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Abstract
The paper examines the complexity of assigning multiple breaks to shifts in the context of large-scale tour scheduling. A
mixed-integer programming (MIP)model is presented that includes shift and days-off scheduling alongwith break assignments
for a multi-skilled workforce. To achieve tractability, a two-stage decomposition procedure is proposed that separates the
tour scheduling problem (TShP) from the break assignment problem (BAP). The former MIP is first solved to determine the
shifts and days off for the workforce that minimize labor and shortages costs over the planning horizon. The results are used
as input to a second MIP that optimally places the breaks to minimize the costs of working hours and uncovered periods.
Three implicit BAP formulations are investigated. To better understand the literature and the models previously developed,
a 3-field break classification scheme is introduced. The first field characterizes the number of breaks permitted per shift, the
second specifies whether the length of the breaks is fixed or variable, and the third limits their position in a shift. A complexity
analysis of the resulting 12 BAPs along with a few special cases is also included. Most problems are shown to be strongly
NP-hard. Computations are presented for a wide variety of scenarios for both the TShP and the BAP using data provided by a
European airport ground handler company. In all, over 500 instances were investigated using high and low demand fluctuation
curves and the various break and shift flexibility options. The results indicate that increasing flexibility in break regulations
can make a significant difference in coverage, but the degree depends on the underlying structure of the demand curve as well
as on the types of shifts permitted. Formulations with the most flexible shift and break regulations reduced undercoverage by
up to 16.68% compared to the most common scenarios in which shifts are limited to a single lunch break.

Keywords Tour scheduling · Break classification · Break scheduling · Hierarchical workforce · Implicit formulations

1 Introduction

In most personnel scheduling problems, workforce demand
is a function of the number of required tasks per period
and, depending on the application, can have extremely high
variance. To optimally cover demand, a tour scheduling prob-
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lem needs to be solved to determine the days off (days-off
scheduling) and shift assignments (shift scheduling) for each
worker on each day of the planning horizon.Once the days off
are fixed, there are two immediate ways to modify a worker’s
tour when demand is highly variable: adjust the start time and
length of a shift, and redo the assignment of breaks to shifts.
Although much has been written about the first option, there
is a noticeable absence in the literature when it comes to ana-
lyzing different break regulations, especially in the context
of tour scheduling. Moreover, there is little practical evi-
dence that planners have exploited the benefits offered by
such regulations when it comes to better matching supply
with demand.

One of the objectives of this paper is to show how break
assignments can be used to improve the scheduling of airport
ground handlers. When a flight arrives at an airport, baggage
and cargo must be transferred to the terminal, handicapped
passengers must be transported to either their next flight or
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the baggage area, and the aircraftmust be prepared for its next
trip. These functions fall under the heading of ground han-
dling and, depending on the number of arriving passengers
and the distance flown, may require a dozen or more service
workers to perform (Ashford et al. 1997). Personnel costs are
the largest expense faced by the service provider and must
be managed carefully in today’s competitive environment.
Ground handling as well as many other personnel schedul-
ing problems requires the explicit assignment of shifts and
days off to individual employees rather than to a generic
workforce. This means that information on individual skills,
availability, andovertimebalancesmust be taken into account
(e.g., see Love and Hoey 1990). In ground handling, the dif-
ference between peak and non-peak demand can be as large
as three to one over the day. Meeting the demand without an
excess of under- or over-coverage is an extremely challeng-
ing task. To the best of our knowledge, this paper is the first
to analyze the full range of break options in tour scheduling.

The approachwe take involves decomposing the full prob-
lem into a tour scheduling problem (TShP) and a break
assignment problem (BAP). By separating the two, we create
a framework in which different break models can be compu-
tationally evaluated without controlling for the basic tour
scheduling parameters. As stand-alone problem, the BAP
arises in daily breakplanning aswell as intradaybreak assign-
ment and the presented implicit models can incorporate
a hierarchical multi-skill workforce. Other decomposition
approaches based on branch and price turned out to be
intractable for such large-scale real-world application con-
sidering individual workers and complex break regulations.
The presented heuristic is flexible enough to be adopted
to many real-world tour scheduling problems and general
enough to incorporate all kinds of break regulations. To the
best of our knowledge, there is no approach present in the
literature to tackle a TShP of the size and complexity result-
ing from our ground handling application. The majority of
the work in the area of breaks has focused on model develop-
ment and thedesignof computational techniques for reducing
problem size and runtimes in the context of shift scheduling.
The primary example centers on the the implicit modeling
of breaks in shift scheduling (see Aykin 1996, Bechtold
and Jacobs 1990, Rekik et al. 2010). Our decomposition
approach enables us to fully investigate the various implicit
formulations in the wider context of tour scheduling and
a hierarchical workforce. As part of the developments, we
introduce a classification scheme for the BAP and present a
complexity analysis of all major variations. Based on the dif-
ferent properties of the accompanying models, the flexibility
and operational value of each is evaluated using data from a
large European ground handling company. For applications
where breaks are assigned dynamically over the day, e.g.,
for fast food, ground handling, and mail processing opera-
tions, the decomposition approach provides an upper bound

on costs. In such environments, the break assignment model
can be used in a rolling horizon manner to support reactive
planning.

In order to generate tours, we rely on templates that define
a set of permissible shifts for each day of the planning hori-
zon. The templates also include the option for a day off
and therefore allow us to consider the availability of each
employee each day of the week. To show the impact of shift
starting time and shift duration flexibility and its interaction
with break flexibility, we investigate two different scenarios.
In the case of high shift flexibility, when early and late shifts
are considered, we get more than 1400 possible shifts for the
different combinations of starting times and working hours
alone. This is in contrast to less than 30 possible shifts for
the low flexibility case. As expected, we show that model
size is strongly correlated with our ability to solve realistic
instances in a timely manner.

The main contributions of this paper are as follows.

• A classification scheme and a complexity analysis of the
BAP for all practical variations.

• The presentation of three efficient implicit formulation
for assigning breaks to shifts in a manner that accounts
for hierarchical skill levels.

• A heuristic decomposition procedure for scheduling a
hierarchical workforce that can accommodate all permis-
sible break placements in a shift (the heuristic supports
reactive planning of breaks in response to unforeseen
changes in hourly demand) that has successfully been
applied at a major European ground handling service
company.

• An analysis showing the impact of shift and break flexi-
bility on solution quality and runtime.

The paper is organized as follows. In Sect. 2,we review the
literature on ground handling operations and break assign-
ment models. This is followed in Sect. 3 with a detailed
description of the full problem, including an example and
definitions related to templates and tours. An integrated
mixed-integer programming (MIP) formulation of the tour
scheduling problem based on weekly templates is presented
in “Appendix B”. In Sect. 4, we introduce a classification
scheme for the different BAPs and analyze the complexity of
each. The decomposition approach is highlighted in Sect. 5
along with an efficient implicit model for break assignments
for a hierarchical workforce. This is followed by a compu-
tational study in Sect. 6 where the various break assignment
models and the decomposition procedure are empirically
evaluated. We close with some insights and observations on
the proposed methodology.
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2 Literature review

Personnel scheduling is the process of constructing work
timetables for the employees of an organization to best meet
the demand for its goods and services (Ernst et al. 2004). An
overview of the subject can be found in Tien and Kamiyama
(1982), Ernst et al. (2004), and Van den Bergh et al. (2013).
In our review, we focus on tour scheduling, break assign-
ments, implicit break formulations, and airport ground staff
scheduling.

The first integer programming formulation for person-
nel scheduling problems was given by Dantzig (1954) who
introduced a set-covering model in which each decision vari-
able corresponded to a feasible tour. For all but the simplest
of applications, however, problem size grows exponentially
and becomes unmanageable when more than a handful of
shift types and break options are considered. As a con-
sequence, a large number of alternative formulations have
been developed to reduce model size. Foremost are implicit
formulations that either solve the problem by aggregating
decisions or bymodeling the rules for building shifts, breaks,
or tours as constraints. Stolletz (2010) introduced a reduced
set-covering-based formulation for the tour scheduling prob-
lem for check-in counter personnel inwhich all feasible shifts
are enumerated explicitly as columns. A decision variable for
each worker, each day of the planning horizon, and each shift
is employed while the rules for building tours are modeled
as constraints.

Çecik et al. (2001) piece together tours using a network
flow formulation. In their approach, integer variables are
used to indicate the frequently with which a specific shift
is assigned to a specific number of workers. However, the
principle of shift aggregation cannot be directly adapted to
tour scheduling problems in which individual shift informa-
tion, such as worker skill levels or over- and undertime, has
to be considered.

Recentwork to tackle the complexity of tour schedulingby
means of branch and price is given by Restrepo et al. (2016).
A multi-activity assignment to shifts is included such that
skill requirements can be modeled. In the case of our appli-
cation, though, branch and price leads to a large number of
subproblems that are burdened by complex break regulations.
Furthermore, shift start and shift length were sufficient in the
subproblem presented by Restrepo et al. (2016) to find the
best reduced cost-based shift, whereas in our case, breaks
influence the net working time of an employee in a shift.
An algebraic representation of the constraints that model the
rules for building tours is presented by Brunner et al. (2009,
2010) for scheduling physicians in hospitals. In this paper,
we extend those formulations to solve the tour scheduling
subproblem that results from our decomposition.

The increase in problem complexity for the integrated tour
and break scheduling problem is made clear in Brunner and

Stolletz (2014) where meal breaks must be assigned to shifts
within a specified time window. While the set-covering for-
mulation proposed by Stolletz (2010) could be solved to
optimality with off-the-shelf software (CPLEX) for small
instances, as the shift definition expanded and breaks were
included it become impossible to find optimal solutions. To
tackle the larger instances, branch and price was applied.
However, computational results still showed gaps of up to
7% with 65 workers and a 1,000 node limit on the size of the
search tree. Those instances also included a 15-day planning
horizon with 34 periods per day, and an upper bound of 435
shifts per day (without breaks). In contrast, we consider a
7-day scheduling problem with 96 periods per day, up to 638
shifts per day and significantly higher complexity in break
regulations. In Sect. 4, we give an overview of the various
break regulations that have appeared in the in literature and
classify relevant work.

Contributions to tour scheduling for ground handlers and
other airport personnel have been made by Dowling et al.
(1997), Chu (2007), Ásgeirsson (2012), and Lusby et al.
(2011). In contrast to their work and other tour schedul-
ing research found in the literature (e.g., see Van den Bergh
et al. 2013), our framework considers the most flexible break
regulations and contains over- and undertime constraints for
individual workers with hierarchical skill levels. To the best
of our knowledge, this leads to themost general formulations
to date. Practical instances of tour scheduling problems for
ground handlers can include up to several hundred workers.

Given that the general problem is NP-hard, finding opti-
mal solutions to real-world instances is mostly beyond the
reach of current technology. Dowling et al. (1997) developed
a system to support the monthly rostering of 500 workers at a
large airport. They used simulated annealing tominimize idle
time under highly fluctuating demand. A novel component
of their approach was an external rule engine to check for
feasibility after each neighborhood search. Chu (2007) opti-
mized daily schedules for baggage handlers at theHongKong
International Airport using a goal programming-based algo-
rithm. Taking a behavior-based approach, Ásgeirsson (2012)
designed a heuristic that emulates the logic of personnelman-
agers when creating schedules for an airport ground service
company with 53 employees. He begins with a partial sched-
ule derived from employee requests and then builds a full
schedule that satisfies the prevailing labor laws and com-
pany policies. Solution quality was judged by how closely
the days-on and days-off assignments matched employee
requests. Finally, Lusby et al. (2011) tackled a ground crew
rostering problem for a European airline using a column
generation-based heuristic. Their goal was to create long-
term rosters based on 6 days-on, 3 days-off work patterns.

Implicit break formulations for shift scheduling are pre-
sented by Bechtold and Jacobs (1990), Aykin (1996) and
Rekik et al. (2010). Bechtold and Jacobs (1990) reduced
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the size of the set-covering-type model by excluding the
break information from the shift matrix. That is, breaks are
treated in the aggregate and not explicitly assigned to shifts
by the MIP. A set of constraints is introduced to guaran-
tee that feasible breaks are available for the shifts chosen.
In a post-processing step, breaks are assigned to shifts. A
different approach is proposed by Aykin (1996) where a
variable is introduced for each combination of shift and
eligible break starting times. Again, beak information is
removed from the shift matrix. In both formulations, pre-
determined break time windows and a fixed break duration
are assumed.

Themodeling of sub-breaks for shift schedulingwas intro-
duced by Rekik et al. (2010) who used the term fractionable
breaks. A fractionable break has an overall duration that
can be split into one or more sub-breaks with the restric-
tion that the number of sub-breaks is within a predefined
range. In their work, sub-break placement is constrained by
work stretch durations between consecutive breaks. They
present two implicit model formulations for shift scheduling
based on extensions of the models of Bechtold and Jacobs
(1990) and Aykin (1996). For reasons similar to those stated
for the network flow formulation of Çecik et al. (2001),
their modeling approaches cannot be easily adapted to shift
scheduling problems that require individual shift informa-
tion.

Whilemanyorganizations take advantage of flexible break
patterns within a shift, there has been little if any research
on their use in the extended problem of tour scheduling. In
part, this paper is aimed at filling this void. By separating the
tour scheduling problem from the BAP, it is possible to use
implicit formulations for dealingwith a range of skill require-
ments. Building on thework ofRekik et al. (2010) and others,
we present two implicit formulations for the BAP in which
hierarchical skills are taken into account. The one based on
Bechtold and Jacobs (1990), however, needs a post-processor
to assign breaks to workers and so cannot be applied in all
environments (e.g., bus driver scheduling; see Rekik et al.
2010). To circumvent this limitation, we introduce and eval-
uate an alternative implicit formulation that models the break
rules as constraints.

3 Problem description

Our tour scheduling model is built around individual tem-
plates that specify the feasible set of shifts and days off that
maybe assigned to aworker each dayof the planning horizon.
We define a shift as a given number of continuous periods
with a fixed start time and duration. A shift type is a set of
shifts whose start times and durations fall within predefined
ranges (e.g., early, mid-day or late). The set of all feasible
shifts is denoted by S.

Table 1 Example of three different weekly templates for three workers
with the following shift types: E=early, L= late, X=day off

Worker Days of the week

Mo Tue Wed Thu Fri Sat Sun

1 X E/X E/X E E E/L L

2 L L/X X X X E/X E

3 E E E/L L L L/X X

To illustrate the concept of a template, consider a one-
week planning horizon and three workers, each having a
different template as shown in Table 1. The notation E/L
means that a worker can be assigned either an early or a
late shift; L/X means that a worker can be assigned either
a late shift or a day off, depending on demand. In the lat-
ter case, some workers may be on while others may be
off. If a template offers all shift types on all days, i.e.,
E/L/X in the case of early and late shifts, the problem
is equivalent to a tour scheduling problem without tem-
plates.

At the European service company that provided our
ground handler application, the templates for each worker
for the upcoming week are derived from a cyclic tem-
plate defined for a flight season (e.g., summer or winter),
as well as each worker’s individual vacation plan, and are
assumed to be given. The templates offer a concept that is
in general useful to model many real-world requirements
for tour scheduling such as individual holidays, personal
preferences and employee carpools, aspects that we had to
consider in the ground handling application but which we
exclude from this study. For the general motivation behind
the cyclic templates and its generation, we refer to Kier-
maier et al. (2016). In Kiermaier et al. (2016), it is shown
that incorporating stochastic information about employee
demand when generating templates has a significantly pos-
itive impact especially when templates allow only limited
flexibility, e.g., inflexible shift starting times and/or inflexi-
ble shift lengths.

The actual tasks for which the worker is responsible
are assigned on the day of operation by a dispatcher. For
the current tours, we want to assure that sufficient person-
nel are available to cover the demand. We now formalize
the problem of creating a weekly tour for each mem-
ber of the workforce based on his or her template. The
underlying constraints reflect current operations; some are
statute-based, while others are a result of union negotia-
tions.

An overview of sets and indices used in the formulation
is given in Table 2. The workforce is denoted by W such
that each worker w ∈ W is assigned a template p ∈ P ,
where p defines the eligible shift types (e.g., early, off, late,
combination) for each day d ∈ D in the week. The set
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Table 2 Sets and indices used in the formulation

Sets Definition Sets Definition

W Workers, w ∈ W M Shift types, m ∈ M
W(q) Workers with skill q M(p) Eligible shift types in template p

S Shifts, s ∈ S M(d, p) Eligible shift types in template p on day d

S(d) Shifts on day d T Number of planning periods per day, t ∈ T
S(q, t) Shifts covering demand for skill q in period t T shS(m) Shift starting times for the shift type m

B Break patterns T shE Shift ending times

B(s) Break patterns for shift s T brS(r) Break starting times for the r -th sub-break

D Planning days, d ∈ D T brE Break ending times of all sub-breaks

D(p) Planning days in template p T brE(r) Break ending times of the r -th sub-break

P Weekly templates, p ∈ P Q Skill levels, q ∈ Q

M(d, p) ⊆ M identifies the shift types that are allowed
in template p on day d. A day in template p can either be
a mandatory working day, an optional working day or a day
off.

The set of feasible shifts for day d is given by S(d) ⊆ S.
On mandatory working days, an employee must be uniquely
assigned to a shift s ∈ S, whereas on optional working
days he may or may not be assigned to a shift, depending
on the demand. Each day is divided into a set of periods
T = {1, . . . , T } of equal length (typically, 15 min). A shift
s ∈ S in weekly template p has to satisfy the following rules.

S1. Starting and ending time windows: Each shift type m
must start within the time band T shS(m) ⊂ T and must
end within the time band T shE.

Multiple breaks are permitted per shift, but the actual
number must fall between some lower and upper bound.
This allows for maximum flexibility when making the break
assignments. However, the length of each sub-break must
also fall between some given bounds as must the time
between them and their total duration. Adopting the nomen-
clature introduced by Rekik et al. (2010) for fractionable
breaks, we impose the following rules:

B1. Number of breaks: There are Bmin ≤ r ≤ Bmax sub-
breaks in a shift.

B2. Workstretch between first break and shift start: The first
break must start within

[
�minBF,�maxBF

]
periods after

the shift starts.
B3. Single break duration: Break r ∈ [

Bmin, Bmax
]
has

a minimum and maximum duration of �minBD
r and

�maxBD
r periods.

B4. Overall break duration: The minimum and maximum
overall break duration must be within the interval[
�minBD,�maxBD

]
.

B5. Workstretch duration: The workstretch duration after
the r -th break has to bewithin

[
�minBW

r ,�maxBW
r

]
peri-

ods.
B6. Workstretch between last break and shift end: The

last break must end within
[
�minBL,�maxBL

]
periods

before the shift ends.

Given the parameters in B1 to B6, the range of sub-break
r ’s possible starting and ending times can be restricted to
the subsets T brS(r) and T brE(r), respectively. In the fol-
lowing, we define a break pattern b ∈ B as a feasible set
of sub-breaks with starting times and durations such that
(B1) to (B6) are satisfied. The subset of feasible break pat-
terns within a shift s that satisfies B5 and B6 is denoted
by B(s). As we shall see in Sect. 4 these break regula-
tions are the most general and flexible investigated to date.
High flexibility, however, is accompanied by high complex-
ity.

An additional attribute of the workforce is the level
of skill that each individual brings to the job, whether
he is a baggage handler, driver, ramp agent or other des-
ignation. Skill levels are ordered hierarchically, meaning
that a worker at the higher end of the spectrum can fill
in for one at the lower end when needed. Let Q =
{q1, . . . , qn} be the ordered set of skills, where the rela-
tion qk � ql means that that a task requiring skill level
qk ∈ Q can be performed by any worker having a
skill level of at least ql for l ≥ k. The vector K =(
Kq,t,d

)
q∈Q,t∈T ,d∈D is used to represent the demand of a

task, where each element Kq,t,d gives the required demand
for skill level q in time period t on day d. Each shift-
covering demand for skill level q at time t is contained in
the set S(q, t).

At the beginning of the planning horizon, each worker w

has an accumulated bank of either overtime (Ow ≥ 0) or
undertime (Ow < 0) that must be kept within a target band-
width

[
O−, O+]

. Given a weekly template pw for worker
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Table 3 Cost parameters

Parameter Definition

cwork Unit cost for a worker when on duty

cuc Unit cost of undercoverage

w, when generating a tour, the following rules must be taken
into account.

T1. Tour bandwidth: The length of a tour must be within
the tour bandwidth

[
O−, O+]

.
T2. Forward rotation: The start time of shift type m must

be nondecreasing from one day to the next during the
week.

T3. Bandwidth: For each shift type, there is a maximum
allowed bandwidth of �bw for shift starting times.

T4. Starting times: The number of maximum allowed shift
starting times per week for shift type m is limited
to K shift.

The main objective of the problem is to minimize labor
costs while covering as much demand as possible by fix-
ing shift start and end times, days off, and breaks. Each
worker incurs a cost of cwork per period which is assumed
to be less or equal than the unit cost of undercoverage cuc,
i.e., cwork ≤ cuc. In determining labor costs, the time that
a worker is not on duty, such as during a break, is not
factored into the calculations. Table 3 lists the cost parame-
ters.

It is well known that tour scheduling problems are NP-
hard (see Lau 1996), which is one explanation for the lengthy
runtime we experienced when trying to solve our first MIP
model (see “Appendix B”) of the ground handler staffing
problem (GHSP) with CPLEX. In practice, breaks are often
set at the beginning of the working day and not beforehand
to better accommodate unforeseen changes in the demand
profile. Therefore, to allow for this level of flexibility, as
well as to reduce the difficulty of the problem, we have
chosen to separate the BAP from the tour scheduling prob-
lem (see Sect. 5). In the next section, we categorize the
full range of BAPs and undertake a complexity analysis of
each.

4 Break assignment problem

The GHSP contains very general and flexible break regula-
tions. Since the need for break assignments is common in
many shift and tour scheduling problems, we classify and
analyze the complexity of various BAPs found in the lit-

erature. A computational study of different versions of the
problem is presented in Sect. 6.

Classification scheme

We use three sets of parameters to classify the BAP:

• Single(S), multiple(M) or fractionable(F) breaks. Break
assignment formulations can be classified as single, mul-
tiple or fractionable break models. In single break BAPs
only one break per shift may be assigned, whereas a fixed
number m ∈ Z+ of breaks are required per shift for mul-
tiple BAPs. In contrast, fractionable break models have
a lower and upper bound for the number of breaks that
can be assigned to a shift.

• Fixedtextbi(X) or variabletextbi(V) break length. For
BAPs with single or multiple breaks, each sub-break can
either have a fixed length or a lower and upper bound
on its length. Considering fractionable breaks, the length
of each is inherently variable, but there is an aggregate
break length given which is then split into sub-breaks for
the shift.

• Time windows(T) or workstretch(W) durations. Time
windows define the periods of a shift in which a break can
start. In contrast, the workstretch duration defines a lower
and upper bound on the number of consecutive periods of
work in a shift. Workstretch durations implicitly define
time windows, with the difference being that the size
and position of each are interdependent and therefore not
static.

In what follows, we classify the various versions of the BAP
using the 3-tuple [S, M, F |X , V |T , W ]. Figure 1 gives a
hierarchical overview of the complexity of the more interest-
ing models based on the findings given below. Those models
associated with the parameter combinations not shown are
for the single break case where the workstretch restrictions

S|X|T > M |X|T > M |X|W

S|V |T
∨

> M |V |T
∨

> M |V |W
∨

F |V |T
∨

F |V |W
∨

<

{ }

{ } { } { }

{ }

{ }

{ } { }

Fig. 1 Hierarchical overview of the complexity of various BAPs
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(a) (b) (c) (d)

Fig. 2 Break types and their possible assignments in a shift

lead to simple time windows and are therefore effectively the
same problem class.

Figure 2 depicts four realizations of break types using the
3-field notation and their possible positions in a shift. In pan-
els (a)–(c), the gray rectangles define the time windows in
which a break can take place due to work regulations. In
panel (d), there are no predefined break windows as work-
stretch durations limit the solution space. However, there is
a minimum workstretch of 2 periods before the first break
and between the first and second breaks, and a minimum
workstretch duration of 1 period after the last break. In all
examples, the overall break duration is equal to 4 periods.
The overall break length in (b) is split equally between the
first and second breaks, while in (c), the lengths of the first
and second breaks are variable.

The variety of possible break assignments provides
increased flexibility but at a cost. This will be confirmed in
a theoretical sense by studying the computational complex-
ity of the different break regulations. Table 4 provides an
overview of break regulations in the staff scheduling litera-
ture. As one can see, there has been little research on flexible
break regulations despite their positive impact on solution
quality (see Sect. 6).

Table 4 Break regulations in the staff scheduling literature

Break regulation References

{S|X |T } Restrepo et al. (2016); Rong (2010); Topaloglu and
Ozkarahan (2004); Alfares (2007); Bard (2004);
Bard and Wan (2006); Bard et al. (2007); Bard and
Wan (2008); Bechtold and Jacobs (1990); Brusco
and Jacobs (2000, 1998); Lim et al. (2016);
Mac-Vicar et al. (2017)

{M |X |T } Rekik et al. (2004); Avramidis et al. (2010);
Thompson and Pullman (2007); Ni and Abeledo
(2007); Aykin (1996); Sungur et al. (2017)

{M |V |T } Mirrazavi and Beringer (2007)

{M |X |W } Côté et al. (2007); Kuo et al. (2014)

{F |V |T }
{F |V |W } Rekik et al. (2010); Widl and Musliu (2014); Beer

et al. (2010)

Complexity analysis

To the best of our knowledge, Widl and Musliu (2014) are
the only authors who previously addressed the complexity of
the break assignment problem. Their NP-complete proof is
based on reduction from ‘Exact Cover by 3-Sets’ (X3C) and
is limited to arbitrary break patterns with 3 or more breaks.
The assumptions needed for their proof do not hold for the
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break regulations discussed in this paper or for the regulated
break patterns found in the literature.

In our analysis, we assume that a set of shifts S ′ ⊂ S
is given such that each s ∈ S ′ is associated with a unique
worker w ∈ W . The objective of the BAP is to assign breaks
to each shift s without violating the break constraints, i.e.,
B1 to B6, so that the costs associated with shift assignments
and the uncovered demand are minimized. As mentioned in
Sect. 3, each worker incurs a cost of cwork per period which is
assumed to be less than or equal to the unit cost of undercov-
erage cuc, that is, cwork ≤ cuc; off duty periods during a shift
do not incur any cost. In the analysis, we work with a set par-
titioning formulation for the BAP in which all feasible break
patterns B are enumerated. The set of feasible break patterns
for shift s is denoted by B(s). The following parameters and
variables are used in the developments.

Parameters

cworks,b = cost for a worker assigned shift s with break
pattern b
as,b,q,t = 1, if break pattern b in shift s covers demand
for skill q in period t , 0 otherwise
Dq,t = amount of over-coverage of demand for skill q in
period t (can be negative)

Variables

zs,b = 1, if break pattern b is assigned to shift s, 0 other-
wise
y−

q,t = amount of uncovered demand for skill q in period
t after break assignments
y+

q,t = amount of excess demand for skill q in period t
after break assignments

Set partitioning formulation for the BAP

Minimize
∑

s∈S

∑

b∈B(s)

cworks,b · zs,b +
∑

q∈Q

∑

t∈T
cuc · y−

q,t (1)

subject to
∑

s∈S ′

∑

b∈B(s)

as,b,q,t · zs,b + y+
q,t − y−

q,t = max
{

Dq,t , 0
}

∀ q ∈ Q, t ∈ T (2)
∑

b∈B(s)

zs,b = 1 ∀ s ∈ S ′ (3)

zs,b ∈ {0, 1} ∀ s ∈ S ′, b ∈ B(s) (4)

y+
q,t , y−

q,t ≥ 0 ∀ q ∈ Q, t ∈ T (5)

The objective function (1) minimizes the sum of labor
costs and the cost of uncovered demand over all periods.
When a subset of periods has an initial shortage, i.e., Dq,t <

0, it might be desirable to assign a larger positive weight than

cuc to the corresponding variables to discourage additional
undercoverage.Constraints (2) account for demand reduction
due to the break assignments to the shifts. The first term on
the left-hand side reduces the demand in period t for each
shift that includes a break in period t . The next two terms are
complementary variables. The first represents the amount of
remaining coverage in period t after the breaks have been
assigned and will be nonnegative if a shortage exists. The
second variable represents the undercoverage in period t after
the breaks have been assigned and is minimized in (1). The
right-hand side of (2) is taken to be nonnegative to avoid
penalizing existing undercoverage.

The convexity constraints (3) enforce the requirement that
each shift is assigned exactly one break pattern, and con-
straints (4) and (5) define the variables. In anoptimal solution,
at most y+

t or y−
t will be positive but never both because we

are trying to minimize the latter. Also, it can be seen that
these variables will always be integral in an optimal solution
so there is no need to impose such a restriction.

We now present several theoretical results that character-
ize the complexity of various versions of the BAP. Proofs can
be found in “Appendix A.”

Proposition 1 When the break length of BAP{S|X|T} is one
period, the A-matrix associated with model (1)–(5) is totally
unimodular (TU) implying that the associated problem is
polynomially solvable.

Corollary 1 When the length of each sub-break of BAP{M |X
|T } is one period the A-matrix associated with model (1)–
(5) is totally unimodular (TU) implying that the associated
problem is polynomially solvable.

Corollary 2 For a multi-skilled, hierarchical workforce, when
the sub-break length of BAP{M |X |T } is one period, the A-
matrix associated with model (1)–(5) is totally unimodular
(TU), implying that the associated problem is polynomially
solvable.

The implication of Proposition 1 is of particular interest
when scheduling relief breaks, which are short breaks of 15
min or less and typically one period in length. Thompson
and Pullman (2007) reviewed 75 staff scheduling papers and
found that 15% of them contained relief breaks. If considered
separately, they can be assigned in polynomial time once the
regular breaks are fixed.

When a break consists of more than one period, the suffi-
ciency condition is lost so it is not possible to conclude that
the full matrix for the set partitioning-like model (1)–5) is
TU. We now show that solving the problem in which only
a single break of arbitrary length is to be assigned is not
polynomially solvable.

Theorem 1 The problem of assigning a single break to each
shift to minimize the number of uncovered periods, that is,
BAP{S|X|T}, is strongly NP-hard.

123



Journal of Scheduling (2020) 23:177–209 185

The BAP{M |X |T } is equivalent to the break model that
occurs as a subproblem in Aykin (1996). By the princi-
ple of restriction stated by Garey and Johnson (1979), the
BAP{M |X |T } is also NP-hard in the strong sense since it
includes theBAP{S|X |T } as a special case; that is, whenm =
1. Similarly, because theBAP{S|X |T } and theBAP{M |X |T }
are special cases of the BAP{S|V |T } and the BAP{M |V |T },
respectively, the latter two problems are also strongly NP-
hard.Now, noting that theBAP{F |V |T } is a generalization of
the BAP{M |V |T }, with BAP{M |V |T } being the special case
of equalizing the lower and upper bound for the number of
sub-breaks of the BAP{F |V |T }, the relationships in Figure 1
follow. However, the BAP{M |X |T } and the BAP{S|V |T }
cannot be hierarchically related to each other.

Proposition 2 The BAP{F|V|W} is strongly NP-hard and
includes the BAP{F|V|T} as a special case.

In a similar manner, the relations between BAP{M |X |T }
and BAP{M |X |W }, and between BAP{M |V |T } and
BAP{M |V |W } can be shown. Each of these problems is
strongly NP-hard.

5 Decomposition procedure

In the GHSP under investigation, we have to tackle two NP-
hard problems: the tour scheduling problem (TShP) and the
(fractionable) BAP{F |V |W }. Solving the integrated model
given in “Appendix B”, however, was seen to be intractable
with CPLEX (see Sect. 6), so we adopted a sequential pro-
cedure. First, the TShP is solved to get feasible tours for
eachworker. Because this problem by itself is still intractable
when two or more skill levels are considered simultaneously,
we use downgrading. This approach starts with the highest
skill level and works its way down to the lowest, covering
as much demand as possible as the computations progress
(Sect. 5.1). In light of the TShP solution, breaks are assigned
to each shift by solving the BAP{F |V |W } (Sect. 5.2).

5.1 Tour scheduling problem

Model formulation In theTShP, the start and end timesof each
shift for eachworker, as well as their days off, are determined
for the planning horizon. When applying the downgrading
procedure, the TShP is solved for all workers w ∈ W(qk)

of a given single skill level qk ∈ Q one level at a time.
Let Q(q+, qk) be the set of skills that are higher or equal to
skill q+ and lower or equal to skill qk . In each iteration, the
set of workers W(qk) is scheduled such that they cover the
demand for skill levels inQ(q+, qk)with the proviso that they
first cover higher level demand. In presenting the model, let
TShP(q+, qk) be the tour scheduling problem being solved

for workers with skill level qk with demand restricted to skill
levels in Q(q+, qk).

Variables

ym,w,d,t = 1, if shift of type m for worker w starts in
period t on day d, 0 otherwise
yendw,d,t = 1, if shift for worker w ends in period t on day
d, 0 otherwise
zw,q,d,t = 1, if worker w is active during period t on day
d at skill level q, 0 otherwise
vm,w = worker w’s earliest starting time for shift type m
ww,t = 1, if a shift for worker w starts in period t , 0
otherwise
y+

q,d,t = shortfall in demand for skill level q in period t
on day d

TShP(qk, q+)

Minimize
∑

q∈Q(q+,k)

∑

d∈D

∑

t∈T

⎛

⎝
∑

w∈W(qk )

(
cwork + pq

)

·zw,q,d,t + cuc · y+
q,d,t

⎞

⎠ (6)

subject to

Objective constraints
∑

w∈W(qk )

zw,q,d,t + y+
q,d,t ≥ Kq,d,t ∀ q ∈ Q(q+, k) ∈ D, t ∈ T

(7)
∑

m∈M(d,pw)

∑

l∈T shS(m):l≤t

ym,w,d,l −
∑

l∈T shE:l≥t

yendw,d,l

= zw,q,d,t
∀ w ∈ W(qk), d ∈ D(pw),

t ∈ T (8)
∑

q∈Q(q+,k)

zw,q,d,t ≤ 1 ∀ w ∈ W(qk), d ∈ D(pw), t ∈ T (9)

Shift constraints

1Dfix(pw)(d)≤
∑

m∈M(d,pw)

∑

t∈T shS(m)

ym,w,d,t≤1

∀ w∈W(qk), d∈D(pw) (10)

0 ≤
∑

t∈T shE

t · yendw,d,t−
∑

m∈M(d,pw)

∑

t∈T shS(m)

(
t + �minS

)
· ym,w,d,t

≤ �maxS ∀ w ∈ W(qk), d ∈ D(pw) (11)
Tour constraints

O− − Ow ≤
∑

d∈D(pw)

⎛

⎝
∑

t∈T shE

t · yendw,d,t−
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∑

m∈M(d,pw)

∑

t∈T shS(m)

t · ym,w,d,t

⎞

⎠ ≤ O+ − Ow ∀ w ∈ W(qk)

(12)
∑

t∈T shS(m)

t · (
ym,w,d,t − ym,w,d ′,t

) · ym,w,d ′,t

≤ 0
∀ m ∈ M(d, pw),w ∈ W(qk),

d, d ′ ∈ D(pw) : d < d ′ (13)

t · ym,w,d,t ≥ vm,w · ym,w,d,t ∀ m ∈ M(d, pw), (14)

w ∈ W(qk), d ∈ D(pw), t ∈ T shS(m) (15)
∑

t∈T shS(m)

t · ym,w,d,t − vm,w ≤ �bw

∀ m ∈ M(d, pw),w ∈ W(qk), d ∈ D(pw) (16)

ww,t · M ≥
∑

d∈D(pw)

ym,w,d,t

∀ m ∈ M(pw),w ∈ W(qk), t ∈ T shS(m) (17)
∑

t∈ ⋃

d∈D(pw),
m∈M(d,pw)

T shS(m)

ww,t ≤ K shifts ∀ w ∈ W(qwork) (18)

ym,w,d,t , ww,t , yendw,d,t ′ , zw,q,d,t ′ ∈ {0, 1}
∀ w ∈ W(qk), q ∈ Q(q+, k), d ∈ D(pw),

m ∈ M(d, pw), t ∈ T shS(m), t ′ ∈ T shE (19)

vm,w ∈ N ∀ m ∈ M, w ∈ W(qk) (20)
yucq,d,t ≥ 0 ∀ q ∈ Q(q+, k), d ∈ D, t ∈ T (21)

zw,q,d,t ∈ {0, 1} ∀ w ∈ W(qk), q ∈ Q(q+, k), d ∈ D, t ∈ T
(22)

Objective function The objective function (7) minimizes the
sum of labor costs and the cost of not meeting the demand.
When workers with skill level qk are being considered,
demand coverage for skill levels qk > . . . > q1 is penal-
ized with pqk = 0 < . . . < pq1 such that workers with skill
level qk are prevented from covering demand that requires
lower skills before covering demand requiring skill qk .

Objective function constraints Constraints (7) ensure that
either the demand for the skill levels in Q(q+, k) is covered
or a shortage is identified. Variable zw,q,d,t , which indicates
whether or not worker w is on duty in period t on d at skill
level q, i.e., zw,q,d,t = 1 or 0, is set in constraints (8). Con-
straints (9) guarantee that worker w is assigned at most one
skill level in each period.

Shift constraints (S1) Constraints (10) set the start time of
the shifts in worker w’s weekly template, pw ∈ P . Here, the
indicator function 1Dfix(pw)(d) is equal to 1 if day d is an
obligatory day on for worker w, and 0 otherwise. (S2) The
minimum and maximum shift length inclusive of breaks is
bounded in the two-sided constraints in (11).

Tour constraints (T1) Bounds are placed on the maximum
allowed undertime O− and overtime O+ for each worker

w in constraints (12). (T2) The forward rotation of shift
starting times over the week is enforced by constraints (13).
(T3) The earliest starting time for shift type m is determined
by constraints (15), while the maximum permitted deviation
between start times of each shift type during the week is
restricted by constraints (16). (T4) The maximum number of
shift starts in a week is bounded by constraints (17) and (18).
The remaining constraints define the variables.

Sequential assignment procedure The sequential procedure
for assigning shifts to workers to cover demand for all skill
levels in each time period of the planning horizon is outlined
in Algorithm 1. Assume that Algorithm 1 is currently at skill
level q2 in step 3, i.e., qk = q+ = q2. If it is possible to cover
the entire demand Kq2,t,d for skill level q2 in all periods t on
any day d ∈ D (see Step 8), Steps 9 through 11 are executed;
that is, skill level q+ is decremented by 1 such that q+ = q1,
and demand Kq1,d,t for skill level q1 on day d for all peri-
ods t is added to constraints (39). In objective function (7),
covering demand for skill level q < qk is penalized by pq to
force the workers being scheduled to cover tasks requiring
their skill level first. When TShP(qk, q+) is solved for the
first time, we set qk = q+ = qn in Step 3.

Algorithm 1 Sequential Downgrading MIP-heuristic
1: Input: Set of skills Q and demand vector K
2: Output: Set of shifts S∗(d) for each day d ∈ D
3: for qk = q+ = qn to q1 do
4: next ← true
5: while next do
6: next ← false
7: solve TShP(qk , q+)
8: if Kq,d,t is covered for any d ∈ D in all t ∈ T for all q ∈

Q(q+, k) with q ≤ qk then
9: put q+ ← q+ − 1
10: add demand Kq+,d,t on day d for all periods t to con-

straints (7)
11: next ← true
12: end if
13: end while
14: compute residual demand Kq,d,t for all q ∈ Q(q+, k), d ∈ D

and t ∈ T
15: end for

The sub-procedure in Steps 5 – 13 continues until under-
coverage appears for some demand Kq,d,t with q ∈ Q(q+, k)

on any day d in some period t . Before decrementing qk and
starting the next iteration in which TShP(qk, q+) is solved
for workers with the next lower skill level, we reduce the
demand Kq,d,t for q ∈ Q(q+, k) in Step 14 in periods that
are covered by workers inW(qk). For example, consider two
time periods t1 and t2 on day d and two skill levels q1 and q2
with the following demand.

Kq1,d,t1 = 2, Kq1,d,t2 = 1
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Kq2,d,t1 = 1, Kq2,d,t2 = 1

For skill level q2, assume that two workers are scheduled in
t1 and t2, i.e., the demand for skill level q2 is completely
covered. Hence, the next lower skill level is added, i.e., q+ =
q1. When running TShP(qk, q+) again, the entire demand
for skill level q2 is covered, while one additional unit of
demand is covered by one worker in period t2 for skill level
q1. Finally, updating the residual demand for skill level q1
gives Kq,d,t1 = 1 and Kq,d,t1 = 0.

5.2 Break assignment problem

Algorithm 1 terminates with a set of shifts S∗(d) for each
day d, where each shift s ∈ S∗(d) uniquely corresponds to
one worker w ∈ W . We now assign break patterns to these
shifts by solving the BAP. Because there are no restrictions
on break patterns from one day to the next, the computations
can be done independently for each day d.

5.2.1 Implicit formulations

The set partitioning formulation (1)–(5) explicitly assigns
break patterns to shiftsS(d). If we consider, for example, 400
shifts inwhich up to 3 sub-breaks are permitted, and each sub-
break can start within a timewindow of 12 periods and have a
duration between 2 and 3, we obtain |B| = 5, 529, 600. This
value defines the number of columns (and hence variables)
in the set partitioning formulation. The resultant problem is
much too large to solve in practice. Consequently, we have
adopted an implicit modeling approach to the BAPwith non-
trivial model extensions to consider a hierarchical multi-skill
workforce and investigate three different formulations.

The primary aim of implicit modeling is to reduce the
number of decision variables by avoiding the need to enu-
merate each possible combination of shift and sub-break
sequence. This is achieved by modeling the rules for build-
ing breaks as constraints. The implicit formulation associ-
ated with the GHSP is given in “Appendix D”. The other
two formulations are based on the shift scheduling work
of Rekik et al. (2010) who extended the multiple break
models of Aykin (1996) and Bechtold and Jacobs (1990)
to include fractionable breaks. However, they found that due
to the large number of variables still required by Aykin’s
formulation, computational difficulties arose when there is
a high degree of break flexibility. With this in mind, we
present an implicit formulation based onBechtold and Jacobs
(1990) that can accommodate significant break flexibility as
well as a hierarchical workforce. Insights into the compu-
tation times of the different formulations are provided in
Sect. 6.

5.2.2 Notation and components of implicit BAP
formulations

To help define our model, we introduce the terms break pro-
file and shift profile. Each break profile β ∈ BP corresponds
to a number of sub-breaks denoted by Bβ and their respective
lengths. For example, using minutes as the unit of time, β1 =
15/30/15 and β2 = 30/15/15 are two break profiles for a frac-
tionable break with an overall length of 60 min. A sub-break
k ∈ K is defined for each break profile, each position in the
break profile, each possible starting time and each skill level.
Notice that we need a unique sub-break for each skill level as
we have to consider the skill of the worker that is taking the
break. In Rekik et al. (2010), a shift profile (or a shift in their
terminology) j ∈ J is defined as a unique combination of
start time, length, and admissible break profile. Because we
are considering a hierarchical workforce, we have extended
the definition of a shift profile to include a specific skill level.
Some additional notation follows.

Sets

J(β,q) = set of shift profiles associated with break profile
β and skill q
B(β,r ,q) = set of sub-breaks associated with break profile
β, position r and skill q

Parameters

ρt,k = 1, if break k covers period t , 0 otherwise
hs,q = number of workers assigned to shift s having skill
q
lq̂,q,t = number of shifts for workers with skill q̂ covering
demand for jobs requiring skill q in period t
dk = length of break k

Variables

S j = number of workers assigned to shift profile j ∈ J
Ek = number of workers that are given sub-break k
Pq̂,q,t = number of workers having skill q̂ who are given
a break in period t from a job requiring skill q

The implicit aspect of the BAP formulation requires con-
straints that:

Match shifts with break profilesFrom theTShP,we obtain
the set of shifts as well as the skill of the corresponding
worker for each day of the planning horizon. When solv-
ing the BAP, we consider workers with the same shift
and skill jointly. Therefore, instead of explicitly assign-
ing each worker’s shift a break profile, we split the shifts
into groups that are then associated with eligible break

123



188 Journal of Scheduling (2020) 23:177–209

profiles. Example: Suppose that 5 workers with skill q2
are assigned a shift from 4 am to 11 am that is associated
with two permissible break profiles β1 =15/15/15 and
β2 =15/30. The workers are considered as a group, e.g.,
with 2 workers being assigned to β1 and 3 workers to β2.

Match sub-breaks with shift profiles The number of sub-
breaks that are eligible in the r -th position of break profile
β is selected by means of forward and backward con-
straints. For each break profile, each position within it,
and each skill level, these constraints ensure the feasibil-
ity of a transportation problem (to be defined presently)
between the break profiles’ corresponding shift profiles
(supply nodes) and the break profiles’ eligible sub-breaks
(demand nodes). Thus, it is not necessary to explicitly
assign sub-breaks to each shift profile.

Meet workstretch durations between sub-breaksToensure
that the workstretch duration restriction between consec-
utive sub-breaks is met, a set of forward and backward
constraints is established. For each break profile, each
position in the break profile but the last, and each skill
level, these constraints ensure the feasibility of a trans-
portation problem that balances the number of sub-breaks
with the number of their corresponding successor sub-
breaks.

Assign breaks to shifts When sub-break k covers period
t , the demand coverage in period t has to be reduced
by the number of workers that are given sub-break k.
For each skill q̂, we must assure that the number of
sub-breaks associated with skill q̂ and covering period
t does not exceed the number of workers with skill q̂
that are scheduled to work in period t in the TShP solu-
tion. Furthermore, in the context of downgrading, it is
necessary to consider whether workers with skill q̂ are
covering demand requiring lower skill. Accordingly, for
each period t and skill q, the number of sub-breaks of
type k covering period t is assigned to demand q for
q ≤ q̂ in an aggregated way such that the solution of
TShP is respected. By using aggregation, we do not have
to explicitly reduce the demand for a specific skill for each
sub-break and each period the sub-break covers. Exam-

ple In period 5, 4 workers with skill q2 are assigned to a
job requiring skill q2 and 2 workers are assigned to a job
requiring skill q1. BAP has to ensure that not more than
4 (2) workers with skill q2 are given a break in period 5
from a job requiring skill q2 (q1). If 3 workers with skill
q2 have a break in period 5, their breaks can be assigned
aggregately to jobs by either assigning 0, 1, or 2 breaks to
a job requiring skill q1 while assigning 3, 2, or 1 breaks,
respectively, to a job requiring skill q2.

Before presenting our model, we outline the idea of using
forward and backward constraints to ensure the feasibility of
certain balanced transportation problems thatwere first intro-
duced in Rekik et al. (2004) and Çecik and Günlük (2004).
We also give a high level description of the transportation
problems included in our models. In all cases, the sum of the
supply equals the sum of the demand.

Given a bipartite graph with a set of arcs A connecting
the two sets of nodes N1 and N2, with each node i ∈ N1

having supply Oi and each node j ∈ N2 having demand Di ,
we wish to determine the flow Yi, j from node i to node j
for each (i, j) ∈ A. The constraints for the corresponding
transportation problem T (N1, N2) can be stated as follows.

∑

j :(i, j)∈A
Yi, j = Oi ∀ i ∈ N1 (23)

∑

i :(i, j)∈A
Yi, j = D j ∀ j ∈ N2 (24)

Under the assumptions that a total order relation ≺ can be
defined on set N2, each supply node i is connected to a set of
consecutive demand nodes Pi , and there exists no extraordi-
nary overlap, i.e., there exists no two nodes i1 and i2 such that
Pi1 ⊂ Pi2 , then the feasibility of transportation problem (23)
– (24) is guaranteed by a set of forward, backward, and flow
balance constraints. Using the following sets

N s
2 =

⋃

i=N1

{min(Pi )}

N e
2 =

⋃

i=N1

{max(Pi )}

N B
2 ( j) = {

j ′ ∈ N2| j � j ′
} ∀ j ∈ N s

2

N F
2 ( j) = {

j ′ ∈ N2| j ′ � j
} ∀ j ∈ N e

2

N B
1 ( j) =

{
i ∈ N1|Pi ⊆ N B

2 ( j)
}

∀ j ∈ N s
2

N F
1 ( j) =

{
i ∈ N1|Pi ⊆ N F

2 ( j)
}

∀ j ∈ N e
2

and letting ns
2 = min(N2) and ne

2 = max(N2), the necessary
constraints are

∑

j ′∈N F
2 ( j)

D j ′ ≥
∑

i∈N F
1 ( j)

Oi ∀ j ∈ N e
2 \ {

ne
2

}

∑

j ′∈N B
2 ( j)

D j ′ ≥
∑

i∈N B
1 ( j)

Oi ∀ j ∈ N s
2 \ {

ns
2

}

∑

i∈N1

Oi −
∑

j∈N2

D j = 0

To match sub-breaks with shift profiles, a transportation
problem for each break profile, each positionwithin the break
profile, and each skill level has to be considered, i.e., a trans-
portation problem T (J(β,q),B(β,r ,q)) for each β ∈ BP ,
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r ∈ {
1, . . . , Bβ

}
and q ∈ Q. The supply associated with

node j is S j , whereas the demand for node k is Ek . An arc
( j, k) exists between a shift j ∈ J(β,q) and a sub-break
k ∈ B(β,r ,q) if break k is eligible in the r -th break position
of shift j . The sub-breaks’ starting times define a total order
on set B(β,r ,q). Finally, we assume no extraordinary over-
lap between breaks of different shift profiles in Jβ,q . This is
not a limitation for the tour scheduling problem under con-
sideration or for most practical applications since there exist
extensions that allow for extraordinary overlap bymodifying
the forward and backward constraints, e.g., see Addou and
Soumis (2007). Note that to adapt the forward and backward
constraints presented in Rekik et al. (2010) to respect hier-
archical skills, besides associating each j ∈ J and k ∈ K
with a specific skill level, a separate transportation problem
has to introduced for each skill level.

To obtain a feasible solution with respect to workstretch
durations, the feasibility of a second set of transportation
problems, T (B(β,r ,q),B(β,r+1,q)), must be assured. Here, the
nodes correspond to breaks and are defined for all β ∈ BP ,
r ∈ {

1, . . . , Bβ − 1
}
and q ∈ Q. The supply and demand of

each node k is Ek . Nodes k1 ∈ B(β,r ,q) and k2 ∈ B(β,r+1,q)

are connected if theworkstretch duration between their corre-
sponding breaks iswithin δminBW and δmaxBW. Further, based
on the break starting times, a totally ordered relationship ≺
on B(β,r ,q) is defined which per se excludes extraordinary
overlap.

5.2.3 Implicit BAP formulation based on the Bechtold and
Jacobs model

Our implicit formulation of the BAP is based on the model
developed by Bechtold and Jacobs. It embodies the four
components mentioned above along with a set of demand
constraints. The objective here and for the two other formu-
lations in Appendices C and D is to minimize the cost of
uncovered periods minus the savings that result when work-
ers are on their breaks.

Implicit BAP I (IBAP1)

Minimize
∑

q∈Q

∑

t∈T
cuc · y−

q,t −
∑

j∈J

∑

r∈{1,...,B j }

∑

k∈K j(r)

cwork · dk · Ek

(25)
subject to
∑

q̂≥q

Pq̂,q,t + y+
q,t − y−

q,t = Dq,d,t ∀ q ∈ Q, t ∈ T (26)

∑

j∈Js,q

S j = hs,q ∀ s ∈ S, q ∈ Q (27)

∑

q≤q̂

Pq̂,q,t =
∑

k∈Kq̂

ρt,k · Ek ∀ q̂ ∈ Q, t ∈ T (28)

Pq̂,q,t ≤ lq̂,q,t ∀ q̂, q ∈ Q : q ≤ q̂, t ∈ T (29)

∑

k′∈BF
(β,r ,q)

(k)

Ek′ −
∑

j∈J F
(β,q)

(k)

S j ≥ 0
∀ β ∈ BP, r ∈ {

1, . . . , Bβ

}
, q ∈ Q,

k ∈ Be
(β,r,q) \

{
ke(β,r,q)

}

(30)
∑

k′∈BB
(β,r ,q)

(k)

Ek′ −
∑

j∈J B
(β,q)

(k)

S j ≥ 0
∀ β ∈ BP, r ∈ {

1, . . . , Bβ

}
, q ∈ Q,

k ∈ Bs
(β,r,q) \

{
ks(β,r,q)

}

(31)
∑

k∈B(β,r ,q)

Ek −
∑

j∈J(β,q)

S j = 0 ∀ β ∈ BP, r ∈ {
1, . . . , Bβ

}
, q ∈ Q (32)

∑

k′∈BF
(β,r+1,q)

(k)

Ek′ −
∑

k′∈BF
(β,r ,q)

(k)

Ek′ ≥ 0

∀ β ∈ BP, r ∈ {
1, . . . , Bβ − 1

}
, q ∈ Q,

k ∈ Be
(β,p+1,q) \

{
ke(β,p+1,q

} (33)

∑

k′∈BB
(β,r+1,q)

(k)

Ek′ −
∑

k′∈BB
(β,r ,q)

(k)

Ek′ ≥ 0

∀ β ∈ BP, r ∈ {
1, . . . , Bβ − 1

}
, q ∈ Q,

k ∈ Bs
(β,r+1,q) \

{
ks(β,r+1,q

} (34)

∑

k∈B(β,r+1,q)

Ek −
∑

k∈B(β,r ,q)

Ek = 0 ∀ β ∈ BP, r ∈ {
1, . . . , Bβ − 1

}
, q ∈ Q

(35)
Pq̂,q,t ∈ Z+ ∀ q̂, q ∈ Q : q ≤ q̂, t ∈ T (36)
S j , Ek ∈ Z+ ∀ j ∈ J , k ∈ K (37)

Constraints (26) determine the amount of demand for
skill level q on day d in period t that cannot be covered.
While Rekik et al. (2010) considered a shift scheduling prob-
lem, for the BAP that we are solving, the set of shifts are
derived from the TShP and taken as input. To match shifts
with permissible sub-breaks, each shift needs to be associated
with a break profile. In constraints (27), the linking of shifts
with break profiles is done implicitly, i.e., instead of explic-
itly assigning a break profile to each shift, identical shifts
assigned to workers with the same skill are aggregated based
on admissible break profiles. Constraints (28) ensure that the
number of sub-breaks given in period t for workers with skill
q̂ are only distributed among jobs that require at most skill q̂ .
Note that this is only possible when each sub-break k is asso-
ciatedwith a specific skill. In constraints (29), the assignment
of sub-breaks is bounded by lq̂,q,t such that breaks can only
be given when the underlying jobs are being performed by
workers having the specified skill. Again, workers with skill
q̂ who are performing a job that requires skill q in period t are
grouped together. This arrangement guarantees that a feasi-
ble solution to the problem of explicitly assigning sub-breaks
to workers can be found in a post-processing step.

The feasibility of the transportation problems for work-
stretch duration restrictions between successive sub-breaks
is ensured by the forward, backward and flow balance con-
straints given in (31), (32) and (33), respectively. Similarly,
constraints (33), (34) and (35) are respectively the for-
ward, backward and flow balance constraints that ensure that
enough sub-breaks matching the shift profiles are assigned.
Variables are defined in (36) and (37).
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Table 5 Parameter values for the fixed and flexible work templates

Type Start time window Duration (Periods)

Early shift Late shift

Fix [4 am, 6 am]
[
12 am, 2 pm

]
41

Flex [3 am, 10 am] [11 am, 6 text pm] [36, 46]

6 Computational study

The computations were performed on aWindows 7 platform
with 4 GB RAM and a 2.8 GHz processor. All models were
implemented in JAVAand solvedwithCPLEX12.6. The data
setswere provided byAeroGroundGmbH, amajor European
ground handling service company. Each working day was
divided into ninety-six, 15-min periods.

Our study is based on two templates: ‘Fix’ and ‘Flex,’
differing in the length of the start time window, the duration
of a shift (see Table 5), and in the flexibility of the possible
shift types per day (see Table 6). Both templates are currently
being used by AeroGround. The resulting number of shifts
for the Fix template is at least the number of starting times,
which is 8, while for Flex templates there are at least 319
(= 29×11 = number of start timesmultiplied by the number
of shift lengths). Note that each hour is divided in four, 15-
minute periods. If on one day, two shift types are possible,
e.g., see Table 6 in week 1 on Wednesday, then the number
of feasible shifts doubles.

We consider from 10 to 300 workers and five skill levels,
where it is assumed that the demand for each level is 20% of
the total. The maximum amount of overtime and undertime
per worker is given by O+ = O− = 100; the individual
amount of overtime or undertime per worker was randomly
assigned from the interval [0,100]. Since undercoverage in
a period indicates missing workers, we assume that the cost
per period of undercoverage is equal to the labor cost per
period which is 1.

Table 7 presents the settings for the break regulations. The
total break length (see column “Dur tot”) in each break reg-
ulation is set to 6 periods. The first sub-break starts between
periods 8 and 24 periods after the shift start (column “FB”).
The last break (column “LB”) for multiple or fractional
breaks has to start between 3 and 16 periods before the shift
ends. For all regulations with multiple breaks, 3 sub-breaks
have to be assigned. To guarantee a total break length of 6,
in multiple break scenario {M |X |T } with fixed sub-break
length, each sub-break is 2 periods, while in multiple break
scenario {M |V |T } with variable sub-break length, each sub-
break takes between 1 and 4 periods (column “Dur SB”).
After the shift starts, the time windows of the second and
third breaks are [26, 29] and [30, 33], respectively (column
“TW”). In the two scenarios with fractional breaks, {F |V |T }

Table 6 Work templates—fix and flex

Week Day

Mo Tu We Th Fr Sa Su

(a) Fix

1 E E L L

2 L L

3 E E E/L L L

4 E E E E

5 L L E E

6 E E L L

7 E E L L L

8 L E E E

9 L E E

10 E E L L L L

(b) Flex

1 E E E/L L L L/X

2 E E E/L L

3 L L/X E

4 E E/L L L L/X

5 E E E/L L L

6 L/X E E

7 E/L L L L/X

8 E E E/L L L L/X

9 E E E/L

10 L L L/X

and {F |V |W }, 1 to 3 sub-breaks can be assigned to each shift,
which are either based on time windows or workstretch dura-
tions. The time windows for the second and third sub-breaks
associated with {F |V |T } are equal to those in the multi-
ple break regulation case. For fractional break regulation
{F |V |T }, the workstretch duration between the successively
sub-breaks after the first sub-break is from 3 to 24 periods
(column “WS”).

With respect to demand, both low- and high-level sce-
narios were investigated along with two different demand
profiles: “varying demand” (VD) and “stable demand” (SD).
Figure 3 depicts the profiles VD and SD for Monday to Sun-
day where each day is divided into 98 periods. The VD high
level demand curve represents the true demand during the
course of aweek for eachqualificationof the sponsoring com-
pany. The VD low-level demand curves were derived from
this curve by randomly lowering the demand. “Appendix E”
yields the three stable demand curves for the same days and
periods.

To uniquely identify a test instance,we use the 4-tuple rep-
resentation I {wor , pro, dem, temp} specifying the work-
force sizewor ∈ {10, . . . , 50, 100, 150, 200, 250, 300, 350,
400}, the demand profile pro ∈ {VD, SD}, the level dem ∈
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Table 7 Settings for the break
regulations

Break regulation Setting

#Breaks Dur tot Dur SB WS TW FB LB

{S|X |T } 1 6 [8, 24]

{M |X |T } 3 6 2 [26, 29], [30, 33] [8, 24]

{M |V |T } 3 6 [1, 4] [26, 29], [30, 33] [8, 24] [3, 16]

{F |V |T } [1, 3] 6 [1, 6] [26, 29], [30, 33] [8, 24] [3, 16]

{F |V |W } [1, 3] 6 [1, 6] [3, 24] [8, 24] [3, 16]

Fig. 3 Profiles for high-level
demand

(a)

(b)

{low, high}, and the work template in Table 6 temp ∈
{Fix,Flex}.

The analysis is presented in two separate subsections:
In Sect. 6.1, we compare the solution quality of our MIP-
heuristic with solutions obtained with the compact MIP
(CMIP) formulation in “Appendix B,” which integrates the
tour scheduling problem and the BAP. In Sect. 6.2, we evalu-
ate the “cost” of break flexibility by first generating tours by
solving TShP (7)–(21). In light of those results, we study the
different combinations of BAP formulations and BAP regu-
lations to determine runtime and solution quality. To the best
of our knowledge, this is the first study in which real data
are used to determine the effect of break regulations on large
tour scheduling problems.

6.1 PerformanceMIP-Heuristic

To study the performance of theMIP-heuristic in comparison
with the CMIP, we restrict the workforce size to be between
10 and 65 employees for the low demand scenario. The break
regulations investigated are {S|X |T }, which represents the
most common break regulations considered in literature (see
Table 4), and BAP{F |V |T }, which offers the greatest flexi-
bility (see Fig. 1). In striving for a fair comparison, we solve
Implicit BAP formulation III in “Appendix D” in the second
step of theMIP-heuristic due to its structural similarity to the
break assignment constraints in the CMIP.

The results for BAP{S|V |T } and BAP{F |V |W } for a
workforce size of 10 and 50 employees are summarized in
Tables 8 and 9, respectively. The results for all instances
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Table 8 Results for the CMIP and the MIP-heuristic for break regulation {S|V |T }
Instance CMIP MIP-heuristic

Obj Undercov Runtime (s) Obj Undercov Runtime (s) GAP*

{10, low, SD,fix} 7570 6520 15.77 7570 6520 3.68 0.00

{50, low, SD,fix} 9805 2630 268.53 9975 2800 9.51 1.7

{10, low, SD,flex} 7350 6033 33.9 7350 5690 8.82 0.00

{50, low, SD,flex} 7350 3328 10, 074.84 7350 3010 12.72 0.00

{10, low, VD,fix} 9086 8036 2.6 9086 8036 1.34 0.00

{50, low, VD,fix} 10, 188 3013 830.01 10, 486 3311 12.58 2.84

{10, low, VD,flex} 9084 7857 20.55 9089 7133 4.93 0.01

{50, low, VD,flex} 9084 4546 8343.92 9185 3503 87.52 1.10

Table 9 Results for the CMIP and the MIP-heuristic for break regulation {F |V |W }
Instance CMIP MIP-heuristic

Obj Undercov Runtime (s) Obj Undercov Runtime (s) GAP* GAP

{10, low, SD,fix} 7510 6460 32.32 7510 6460 3.56 0.00

{50, low, SD,fix} 9487 2312 2744.08 9640 2465 22.21 1.59

{10, low, SD,flex} 7350 5690 203.92 7350 5690 9.05 0.00

{50, low, SD,flex} 7350 3010 17.71 1.12

{10, low, VD,fix} 9084 8034 31.97 9086 8036 3.54 0.02

{50, low, VD,fix} 9784 2564 10800.3 10243 3, 068 18.21 4.48

{10, low, VD,flex} 9084 7580 843.80 9084 7128 8.72 0.00

{50, low, VD,flex} 9160 3478 98.51 1.35

between 10 and 65 employees are shown in Tables 16 and 17
of “Appendix F.” Column “Instance” identifies the sce-
nario with respect to number of workers, work template,
and demand characteristics. Columns “obj” and “undercov”
report the objective value and undercoverage costs, respec-
tively. The computation times are given in column “runtime”
in seconds. Column “GAP*” gives the % gap between the
optimal solution of the CMIP and the MIP-heuristic. In
Table 9, we have added the column “GAP” to report the
% gap between the solution found by the MIP-heuristic and
the best LP bound obtained when no solution was found for
the CMIP within the 5-h (18,000 s) limit placed on each run.

The computations reveal that the MIP-heuristic performs
well with respect to the CMIP. The largest gaps of 7.52%
and 9.33% for the variable and stable demand curves,
respectively, are reached when no feasible or optimal solu-
tion for CMIP is found (see Table 17 of “Appendix F,”
instances {65, low, SD,,fix}) and {65, low, VD,fix})). If we
restrict the results to those instances for which the optimal
solution of CMIP is found, the gaps of the MIP-heuristic are
at most 4.48% (see Table 9, instance {50, low, SD, fix}). The
gaps between CMIP and the MIP-heuristic for the instances
with the fix work templates are on average greater than those
for the flex work template. In the first step of the MIP-

Table 10 Number of workers considered for the two demand levels

Demand curve # Workers

Low [10, 50, 100]

High [200, 250, 300]

heuristic, the shifts obtained under flexible work templates
provide more demand coverage than the shifts obtained with
fix work templates and, therefore, lower the benefits of break
flexibility.

A closer look at Tables 8 and 9 reveals the impact of
break flexibility. Consider, for example, the instances with
50 workers. In the singe break scenario {S|V |T }, if we com-
pare instances for fixed and flexible work templates based
on the stable demand curve, e.g., instances {50, low, SD,fix}
and {50, low, SD,fix}, flexible work templates improve the
solution by 2, 455 (= 9, 805 − 7, 350) or 25%. In contrast,
comparing instance {50, low, SD,flex} for break regulations
{S|V |T } and {F |V |W }, we see that latter improves the solu-
tion by 318 (= 9, 805 − 9, 487), which represents 13%
(= 100%× 318/2, 455) of the improvement in the previous
comparison. The improvement between the two break regu-
lations becomesmore significant whenwe focus on instances
with varying demand. The difference between instances
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{50, low, VD,fix} and {50, low, VD,flex} with break regu-
lation {S|V |T } is 1, 104 (= 10, 188 − 9084) or 10.8%. The
comparisons between the two break regulations {S|V |T } and
{F |V |W } for these instances leads to a decrease in the objec-
tive of 404 (= 10, 188− 9, 784) which is equivalent to 37%
of the improvement that is obtained when flexible rather than
fixed work templates are employed.

Our two-step approach is seen to provide high-quality
solutions in less than 100 seconds. Timely computations are
critical when there is a frequent need to replan shifts and
breaks due to workforce and demand fluctuations. Moreover,
when the demand is largely uncertain from day to day, the
only option is to reset the breaks since shift start and end times
cannot be adjusted during the course of the day or even for
the upcoming day without the likelihood of violating labor
laws or incurring overtime costs. In the next section, break
flexibility is explored in more detail.

6.2 Benefits of break flexibility

In the second phase of our experiments, we examined the
relationships among break flexibility, undercoverage, and

runtime for the various scenarios in Table 7. To begin, Algo-
rithm 1 is solved to generate shifts and then the BAP is solved
using the three different implicit formulations. The study
demonstrates the degree to which the various break regu-
lations can serve to reduce undercoverage when the shifts
are given. For the variable and stable demand curves with
both low and high demand, we consider the workforce sizes
given in Table 10.

Table 11 provides the statistics obtained fromAlgorithm 1
in the first step of the MIP-heuristic. Column “time (s)”
reports the runtime in seconds. The average number of work-
ers and the resulting number of shifts per day are shown in
column“#worker” and “#shifts,” respectively.Based on these
shifts, the columns under the major heading “#sub-breaks”
report the number of sub-breaks for each break regulation in
Table 7. It can be seen that for fixed work templates fewer
shifts are generated, and hence there are fewer sub-breaks for
each break regulation compared to the instances that have
flexible work templates. For example, for any number of
workers associated with instances {·, high, VD, flex}, there
are significantly more sub-breaks generated for any consid-

Table 11 Results of the ThSP

Instance Time (s) # Workers #Shifts #Sub-breaks

{S|V |T } {M |X |T } {M |V |T } {F |V |T } {F |V |W }
{10, low, SD, fix} 0.79 4.28 1.1 87.43 82.29 97.71 1429.71 4278.86

{50, low, SD, fix} 4.25 29.29 3.86 240 308.57 3685.71 5093.14 11, 460

{100, low, SD, fix} 8.56 58.57 4.71 260.57 336.86 4122.86 5696.57 12, 303.43

{10, low, SD, flex} 3.4 7.14 1.43 316.29 128.57 1285.71 2108.57 6378

{50, low, SD, flex} 11.45 25 5 468 425.14 4251.43 6227.14 10, 354.29

{100, low,SD, flex} 1552.43 50 7.71 379.71 281.14 2811.43 4238.57 10, 675.34

{10, low, VD, fix} 1.96 4.28 2.09 104.57 122.57 1465.71 2027.14 4981.71

{50, low, VD, fix} 4.53 29.29 12.14 282 418.29 4662.86 6428.57 13, 182

{100, low,VD, fix} 9.22 58.57 11.29 281.14 421.71 4714.29 6498.86 13, 146.86

{10, low, VD, flex} 8.21 7.14 5.29 371.14 250.29 2502.86 4228.29 10, 798.29

{50, low, VD, flex} 66.15 28.14 26.71 578.57 795.42 7954.29 11, 544 16, 317.43

{100, low, VD, flex} 2567.69 51.71 20.28 478.29 798 7980 11.490 16, 263.43

{200, high, SD, fix} 51.82 11, 714 5.29 253.71 339.43 3, 394.29 5, 374.29 12, 022.29

{250, high, SD, fix} 60.75 146.43 8.71 273.43 397.71 3, 977.14 6, 147.43 12, 830.57

{300, high, SD, fix} 40.6 175.71 9.14 282 424.29 4, 242.86 6, 534 13, 182

{200, high, SD, flex} 2102.32 112 19 418 404.57 4, 045.71 6, 167.14 11, 882.57

{250, high, SD, flex} 2503.74 125 18.57 408.57 487.71 4877.14 7311.43 12, 538.29

{300, high, SD, flex} 7628.69 150 19.85 436.86 524.57 5254.29 7518 12, 467

{200, high, VD, fix} 33.15 117.14 11.57 282 400.29 4002.86 6182.57 13, 182

{250, high, VD, fix} 35.71 164.43 11.28 277.71 423.43 4234.29 6498.86 13, 006.29

{300, high, VD, fix} 40.50 175.71 11.28 279.43 405.43 4054.29 6252.86 13, 076, 57

{200, high, VD, flex} 3212.99 107.42 24.57 468.86 799.71 7997.14 12, 022.29 15, 997.71

{250, high, VD, flex} 4590.07 142.86 24.86 452.57 789.43 7894.29 11, 478.86 15, 223.71

{300, high, VD, flex} 4625.97 152.57 24.71 420.86 833.14 8331.43 12, 081.43 16, 368
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Fig. 4 Number of sub-breaks generated for {S|V |T } and {F |V |W } as the number of shifts increases

ered break regulation than for instances {·, high, VD, fix}
with the same number workers.

The results in Table 11 reveal that as the workforce
increases so does the runtime of Algorithm 1 when flexi-
ble work templates are used. Also, the type of demand curve
is seen to affect runtime; instances with higher fluctuating
demand take longer to converge. The number of shift types
depends on the workforce size and on the work template

type. For flexible work templates, more individual tours are
generated to cover the demand. Of course, it is no surprise
that the greater the flexibility available to generate shifts, the
greater the number shifts and, hence, sub-breaks. Similar to
the hypothetical example in Fig. 2, the number of sub-breaks
increases geometrically with the flexibility of the break reg-
ulations. We also observed that as soon as a distinct number
of shifts is used as a basis for the generation of sub-breaks,
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increasing the number of shifts beyond that threshold leads
to a decrease in the number of newly generated sub-breaks.
For example, for break regulations {S|V |T } and {F |V |W }
the number of newly generated sub-breaks only increases
slightly when 5 or more shifts are used (see Figure 4). A
similar effect can be observed for the other three break reg-
ulations in Table 11. Hence, for any break regulation there
exist a bounded set of shifts leading to a bounded set of all
possible sub-breaks.

In Table 12, the three BAP formulations are compared:
Implicit BAP I given in Sect. 5.2.3, Implicit BAP II given in
“Appendix C”, and Implicit BAP III given in “Appendix D”,
for break regulation {F |V |W }. The results of the compari-
son for break regulation {S|V |T } can be found in Table 18 of
“Appendix F”. Column “comp (s)” reports the running time
of CPLEX in seconds for each BAP formulation summed
over the 7 planning days. For Implicit BAP I and II, it is nec-
essary to derive the sets and parameters accompanying the
models, given the set of shifts for each day, e.g., for Implicit
BAP formulation I, we need sub-break set B and param-
eters hs,q . The time in seconds for all the pre-processing
summed over the 7 planning days is reported in column “pre
(s).” The average number of variables and constraints for
each BAP formulation per day is given in columns “#var”
and “#constr,” respectively. If the fields in the table are empty,
the corresponding BAP formulation could not find the opti-
mal solution within the allowed time limit of 30 min (1800
seconds).

All problem instances with break regulation {S|V |T }
could be solved for all of three BAP formulations (see
Table 18).Comparing the total of runtimeplus pre-processing
time, Implicit BAP I and II slightly outperformed BAP III.
The reason may be found in the increased number of vari-
ables in BAP III. However, when considering the results
for the most flexible break regulation {F |V |T } in Table 12,
Implicit BAP II performed worse than its other two com-
petitors and is only solvable for small instances with less
than 100 workers and fixed work templates. For a larger
workforce, or for flexible work templates, the large number
of sub-breaks (> 10, 000 sub-breaks, see Table 11), leads
to more than 500, 000 variables in Implicit BAP formula-
tion II, which makes the problem intractable. However, not
all the instances associated with Implicit BAP III could be
solved either due to the huge number of variables and con-
straints. On the other hand, for almost all instances with up
to 100 workers, the fastest results were obtained with newly
introduced formulation Implicit BAP III.

In addition to the above comparisons of the computa-
tional tractability of the different formulations, Table 14
highlights the objective function deviation in % of the four
BAP regulations {S|X |T }, {S|V |T }, {M |V |T } and {F |V |T }
from the most flexible break regulation {F |V |W }. While
the gaps between break regulations {S|V |T } and {F |V |W }

are rather large with deviations up to 17.61% (see instance
{50, low, VD, fix}), break regulations with fractional breaks
and time windows show gaps of at most 3.56% (see instance
{100, high,VD, fix}).

The improvements from models with less flexibility to
models with more flexibility are highlighted in Table 13. For
example, when break regulation {M |V |T } is used, under-
coverage decreases by 4.11%, on average, compared to the
results obtained with break regulation {S|V |T } (see row
“Fix and Flex” in Table 13 which considers all templates in
Tables 5 and 6). If we restrict the benefits of increased break
flexibility to instances with fixed work templates only, then
we obtain average improvements of 3.19%, 0.34%, 0.22%
and 0.24%, respectively (see Table 13 in row “Fix”). Hence,
the greatest average benefits that result from increasing break
flexibility are realized for the scenarios associated with fixed
work templates and variable demand (Table 14).

One possible explanation for this result stems from the
fact that flexible work templates do a better job at covering
demand than fixedwork templates in the first step of theMIP-
heuristic. For the high-demand scenarios, then, there is likely
to bemore uncovered demandwhen fixedwork templates are
used, so there is more opportunity to take advantage of break
flexibility in the second step.

7 Discussion and conclusions

The modeling and analysis in this paper addresses several
unexplored aspects of tour scheduling. The first was the
idea of generating tours based on individual work templates,
thereby allowing planners to take into account the availabil-
ity, skill level, and overtime budget of each employee. For
a wide range of service organizations, reducing labor costs
by exploiting shift and break flexibility can provide a critical
competitive advantage. For greater insight into the different
break regulations discussed in the literature, we introduced
a three-field classification scheme for the various models.
An accompanying complexity analysis showed that all but
the simplest of problems are strongly NP-hard. Our com-
putations confirmed that as break flexibility increases, the
corresponding break assignment problems become exponen-
tially more difficult to solve.

Allowing variability in break length, fractionable breaks,
and the use of workstretch durations in contrast to predefined
break time windows was seen to reduce demand undercov-
erage and labor cost. The best improvement, though, was
obtained by changing from single tomultiple breaks per shift.
Ahigher degree of breakflexibility turned out to be especially
valuable when shift regulations are rather rigid. Also, when
the demand fluctuates greatly over the day, break flexibil-
ity can compensate for inflexible shift regulations and hence
represents an alternative to loosening them up.
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Table 13 Average benefits from break flexibility

Work template Benefits (%)

{S|V |T } → {M |V |T } {M |X |T } → {M |V |T } {M |V |T } → {F |V |T } {F |V |T } → {F |V |W }
Fix and flex 4.11 0.48 0.38 0.42

Flex 0.92 0.13 0.15 0.17

Fix 3.19 0.34 0.22 0.24

Table 14 Comparison of break flexibility with respect to {F |V |W }
Instance Break regulation

{S|V |T } {M |X |T } {M |V |T } {F |V |T }
{10, low, SD, fix} 0.15 0.07 0.07 0.00

{50, low, SD, fix} 5.44 1.23 0.00 0.00

{100, low, SD, fix} 0.78 0.78 0.70 0.25

{10, low, SD, flex} 0.00 0.00 0.00 0.00

{50, low, SD, flex} 6.02 3.34 0.98 0.97

{100, low, SD, flex} 1.71 0.41 0.20 0.17

{10, low, VD, fix} 17.61 3.02 1.62 0.00

{50, low, VD, fix} 2.85 1.16 0.45 0.14

{100, low,VD, fix} 4.96 3.56 3.04 3.04

{10, low,VD, flex} 1.09 0.12 0.02 0.00

{50, low,VD, flex} 0.06 0.00 0.00 0.00

{100, low,VD, flex} 2.88 1.22 1.2 0.43

{200, high,SD, fix} 13.04 0.99 0.15 0.04

{250, high,SD, fix} 16.68 1.25 0.69 0.31

{300, high,SD, fix} 8.96 0.95 0.19 0.10

{200, high,SD, flex} 11.43 1.32 1.13 0.01

{250, high,SD, flex} 3.37 1.78 1.65 1.23

{300, high,SD, flex} 0.56 0.02 0.02 0.02

{200, high,VD, fix} 9.62 0.37 0.03 0.00

{250, high,VD, fix} 11.39 3.65 2.07 0.67

{300, high,VD, fix} 4.59 2.56 2.27 1.35

{200, high,VD, flex} 0.25 0.20 0.20 0.01

{250, high,VD, flex} 2.11 1.43 1.43 1.02

{300, high,VD, flex} 3.83 1.23 1.02 0.42

Because a compact formulation of the tour scheduling
problem could not be solved for large-scale instances, a
MIP-decompositionheuristicwas proposed that separates the
break assignments from tour scheduling. The approach led to
promising results with respect to runtimes and solution qual-
ity for all instances with up to 300 workers. In contrast, the
compact formulation could only solve those instances with
up to 50 workers and little shift flexibility.

To solve the break assignment problem, three implicit for-
mulations were investigated. BAP III in “Appendix D” has
the advantageof not requiring anypre- or post-processing and
could solve all instances with up to 100 workers in less than

a minute. For all larger instances with 200 to 300 workers,
only the formulation based on Bechtold and Jacobs (1990)
led to solution times of less than 30 min.

Currently, no procedure exists for solving the integrated
problem to optimality in reasonable time. Its practical rele-
vance offers ample justification for more algorithmic devel-
opment. In the future,weplan to explore exact decomposition
approaches to tackle the ThSP and the flexible BAPs in an
integrated way. The study of the BAP alone is also of inter-
est, especially for intraday schedule adjustments. During the
course of the day, shifts cannot in general be adjusted when
a the demand profile changes, but it may be possible to reas-
sign the breaks. In this regard, we are now designing a rolling
horizon framework for calibrating the value of flexible breaks
in short-term disruption scenarios.
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Appendix A: Proofs of complexity results

Proof of Proposition 1 First, let us assume that we have only
one skill level for the workforce and the more general case in
which breaks can be more than one period. Consider shift s
and its corresponding set of feasible break patterns B(s). By
examining constraint (2), we see that each column possesses
the consecutive 1’s property. Let A1 ≡ (a1

i, j ) be the matrix
associated with the first shift in (2). Such a matrix is TU
(Nemhauser and Wolsey 1988). As an example, consider a
shift of 10 periods that requires a break of either 3 or 4 periods
starting in either periods 3, 4 or 5, as shown in Figure 5.
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The row of 1’s below A1 in this figure corresponds to
constraint (3); the second matrix, call it Y , on the right cor-
responds to the y+

t or y−
t variables. Although constraints (3)

destroy the consecutive 1’s property in general, when the
break length for each shift is one period the portion of the
A-matrix in (2) associated with each shift has a single 1 in
each column. This entry appears in a row in which a break
is permissible (this is not the case shown in Figure 5). The
remaining row entries in the column are 0. Thus each column
in the full matrix has at most two elements that are either 1
or −1, and, in light of the special structure of constraints
(3), we see that it satisfies the sufficiency condition for TU.
That is, there exits a partition of the set M of rows into two
sets M1 and M2 such each column j containing two nonzero
elements satisfies

∑
i∈M1

ai, j − ∑
i∈M2

ai, j = 0. Note that
the Y -matrix can be written as Y = [I ,−I ], where I is the
|T | × |T | identity matrix, so each column contains only a
single nonzero element. ��
Proof of Corollary 1 Again, let A1 be the matrix associated
with the first shift in (2) and let A2 be the matrix associated
with constraints (3), also for the first shift. As an example,
Figure 6 depicts a portion of the constraint matrix for a shift
with 7 periods that requires two breaks of one period each.
For feasibility, the first must start in either period 2 or 3 and
the second in either period 5 or 6. As indicated in the figure,
when the length of each sub-break is equal to one period,
each column of A1 contains a single entry of 1 in the row
where the sub-break exists with the remaining entries being
0. In a solution, one of the first two columns and one of the
second two columns must be selected.

Now, when adding time windows to regulate sub-break
starting times, there is no interdependency between the pos-
sible starting times of different sub-breaks, i.e., the starting
time of the i-th sub-break is independent of the starting time
of the j-th sub-break for all i, j ∈ [

1, Bmax
]
. Each column

of A2 also contains a single entry of 1 or −1 with the other
entries being 0 due to the fact that each column of A1 and A2

corresponds to a single sub-break. Therefore, as in the proof
of Proposition 1, the sufficiency condition for TU still holds
in the case where the sub-break length is one period for each
shift. ��
Proof of Corollary 2 Following the proof of Corollary 1, let
A1 be the matrix associated with the first shift in (2) and let
A2 be the matrix associated with constraints (3), also for the
first shift. As an example, Figure 7 shows a portion of the
constraint matrix for a shift with 5 periods that requires one
break. The break must start in either period 2, 3 or 4 of the
shift and lasts for one period. We assume that there are two
skill levels q1 and q2 and that the worker associated with
the first shift is scheduled to work a job requiring skill q1
in the second period and q2 in the third and fourth periods,
respectively. In periods 1 and 5, he is either working a job

requiring q1 or q2 but, due to the time window, can not have
a break. The submatrix above the horizontal line illustrates
constraints (2) forq1 and the lower submatrix the correspond-
ing constraints for q2. When the length of the sub-break is
equal to one period, each column of A1 contains a single
entry of 1 in the row where the sub-break exists (columns 1
and 2) with the remaining entries being 0. Column 3 shows
that the consecutive 1’s property is lost when a sub-break
incorporates more than a single skill.

Similar to the single skill case, when employing time
windows to regulate sub-break starting times, there is no
interdependency between the possible starting times of
different sub-breaks. Therefore, each column of A2 also con-
tains a single entry of 1 or −1 with the other entries being 0
due to the fact that each column of A1 and A2 corresponds to
a single sub-break. Now again, similar to the proof of Propo-
sition 1, the sufficiency condition for TU still holds in the
case where the sub-break length is one period for each shift.

��
Proof of Theorem 1 We will show that an instance of the
single machine scheduling problem with release times and
deadlines, which Garey and Johnson (1979) state is strongly
NP-hard, can be polynomially transformed into an instance
of BAP{S|X |T }.

INSTANCE: Set J of jobs, for each job j ∈ J , a process-
ing time p j ∈ Z+, a release time r j ∈ Z+, and a deadline
e j ∈ Z+.

QUESTION: Is there a single machine schedule for J
that satisfies the release time constraints and meets all the
deadlines?

Given an instance of the single machine scheduling prob-
lem, we equate a shift with a job, so S is equivalent to J .
For shift s ∈ S, let rs be the period in which the break can
start (release time), es the last period in which the break is
allowed (deadline), and ps the number of periods of the break
(processing time). Also, let the surplus of coverage in each
period be 1.

Claim: There exists a feasible assignment of breaks to
shifts such that there are nomanpower shortages in anyperiod
if and only if there is a feasible schedule of jobs for the single
machine problem.

The condition of no manpower shortage in any period
means that no two breaks overlap. This is equivalent to a
schedule on a single machine in which each job is processed
between its release timeanddeadlinewithout conflictingwith
any other job. Given that the above transformation is linear
in the number of shifts, and that any candidate solution to the
BAP can be checked for feasibility in polynomial time, the
statement of the theorem follows. ��
Proof of Proposition 2 For the BAP{F |V |T } with n distinct
time windows, assume that the overall break length ranges
between �minBD and �maxBD periods and that the min-
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Fig. 5 Constraint matrix for
BAP{S|X |T } with one skill level

Fig. 6 Constraint matrix for
BAP{M |X |T } with two break
windows and one skill level

Fig. 7 Constraint matrix for
BAP{M |X |T } with two skill
levels

imum and maximum number of sub-breaks are between
Bmin and Bmax. With each time window

[
t s
r , te

r

]
, r ∈

{1, . . . , n}, we associate a minimum break length of dmin
r

and a maximum break length of dmax
r . Accordingly, for each

i ∈ {1, . . . , Bmax} the i-th sub-break can start in the (i)-
th,…,(n − Bmin + i)-th time window and the length of the
i-th sub-break is between lbbli = minr∈{i,...,n−Bmin+i}(dmin

r )

and ubbli = maxr∈{i,...,n−Bmin+i}(dmax
r ) periods.

For the BAP{F |V |W }, we set the range for the overall
break length as well as the minimum and maximum number
of sub-breaks equal to those of the BAP{F |V |T }. Further,
for each sub-break i ∈ {1, . . . , Bmax}, we set the mini-
mum and the maximum break length equal to lbbli and ubbli ,
respectively. To proof our statement, it is sufficient to set the
minimum and maximum workstretch after each sub-break

equal to 0 and the shift length, respectively. Based on the
assumptions, BAP{F |V |W } includes all the breaks of the
BAP{F |V |T } but not vice versa.

Now, place a cost of M > 0 on each sub-break in the
BAP{F |V |W } that is not feasible to BAP{F |V |T }. The pro-
cedure can be done in polynomial time as for each shift, the
overall number of breaks in the BAP{F |V |W } is bounded
by

∏
i∈{1,...,Bmax}(ubbli − lbbli ) · �maxS. Given both mod-

els, we claim that the BAP{F|V|T} has a solution with no
uncovered periods if and only if the BAP{F |V |W } has a
solution with no uncovered periods and a cost of 0. First
suppose that the BAP{F |V |T } has a solution with no uncov-
ered periods. Then the same break patterns can be used for
the BAP{F |V |W } to obtain the same solution. This proves
the “if” part of the statement. Now suppose that the opti-
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mal solution to the BAP{F |V |W } has a cost greater than 0.
By implication, this solution contains sub-breaks that have a
cost M and hence is not feasible to the BAP{F |V |T }. There-
fore, BAP{F |V |T } does not have a solution with uncovered
periods. This proves the “only if” part of the statement.
Now observe that the BAP{F |V |T } does not include the
BAP{F |V |W } since the break windows of two or more con-
secutive sub-breaks can overlap. Consider a BAP{F |V |W }
with two sub-breaks. Let �minBF and �maxBF be the min-
imum and maximum workstretch duration before the first
sub-break, respectively. Further, let �durB be the minimum
duration of the first sub-break and let �minBW be the min-
imum workstretch duration between the first and second
sub-breaks. When �minBF + �durB + �minBW < �maxFB,
the break windows of the first and second sub-breaks over-
lap. In general, in the presence of workstretch durations, the
break window for a particular sub-break can only be derived
after the realization of the other sub-breaks. ��

Appendix B: Compact mixed-integer
program

The ground handler staffing problem (GHSP) is to minimize
the total cost of the workforce plus the cost for undercover-
age for a given planning horizon. The compact MIP (CMIP)
below determines shifts with fractionable breaks for each day
in the week and creates a duty roster for each worker such
that as much demand as possible is covered in each period
for the different skill levels.
Variables

bstartr ,w,d,t = 1, if sub-break r for worker w starts in period
t on day d, 0 otherwise
bendr ,w,d,t = 1, if sub-break r for worker w ends in period
t on day d, 0 otherwise
blastw,d,t = 1, if the last sub-break for worker w ends in
period t on day d, 0 otherwise

CMIP

minimize
∑

q∈Q

∑

d∈D

∑

t∈T

(
∑

w∈W
cwork · zw,q,d,t + cuc · yucq,d,t

)

(38)

subject to (10) − −(21)
∑

q ′∈Q:q ′≥q

∑

w∈W(q ′)
zw,q,d,t + y+q,d,t − y-q,d,t = Kq,d,t

∀ d ∈ D, t ∈ T , q ∈ Q (39)
∑

m∈M(d,pw)

∑

l∈T shS:l≤t

(
ym,w,d,l−

⎛

⎝
Bmax∑

r=1

⎛

⎝
∑

l∈T brS(r):l≥t

bstartr ,w,d,l −
∑

l∈T brE(r):l≥t

bendr ,w,d,l

⎞

⎠+ (40)

∑

l∈T shE:l≥t

yendw,d,l

⎞

⎠ = zw,q,d,t

∀ w ∈ W, d ∈ D(pw), t ∈ T
∑

q∈Q
zw,q,d,t ≤ 1 ∀ w ∈ W, d ∈ D(pw), t ∈ T (41)

Break regulations

Bmax∑

r=1

∑

t∈T brS(r)

bstartr ,w,d,t ≥
∑

t∈T brS(1)

b1,w,d,t · Bmin

∀ w ∈ W, d ∈ D(pw) (42)

�maxBF ≥
⎛

⎝
∑

t∈T brS(1)

t · bstart1,w,d,t−

∑

m∈M(d,pw)

∑

t∈T shS(m)

(
t − �minBF

)
· ym,w,d,t

⎞

⎠ ≥ 0

∀ w ∈ W, d ∈ D(pw) (43)

�maxBD
r ≥

∑

t∈T brE(r)

t · bendr ,w,d,t −
∑

t∈T brS(r)

t · bstartr ,w,d,t ≥

�minBD
r ·

∑

t∈T brS(r)

bstartr ,w,d,t ∀ w ∈ W, d ∈ D(pw), 1≤r ≤ Bmax

(44)

�maxBD ≥
Bmax

p∑

r=1

⎛

⎝
∑

t∈T brE(r)

t · bendr ,w,d,t −
∑

T brS(r)

t · bstartr ,w,d,t

⎞

⎠ ≥

�minBD ·
∑

m∈M(d,pw)

∑

t∈T shS(m)

ym,w,d,t ∀ w ∈ W, d ∈ D(pw)

(45)

�maxBW
r ≥

∑

t∈T brS
m (r)

t · bstartr+1,w,d,t−
∑

t∈T brE(r)

t · bendr ,w,d,t ≥ �minBW
r ·

∑

t∈T brS(r)

bstartr+1,w,d,t

∀ w ∈ W, d ∈ D(pw),

1 ≤ r < Bmax (46)

∑

t∈T shE

yendw,d,t − �minBL ≥
⎛

⎝
∑

t∈T brE

t · blastw,d,t

⎞

⎠ ≥
∑

t∈T shE

yendw,d,t − �maxBL ∀ w ∈ W, d ∈ D (47)

∑

t∈T brE

t · blastw,d,t ≥
⎛

⎝
∑

t∈T brE(r)

t · bendr ,w,d,t

⎞

⎠

∀ w ∈ W, d ∈ D, Bmin ≤ r ≤ Bmax (48)
∑

t∈T brE\{0}
(t − 1) · blastw,d,t ≤

∑

t∈T brE(r)

t · bendr ,w,d,t+
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∑

t∈T brS(r)

bstartr+1,w,d,t · T ∀ w ∈ W, d ∈ D, Bmin ≤ r < Bmax

(49)
∑

t∈T brE\{0}
(t − 1) · blastw,d,t ≤

∑

t∈T brE(Bmax)

t · bendBmax,s,t+
⎛

⎝1 −
∑

t∈T brS(Bmax)

bstartBmax,w,d,t

⎞

⎠ · T ∀ w ∈ W, d ∈ D (50)

∑

t∈T brE\{0}
blastw,d,t ≤ 1 ∀ w ∈ W, d ∈ D (51)

∑

t∈T brS(r−1)

bstartr−1,w,d,t ≥
∑

t∈T brS(r)

bstartr ,w,d,t

∀ w ∈ W, d ∈ D(pw), 1 < r ≤ Bmax (52)
∑

t∈T brS(r)

bstartr ,w,d,t ≤ 1 ∧
∑

t∈T brE(r)

bendr ,w,d,t ≤ 1

∀ w ∈ W, d ∈ D(pw), 1 ≤ r ≤ Bmax (53)
Bmax∑

r=1

∑

t∈T brS(r)

bstartr ,w,d,t =
Bmax∑

r=1

∑

t∈T brE(r)

bendr ,w,d,t

∀ w ∈ W, d ∈ D(pw) (54)
zw,q,d,t ∈ {0, 1} ∀ w ∈ W, d ∈ D(pw), t ∈ T (55)

bstartr ,w,d,t , bendr ,w,d,t ′ , blastw,d,t ′∈ {0, 1}
∀ w∈W, d∈D(pw), t∈T brS, t ′∈T brE1≤r≤Bmax (56)

Theobjective function (38) alongwith the constraints (39)–
(41) is similar to (7) and (7)–(9), respectively, but nowall skill
levels are included. Constraints (42)–(54) describe the break
regulations. With respect to B1, for each worker w at least
Bmin sub-breaks per shift are set in constraints (42), while the
minimum and maximum number of periods from the start of
the shift to the first sub-break, as indicated in B2, are set in
constraints (43)). The length of each sub-break, as restricted
by B3, and the overall break length, as restricted by B4, are
bounded by constraints (44) and (45), respectively. The min-
imal and maximal bandwidth between two sub-breaks, B5,
is set in constraints (46). The distance of the last sub-break
to the end of the shift, B6, is modeled in constraints (47).
The decision variables blastw,t,d , which control the latest end-
ing time over all sub-breaks assigned to worker w on day d
are determined by (48)–(51).

The last set of constraints (52)–(54) define general mod-
eling requirements. Logically, the r -th sub-break can only be
started if its immediate predecessor sub-break r −1 has been
started [constraints (52)]. Also, the unique starting period of
each sub-break is defined in constraints (53) and, due to con-
straints (54), a sub-break can only end if it has been started.

If we consider breaks with time windows in the GHSP,
i.e., BAP{·| · |T }, the above model has to be slightly modi-
fied. Let �minTW and �maxTW be the minimal and maximal
number of periods of the r -th sub-break, respectively, for

Table 15 Sets used in implicit break assignment model IBAP2

Sets Description

Js,q Set of shift profiles associated with shift s and skill q

K j(r) Set of sub-breaks admissible as r ’th sub-break in shift profile j

Q Set of skills

r > 1 from the shift start. Then we replace the two-sided
constraints (46) with

�maxTW
r ≥

∑

t∈T brS(r)

t · bstartr ,w,d,t −
∑

m∈M(d,pw)

∑

t∈T shS(m)

t (46’)

· ym,w,d,t �
minTW
r

≥
∑

m∈M(d,pw)

�minTW
r · ym,w,d,t

∀ w ∈ W, d ∈ D(pw), 1 < r ≤ Bmax

which is analogous to constraints (43) for the first sub-breaks.

Appendix C: Implicit BAP formulation based
on Aykin’s approach

For shift scheduling, Rekik et al. (2010) present a model
with fractionable breaks based on the implicit formulation
for multiple breaks first introduced by Aykin (1996). In the
following, we show how their approach can be adapted for
the tour scheduling problemwith a hierarchical workforce as
was discussed in Sect. 5.2. The additional sets required for
the model are listed in Table 15.

We make use of the definitions of shift profiles and break
profiles in Sect. 5.2 and similarly, define a sub-break k ∈ K
for each break profile, each position in the break profile,
each possible starting time, and each skill level. Also, we
need a unique sub-break for each skill level since we have
to consider the skill of the worker that is taking the break.
Instead of assigning sub-breaks explicitly to shifts, a variable
X j,k is defined that stores how often sub-break k ∈ K is
assigned to shift profile j ∈ J .

To obtain a feasible solution with regard to workstretch
durations, the feasibility of transportation problems between
successive breaks has to be ensured. The following set is used
to construct the problems.

K j(r) = set of sub-breaks admissible as r-th sub

-break in shift profile j

Based on the break starting times, a totally ordered rela-
tionship≺onK j(r) is defined.Then, a transportationproblem
T (K j(r),K j(r+1)) from the nodes in K j(r) to the nodes
in K j(r+1) can be established for each j ∈ J and each
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r ∈ 1, . . . , B j − 1. Nodes k1 ∈ K j(r) and k2 ∈ K j(r+1) are
connected if the workstretch duration between their corre-
sponding breaks is within the interval [δminBW, δmaxBW]. The
feasibility of the transportation problemensures that there are
enough successor breaks for all sub-breaks k that are assigned
to shift profile j and is guaranteed by a set of forward and
backward constraints based on the principles described in
Sect. 5.2.

Also, because there are no pairs of nodes k1, k2 ∈ K j(r)

for which Ksuc
k1

⊂ Ksuc
k2

, there is no extraordinary overlap.
In the formulation, we make use of the following addi-

tional parameters and variables: Parameters

B j = number of sub-breaks in shift j

Variables

X j,k = number of workers assigned to shift j that are
given sub-break k

Implicit BAP formulation II (IBAP2)

Minimize
∑

q∈Q

∑

t∈T
cuc · y−

q,t−
∑

j∈J

∑

r∈{1,...,B j}

∑

k∈K j(r)

cwork

· dk · X j,k (57)

subject to
∑

q̂≥q

Pq̂,q,t + y+
q,t − y−

q,t = Dq,d,t ∀ q ∈ Q, t ∈ T (58)

∑

j∈Js,q

S j = hs,q ∀ s ∈ S, q ∈ Q (59)

∑

k∈K j(r)

X j,k − S j = 0 ∀ j ∈ J , r ∈ {
1, . . . , B j

}
(60)

Pq̂,q,t ≤ lq̂,q,t ∀ q̂, q ∈ Q : q ≤ q̂, t ∈ T (61)
∑

q≤q̂

Pq̂,q,t=
∑

j∈Jq̂

∑

r∈{1,...,B j}

∑

k∈K j(r)

X j,k · ρt,k ∀ q̂∈Q, t∈T

(62)
∑

k′∈KF
j(r+1)(k)

X j,k′ −
∑

k′∈KF
j(r)

(k)

X j,k′ ≥ 0

∀ j ∈ J , r ∈ {
1, . . . , B j − 1

}
,

k ∈ Ke
j(r+1) \

{
kej(r+1)

} (63)

∑

k′∈KB
j(r+1)(k)

X j,k′ −
∑

k′∈KB
j(r)

(k)

X j,k′ ≥ 0

∀ j ∈ J , r ∈ {
1, . . . , B j − 1

}
,

k ∈ Ks
j(r+1) \

{
ksj(r+1)

} (64)

S j , ww,t , Pq̂,q,t ∈ Z+ ∀ j ∈ J , q̂, q ∈ Q : q ≤ q̂, t ∈ T
(65)

X j,k ∈ Z+ ∀ j ∈ J , k ∈
⋃

r∈{1,...,B j}
K j(r) (66)

Constraints (58) determine the amount of demand for skill
level q on day d in period t that cannot be covered, while
constraints (59) ensure that all shifts of type s for workers
with skill q are connected to a shift profile j . Due to con-
straints (60), the number of sub-breaks for shift j in each
break position r ∈ {

1, . . . , B j
}
corresponds to the number

of shifts of type j . Further, there cannot bemoreworkerswith
skill q̂ that take a break from a job requiring skill q in period t
then there areworkers in the input tour planwith skill q̂ carry-
ing out a job in period t that requires skill q. This is enforced
by (61). In addition, all breaks taken in period t by workers
with skill level q̂ must be distributed among jobs requiring at
most skill q̂ . This is enforced by (62). Constraints (63) and
(64), respectively, are the forward and backward constraints
used to ensure that the total number of sub-breaks is cor-
rect. Equality constraints for the total sub-break supply and
demand are not needed due to constraints (60). Variables are
defined in (65) and (66).

Appendix D: Implicit BAP formulation III

The BAP formulation contained in CMIP is stated below
using the following additional notation.
Parameters

Sstart
s = start time of shift s

Send
s = end time of shift s

Cwork
s = cost for shift s (without breaks)

Variables

bstartr ,s,t = 1, if the r -th sub-break for shift s starts at time
t , 0 otherwise
bendr ,s,t = 1, if the r -th sub-break for shift s ends at time t ,
0 otherwise
blasts,t = 1, if the last sub-break for shift s ends at time t , 0
otherwise
as,t = 1, if there is a break in shift s at time t , 0 otherwise
zs,q,t = 1, if period t is a working period for shift s that
covers skill level q, 0 otherwise

Implicit BAP formulation III (IBAP3)

Minimize
∑

t∈T

⎛

⎝
∑

s∈S
cwork · as,t +

∑

q∈Q
cuc · y−

q,t

⎞

⎠ (67)

subject to
∑

s∈S(q,t)

as,t − y−
q,t + y+

q,t = Dq,d,t ∀ q ∈ Q, t ∈ T (68)
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Bmax
∑

r=1

∑

t∈T brS(r)

bstartr ,s,t ≥ Bmin ∀ s ∈ S∗(d) (69)

�minBF ≤
⎛

⎝
∑

t∈T brS(r)

t · bstart1,s,t − Sstarts

⎞

⎠ ≤ �maxBF ∀ s ∈ S∗(d) (70)

�minBD
r ·

∑

t∈T brS(r)

bstartr ,s,t ≤
∑

t∈T brE(r)

t · bendr ,s,t −

∑

t∈T brS(r)

t · bstartr ,s,t ≤ �maxBD
r ∀ s ∈ S∗(d), 1 ≤ r ≤ Bmax (71)

�minBD ≤
Bmax
∑

r=1

⎛

⎝
∑

t∈T brE(r)

t · bendr ,s,t −
∑

t∈T brS(r)

t · bstartr ,s,t

⎞

⎠

≤ �maxBD ∀ s ∈ S∗(d) (72)

�minBW
r ·

∑

t∈T brS(r+1)

bstartr+1,s,t ≤
∑

t∈T brS(r+1)

t · bstartr+1,s,t −

∑

t∈T brE(r)

t · bendr ,s,t ≤ �maxBW
r ∀ s ∈ S∗(d), 1 ≤ r ≤ Bmax − 1

(73)

Sends,d − �minBL ≥
⎛

⎝
∑

t∈T brE

t · blasts,t

⎞

⎠ ≥ Sends − �maxBL ∀ s ∈ S∗(d)

(74)

∑

t∈T brE

t · blasts,t ≥
⎛

⎝
∑

t∈T brE(r)

t · bendr ,s,t

⎞

⎠ ∀ s ∈ S∗(d), Bmin ≤ r ≤ Bmax

(75)
∑

t∈T brE

(t − 1) · blasts,t ≤
∑

t∈T brE(r)

t · bendr ,s,t +

∑

t∈T brS(r)

bstartr+1,s,t · Sends,d ∀ s ∈ S∗(d), Bmin ≤ r < Bmax (76)

∑

t∈T brE

(t − 1) · blasts,t ≤
∑

t∈T brE(Bmax)

t · bendBmax,s,t +
⎛

⎝1 −
∑

t∈T brS(Bmax)

bstartBmax,s,t

⎞

⎠ · Sends,d ∀ s ∈ S∗(d) (77)

∑

t∈T brE

blasts,t = 1 ∀ s ∈ S∗(d) (78)

Bmax
∑

r=1

∑

t∈T brS(r)

bstartr ,s,t =
Bmax
∑

r=1

∑

t∈T brE(r)

bendr ,s,t ∀ s ∈ S∗(d) (79)

Bmax
∑

r=1

⎛

⎝
∑

l∈T brS(r):l≥t

bstartr ,s,l −
∑

l∈T brE(r):l≥t

bendr ,s,l

⎞

⎠ = as,t

∀ s ∈ S∗(d), Sstarts ≤ t ≤ Sends (80)
∑

t∈T brS(r)

bstartr ,s,t ≤ 1 ∧
∑

t∈T brE(r)

bendr ,s,t ≤ 1 ∀ 1 ≤ r ≤ Bmax, s ∈ S∗(d)

(81)
∑

t∈T brS(r+1)

bstartr+1,s,t ≤
∑

t∈T brS(r)

bstartr ,s,t ∀ 1 ≤ r < Bmax, s ∈ S∗(d)

(82)

bstartr ,s,t , bendr ,s,t ′ , blasts,t ′′ ∈ {0, 1}
∀ s ∈ S∗(d), Bmin ≤ r ≤ Bmax, t ∈ T brS(r), t ′ ∈ T brE(r),

t ′′ ∈ T brE (83)

as,t ∈ {0, 1} ∀ s ∈ S∗(d), q ∈ Q, Sstarts ≤ t ≤ Sends (84)

y+
q,t , y−

q,t ≥ 0 ∀ q ∈ Q, Sstarts ≤ t ≤ Sends (85)

Constraints (68)–(85) are equivalent to (42)–(54), but now
workers’ shifts S∗(d) for each day d ∈ D are provided by
Algorithm 1.
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Appendix E: Low demand curves

See Fig. 8.

Fig. 8 Variable and stable low
demand curves

(a)

(b)
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Appendix F: Results of computational study

See Tables 16, 17 and 18.

Table 16 Results for the CMIP
and the MIP-heuristic for break
regulation {S|V |T }

Instance CMIP MIP-heuristic

Obj Undercov Runtime (s) Obj Undercov Runtime GAP*

{10, low, SD,fix} 7, 570 6, 520 15.77 7, 570 6, 520 3.68 0.00

{20, low, SD,fix} 7, 680 5, 055 30.92 7, 680 5, 055 4.45 0.00

{30, low, SD,fix} 8, 035 4, 010 78.81 8, 035 4, 010 8 0.00

{40, low, SD,fix} 8, 695 3, 095 272 8, 750 3, 150 9.42 0.63

{50, low, SD,fix} 9, 805 2, 630 268.53 9, 975 2, 800 9.51 1.7

{65, low, SD,fix} 11, 150 2, 050 55.3 11, 450 2, 360 11.8 2.71

{10, low, SD,flex} 7, 350 6, 033 33.9 7, 350 5, 690 8.82 0.00

{20, low, SD,flex} 7, 350 5, 447 94.78 7, 350 4, 595 6.83 0.00

{30, low, SD,flex} 7, 350 4, 652 1, 147.93 7, 350 3, 620 8.53 0.00

{40, low, SD,flex} 7, 350 3, 857 2, 868.06 7, 350 3, 220 13.45 0.00

{50, low, SD,flex} 7, 350 3, 328 10, 074.84 7, 350 3, 010 12.72 0.00

{65, low, SD,flex} 7, 380 2, 077 14, 074 7, 420 2, 495 57.436 0.54

{10, low, VD,fix} 9, 086 8, 036 2.6 9, 086 8, 036 1.34 0.00

{20, low, VD,fix} 9, 121 6, 496 8.48 9, 141 6, 517 2.14 0.22

{30, low, VD,fix} 9, 283 5, 258 99.49 9, 307 5, 245 5.92 0.26

{40, low, VD,fix} 9, 663 3, 957 748.99 9, 851 5, 599 10.64 1.91

{50, low, VD,fix} 10, 188 3, 013 830.01 10, 486 3, 311 12.58 2.84

{65, low, VD,fix} 11, 234 2, 134 499, 07 11, 671 2, 572 12, 76 3.74

{10, low, VD,flex} 9, 084 7, 857 20.55 9, 089 7, 133 4.93 0.01

{20, low, VD,flex} 9, 084 7, 070 436.42 9, 105 5, 759 11.72 0.23

{30, low, VD,flex} 9, 084 6, 158 2, 243.9 9, 113 4, 740 21.34 0.32

{40, low, VD,flex} 9, 084 5, 028 5, 326.08 9, 147 3, 850 36.08 0.69

{50, low, VD,flex} 9, 084 4, 546 8, 343.92 9, 185 3, 503 87.52 1.10

{65, low, VD,flex} 9, 368 3, 727 18, 000 9, 518 3, 225 614.95 1.58
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Table 17 Results for the CMIP and the MIP-heuristic for break regulation {F |V |W }
Instance CMIP MIP-heuristic

Obj Undercov Runtime (s) Obj Undercov Runtime (s) GAP* GAP

{10, low, SD,fix} 7, 510 6, 460 32.32 7, 510 6, 460 3.56 0.00

{20, low, SD,fix} 7, 590 4, 965 189.32 7, 590 4, 965 4.10 0.00

{30, low, SD,fix} 7, 890 3, 865 1, 076.60 7, 900 3, 875 13.92 0.13

{40, low, SD,fix} 8, 412 2, 813 2, 454.28 8, 550 2, 740 19.55 1.61

{50, low, SD,fix} 9, 487 2, 312 2, 744.08 9, 640 2, 465 22.21 1.59

{65, low, SD,fix} 11, 164 2, 064 29.47 7.52

{10, low, SD,flex} 7, 350 5, 690 203.92 7, 350 5, 690 9.05 0.00

{20, low, SD,flex} 7, 350 4, 595 11.16 0.32

{30, low, SD,flex} 7, 350 3, 620 13.62 0.78

{40, low, SD,flex} 7, 350 3, 220 15.20 0.96

{50, low, SD,flex} 7, 350 3, 010 17.71 1.12

{65, low, SD,flex} 7, 420 2, 495 59.18 0.94

{10, low, VD,fix} 9, 084 8, 034 31.97 9, 086 8, 036 3.54 0.02

{20, low, VD,fix} 9, 108 6, 483 164.98 9, 133 6, 500 4 0.27

{30, low, VD,fix} 9, 247 5, 222 4, 345.21 9, 247 5, 222 13.32 0.43

{40, low, VD,fix} 9, 545 3, 839 7, 938, 34 9, 545 3, 862 14.29 1.37

{50, low, VD,fix} 9, 784 2, 564 10, 800.3 10, 243 3, 068 18.21 4.48

{65, low, VD,fix} 11, 443 2, 343 42.01 9.33

{10, low, VD,flex} 9, 084 7, 580 843.80 9, 084 7, 128 8.72 0.00

{20, low, VD,flex} 9, 087 5, 741 12.20 0.12

{30, low, VD,flex} 9, 093 4, 720 28.30 0.42

{40, low, VD,flex} 9, 128 3, 831 43.16 1.00

{50, low, VD,flex} 9, 160 3, 478 98.51 1.35

{65, low, VD,flex} 10, 367 4, 286 628.68 1.64
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