L $666/0906/L70¢ v
LYTYIv6ET/TrLL €6/LEIST 19/v¥/6€ L1/C1/8 L1/T1/8 S666/LLI6/TELS (40X !
16€1/¥766/9L8 1€/9¢/Tc 9¢€/TE/ST /881 e/8¢/81 1666/0626/096L 101
€08S/¥85¢/91¢CC 8%/S€/ST 09/2¥/8¢ CI/01/L CL/01/L S166/8598/790L w1
TSYI/€911/0101 LENOE/T LYIvElee 1EMVT/LT 1€/ST/81 1866/S8T8/LY0¢ 1
S0S1/6ST1/2601 8T/TT/LL EMT/0T e/1elel1 ce/ie/el $966/STr6/0£€8 1
898/0T8/8LL SY/0v/ve S9/19/SS ¥9/19/LS ¥9/19/LS 8566/£7S6/T9T8 1071
009
[44%5 41! TEVE/BLO/8IY 6¢/81/6 443! wi81/S wi81/S 8666/8198/LT6E v
801/8L/6S YEVTY6ET/0T6 €e/el/el Le/ee/el cl/e/L cl/6/L 8966/0098/LT6¢ A1
6¢/12/81 189/¥SS/c6v 128171 LT/ETLY 1A A 6866/LLI8/TLLY ID¥1
Tr1/101/9L TEVEIEYOT/8611T LT se/e1/el 6/LIS 6/L/S 1966/¥0¥8/€611 w1
1€/vT/61 €9L/0€9/8¢S 0T/81/¢1 9T/1T/LT 12/81/51 12/81/S1 L866/9518/99¢9 1
8€/9¢/VE 8Y01/¥S8/SEL y1/21/6 SIvl/El yL/EL/TT YL/EL/TT LL66/6TY8/LYTS 1
[4787)01 12S/v67/89% 6¢/ST/61 [4Z07%3 ri6e/9¢ Trl6€/9¢ 8666/0T€6/0SLL 1071
00¥
1s9)
QWIN-JULRISUOd punoj sem
JUBISUOD/IBAUT] M SNV uonn[os 1soq
awnunl oney Qumnuny pasn sTId 'ON seInoIqns "oN S9INOID T ON S9JNOI 'ON QIYM UOTIRIA)] adAy, SSe[o 9ZIg

panunuod g ajqel

-
I
50
=)
ke
a,
7
Qll

1139

On the one-to-one pickup-and-delivery problem with time...

rl1/8¢/6 c001/6SE1/6€ L6/8T/1 811/7E/C €01/ce/c or/eee 6666/99¢8/C1T v
v
2001/¥€82/01¢T L6/9S/€€ 811/89/L¢E €01/0%/01 OL1/S¥/01 6666/8££6/766S v
9799/S€0¥/LEGT L6/SLIOS 811/68/9S 1e/81/el Yot ¥£66/6676/35¢8 A1
€99¢/8881/8691 09/8%/¢y 1L/ILS/I0S 81/1¥/6T 6S/16/€€ 8666/81S6/LTLL ID¥1
C001/L6¥S/SLTE €8/29/cy 66/69/¢t L1/Y1/01 12/91/01 0T66/LLY6/ETLY w1
008¢T/1S12/TT81 SS/8¥IvE 89/¥S/ILE 0¥/Terce 0S/0%/LT L666/7056/8708 1
1852/9612/9561 cs/viee 86/8%/01 9¢/SEITE 8E/9¢/E 8866/8606/00¢L 1
L6ST/LLYT/OLEL 8L/89/29 801/¥76/88 €01/56/88 0r1/€01/c6 6666/£968/766S 1071
0001
S06L/71TT/1801 6LI7Y/IET €01/¥75/8¢C L8/EE/L L8/SE/L 8666/££T6/L889 v
£261/£68C/070C 6L/85/TE €01/89/5¢ oc/stel 1emotel 666/8598/L839 A1
evLI/98CTI/OTTT ev/LE/CE 0S/€v/SE 0¥/9¢/C LYI0%/9C 6866/1C56/L£98 1D¥1
S06L/185¥/918T 1L/0§/9T 18/85/0¢€ 91/2T1/L L1/ET/L TY66/0LY6/T6SL w1
£€80T/8C91/90%1 8¥/LE/IT LS/1¥/8C 9¢/LTI61 6£/T€/TT 8666/L816/TEIL 1
€COI/PSLIY8YT 6£/0€/€T 8¥/9¢/1¢€ 0¢/LTvT 0¢/8¢/LT TY66/L0Y6/1LTL 1
COTI/TP11/1801 8S/ES/ILY ¥8/6L/0L L8/08/0L L8/18/EL $966/7S16/696L 1071
008
1s9)
QWIN-JULRISUOd punoj sem
JUBISUOD/IBAUT] M SNV uonn[os 1soq
awnunl oney Qumnuny pasn sTId 'ON seInoIqns "oN S9INOID T ON S9JNOI 'ON QIYM UOTIRIA)] adAy, SSe[o 9ZIg

panunuod g ajqel

pringer

As

1140 M. Drexl

— As LTC routes have no fixed cost, most routes are actually LTC routes. This also
shows that the instances are a suitable test bed for routing problems with trailers
(remember the comment on p. 12).

— In particular for the larger instances with long planning horizon and wide time
windows, the number of subroutes greatly exceeds the number of LTC routes,
meaning that the average LTC route performs more than one subroute. Most PTLs
are used only once.

— As was to be expected, the runtimes for the instances with more tasks per
route, i.e., fewer routes, are consistently higher than those for the other
instances.

— For the LR and LRC instances, the speedup obtained by the constant-time test
increases with increasing instance size; for the LC instances, this is not the
case.

— The speedup is significantly greater for the instances with more tasks per route
(classes with 27).

6 Conclusions and outlook

This paper has studied the PDPTWT, a routing problem which aims at fulfilling a
set of transport tasks between pickup and delivery locations, subject to time window
constraints and accessibility restrictions, by means of a fleet consisting of single lor-
ries and lorry—trailer combinations. Procedures to test the temporal and capacitive
feasibility of inserting a task into an existing route have been presented. Given ade-
quate data computed in a preprocessing step, these procedures run in constant time.
They have been embedded in an adaptive large neighbourhood search algorithm for
the heuristic solution of the PDPTWT. A comprehensive set of benchmark instances
has also been created. The results of computational experiments are presented which
show significant speedups that can be realized with the constant-time feasibility test.
Topics for further research abound.

As the focus of the research presented here was on efficient feasibility testing, not
on solution quality, many options exist regarding algorithmic refinements to improve
solution quality of the ALNS. First of all, local and/or very large-scale neighbourhood
search routines could be added, as done, e.g., by Derigs et al. (2013) and Gschwind
and Drexl (2019). Also, matheuristic components, e.g., solving a set-covering problem
with all generated routes at the end of the ALNS, cf. Parragh and Schmid (2013),
Villegas et al. (2013), could be helpful. Another refinement would be to add a splitting
procedure based on dynamic programming that finds optimal PTLs for given routes,
cf. Prins (2004) and Villegas et al. (2011). Finally, it could be beneficial to allow
infeasible solutions in the course of the algorithm. This is a strategy not commonly
applied with ALNS, but it has been applied successfully with other metaheuristics for
tightly constrained problems (Wen et al. 2009; Vidal et al. 2013) and might thus be
useful for PDPTWT instances with tight time windows.

Regarding modelling extensions, many additional practically relevant constraints
could be taken into account. Two particularly interesting extensions are loading con-
straints such as last-in-first-out, and the impossibility of transferring load between an

@ Springer

On the one-to-one pickup-and-delivery problem with time... 1141

LTC lorry and its trailer. Of special relevance in connexion with constant-time feasibil-
ity tests are limits on route duration and on the time or the number of intermediate stops
between the pickup and the delivery of a task. Load-dependent service times require an
optimization of the load transfer amounts from lorry to trailer at decoupling and cou-
pling locations, a considerable additional intricacy. Time-dependent costs (and route
duration constraints, too) lead to the difficult situation that an as-early—as-possible
schedule need no longer be optimal (Savelsbergh 1992), thus violating a fundamental
assumption on which the feasibility tests described in the present paper are based. Also
other variants of pickup-and-delivery problems, such as one-to-many-to-one problems
[also called vehicle routing problems with backhauls, Irnich et al. (2014)], many-to-
many, and simultaneous PDPs (Battarra et al. 2014), lend themselves to consider a
fleet containing trailers.

Furthermore, in many pickup-and-delivery applications, the possibility or even
the requirement to split tasks exists [cf. the survey by Drexl (2012) and the more
recent papers by Masson et al. (2013b) and Grangier et al. (2016)]. This means that
a task r = (p, d) can be decomposed into two subtasks or legs, (p, t/) and (¢I, d)
at transshipment locations #/. The legs of split tasks can be performed by different
vehicles, and this creates an interdependence between routes: changes in one route
may make one or several or all other routes infeasible. This interdependence requires
a synchronization regarding time and load and, when trailers are considered, leads to
the PDPTWT with synchronization.

Of course, all of the above extensions and variants can also be considered in a
dynamic and/or stochastic context, where some information becomes known only
after execution of a route plan has begun and/or some data are known only in the
form of random variables, cf. Berbeglia et al. (2010) and Flatberg et al. (2005).
Finally, there is yet no exact algorithm for solving the PDPTWT. Computing opti-
mal solutions to larger PDPTWT instances is surely a challenging but worthwhile
endeavour.

Acknowledgements Open Access funding provided by Projekt DEAL.

Funding The author has received no funding for this work.

Compliance with ethical standards

Conflict of interest The author herewith confirms that there are no conflict of interest, neither financial nor
non-financial.

OpenAccess This articleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

1142 M. Drexl

Appendix

The subsequent Table 3 specifies the parameter settings of the ALNS used for the
computational experiments. The following Tables 4, 5, 6, 7, 8 and 9 present the detailed
computational results for each of the benchmark instances with these settings. Table 2
was compiled based on these data. Euclidean distances were computed with full double
precision, and the objective function values were rounded to three digits.

Table3 ALNS parameter

. Parameter Value
settings

Value for computing start temperature 5

Cooling rate 0.99975

Maximum number of iterations between 100
update of performance statistics

Score 1 33

Score 2 9

Score 3 13

Score update factor 0.1

Absolute parameter for determining minimal 30
number of tasks to be removed per iteration

Absolute parameter for determining maximal 60
number of tasks to be removed per iteration

Relative parameter for determining minimal 0.1
number of tasks to be removed per iteration

Relative parameter for determining maximal 04
number of tasks to be removed per iteration

Randomization degree of worst removal 3
heuristics

Randomization degree of Shaw removal 6
heuristics

Randomization degree of arc frequency 6
history removal heuristic

Randomization degree of zero split removal 6
heuristic

Randomization degree of subroute removal 6
heuristic

Distance weight parameter of Shaw removal 9
heuristics

Time weight parameter of Shaw removal 3
heuristics

Load weight parameter of Shaw removal 2
heuristics

Number of solutions to be considered for arc 50
frequency history removal

Number of iterations (termination criterion) 10,000

@ Springer

1143

9'6 I 9 o1 Il IT [49%] L86°0601 YOI
1'6 (014 L 01 Il IT 6181 €Tl €011
01 Sy 9 I 11 I oLy VLETLIT el
9'6 974 L I 11 I €SLL €66'8CT 1 10111
8'8¢ 6L € € 14 14 L99¢ c0S°9L9 80¢1
SLE LL € € 14 14 €9¢1 €68°6L9 LOTI1
1'8¢ 9L [4 14 14 14 L68T LIV'¥99 90231
L'S¢E 1L € € 14 14 8L6Y SIT'199 S0TaI
1'9¢ 06 14 14 14 14 6698 €20°659 0C3I1
1'9¢ 08 € 14 14 14 (414 ¥€0°STL €023l
g'se 6L 14 14 14 14 19LL 8ES9IL 20¢d1
L'LE 1L 14 14 14 14 00€ 988°169 1031
€Tl LY 9 01 01 01 8¢CCE SIT°6S6 60191
L 0T 14 01 I 11 I 6¥C6 ¥9L'866 80191
L 01 Sy 6 IT 8! I 0881 819°¢101 LOTOT
801 144 8 01 1T 11 761S 960'CL6 90121
I'lt 1374 L 01 oI 01 82749 8¢0'986 Sor1aI
9’11 9 6 01 01 01 L1493 LTS 156 0191
901 w 8 01 Il I 81¢8 665°G101 €011
01 144 6 01 01 01 96¢£9 428479 20191
L0l [44 6 01 11 I 9Ce9 €LY’ 0L6 101931
(s) 159
QUIN-JUBISUOD punoj sem
JUBISUOD/IBAUI] SN'TV uonnos 1s9q an[eA uonouny

swmunl oney awnuny $9IN0IQNS "ON SAIN0ID I ON S9INOI "ON QIUM UOTIBI)] AAnR[QO QoueIsuf

On the one-to-one pickup-and-delivery problem with time...

001 Sseo azis synsal [euoneindwod pa[ie1dg d|qeL

pringer

As

M. Drexl

1144

L8 [44 Il 4! Cl 4! 9166 LT1€°S0ST 01
68 [44 8 4! Cl 4! 7978 7T9's6¢c1 101211
'Sy Y01 C € € € LYL6 668°¢€8 ITTH
S8y 601 [€ € € £8¢¢S 6€9'8¢6 01¢1
v'vy Y01 14 14 € € c0ce 8CS'8C6 60¢11
1°LS 961 ! C [[1444 EV9veEL 80Tl
1°LS 6¢1 ! C [4 [4 (4443 81788 L0T
vy €01 S S € € 9166 0¥'SL6 90¢1I
ey 86 € 14 € € €0SL 8L8°C66 S0
9'LS wl [4 4 [4 [LILY 161°9%8 YOTI
9'Sy LOT S S € € ¥80L ¥59'696 €0
9'0¥ 16 € € € € 669L 206°1L01 [\l
cee SL € 14 14 14 608L 8¢ 101 10¢1
L6 [44 L I 11 I 9688 €9L" 911 Tl
6 Sy 6 Cl 11 I €1c6 1SL°L0TT TTTIT
9'6 (014 9 4! 11 I 8¢€C6 1L9°6011 OTTIT
6'6 94 9 4! 8! I 60£6 9C6'LTI1 60111
88 6¢ 9 01 11 11 579 780'C911 80111
6 or 8 Il I Il 9€T6 6911 LOT
7’6 o 6 I Il Il 0586 918°¢SI1 90111
9'6 974 9 01 Il I1 506 8CL9EIL SO
(s) 159
JWIN}-JuBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny
swnunl oney sununy pasn STLd "ON $9IN0IqNSs "ON SINOIDIT ON S9INOI "ON QIYM UOIBI)] EINGRE] el Qoue)suy

panunuod ¢ 3jqe]

pringer

as

1145

pringer

as

On the one-to-one pickup-and-delivery problem with time...

LTy (8} € € € € la444 C68°688 80T
€1y 76 € € € € L1ST 188'8011 LOT
6°6¢ €6 14 14 € € YLYT STOSLIL 90¢
9've 9L [14 14 14 86¢C¢S 1L°02Cl1 SOT
8% 801 € € € € £80¢ 61€°618 0T
ooy L6 € € € € 6666 0L°0201 €0TM1
§9¢ 8 [€ € € 01S L6STOT1 20T
1'ce YL 14 S 14 14 °6L6 YerIiel 10T
6 6¢ L I 11 I T66L €EL' V8L 801211
6 184 8 4! 1T 11 1L€8 LOT'CTET LOTSIT
88 84 6 4! Cl 4! 8¢oh €29°0vv1 90121
68 374 01 14! Cl 4! 9re6 69°C0S1 SOT>IT
9'6 9374 8 I Il Il 1859 80°L611 YOI
[49 [44 9 ! Il I1 0688 L96°LSTI €0 1211
(s) 159
JWIN}-JuBISUOD punoj sem

JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny

swnunl oney sununy pasn STLd "ON $9IN0IqNSs "ON SINOIDIT ON S9INOI "ON QIYM UOIBI)] EINGRE] el Qoue)suy

panunuod ¢ 3jqe]

M. Drexl

1146

10y €6C S 9 9 9 8¢y GSL°0661 01" T 21
76¢e 8¢ 9 L L L 6LLE §96°0€0C 6 T¢I
Loy S8¢C 9 L L L 11499 681°150C 8 T ¢l
'8¢ 99¢ 9 L 9 9 veey L6'L661 LT 1
8¢ 68¢ 14 9 9 9 89¢6¢ 6S1°8L0T 9Tl
6'8¢ 16¢C 9 9 9 9 86€6 6178'8861 Al
6¢ 0S¢ S 9 9 9 9096 901°0681 ¥ T Tl
T8¢ 00¢ 9 L L L 9LT €6 €10T €Tl
8°LE €LT 9 L L L LY8S ¥0°0LIT Tl
9¢ ore 8 6 8 8 10LS Ccl6'SLIT |4
811 191 €l (44 1c 1c 1116 8YL'66¢¢€ 01 T 191
L'T1 91 14! 1c 1c 1c 0866 1LS 6V1E 6 ¢ 191
L'TT LST 14! 1c 1c Ic 911§ 8¢8°¢0I¢ 8 C 191
911 861 4! 0¢ 0c 0c G889 886°SY1¢ LT 191
SII 961 91 1C 1C 1C .86 6£€°691¢ 9T 191
€Il 9¢1 SI (44 1C 1C 9966 SSTIvie rAE
[a! 691 4! I 0¢ 0¢ 9008 ¥8°01¢C¢ ¥ T 191
€1l S¢Sl €l ¥4 0¢ 0C 8L86 1S6°9¢P¢ € 191
€1l (49! SI (44 ¥4 1T CLB6 £66'119¢ cl
I't1 871 14! 1c 1c 1c L099 62°¢60¢ IR
(s) 1591
QWI-JUBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny

swmnunl oney aumnuny pasn STLd "ON $9IN0IqNS "ON $9IN0I DT ON S9INOI "ON QIAYM UONBI)] A1R[QO QoueIsuf

00¢ Sseo azis s)nsal [euoneindwod pa[ie1dg § d|qel

pringer

as

1147

On the one-to-one pickup-and-delivery problem with time...

8’6l 8LI 4! €l IT 1T €€19 £€90°v6LC T T IoI
8Ll SLI €l €l Cl Cl 6089 6££°C68C 1T 1o1
c8 LIS S L 4 % €66L LEO'9SLT 0r o
7’68 (443 9 L 4 % 8SSL SIS EsTe 6 ¢l
90Tl L86 S 9 4 % ¥6¢ §Te o6l Al
6001 vIL 9 9 € € 8LI6 §90°CILT LT
€68 0LS 8 01 4 ¥ 6v66 VT 6LTE 9Tl
L'L8 008 L 8 4 ¥ 0168 SSO'TIEE g
996 0r8 8 8 4 ¥ 969L LOT'STET v Ca
98 L19 €l SI 14 14 9€T8 ye1°Cs0¢ €T
'es s 8 8 4 % 7886 8LE'S6CE T
69 SLE € S S S 96C8 6S1°6L1E |4l
6°1¢C 861 I SI 01 0l S6lIL 8C8LSLT 01" ¢ 11
0T 981 6 11 ol ol 9168 0€ 160¢ 6 C 11
9T 61¢C L 8 8 8 SLS6 SYSSLYC 8T M
£ 861 8 11 01 0l L8 €98°LL9T LT
1'ce €0¢ I 91 Il I Lévy 8C1'890¢ 9T
16l G8I L 8! IT 1T S¥96 G8C9STE ST
8'6C 6CC L 11 6 6 667 Yoy vLC v T 1
6'1C Sol Il 4! 01 01 °6C8 961" 156C €T I
£0¢ L81 6 4! 01 01 16CL 18¥°91CE TT I
881 SLI 8 01 01 0l S8YL CL6'YITE 17 1
() 159
QW1-)UBISUOD punoj sem
JUBISUOD/IRIUI] pm SNV uonnos 1s9q an[eA uonouny

swnunl oney swnuny pasn sTId "ON s9InoIqns "oN sNoID I ON S9INOI "ON Q19U M UOTIRIN] aAnd9[qO Qoue)suy

panunuod g 3jqe]

pringer

as

M. Drexl

1148

8°SL £6S 11 I 14 14 Y0EL ¥S0'181¢C 01 T ¢o1
SL LTS S S 14 14 Lo YT8'CLTT 6 T ¢
6°¢cL 9¢s 8 8 14 14 9696 L6T61VC 8 C oI
I'19 ey 6 6 S S 6SL6 ST YYST LT
1'99 6¢y 6 4! S S €6 785°899¢ 9 T oI
I'cL 99 L1 81 S S 86¢8 600°658C ST T
€78 LS9 L L 14 14 81+C LS9 1¥TC ¥ T oI
'L 00§ 9 L S S [ay4 LTL €6ECT € oI
Sh%Y ¥9¢ 6 01 9 9 8CS9 YS6°LLST T
£'es 1453 6 cl 9 9 91¥8 811°198¢C 1o
I'ee 90¢ 6 cl 01 01 LYC6 8TESST 01 T 1o1
L0¢ G8I oIl €l oI 01 LSY6 L8°€6SCT 6 T I°1
[\ ¥81 L 01 oIl 01 8L86 LE6°SE9T 8 C 191
£0¢ L8I L 11 1T I 8896 969°978¢ LT 191
681 9L1 Cl Sl ! 4! €908 LET'TIYT 9T 1°1
681 081 6 Il Il Il 9916 91L7201¢ SR
89T 0€c 01 Il 6 6 71v6 961°Cy¥C ¥ T 191
8'CC €0C Il el 6 6 8688 LTL€99C € C 191
(s) 159
JWIN-JuBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny

swnunl oney sununy pasn STLd "ON $9IN0IqNS "ON SINOIDIT ON S9INOI "ON QIYM UOIBI)] EINGRE] el Qoue)suy

panunuod g 3jqe]

pringer

as

1149

On the one-to-one pickup-and-delivery problem with time...

G9¢ €98 cl SI €l €l 1966 YLEO6LY 6 ¥ ¢l
8¢ £V8 I €l €l €l 66¢8 999 Ty st 8 ¥ ¢l
9'9¢ 0¢8 14! 4! €l €l 796 20°SSvy L ¥ o1
T9¢ 018 I €l 4! 4! 91¢8 762 0cey 9 ¢l
8v¢ 09L €l 14! 14! 14! LL66 65T E6LY YAl
8'6¢ 8¥01 4! SI €l €l LYTS 965 CE8Y ¥ v Tl
£'6¢ £¥6 €l SI €l €l 18S¢ 969°CELY €1 0l
6'v¢ 0€8 6 14! €l €l 1€€6 1C6'81LY Ty ol
6°'¢e SeL 6 €l €l €l T8 [N %3%4 v ¢l
STl 91¢ 61 6¢ LE LE 8666 T1°¢908 o1 ¥ 191
! 90§ LT 6¢ 8¢ 8¢ L616 9L079098 6 v 191
T'T1 €81 9C 6¢ 6¢ 6¢ 1166 6975908 8 ¥ 191
€Tl 16t 8¢C (44 oy ov 1006 CIST0I8 Ly 191
[(414 Y4 (4 (4 oy 0SLL 0T S96L 9% 191
IT Ly 8¢C w w w 8YL8 €09°TSP8 Sy Il
£l 1cs €C e 9¢ 9¢ 1196 £€9°866L ¥ v 191
611 IS < ov 8¢ 8¢ L8Y6 CLT 1818 € ¥ 191
! 06v ¥ 6¢ 6¢ 6¢ 9096 801°97¢8 AL
601 891 6¢ (44 ot (014 7686 TrTLS18 AR
(s) 1591
QWI-JUBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny

swmnunl oney aumnuny pasn STLd "ON $9IN0IqNS "ON $9IN0I DT ON S9INOI "ON QIAYM UONBI)] A1R[QO QoueIsuf

00% Sseo azis s)nsal jeuoneindwod pa[ie1dg 9 d|qe)

pringer

As

M. Drexl

1150

L'€6 66651 (44 ¥C 8 8 €66 SYL'TELY or v ¢l
76 8061 (44 ¥C 8 8 8886 789'961L 6 v Tl
gvl (4543 cl €l S S £568 c1L9ces 8 ¥ ¢l
8VII 8¢€TT €l ST 9 9 SY68 9 ¥S09 Ly
'€6 8L91 LT 0C 8 8 965y Iv1°SEL9 9
T'e6 001 91 LT 8 8 06¥8 T20989L Sy
i 898¢ 91 81 9 9 1966 Iy T1ES v
€'L6 1861 (44 ST 8 8 coly €L°€SLY €y
c'e8 8¢CS1 91 61 8 8 66 1L0°89SL [l
9L 8611 4! Sl 6 6 9¢16 6C6'1998 v i
6°CC 919 0¢ €C 81 81 8119 £69°S199 oI ¥ 14
8°0C VLS Ll 0¢ 61 61 L986 926'1€69 6 v 1
§0¢ €9L SI 81 ST ST 0cIL £69°1TYS 8 ¥ 1
9C 099 61 €C LT LT CL69 61°8¥C9 Ly 1
€T 19 91 0¢ 81 81 £066 60€ 769 9 14
8CC 1445 0c 9C 0¢ 0c 99¢9 6S8°L6IL Sy I
6'8C 9GL €l LT ST ST T5€6 LTOESYS vy 1A
(S 74 059 81 61 LT L1 L866 T1°e629 € M
'1¢ 68¢ 61 0¢ 0¢ 0¢ 1998 IT1°CCIL [2Rt
6'81 8¢S 0¢ e 1T ¥4 1066 1C°009L v
8'LE 088 €l SI €l el GE86 SLY TYSY 01 ¥ ¢o1
(s) 1531
QWIN-JUBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonn[os 1s9q an[eA uonouny

swnunl oney swnuny pasn sTLd "ON $9JN0IqNSs "ON S9IN0ID T ON S9INOI "ON QIoYM UONRIS)] A1d3[qO Qoue)suy

panunuod 9 3jqe]

pringer

as

1151

On the one-to-one pickup-and-delivery problem with time...

188 86651 (4 ST 8 8 ¢cle6 808'19CS 0 v o1
168 LIV Sl SI 8 8 8966 L9L68CS 6 v ¢oll
9’18 144! 81 1c 8 8 L9L6 96C°095S 8 ¥ ¢oIl
SeL 0¢€cl Ll 1c 6 6 L096 L91°206S L ¥ oou
¥'L9 Y601 1C LT 01 01 LT6¢E €LEBTE9 9 v ¢l
¥°S9 6L01 61 0c oIl 01 0cs6 1L6°CEY9 Sy o
1°801 yeve (44 ¥C L L £686 CSL9S9Y v v oI
7’18 68171 €l €l 8 8 6788 ELT'LLTS € v oI
6'69 V811 0c (44 01 01 LEVS €LY'TLEY Ty oI
6S 06 €C LT Cl 4! 6266 918°6SL9 I ¥ o1
e g9¢ Sl 0c 61 61 9069 180°LL8S 01 ¥ 1o1]
L0T 0SS 91 1c 0¢ 0C 98L LTE0vY9 6 v Io1
L6l 0SS 1C €C (44 (44 8€66 691°06€9 8 ¥ 191
961 LYS 81 ST 1C 1c 6569 7°5e99 Ly 191
€6l SIS 91 ¥C C (44 6856 €81°Trs9 9 v 1o1
8'LI (459 0¢ LT € €C LL86 €89°1€IL Sy 191
1'6¢ 189 14! L1 Sl Sl 6866 98L°0¥¢ES v 101
V'€ 08¢ 61 T 61 61 9968 9279°¢609 € 191
9'0¢ 9 S 61 e 1T 1T ILL9 1€€°01¥9 T 11
6Ll (11414 1T e ¥ ¢ 0166 LI9'LYIL Iy 191
(s) 159
JWIN-JuBISUOD punoj sem
JUBISUOD/IBAUI] M SNIV uonnos 1s9q an[eA uonouny

swnunl oney sununy pasn STLd "ON $9IN0IqNS "ON SINOIDIT ON S9INOI "ON QIYM UOIBI)] EINGRE] el Qoue)suy

panunuod 9 3jqe]

pringer

as

M. Drexl

1152

L9¢E1 IC €C 0c 0c 8€€6 6L7°€588 01" 9 21
€9¢C1 €C T 1c 1C 92499 6S€'8LY6 6 9 ¢l
€9¢C1 0c ¢ 1c 1C LELB 668°CLI6 8 9 I
91¢I €C ST 1c 1C €676 CI0°LEV6 L7971
6811 8¢ (43 (44 (44 LT66 6886086 99 ¢l
LETT (44 €T 0¢ 0¢ 66 6£6'19L6 [SIrA
S0ST 61 0c 0C 0c 9€L6 L3S 6Y68 ¥ 9 1
(433! (44 9C 0C 0¢ GETo L69'VSY6 €9 701
0TI L1 1T 61 61 0€¢es GCE €956 79l
2601 (44 ST (44 (44 966 608°L0T 01 1791
898 184 19 6S 6S 79¢8 VLY LTE LT 01 9 191
€8 S¢ €9 9 29 1826 10°L¥0°81 6 9 191
SI8 3% €9 9 9 €66 LOTETY LT 8 9 191
818 9¢ 68 19 19 CTLL6 €GL°L8T 91 L7 97191
0c8 144 <9 9 9 8686 798°C60°L1 99 191
68L 8% 19 9 9 9886 81" SLOLT S 911
LS8 143 S¢S LS LS 8566 ST SH0'91 ¥ 9 191
9C8 8¢ 8¢S 8¢ 8¢S ¥SL8 606°679°91 €9 191
66L LE 19 19 19 €9L6 €9S°12S 91 [ACRE!
8LL 9% 29 9 29 9L6 160°99%°91 9191
(s) 1531
QWI-JUBISUOD punoj sem
M SNIV uonnos 1s9q an[eA uonouny
aumuny pasn sTLd "ON $9IN0IqNS "ON S9IN0I DI ON $9IN0I "ON QIoUYM UONBI)] AAnR[QO QoueIsuf

009 Sseo azis s)nsal [euoneindwod pafre1dg £ d|qeL

pringer

as

1153

On the one-to-one pickup-and-delivery problem with time...

LTTT 0€ 123 SC 14 y€86 €€T'659°C1 €9 101
696 8¢ 53 6¢ 6¢ 1666 ELTELOTT 9 100
9L8 54 53 [43 [43 VIL6 LET'SSYET 179 101
SL6T Sy 123 I I 0788 S6L°S65 ST 019 T
618¢C 6C LE 01 0l S166 96C°999°G1 69l
£08S 9C 6C L L °98L 6L°02€°01 89 ¢l
SOly 8¢ Sy 6 6 9966 LIE6ISET L9
0€ce [43 & 01 01 SYL6 €0°ST6°S1 99Tl
96S¢ 8y 09 11 11 LEIL TP 160°LI 9T
66SS S¢ 8¢ L L L0O06 LTOPITT v 9
159¢ LE v o1 o1 90L 16°€90°71 €9 T
£V8¢C LE 97 cl ! 6708 69L LY6°ST 79T
9l1ce 123 (44 cl Cl L168 ¥89°85€ 81 1792l
8801 123 S¢ SC 9¢ LY0€ €00°988°91 0179 11
1201 0¢ 9¢ 8¢ 8¢ L6v6 90" ¥STSI 69 11
(494! I 23 61 6l 9L66 O IV Tl 89 11
SICI 9C 8¢ €C €C 1866 £68°70¢°€1 L9 1
6111 0€ 123 €C SC LSS6 8LO'LI6°91 99 11
9101 123 LE 8¢ 8¢ SSTL 6LSEVT 9T 91
9011 1c €C LT 81 €788 95 ceEr Tl v 9 1
6CcCl 8¢ 1€ e e 1966 16S°60€ ¥1 €9 14
YLOT 0¢ 123 94 LT 99¥¢ 6T 11V LI T9 14
oror1 LE Ly Ie Ie 9926 SSY'1L6°91 179 141
(s) 1531
QWIT)-JUe)SUOd punoj sem
QP SNV uonnjos 1s9q an[eA uonouny
swnuny pasn sTLd 'ON s9InoIqns "oON SANOID T ON SINOI "ON Q19U M UOTIRIN] 2A12[q0 Qoue)suy

panunuod 7 3jqe]

pringer

as

M. Drexl

1154

819¢ Se 144 01 01 9886 €7$96€TI 0179 21
lcee |14 0s Il Il 1eLs EL8VEL'ET 6 9 ¢
r6ce oy 94 4! 4! G166 ToTITl 89 ¢
0cce 8¢ 143 Il ! 11¢8 §9T°0T6°Cl L9771
S 6¢ Ly €l €l sl6 Ly9'186°€1 99 I
081 [43 6¢ Sl Sl €6L6 SETESYEl § 9 I
Lyey 4 6¢ 8 8 6£96 YLTYIV6 ¥ 9 ¢
S0LT Le [43 I 1 66L6 T9TEI0T1 €9 ¢
I€le 0s 65 4! 4! 1656 LESBLIEL T9 I
WLl (39 19 L1 L1 $666 L1889 %1 17921
LL6 €C [43 9¢ 9¢ S086 YLO6' VTV Tl 0179 191
156 ¥ 6¢ 8¢ 8¢ S196 LTY'LTTET 6 9 197
1€6 9¢ 0¢ 8¢ 8¢ €188 8EI'SYI'El 89 1o1
£€6 Le 33 6¢ 6¢ €0L8 €5°056°CI L9101
106 v [43 0¢ 0¢ L8LS P10PSS €l 99 11
868 £3 9¢ [43 [43 096L SOLS¥9El NI R
l6€l [4¢ 4 81 81 596 CLET066 v 9 101
(s) 1531
QWN-JULISUOD punoj sem
P SNV uonnjos 189q anyeA uonounj
swnuny pasn sT1d 'ON saIN0IqNs "ON saNoI DI ON S9INOI 'ON QIoyM UOTIRIA)] EINREI () Qoue)suy

panunuod 7 3jqe]

pringer

as

1155

On the one-to-one pickup-and-delivery problem with time...

Y081 LT 43 8¢C 8¢C 9166 168°9SL V1 6821
€C81 8¢C Ie 8¢C 8¢C 2066 800°EVL V1 88731
Ge8l 9¢ 43 9C LT 66 L1¥"0LT ST L8T31
99LT e 1974 6¢ 6C 1596 TT0 TISY ST 9831
1€91 £C §3 LT LT 1286 S8TEV6 V1 68Tl
(443! 9T 43 Y4 LT 1LS6 L1¥'8Y8°L1 891
LTLT [43 €¢ 14 8¢C 0€68 SE9'EPP 61 £8791
8791 6¢ 8 0¢ 0¢ L9Y6 LT09T6°91 7801
124! S¢ 43 8¢C 8¢C L6S6 €65°6S1°G1 18¢31
Lyl 49 6L 6L 6L SLL6 760°699°1¢ 018191
Y11 0S SL 6L 6L ¥€86 9T ¥6S° 1€ 68191
848! 123 €8 8 8 $966 LOT'1SO°TE 88191
el 16 08 8 8 ¥268 8S8°918°0€ L8I91
431! LS €8 8 8 S106 €LL'9TS 0E 98191
9¢T11 ¢S 78 L8 L8 S0¥6 L9L'060°CE G819l
0Cl Ly 0L 0L €L 8068 785°606°1€ 8191
8¥11 €S 6L 8L 8L L6€E8 TI8'69C°1€ €811
6CI1 9¢ 9L 6L 18 696L 786°100 7€ 8191
1801 8¢ 78 78 8 16L6 6S¥'6LL 6T 181931
(s) 1531
QWI-JUBISUOD punoj sem
M SNIV uonnjos 1s9q an[eA uonouny
aumuny pasn STLd 'ON $9IN0IQNS "ON $9IN0ID T ON S9INOI "ON Q19U M UOTIRIDI] EYNRE] () QoueIsuf

008 Sseo azis s)nsal [euoneindwod pafieldg g d|qe)

pringer

As

M. Drexl

1156

S6Le 129 0L 4! 14! £v6 650°086°SC 018¢1
Sece 129 99 €l €l 86 SE0'8S8 LT 68¢11
S06L 9C 0¢ L L 8166 YETO10°LI 88¢11
yCes 9¢ 9 cl cl 8166 LTL'989°TC L8T1
L96¢ Ly 8¢ 4! 14! £996 LEE'SYT VT 98¢
Sole 8¢S 0L 4! SI 9996 SE'STI6T S8TI
PE8L Ie 123 8 8 9940 LTY 06181 8¢
6ELY 94 IS I 4! 66 168°€61°€T €871
685¢ 99 6S €l €l 1896 $85°886°8C [4re
918¢ IL I8 91 L1 T6SL ETTIL'EE I8¢
1Lyl ge Iy Le 123 0€e8 Yr09L9 1€ 018141
9011 (974 4 |£3 LE 99¢8 LyL'¥8€ V€ 68111
£80¢C 9C 8¢ 1c €C (4373 T§TT90°0T 88111
891 €€ 33 LT 6C £086 161°9v€°ST L8111
SISIT 0¢ 9¢ 8¢ 33 8666 109°061 ‘€€ 98111
90v1 8 LS 9¢ 6¢ 9166 LOY'€81°CE S8III
80T 123 123 61 (44 L686 1°686°1C P8III
9891 ge 6¢ € 6C ¥166 96%°8L8°0¢ €811
€IS 197 8y [43 LE 8006 185°879°C¢ 81
Ievl [4% 8y LT 8¢ 1006 860°6v6 11 18111
€C61 9¢ 94 6C 6¢ ILCL 658°S09°S1 018231
(s) 1531
QWIT)-JUe)SUOd punoj sem
M SNIV uonnjos 1s9q an[eA uonouny
swnuny pasn sTLd ‘ON soJnoIqNs "oN SANOID T ON SoINoI "ON QIoUM UOTIRIN] 2A12[qO Qoue)suy

panunuod g 3ajqe]

pringer

as

1157

On the one-to-one pickup-and-delivery problem with time...

£CCe 6¢ 6¢ €l €l 2666 SOL'66£°61 018¢1]
¥98¢ 89 LL Sl SI 9986 v veEL 61 68CM]
8¥8¢C 1L 78 Sl 91 69¢8 ¥61°066°1C 88CM]
£vST 9 9L 91 91 8€69 990°0TS ‘7T L8TM]
1ove 9L L8 Sl Ll 9198 T1°S98°YT 98¢o1]
80¥C 6L €01 6l 61 9LSL 918'v16°€CT G8¢
£coy [43 33 [4! 4! 81¢C6 916°6VS V1 8o
eele 144 €S SI 91 6266 €1eees’el €801
16S¢C 0s IS 4! Ll 1616 65°087¥C T8
0¥0C 6S SL 0C |44 L889 YETTE]'ST 18¢1]
8SCI 33 6¢ 123 LE £9C6 v 1L8 VT 0181211
yeel LE oy 8¢ 8¢ 7866 6€8°LLSTT 681°1]
89¢C1 LE Sy 9¢ 6¢ 6866 TTLLY'9T 8811]
80¢C1 94 0S 6¢ 94 0L66 101°¥6L°6T L8T]
STl 8¢ (44 8¢ 144 6696 1€9LS°0€ 981°1]
6L11 8¢ 94 6¢ Sy 896 LS¥S0°TE G811
VLl [43 33 e 9¢ 9626 Y €9S°61 P8121]
984! 93 w 23 9¢ 0968 €LO'1S9'VT €8191]
o€l ge 94 6¢ 144 1766 177 1€€°6C 81211
9ITI ov 4 or Ly LE98 VIL VL8 EE [8121]
(s) 1531
QWIT)-JUe)SUOd punoj sem
M SNIV uonnjos 1s9q an[eA uonouny
swnuny pasn sTLd ‘ON soJnoIqNs "oN SANOID T ON SoINoI "ON QIoUM UOTIRIN] 2A12[qO Qoue)suy

panunuod g 3ajqe]

pringer

as

M. Drexl

1158

¢81¢C 93 144 9¢ 9¢ Y0€6 796'7€6°1C 0101¢a1
65TC 0S Ss 9¢ LE 8YL8 SPS 8rE ST 601231
LETT (44 61 e LE 00€L 97T'820°ST 801231
6LIT 49 8S 9¢ 8¢ 17¢6 81S°6LT°ST LOTTAI
S661 oy 9t e 9¢ Y0L6 Se0v69°€T 901231
€L0T LE v 33 LE SLY6 ELY'OIL'YT SOTTaI
186¢ 6¢ 9t 43 143 SyS6 120811°ST Y0131
1CeT [44 8 143 143 6186 6€1°1€0°€T €01291
691¢ 9% IS ¢ 9¢ 9L8L S08'T6L €T 01¢Ta1
9661 (13 (014 143 93 8866 689°LTS‘CT 101231
L6ST 9 06 €6 L6 Y556 S0S°068 ‘7S 0101191
LSST 8L 801 €01 801 Y665 €¥9°61¥°19 601131
[459! 69 Y6 96 SOT 6666 6€0°LSE€9 80T 11
134! L 86 01 SOt §666 SLO09T°SS LOTTAI
Sorl 89 96 €01 OrIT 8156 LYY L88°6S 90T 191
9Trl <9 16 g6 S0l 0566 LOS'TSY 19 SOT 191
[X49! €9 88 88 6 6¥SL $90°€0€‘€S YOTT91
9161 69 €6 06 S6 £086 SS6°SIESS €01 191
69¢1 0L €6 06 €01 ILSL YSL'6V9°L9 01191
(11531 9 68 76 801 $696 81L€L0S9 101131
(s) 1531
QWI-JUBISUOD punoj sem
M SNIV uonnjos 1s9q an[eA uonouny
aumuny pasn STLd 'ON $9IN0IQNS "ON $9IN0ID T ON S9INOI "ON Q19U M UOTIRIDI] EYNRE] () QoueIsuf

0001 Sseo azis synsal [euonendwod pa[ie1dg 6 d|qeL

pringer

as

1159

On the one-to-one pickup-and-delivery problem with time...

yI81 09 IL 8 9¢S LT86 1LOVIE 8y [ach
8691 w LS 124 6S 0LE6 90%"€¥9°9S 10111
oeey L SL €l 91 0166 ¥66°068 11 ororea
(4404 L 98 Sl 81 €CL8 1€9°6L9 €Y 601¢TH
¥20°01 o 0s 01 01 €86 TLL€80°9T 801¢TH
$609 6S 9 cl 14! YL16 $86°'19S € LOTTH
IvLly 19 0L Sl Ll 0€L8 199°919°1¥ 9012
SLLE L9 LL Sl 81 S6S6 819'1¥6°9Y SOTTH
6906 123 6S 4! 4! 12943 9€1°081°LT YOI
184 (44 34 €l 91 9686 €L1°L09°9€E €01
0611 9 0L 91 81 68L6 ¥8%°566 S olch
SLTE €8 66 L1 IC 8986 ¥ST069°1S 101¢H
8961 [43 6S [43 Iy 8708 868169 LY 0101141
8881 0S €S 6¢ or LS86 6S1°€19°'8Y 601111
008¢C o 8y €C 8¢C 6676 LYE LTS SE 80T T
S0€T 194 8y 9C 33 0c6 YSL1T6 1Y LOT T
920T 94 (414 S¢ w 1886 $99°6SY St 90T T
LEBT Y 89 or 6v £8L6 L18'810°9S SOTTIT
6€LT 123 LE (44 LT 0c16 L88'¥61TE YOI T
Slce 8 €S 6C LE 1L96 8YE'SIE Y €01 11
6061 €S 9 6¢ 197 L666 $8ES 8y COI T
(4431 IS 19 43 0s SL66 600'169°6S 10T 11
(s) 1531
QWIT)-JUe)SUOd punoj sem
M SNIV uonnjos 1s9q an[eA uonouny
swnuny pasn sTLd ‘ON soJnoIqNs "oN SANOID T ON SoINoI "ON QIoUM UOTIRIN] 2A12[qO Qoue)suy

panunuod g 3jqeL

pringer

as

M. Drexl

1160

ol IL 3] 91 81 86¢8 6ELVOL EE 0T0T2oI
0CLE €L €8 91 81 1806 YOI 'S6L EE LOTTOI
6LEE L6 811 1C 1c 1256 YT L98 €€ 901221
(4243 VL 88 91 1c L686 SS9 1L0°8E SOTTa
9299 0s 9¢ €l 14! €66 808°LIT ST Y01
Seey 69 08 81 6l 6SL6 760859 ‘0€ €01
SEve I8 01 0¢ €C L¥86 €97°CCELE 01oI
LE6T 98 101 0¢ < S656 796 89 ‘6€ 101¢oI
1181 153 6S (44 Ly 8666 SETLEY 6E OTOT 211
€081 Sy [4 6¢ 0s 1596 876 1799 6011511
06L1 [4Y 19 6¢ 58S (454 L69°801°0S 80T T2
8SLIT (44 1¢ 6¢ 0¢ LT86 1LY 1YL 9Y LOTTOI
80LI 0s 99 6¢ 99 €066 TI1°68T°SS 9011211
LILT 144 8¢S Ly 8¢ 1€96 980616 7S SOT T
§99¢ 97 0s 6C €e LTLL ¥0S 0¥9C€E PO T2
160¢ Sy IS 6¢ 9 86L6 $€6'976°6€ €01 1]
(s) 1531
QWIT)-JUe)SUOd punoj sem
M SNIV uonnos 1s9q an[eA uonouny
swnuny pasn sTLd ‘ON soInoIqNs "oN sANOID T ON SINOI "ON Q1Y M UOTIRIN] aAnd9[qO Qoue)suy

panunuod g 3jqeL

pringer

as

On the one-to-one pickup-and-delivery problem with time... 1161

References

Baldacci R, Bartolini E, Mingozzi A (2011) An exact algorithm for the pickup and delivery problem with
time windows. Oper Res 59(2):414-426

Battarra M, Cordeau JF, Iori M (2014) Pickup-and-delivery problems for goods transportation. In: Toth P,
Vigo D (eds) Vehicle routing: problems, methods, and applications. Society for Industrial and Applied
Mathematics, Philadelphia, pp 161-191

Bent R, Van Hentenryck P (2006) A two-stage hybrid algorithm for pickup and delivery vehicle routing
problems with time windows. Comput Oper Res 33:875-893

Berbeglia G, Cordeau JF, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res
202(1):8-15

Biirckert H, Fischer K, Vierke G (2000) Holonic transport scheduling with TELETRUCK. Appl Artif Intell
14:697-725

Cheung R, Shi N, Powell W, Simao H (2008) An attribute-decision model for cross-border drayage problem.
Transp Res Part E 44(2):217-234

Cuda R, Guastaroba G, Speranza M (2015) A survey on two-echelon routing problems. Comput Oper Res
55:185-199

Derigs U, Pullmann M, Vogel U (2013) Truck and trailer routing—problems, heuristics and computational
experience. Comput Oper Res 40(2):536-546

Doerner K, Salazar-Gonzélez J (2014) Pickup-and-delivery problems for people transportation. In: Vigo D,
Toth P (eds) Vehicle routing: problems, methods, and applications. Society for Industrial and Applied
Mathematics, Philadelphia, pp 193-212

Drexl M (2011) Branch-and-price and heuristic column generation for the generalized truck-and-trailer
routing problem. J Quant Methods Econ Bus Admin 12:5-38

Drex] M (2012) Synchronization in vehicle routing—a survey of VRPs with multiple synchronization
constraints. Transp Sci 46(3):297-316

Flatberg T, Hasle G, Kloster O, Nilssen E, Riise A (2005) Dynamic and stochastic aspects in vehicle
routing—a literature survey. Technical report STFO0A05413, SINTEF

Funke B, Griinert T, Irnich S (2005) Local search for vehicle routing and scheduling problems: review and
conceptual integration. J Heurist 11(4):267-306

Grangier P, Gendreau M, Lehuédé F, Rousseau LM (2016) An adaptive large neighborhood search for
the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur J Oper Res
254(1):80-91

Gschwind T, Drex] M (2019) Adaptive large neighborhood search with a constant-time feasibility test for
the dial-a-ride problem. Transp Sci 53(2):480-491

Irnich S (2008a) Resource extension functions: properties, inversion, and generalization to segments. OR
Spect 30(1):113-148

Irnich S (2008b) A unified modeling and solution framework for vehicle routing and local search-based
metaheuristics. INFORMS J Comput 20(2):270-287

Irnich S, Funke B, Griinert T (2006) Sequential search and its application to vehicle-routing problems.
Comput Oper Res 33(8):2405-2429

Irnich S, Schneider M, Vigo D (2014) Four variants of the vehicle routing problem. In: Toth P, Vigo D (eds)
Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics,
Philadelphia, pp 241-271

Kindervater G, Savelsbergh M (1997) Vehicle routing: handling edge exchanges. In: Aarts E, Lenstra J
(eds) Local search in combinatorial optimization. Wiley, Chichester, pp 337-360

Li H, Lim A (2003) A metaheuristic for the pickup and delivery problem with time windows. Int J Artif
Intell Tools 12:173-186

Lin S, Yu V, Lu C (2011) A simulated annealing heuristic for the truck and trailer routing problem with
time windows. Expert Syst Appl 38(12):15244-15252

Masson R, Lehuédé F, Péton O (2013a) An adaptive large neighborhood search for the pickup and delivery
problem with transfers. Transp Sci 47(3):344-355

Masson R, Lehuédé F, Péton O (2013b) Efficient feasibility testing for request insertion in the pickup and
delivery problem with transfers. Oper Res Lett 41(3):211-215

Parragh S, Cordeau JF (2017) Branch-and-price and adaptive large neighborhood search for the truck and
trailer routing problem with time windows. Comput Oper Res 83:28—44

@ Springer

1162 M. Drexl

Parragh S, Doerner K, Hartl R (2008a) A survey on pickup and delivery models part I: transportation
between customers and depot. J Betriebswirtschaft 58(1):21-51

Parragh S, Doerner K, Hartl R (2008b) A survey on pickup and delivery models part II: transportation
between pickup and delivery locations. J Betriebswirtschaft 58(2):81-117

Parragh S, Doerner K, Hartl R (2010) Variable neighborhood search for the dial-a-ride problem. Comput
Oper Res 77(6):58-71

Parragh S, Schmid V (2013) Hybrid column generation and large neighborhood search for the dial-a-ride
problem. Comput Oper Res 40(1):490-497

Pisinger D, Ropke S (2010) Large neighborhood search. In: Gendreau M, Potvin JY (eds) Handbook of
metaheuristics, second edition. International series in operations research and management science,
vol 146. Springer, Boston, pp 399-419

Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper
Res 31(12):1985-2002

Prodhon C, Prins C (2014) A survey of recent research on location-routing problems. Eur J Oper Res
238(1):1-17

Ropke S, Cordeau JF (2009) Branch and cut and price for the pickup and delivery problem with time
windows. Transp Sci 43(3):267-286

Ropke S, Cordeau JF, Laporte G (2007) Models and branch-and-cut algorithms for pickup-and-delivery
problems with time windows. Networks 49(4):258-272

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transp Sci 40(4):455-472

Rothenbicher AK, Drexl M, Irnich S (2018) Branch-and-price-and-cut for the truck-and-trailer routing
problem with time windows. Transp Sci 52(5):1174-1190

Savelsbergh M (1985) Local search in routing problems with time windows. Ann Oper Res 4(1):285-305

Savelsbergh M (1990) An efficient implementation of local search algorithms for constrained routing prob-
lems. Eur J Oper Res 47(1):75-85

Savelsbergh M (1992) The vehicle routing problem with time windows: minimizing route duration. ORSA
J Comput 4(2):146-154

Shaw P (1997) A new local search algorithm providing high quality solutions to vehicle routing problems.
Technical report. Department of Computer Science, University of Strathclyde

Solomon M (1987) algorithms for the vehicle routing and scheduling problems with time window con-
straints. Oper Res 35:254-265

Tilk C, Bianchessi N, Drex]l M, Irnich S, Meisel F (2018) Branch-and-price-and-cut for the active-passive
vehicle-routing problem. Transp Sci 52(2):300-319

Vidal T, Crainic TG, Gendreau M, Prins C (2013) A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Comput Oper Res
40(1):475-489

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute vehicle
routing problems. Eur J Oper Res 234(3):658-673

Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2011) A GRASP with evolutionary path relinking
for the truck and trailer routing problem. Comput Oper Res 38(9):1319-1334

Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2013) A matheuristic for the truck and trailer
routing problem. Eur J Oper Res 230(2):231-244

Wen M, Larsen J, Clausen J, Cordeau JF, Laporte G (2009) Vehicle routing with cross-docking. J Oper Res
Soc 60:1708-1718

Xue Z, Zhang C, Lin W, Miao L, Yang P (2014) A tabu search heuristic for the local container drayage
problem under a new operation mode. Transp Res Part E 62:136-150

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	On the one-to-one pickup-and-delivery problem with time windows and trailers
	Abstract
	1 Introduction
	2 Related work
	3 Adaptive large neighbourhood search for the PDPTWT
	3.1 Destruction procedures
	3.2 (Re)Construction procedures
	3.3 Adaptive weight adjustment
	3.4 Acceptance mechanism

	4 Feasibility tests
	4.1 Time windows
	4.2 Capacities
	4.2.1 Testing capacities in linear time
	4.2.2 Testing capacities in constant time

	5 Computational experiments
	5.1 Benchmark instances
	5.2 Results

	6 Conclusions and outlook
	Acknowledgements
	Appendix
	References

