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Abstract
In this paper we study a proportionate flow shop of batching machines with release dates and a fixed number m ≥ 2 of
machines. The scheduling problem has so far barely received any attention in the literature, but recently its importance has
increased significantly, due to applications in the industrial scaling of modern bio-medicine production processes. We show
that for any fixed number of machines, the makespan and the sum of completion times can be minimized in polynomial
time. Furthermore, we show that the obtained algorithm can also be used to minimize the weighted total completion time,
maximum lateness, total tardiness and (weighted) number of late jobs in polynomial time if all release dates are 0. Previously,
polynomial time algorithms have only been known for two machines.

Keywords Planning of pharmaceutical production · Proportionate flow shop · Batching machines · Permutation schedules ·
Dynamic programming

1 Introduction

Modern medicine can treat some serious illnesses using indi-
vidualized drugs, which are produced to order for a specific
patient and adapted to work only for that unique patient and
nobody else. Manufacturing such a drug often involves a
complex production line, consisting of many different steps.

If each step of the process is performedmanually, by a lab-
oratory worker, then each laboratory worker can only handle
materials for one patient at a time. However, in the industrial
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applicationwhichmotivates our study, some steps are instead
performed by actual machines, like pipetting robots. Such
high-end machines can typically handle materials for mul-
tiple patients in one go. If scheduled efficiently, this special
feature can drastically increase the throughput of the produc-
tion line. Clearly, in such an environment efficient operative
planning is crucial in order to optimize the performance of
the manufacturing process and treat as many patients as pos-
sible.

In this paper, we present – as part of a larger study of an
industrial application – new theoretical results for scheduling
problems arising from a manufacturing process as described
above. Formally, the manufacturing process we consider is
structured in a flow shopmanner, where each step is handled
by a single, dedicated machine. A job J j , j = 1, 2, . . . , n,
representing the production of a drug for a specific patient,
has to be processed bymachines M1, M2, . . . , Mm in order of
their numbering.Each job J j has a release dater j ≥ 0, denot-
ing the time at which the job J j is available for processing
at the first machine M1. Furthermore, a job is only available
for processing at machine Mi , i = 2, 3, . . . ,m, when it has
finished processing on the previous machine Mi−1.

Processing times are job-independent, meaning that each
machine Mi , i = 1, 2, . . . ,m, has a fixed processing time
pi , which is the same for every job when processed on
that machine. In the literature, a flow shop with machine-
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or job-independent processing times is sometimes called a
proportionate flow shop, see e.g. (Panwalkar et al. 2013).

Recall that, as a special feature from our application, each
machine in the flow shop can handlemultiple jobs at the same
time. These kind of machines are called (parallel) batching
machines and a set of jobs processed at the same timeon some
machine is called a batch on that machine (Brucker 2007,
Chapter 8). All jobs in one batch B(i)

k on some machine Mi

have to start processing on Mi at the same time. In particular,
all jobs in B(i)

k have to be available for processing on Mi ,

before B(i)
k can be started. The processing time of a batch

on Mi remains pi , no matter how many jobs are included
in this batch. This distinguishes parallel batching machines
from serial batching machines, where the processing time of
a batch is calculated as the sum of the processing times of
the jobs contained in it plus an additional setup time. Each
machine Mi , i = 1, 2, . . . ,m has a maximum batch size bi ,
which is the maximum number of jobs a batch on machine
Mi may contain.

Given a feasible schedule S, we denote by ci j (S) the com-
pletion timeof job J j onmachineMi . For the completion time
of job J j on the last machine we also write C j (S) = cmj (S).
If there is no confusion which schedule is considered, we
may omit the reference to the schedule and simply write ci j
and C j .

As optimization criteria, in this paper we are interested in
objective functions of the forms

fmax = max
j=1,2,...,n

f j (C j ), (1)

f∑ =
n∑

j=1

f j (C j ), (2)

with functions f j non-decreasing for j = 1, 2, . . . , n.
In particular, the first part of the paper will be ded-

icated to the minimization of the makespan Cmax =
max

{
C j | j = 1, 2, . . . , n

}
and of the total completion time∑

C j = ∑n
j=1 C j , although the obtained algorithms will

work for an arbitrary objective function of type (1) or (2), if
certain pre-conditions are met.

In the second part of the paper, we assume that for each
job J j a weight w j or a due date d j is given. We focus on
the following traditional scheduling objectives:

– the weighted total completion time∑
w jC j = ∑n

j=1 w jC j ,
– the maximum lateness

Lmax = max
{
C j − d j | j = 1, 2, . . . , n

}
,

– the total tardiness∑
Tj = ∑n

j=1 Tj ,
– the number of late jobs

∑
Uj = ∑n

j=1Uj ,

time0 1 2 3 4 5 6 7 8 9

J1

J2

J3

J4

J5

M1

M1

M2

M2

Fig. 1 A feasible example schedule

– the weighted number of late jobs∑
w jU j = ∑n

j=1 w jU j ,

where

Tj =
{
C j − d j , if C j > d j ,

0, otherwise,

and

Uj =
{
1, if C j > d j ,

0, otherwise.

Note that all these objective functions are regular, that is,
nondecreasing in each job completion time C j .

Using the standard three-field notation for scheduling
problems (Graham et al. 1979), our problem is denoted as

Fm | r j , pi j = pi , p-batch, bi | f ,

where f is a function of the form defined above. We refer to
the described scheduling model as proportionate flow shop
of batching machines and abbreviate it by PFB.

Next, we provide an example in order to illustrate the
problem setting.

Example 1 Consider a PFB instance with m = 2 machines,
n = 5 jobs, maximum batch sizes b1 = 3 and b2 = 4,
processing times p1 = 2 and p2 = 3, and release dates
r1 = r2 = 0, r3 = r4 = 1, and r5 = 2. Figure 1 illustrates a
feasible schedule for the instance as job-oriented Gantt chart.

Each rectangle labeled by a machine represents a batch
of jobs processed together on this machine. The black area
indicates that the respective jobs have not been released at
this time yet. Note that in this example none of the batches
can be started earlier, since either a job of the batch has just
arrived when the batch is started, or the machine is occupied
before. Still, the schedule does not minimize the makespan,
since the schedule shown in Fig. 2 is feasible as well and has
a makespan of 8 instead of 9.

The improvement in themakespanwas achieved by reduc-
ing the size of the first batch on M1 from three to two, which
allows to start it one time step earlier. Observe that no job
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time0 1 2 3 4 5 6 7 8 9

J1

J2

J3

J4

J5

M1

M1

M2

M2

Fig. 2 An example schedule minimizing the makespan

can finish M2 before time step 5. Moreover, not all five jobs
fit into one batch on M2. Hence, at least two batches are nec-
essary on M2 in any schedule. Therefore, 8 is the optimal
makespan and no further improvement is possible.

The rest of the paper is structured as follows. The remain-
ing parts of this section provide an overview of the related
literature andour results, respectively. InSect. 2weprove that
permutation schedules with jobs in earliest release date order
are optimal for PFBswith themakespan and total completion
time objectives. We also show that permutation schedules
are not optimal for any other traditional scheduling objec-
tive functions. In Sect. 3 we construct a dynamic program to
find the optimal permutation schedule with a given, fixed job
order. We show that, if the number of machines m is fixed,
the dynamic program can be used to minimize the makespan
or total completion time in a PFB in polynomial time. In
Sect. 4 we consider PFBs where all release dates are equal.
We show that, in this special case, permutation schedules are
always optimal and that the dynamic program from Sect. 3
can be applied to solve most traditional scheduling objec-
tives. Finally, in Sect. 5 we draw conclusions, reflect on our
results in the context of some additional existing literature,
and point out future research directions.

1.1 Literature

In this overview as well as the remainder of this paper, we
are exclusively concerned with flow shops of parallel batch-
ing machines, which we will simply call batching machines.
For complexity results about (proportionate) flow shops with
serial batching machines, we refer e.g. to Ng and Kovalyov
(2007) and Brucker and Shakhlevich (2011). It is interesting
to note that, although the different type of batching machines
changes the problem significantly, the methodology used by
Ng and Kovalyov (2007) is quite similar to ours: for a fixed
job permutation a dynamic program is developed that adds
jobs one by one, resulting in polynomial runtime for a fixed
number of machines.

The proportionate flow shop problem with batching
machines as studied in this paper has so far not received
a lot of attention from researchers, although several appli-

cations have appeared in the literature. In addition to the
application from pharmacy described in Sect. 1, Sung et al.
(2000)mention a variety of applications in themanufacturing
industry, e.g., in the production of semi-conductors. Further-
more, there are several papers which study the scheduling
sequences of locks for ships along a canal or river, which can
in some ways be seen as a generalization of PFBs (see, e.g.,
Passchyn and Spieksma (2019)). The problem is generally
strongly NP-complete, but several special cases for which it
can be solved in polynomial time have been identified.

Another stream of recent research focuses on finding prac-
tical scheduling techniques for production processes which
can be viewed as NP-hard generalizations of the PFB prob-
lem. Usually application-specific heuristics are developed
and their quality is certified by computational studies. A
preliminary study of the specific industrial setup whichmoti-
vated our research was done in Ackermann et al. (2020+).
For studies from different areas of application we refer, for
instance, to Li et al. (2015), Zhou et al. (2016), Tan et al.
(2018), Chen et al. (2019), Li et al. (2019). The problems
typically stem from various industries, e.g. electronics, steel,
or equipment manufacturing. Features that make these prob-
lems difficult include mixtures of parallel and serial batching
machines, families of jobs that are incompatible to be batched
together, hybrid/flexible flow shop setups, as well as no-wait
constraints.

Despite this multitude of possible applications, for PFBs
as introduced in Sect. 1 significant hardness results have, to
the best of our knowledge, not been achieved at all. Poly-
nomial time algorithms are only known for the special case
with no more than two machines and, in most cases, with-
out release dates (Ahmadi et al. 1992; Sung and Yoon 1997;
Sung and Kim 2003).

The paper by Sung et al. (2000) is, as far as we know,
the only work in literature considering a PFB with arbitrar-
ily many machines. They propose a reduction procedure to
decrease the size of an instance by eliminating dominated
machines. Using this procedure, they develop heuristics to
minimize the makespan and the sum of completion times in
a PFB and conduct a computational study certifying quality
and efficiency of their heuristic approach. However, they do
not establish any complexity result.

For the case with m = 2 machines and no release dates,
Ahmadi et al. (1992) show that the makespan can be mini-
mized by completely filling all batches on the first machine
(other than the last one, if the number of jobs is not a mul-
tiple of b1) and completely filling all batches on the second
machine (other than the first one, if the number of jobs is not
a multiple of b2). This structural result immediately yields
an O(n) time algorithm. If release dates do not all vanish,
i.e. r j > 0 for some j = 1, 2, . . . , n, then the makespan can
be minimized inO(n2) time, see Sung and Yoon (1997). The
authors use a dynamic programming algorithm in order to
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find an optimal batching on the first machine. On the second
machine, the strategy to completely fill all batches (other than
maybe the first one) is still optimal.

For objectives other than the makespan, results are only
known if all jobs are released at the same time. In this case,
the total completion time in a two-machine PFB can be mini-
mized inO(n3) time, see (Ahmadi et al. 1992). Sung andKim
(2003) provide dynamic programs to minimize Lmax,

∑
Tj ,

and
∑

Uj in a two-machine PFB without release dates in
polynomial time.

There are two special cases and one generalization of
PFB which have been studied relatively extensively in the
literature andwhich are of importancewhen it comes to com-
parison with the wider literature. First, consider the special
case of PFB with maximum batch size equal to one on all
machines. This is the usual proportionate flow shop problem,
which iswell-researched and known to be polynomially solv-
able for many variants. An overview is given in Panwalkar
et al. (2013). In particular, the makespan and the total com-
pletion time can be minimized in O(n log n + nm) time, by
ordering jobs according to nondecreasing release dates and
scheduling each job as early as possible on each machine.
Note that the term n log n is due to the sorting of the jobs
while the term nm arises from computing start and comple-
tion times for each operation of each job.

Second, consider the special case of PFB where the num-
ber of machines is fixed to m = 1, which leaves us with
the problem of scheduling a single batching machine with
identical (but not necessarily unit) processing times. This
problem, too, has been investigated by various authors (Ikura
and Gimple 1986; Lee et al. 1992; Baptiste 2000; Condotta
et al. 2010). Even with release dates, the problem can be
solved in polynomial time for almost all standard scheduling
objective functions, except for the weighted total tardiness,
for which it is open. Note, in particular, the reduction proce-
dure from Sung et al. (2000) implies that for the cases where
all batch sizes or all processing times are equal, bi = b̄ or
pi = p̄ for all i = 1, 2, . . . ,m, the problem of scheduling
a PFB reduces to scheduling a single batching machine with
equal processing times. Thus, for those two special cases,
the results by Baptiste (2000) imply that scheduling a PFB is
polynomially solvable for all objective functions other than
the weighted total tardiness.

Third, in contrast to the two special cases frombefore, con-
sider the generalization of PFB where processing times may
be job- as well as machine-dependent. We end up with the
usual flow shop problem with batching machines. Observe
that this problem is also a generalization of traditional flow
shop as well as scheduling a single batching machine. There-
fore, we can immediately deduce that, even without release
dates, it is strongly NP-hard to minimize the makespan for
any fixed number of machines m ≥ 3 and to minimize
the total completion time for any fixed number of machines

m ≥ 2 (Garey et al. 1976). Furthermore,minimizing themax-
imum lateness (or, equivalently, the makespan with release
dates) is strongly NP-hard even for the case with m = 1
and b1 = 2 (Brucker et al. 1998). Finally, Potts et al. (2001)
showed that scheduling a flow shop with batching machines
to minimize the makespan, without release dates, is strongly
NP-hard, even for m = 2 machines. Recall that for tradi-
tional flow shop with m = 2 machines a schedule with
minimum makespan can be computed in O(n log n) time
(Johnson 1954).

In conclusion, we see that dropping either the batching
or the multi-machine property of PFB leads to easy special
cases, while dropping the proportionate property leads to a
very hard generalization. Therefore, PFB lies exactly on the
borderline between easy and hard problems, which makes it
an interesting problem to study from a theoretical perspec-
tive, in addition to the practical considerations explained in
the introduction.

1.2 Our results

Our main focus in this paper is the complexity of PFBs with
an arbitrary, but fixed number m of machines. This is moti-
vated by the specific industrial applicationwe consider:while
the number of steps needed to produce individualized drugs
in a process as described in the beginning is significantly
larger than 2 or 3 (machine numbers which are often studied
separately in the literature), it is not arbitrarily large and it
does not change once the process is set up. Thus, it is rea-
sonable to assume that m is fixed and not part of the input.

This paper is, to the best of our knowledge, the first study
which provides any complexity results – positive or negative
– for PFBs with more than m = 2 machines (see Table 1 for
an overview). As such we close several questions which have
remained open for over fifteen years, despite the significant
practical importance of PFBs in the area of production lines.
We show that for PFBs with release dates and a fixed num-
ber m of machines, the makespan and the total completion
time can be minimized in polynomial time. For PFBs with-
out release dates, we further show that the weighted total
completion time, the maximum lateness, the total tardiness
and the (weighted) number of late jobs can be minimized in
polynomial time.

Note that, while this paper closes many open complex-
ity questions for PFBs, the proposed algorithm has practical
limitations concerning its running time. We discuss this in
some more detail also in the conclusions to this paper. Still,
some of the structural results proved in this paper, in par-
ticular concerning the optimality of permutation schedules
proved in Sects. 2 and 4, can be of great help for the future
design of heuristics or approximation algorithms, which run
fast in practice. Indeed, for the specific industrial setup of
the study this paper originates from, such practical heuristics
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Table 1 Polynomially solvable PFB variants

Problem m = 1 m = 2 fixed m ≥ 3

Fm | r j , pi j = pi , p-batch, bi | Cmax Ikura and Gimple (1986) Sung and Yoon (1997) Corollary 13/14

Fm | r j , pi j = pi , p-batch, bi | ∑
C j Ahmadi et al. (1992) Corollary 13 Corollary 13

Fm | pi j = pi , p-batch, bi | ∑
w jC j Baptiste (2000) Theorem 18 Theorem 18

Fm | pi j = pi , p-batch, bi | Lmax Lee et al. (1992) Sung and Kim (2003) Theorem 18

Fm | pi j = pi , p-batch, bi | ∑
Tj Baptiste (2000) Sung and Kim (2003) Theorem 18

Fm | pi j = pi , p-batch, bi | ∑
Uj Lee et al. (1992) Sung and Kim (2003) Theorem 19

Fm | pi j = pi , p-batch, bi | ∑
w jU j Baptiste (2000) Theorem 19 Theorem 19

Results achieved in this paper are given in bold
To the best of our knowledge, each entry contains the first reference solving the corresponding problem or a generalization in polynomial time

have already been considered by Ackermann et al. (2020+).
However, a close investigation of heuristics or approxima-
tion algorithms for PFBs in general is beyond the scope of
this paper.

2 Optimality of permutation schedules

Our approach to scheduling a PFB relies on the well-known
concept of permutation schedules. In a permutation sched-
ule the order of the jobs is the same on all machines of the
flow shop. This means there exists a permutation σ of the
job indices such that ciσ(1) ≤ ciσ(2) ≤ . . . ≤ ciσ(n), for all
i = 1, . . . ,m. Due to job-independent processing times and
since a machine can only process one batch at a time, clearly
the same then also holds for starting times instead of comple-
tion times. If there exists an optimal schedule S∗ which is a
permutation schedule with a certain ordering σ ∗ of the jobs,
we say that permutation schedules are optimal. A job order-
ing σ ∗ which gives rise to an optimal permutation schedule
is then called an optimal job ordering. Often, if the job order-
ing is clear, we will assume that jobs are already numbered
with respect to that ordering and drop the notation of σ or
σ ∗. Finally, an ordering σ of the jobs is called an earliest
release date ordering, if rσ(1) ≤ rσ(2) ≤ . . . ≤ rσ(n).

Suppose that for some problem

Fm | r j , pi j = pi , p-batch, bi | f

permutation schedules are optimal. Then the scheduling
problem can be split into two parts:

(i) find an optimal ordering σ ∗ of the jobs;
(ii) for each machine, partition the job set into batches and

order those batches in accordance with the ordering σ ∗,
such that the resulting schedule is optimal.

In this section we deal with part (i) and show that for
f ∈ {Cmax,

∑
C j } optimal job orderings exist and can be

found inO(n log n) time. Then, in Sect. 3,we show that under
certain, very general preconditions part (ii) can be done in
polynomial time via dynamic programming.

We begin with a technical lemma which will help us to
show optimality of permutation schedules in this section and
also in Sect. 4.

Lemma 2 Let S be a feasible schedule for a PFB and let σ

be some earliest release date ordering of the jobs. Then there
exists a feasible permutation schedule Ŝ in which the jobs are
ordered by σ and the multi-set of job completion times in Ŝ
is the same as in S.

Proof Suppose that jobs are indexed according to ordering
σ , i.e. σ is the identity permutation. Otherwise renumber
jobs accordingly. Note that since σ is an earliest release date
ordering, it follows that r1 ≤ r2 ≤ . . . ≤ rn . Let B

(i)
� , � =

1, . . . , κ(i), be the �-th batch processed on Mi in S, where
κ(i) is the total number of batches used onMi . Let s

(i)
� and c(i)

�

be the start and completion times of batch B(i)
� . Furthermore,

let k(i)
� = |B(i)

� | be the size of batch B(i)
� and let

j (i)� =
�∑

s=1

k(i)
s

be the the number of jobs processed in batches B(i)
1 ,

B(i)
2 , . . . , B(i)

� .

Construct the new schedule Ŝ using batches B̂(i)
� , i =

1, 2, . . . ,m, � = 1, 2, . . . , κ(i), with start times ŝ(i)
� and com-

pletion times ĉ(i)
� given by

B̂(i)
� = {J

j (i)�−1+1
, J

j (i)�−1+2
, . . . , J

j (i)�

},
ŝ(i)
� = s(i)

� ,

ĉ(i)
� = c(i)

� .

In other words, in schedule Ŝ we use batches with the
same start and completion times and of the same size as in
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S. We only reassign which job is processed in which batch
in such a way, that the first batch on machine Mi processes
the first k(i)

1 jobs (in order of their numbering, i.e. in the
earliest release date order), the second batch processes jobs
J
k(i)
1 +1

to J
k(i)
1 +k(i)

2
, the third batch processes jobs J

k(i)
1 +k(i)

2 +1

to J
k(i)
1 +k(i)

2 +k(i)
3

and so on. Such, in schedule Ŝ, jobs are pro-

cessed in order of their indices on all machines (i.e. in order
σ ).

Clearly, as all batches have exactly the same start and com-
pletion times, as well as the same sizes as in S, for schedule
Ŝ the multi-set of job completion times on the last machine
is exactly the same as for S.

It remains to show that Ŝ is feasible, i.e., no job is started
onmachineM1 before its release date and no job is started on
a machine Mi , i = 2, 3, . . . ,m before finishing processing
on machine Mi−1.

We first show that no batch B̂(1)
� on machine M1 violates

any release dates. Indeed, due to the feasibility of S, at the
time s(1)

� , when batch B(1)
� is started, at least j (1)� jobs are

released (recall that j (1)� is the number of jobs processed in

batches B(1)
1 , B(1)

2 , . . . , B(1)
� ). This means that in particular

the first j (1)� jobs in earliest release date order are released

at time s(1)
� . Thus, since batch B̂(1)

� by construction contains
only the jobs J

j (1)�−1+1
to J

j (1)�

and since jobs are numbered

in earliest release date order, batch B̂(1)
� does not violate any

release dates.
Finally, using an analogous argument, we show that no

batch starts processing on machine Mi before all jobs it con-
tains finish processing on machine Mi−1, i = 2, 3, . . . ,m.
By time s(i)

� , when batch B(i)
� is started on machine Mi in

schedule S, machine Mi−1 has processed at least j (i)� jobs.

Thus, by construction, the same is true for batch B̂(i)
� in sched-

ule Ŝ. In particular, this means that at time s(i)
� the first j (i)�

jobs in order of their numbering are finished on machine
Mi−1 in schedule Ŝ. Since batch B̂(i)

� contains only the jobs

J
j (i)�−1+1

to J
j (i)�

, this means that batch B̂(i)
� starts only after

each job contained in it has finished processing on machine
Mi−1. Therefore, schedule Ŝ is feasible. ��

Note that, in particular, if all release dates are equal, then any
ordering σ is an earliest release date ordering of the jobs.
This fact will be used in Sect. 4.

Now we show that for a PFB with the makespan or total
sum of completion times objective, permutation schedules
are optimal and that any earliest release date ordering is an
optimal ordering of the jobs. This result generalizes Sung and
Yoon (1997), Proposition 1 to arbitrarilymanymachines. For
makespan and total completion time, it also extends Sung
et al. (2000), Lemma 1 to the case with release dates.

time0 1 2 3 4 5 6 7

J1

J2

M1

M1
M2

M3

M3

Fig. 3 A non-permutation schedule for the instance of Example 4

Theorem 3 For aPFBwith objective functionCmax or
∑

C j ,
permutation schedules are optimal. Moreover, any earliest
release date ordering is an optimal ordering of the jobs.

Proof Let S∗ be an optimal schedule with respect to
makespan or total completion time. Let σ be any earliest
release date ordering. Using Lemma 2, construct a new per-
mutation schedule Ŝ with jobs ordered by σ on all machines
and with the same multi-set of completion times as S. Since
makespan and total completion time only depend on the
multi-set of completion times, Ŝ is optimal, too. ��

Hence, when minimizing the makespan or the total com-
pletion time in aPFB, it is valid to limit oneself to permutation
schedules in an earliest release date order.

To conclude this section, we present an example where no
permutation schedule is optimal for a bunchof other objective
functions. This shows that Theorem 3 does not hold for these
objective functions. It also implies that the statements made
in Sung and Yoon (1997, Proposition 1), Sung et al. (2000,
Lemma 1), and Sung and Kim (2003, Lemma 1) cannot be
generalized to settings in which release dates and due dates
or release dates and weights are present.

Example 4 Consider a PFB with m = 3 machines, b1 =
p1 = b3 = p3 = 1, and b2 = p2 = 2. Suppose there are
n = 2 jobs with release dates r1 = 0 and r2 = 1. Let due
dates d1 = 6 and d2 = 5 be given. First, we show that no
permutation schedule is optimal for Lmax. Figure 3 shows a
job-oriented Gantt chart of a feasible schedule which is not a
permutation schedule. Each rectangle labeled by a machine
denotes a batch processed on this machine. The black box
indicates that the second job has not been released yet. The
gray shaded area denotes points in time after the due dates.

Whenconstructing apermutation schedule for this instance,
two decisions have to be made, namely which of the two jobs
is processed first, and whether a batch of size two or two
batches of size one should be used on M2. The resulting four
possible schedules are depicted in Fig. 4.

However, the schedule in Fig. 3 achieves an objective
value of zero, while all schedules in Fig. 4 have a posi-
tive objective value. Hence, there is no optimal permutation
schedule for this instance. The sameexample shows that there
is no optimal permutation schedule for

∑
Tj and

∑
Uj .

Choosing weights w1 = 1, w2 = 3 leads to an instance
where no permutation schedule is optimal for

∑
w jC j , since
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M1
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M3
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Fig. 4 All possible permutation schedules without unnecessary idle
time for the instance of Example 4

the schedule in Fig. 3 achieves an objective value of 6 · 1 +
5 · 3 = 21, while all schedules in Fig. 4 have an objective
value of at least 22.

3 Dynamic programming to find an optimal
schedule for a given job permutation

In this sectionwe show that for a fixed numberm ofmachines
and a fixed ordering of the jobs σ , we can construct a poly-
nomial time dynamic program, which finds a permutation
schedule that is optimal among all schedules obeying job
ordering σ . The algorithmworks for an arbitrary regular sum
or bottleneck objective function. Combined with Theorem 3
this shows that the makespan and the total completion time
in a PFB can be minimized in polynomial time for fixed m.

The dynamic program is based on the important obser-
vation that, for a given machine Mi , the set of possible job
completion times on Mi is not too large. In order to for-
malize this statement, we introduce the notion of a schedule
being Γ -active. For ease of notation, we use the shorthand
[k] = {1, 2, . . . , k}.

Definition 5 Given an instance of PFB with n jobs and m
machines, let

Γi =
{

r j ′ +
i∑

i ′=1

λi ′ pi ′

∣
∣
∣
∣
∣
j ′ ∈ [n], λi ′ ∈ [n] for i ′ ∈ [i]

}

for all i ∈ [m]. We say that a schedule S is Γ -active, if
ci j (S) ∈ Γi , for any job J j , j ∈ [n], and any machine Mi ,
i ∈ [m].

Note that onmachineMi , there are only |Γi | ≤ ni+1 ≤ nm+1

possible job completion times to consider for any Γ -active
schedule S.

Nowwe show that for a PFB problemwith a regular objec-
tive function, any schedule canbe transformed into aΓ -active
schedule, without increasing the objective value. To do so,
we prove that this is true even for a slightly stronger concept
than Γ -active.

Definition 6 A schedule is called batch-active, if no batch
can be started earlier without violating feasibility of the
schedule and without changing the order of batches.

Clearly, given a schedule S that is not batch-active, by
successively removing unnecessary idle times we can obtain
a new, batch-active schedule S′. Furthermore, for regular
objective functions, S′ has objective value no higher than
the original schedule S. These two observations immediately
yield the following lemma.

Lemma 7 A schedule for a PFB can always be transformed
into a batch-active schedule such that any regular objec-
tive function is not increased. This transformation does not
change the order in which the jobs are processed on the
machines. ��

Now we show that, indeed, being batch-active is stronger
than being Γ -active, in other words that every batch-active
schedule is also Γ -active. This result generalizes an obser-
vation made by Baptiste (2000, Section 2.1) from a single
machine to the flow shop setting.

Lemma 8 In a PFB, any batch-active schedule is also Γ -
active.

Proof Fix some i ∈ [m] and j ∈ [n]. Let B(i)
� be the batch

which contains job J j on machine Mi . Since the schedule is

batch-active, B(i)
� is either started at the completion time of

the previous batch B(i)
�−1 on the samemachine or as soon as all

jobs of B(i)
� are available on machine Mi . In the former case,

all jobs J j ′ ∈ B(i)
�−1 satisfy ci j = ci j ′ + pi . In the latter case,

there is a job J j ′′ ∈ B(i)
� such that ci j = c(i−1) j ′′ + pi , where

we write c0 j ′′ = r j ′′ for convenience. The claim follows
inductively by observing that the former case can happen at
most n − 1 times in a row, since there are at most n batches
on each machine. ��
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Together, Lemmas 7 and 8 imply the following desired
property.

Lemma 9 Let S be a schedule for aPFBproblemwith regular
objective function f . Then there exists a schedule S′ for the
same PFB problem, such that

1. On each machine, jobs appear in the same order in S′ as
they do in S,

2. S′ has objective value no larger than S, and
3. S′ is Γ -active. ��

In particular, Lemma 9 shows that, if for a PFB problem an
optimal job ordering σ ∗ is given, then there exists an optimal
schedule which is a permutation schedule with jobs ordered
by σ ∗ and in addition Γ -active.

From this point on, we assume that the objective func-
tion is a regular sum or bottleneck function, that is, f (C) =
⊕n

j=1 f j (C j ), where
⊕ ∈ {∑,max} and f j is nondecreas-

ing for all j ∈ [n]. We also use the symbol ⊕ as a binary
operator. In what follows, we present a dynamic program
which, given a job ordering σ , finds a schedule that is opti-
mal among all Γ -active permutation schedules obeying job
ordering σ . For simplicity, we assume that jobs are already
indexed by σ . The dynamic program schedules the jobs one
after the other, until all jobs are scheduled. Due to Lemma
9, if σ is an optimal ordering, then the resulting schedule is
optimal.

Given an instance I of a PFB and a job index j ∈ [n],
let I j be the modified instance which contains only the jobs
J1, . . . , J j . We write Γ = Γ1 × Γ2 × . . . × Γm and B =
[b1] × [b2] × . . . × [bm], where × is the standard Cartesian
product. For a vector

t = (t1, t2, . . . , ti , . . . , tm−1, tm) ∈ Γ

of m possible completion times and a vector

k = (k1, k2, . . . , ki , . . . , km−1, km) ∈ B

of m possible batch sizes, we say that a schedule S for
instance I j corresponds to t and k if, for all i ∈ [m], ci j = ti
and job J j is contained in a batchwith exactly ki jobs (includ-
ing J j ) on Mi .

Next, we define the variables g of the dynamic program.
Let S( j, t, k) be the set of feasible permutation schedules S
for instance I j satisfying the following properties:

1. Jobs in S are ordered by their indices,
2. S corresponds to t and k, and
3. S is Γ -active.

Then, for j ∈ [n], t ∈ Γ , and k ∈ B, we define

g( j, t, k) = g( j, t1, t2, . . . , tm, k1, k2, . . . , km)

to be the minimum objective value of a schedule in S( j, t, k)
for instance I j . If no such schedule exists, the value of g is
defined to be +∞.

Using the above definitions aswell as Lemma 9, the objec-
tive value of the best permutation schedule ordered by the job
indices is given by mint,k g(n, t, k), t ∈ Γ , k ∈ B. In Lem-
mas 10 and 11 (below) we provide formulas to recursively
compute the values g( j, t, k), j = 1, 2, . . . , n, t ∈ Γ , k ∈ B.
In total, we then obtain Algorithm 1 as our dynamic program.

Algorithm 1
Input: A PFB instance with regular sum or

bottleneck objective function f = ⊕n
j=1 f j .

Output: An optimal schedule among all permutation
schedules ordered by the job indices.

1: For each t ∈ Γ and k ∈ B, compute g(1, t, k) via the formula
defined in Lemma 10.

2: For each j = 2, 3, . . . , n, t ∈ Γ , and k ∈ B, compute g( j, t, k) via
the formula defined in Lemma 11. If g( j, t, k) < +∞, also store a
reference to the minimizers t ′ and k′ on the right-hand side of the
recurrence in Lemma 11.

3: Find t and k minimizing g(n, t, k) and start from them to backtrack
the references stored in Step 2 in order to find the optimal schedule.

The remainder of this section deals with proving the
correctness and running time bound of Algorithm 1. Asmen-
tioned above, in Lemmas 10 and 11 we define and prove the
correctness of a recursive formula to compute all values of
function g. Lemma 10 dealswith the starting values g(1, t, k)
while Lemma 11 deals with the recurrence relation. Finally,
in Theorem 12 we connect the results of this section to prove
the correctness of Algorithm 1.

Lemma 10 For j = 1, ti ∈ Γi , and ki ∈ [bi ], i ∈ [m], the
starting values of g are given by

g(1, t, k) =
{
f1(tm), if conditions (i)–(iii) hold,
+∞, otherwise,

where

(i) ki = 1 for all i ∈ [m],
(ii) t1 ≥ r1 + p1, and
(iii) ti+1 ≥ ti + pi+1 for all i ∈ [m − 1].

Proof Conditions (i)–(iii) are necessary for the existence of
a schedule in S(1, t, k) because I1 consists of only one job
and there must be enough time to process this job on each
machine. Conversely, if (i)–(iii) are satisfied, then the vector
t of completion times uniquely defines a feasible schedule
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S ∈ S(1, t, k) by ci1(S) = ti . Since S is uniquely defined by
t and thus the only schedule in S(1, t, k), its objective value
f1(C1) = f1(cm1) = f1(tm) is optimal. ��
Now we turn to the recurrence formula to calculate g for

j > 1 from the values of g for j − 1.

Lemma 11 For j > 1, ti ∈ Γi , and ki ∈ [bi ], i ∈ [m], the
values of g are determined by

g( j, t, k)

=
{
min{ f j (tm) ⊕ g( j − 1, t ′, k′) | (∗∗)}, if (∗),

+∞, otherwise,

where the minimum over the empty set is defined to be +∞.
Here, (∗) is given by conditions

(i) t1 ≥ r j + p1 and
(ii) ti+1 ≥ ti + pi+1 for all i ∈ [m − 1],

and (∗∗) is given by conditions

(iii) t ′i ∈ Γi ,
(iv) k′

i ∈ [bi ],
(v) if ki = 1, then t ′i ≤ ti − pi , and
(vi) if ki > 1, then t ′i = ti and k′

i = ki − 1,

for all i ∈ [m].
Proof Fix values ti ∈ Γi and ki ∈ [bi ], i ∈ [m]. The condi-
tions of (∗) are necessary for the existence of a schedule in
S( j, t, k) because there must be enough time to process job
J j on each machine. Therefore, g takes the value +∞, if (∗)

is violated. For the remainder of the proof, assume that (∗)

is satisfied. Hence, we have to show that

g( j, t, k) = min
{
f j (tm) ⊕ g( j − 1, t ′, k′)

∣
∣ (∗∗)

}
. (3)

We first prove “≥”. If the left-hand side of (3) equals
infinity, then this direction follows immediately. Otherwise,
by the definition of g, theremust be a schedule S ∈ S( j, t, k)
with objective value g( j, t, k). Schedule S naturally defines
a feasible schedule S′ for instance I j−1 by ignoring job J j .

Observe that, because S belongs toS( j, t, k) and therefore
is Γ -active, S′ is also Γ -active and job J j−1 finishes pro-
cessing on machine Mi at some time t ′i ∈ Γi . Also, since S is
feasible, on each machine Mi job J j−1 is scheduled in some
batch of size k′

i ≤ bi . Thus, S′ corresponds to two unique
vectors t ′ = (t ′1, t ′2, . . . , t ′m) and k′ = (k′

1, k
′
2, . . . , k

′
m),

which satisfy (iii) and (iv) from (∗∗). Note that, in partic-
ular, S′ ∈ S( j − 1, t ′, k′).

Furthermore, t ′ and k′ also satisfy (v) and (vi) from (∗∗).
Indeed, due to the fixed job permutation, one of the following
two things happens on each machine Mi in S: either jobs

J j and J j−1 are batched together, or job J j is batched in a
singleton batch. In the former case, it follows that 1 < ki =
k′
i + 1 and t ′i = ti , while the latter case requires ki = 1 and
ti ≥ t ′i + pi , since the machine is occupied by the previous
batch with job J j−1 until then.

Thus, t ′ and k′ satisfy (∗∗) and we obtain

g( j, t, k) =
j⊕

j ′=1

f j ′(C j ′(S))

= f j (tm) ⊕
j−1⊕

j ′=1

f j ′(C j ′(S
′))

≥ f j (tm) ⊕ g( j − 1, t ′, k′),

where the last inequality follows due to the definition of g
and S′ ∈ S( j − 1, t ′, k′). Hence, the “≥” direction in (3)
follows because t ′ and k′ satisfy (∗∗).

For the “≤” direction, if the right-hand side of (3) equals
infinity, then this direction follows immediately. Otherwise,
let t ′ and k′ beminimizers at the right-hand side.By definition
of g there must be a schedule S′ ∈ S( j − 1, t ′, k′) for I j−1

with objective value g( j − 1, t ′, k′).
Wenowshow that S′ canbe extended to a feasible schedule

S ∈ S( j, t, k). Construct S from S′ by adding job J j in the
following way:

– if in S′ there is a batch on machine Mi which ends at time
ti , add J j to that batch (we show later that this does not
cause the batch to exceed the maximum batch size bi of
Mi );

– otherwise, add a new batch on machine Mi finishing at
time ti and containing only job J j (we show later that this
does not create overlap with any other batch on machine
Mi ).

First note that ci j (S) = ti for all i ∈ [m], and thus S
corresponds to t by definition. Furthermore, for eachmachine
Mi consider the two cases (a) ki = 1 and (b) ki > 1.

In case (a), due to (v) it follows that t ′i ≤ ti − pi . Since job
J j−1 finishing at time t ′i is the last job completed on machine
Mi in schedule S′, by construction in schedule S job J j is in a
singleton batch on machine Mi that starts at time ti − pi and
ends at time ti . Therefore, in this case, S corresponds to k,
because ki = 1 and job J j is in a singleton batch. Also, since
the last batch on machine Mi in S′ ends at time t ′i ≤ ti − pi
and the batch with job J j starts at time ti − pi , no overlapping
happens between the newbatch for job J j and any other batch
on machine Mi .

In case (b), due to (vi) it follows that t ′i = ti and by con-
struction job J j is scheduled in the same batch as job J j−1

on machine Mi in S. Since S′ corresponds to k′ and again
due to (vi), this means that J j is scheduled in a batch with
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ki jobs on machine Mi and S corresponds to k in this case.
Also, since ki ∈ [bi ] by definition, no batch in S exceeds its
permissible size.

Combining the considerations for cases (a) and (b),
together with the feasiblity of schedule S′, it follows that

(1) S corresponds to k,
(2) no overlapping happens between batches in S, and
(3) all batches in S are of permissible size.

In order to show feasibility of S it is only left to show that
no job starts before its release date on machine M1, and no
job starts on machine Mi before it is completed on machine
Mi−1. As S′ is feasible, this is clear for all jobs other than
J j . On the other hand, since S corresponds to t , and t fulfills
(∗), it also follows for job J j .

Thus, S is indeed feasible. In total, we have shown all
conditions for S ∈ S( j, t, k). Therefore, we obtain

g( j, t, k) ≤
j⊕

j ′=1

f j ′(C j ′(S))

= f j (tm) ⊕
j−1⊕

j ′=1

f j ′(C j ′(S
′))

= f j (tm) ⊕ g( j − 1, t ′, k′),

where the last equality is due to the choice of S′ as a schedule
with objective value g( j−1, t ′, k′). Hence, the “≤” direction
in (3) follows due to the choice of t ′ and k′ as minimizers of
the right-hand side. ��

Using Lemmas 9, 10, and 11 we can now prove correct-
ness of Algorithm 1 and show that its runtime is bounded
polynomially (if m is fixed).

Theorem 12 Consider a PFB instance with a constant num-
ber of m machines and a regular sum or bottleneck objective
function. Then, for a given ordering of the jobs, Algorithm 1
finds the best permutation schedule in time O(nm

2+4m+1).

Proof Without loss of generality, assume that the desired job
ordering is given by the job indices. By Lemmas 10 and
11, Algorithm 1 correctly computes the values of function g.
Lemma9 assures that the resulting schedule is indeed optimal
among all permutation schedules ordered by the job indices.

Concerning the time complexity, note that there are |Γ |
many possible choices for vector t and |B| many possible
choices for vector k, yielding a total of |Γ | · |B| possible
combinations for vectors t and k. The number can be bounded

from above as follows:

|Γ | · |B| = |Γ1| · |Γ2| · . . . · |Γm | · b1 · b2 · . . . · bm
≤ n2 · n3 · . . . · nm+1 · nm

= n
(m+1)(m+2)

2 −1+m

= n
m2
2 + 5m

2 .

Here, the first m factors in the second line are due to Γi ≤
ni+1 and the last factor nm is due to inequalities bi ≤ n for
all i ∈ [m].

Therefore, Step 1 of Algorithm 1 involves at most n
m2
2 + 5m

2

iterations, each of which can be performed in constant time
because m is fixed.

For Step 2, first observe that conditions (∗) and (∗∗) can
be checked in constant time for fixed m. In a single iteration,
that is, for fixed j , t , and k, in order to compute the minimum
in the recurrence of Lemma 11, we may have to consider all
possible choices for t ′ and k′. The number of these choices
is |{(t ′, k′) ∈ Γ × B | (∗∗)}|. Aggregating over all t and k,
while keeping j fixed, yields

∑

(t,k)∈Γ ×B
|{(t ′, k′) ∈ Γ × B | (∗∗)}|

= |{(t, t ′, k, k′) ∈ Γ × Γ × B × B | (∗∗)}|

=
m∏

i=1

|{(ti , t ′i , ki , k′
i ) ∈ Γi × Γi × [bi ] × [bi ]

| (v) and (vi)}|.

The number of quadruples (t, t ′, k, k′) satisfying (v) and (vi)
can be bounded by bi |Γi |2+bi |Γi |. Here, the first term corre-
sponds to the quadruples with ki = 1, while the second term
corresponds to the quadruples with ki > 1, in which case
t ′i and k′

i are uniquely determined by ti and ki . Further, note
that due to |Γi | ≥ 1, it holds that bi |Γi |2+bi |Γi | ≤ 2bi |Γi |2.
Hence, the total running time of Step 2 (also aggregating over
all choices of j), is at most

O
(

n
m∏

i=1

2bi |Γi |2
)

= O
(

n
m∏

i=1

bi |Γi |2
)

⊆ O
(

n
m∏

i=1

n · n2i+2

)

= O(nm
2+4m+1).

(4)

The first equality is due to the factor 2m being constant for
constant m and the set inclusion is due to bi ≤ n and |Γi | ≤
ni+1.
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Finally, in Step 3, we take the minimum over at most

n
m2
2 + 5m

2 many values. The backtracking and reconstruction
of the final schedule can be done in time O(n) for constant
m.

Hence, in total, Step 2 is the bottleneck and the total time
complexity is O(nm

2+4m+1). ��
Combining Theorems 3 and 12, we obtain:

Corollary 13 For a PFB with release dates and a fixed num-
ber m of machines, the makespan can be minimized in
O(nm

2+4m+1) time. The same holds for the total completion
time. ��

In particular, for any fixed number m of machines, the
problems

Fm | r j , pi j = pi , p-batch, bi | f

with f ∈ {Cmax,
∑

C j } can be solved in polynomial time.

3.1 Improved running time for makespan
minimization

Sung et al. (2000, Theorem 6) showed that for minimizing
the makespan in a PFB, it is optimal to use the so-called
first-only-empty batching on the last machine Mm , that is,
to completely fill all batches on the last machine, except for
the first batch, which might contain less jobs if n is not a
multiple of bm . In a permutation schedule ordered by the job
indices with first-only-empty batching on Mm , a makespan
of c can be achieved if and only if for each job J j we have
enough time to process the n − j + 1 jobs J j , J j+1, . . . , Jn
on Mm after J j has been completed on Mm−1. In other
words, a makespan of c can be achieved, if and only if

c ≥ c(m−1) j +
⌈
n− j+1
bm

⌉
for every j ∈ [n]. Hence, the opti-

mal makespan is given by max j=1,2,...,n c(m−1) j +
⌈
n− j+1
bm

⌉
.

Therefore, the problem to minimize the makespan on an m-
machine PFB can be solved in the following way: We first
find a schedule for the first m − 1 machines that minimizes
the objective function

⊕n
j=1 f j (c(m−1) j ) with

⊕ = max

and f j (c(m−1) j ) = c(m−1) j +
⌈
n− j+1
bm

⌉
. By Theorem 12,

this can be done in time

O(n(m−1)2+4(m−1)+1) = O(nm
2+2m−2)

for fixed m. Afterwards, this schedule is extended by a first-
only-empty batching on Mm , which does not further increase
the asymptotic runtime. Thus, for themakespan objective,we
can strengthen Corollary 13:

Corollary 14 For a PFB with release dates and a fixed num-
ber m of machines, the makespan can be minimized in
O(nm

2+2m−2) time. ��

4 Equal release dates

The dynamic program presented in the previous section
works for a very general class of objective functions. Still,
Corollary 13 only holds for makespan and total completion
time because for other standard objective functions permu-
tation schedules are not optimal, as shown in Example 4.

However, in the case where all release dates are equal, it
turns out that permutation schedules are always optimal. We
first show that in the case of equal release dates, any feasible
schedule S can be transformed into a feasible permutation
schedule S′ with equal objective value.

Lemma 15 Let S be a feasible schedule for a PFB where
all jobs are released at time 0. Then there exists a feasible
permutation schedule S′ such that C j (S) = C j (S′) for all
j = 1, 2, . . . , n.

Proof Let σ be the ordering of jobs on the last machine.
Since r j = 0 for all j = 1, 2, . . . , n, ordering σ is an earliest
release date ordering. Thus we can use Lemma 2 to construct
a permutation schedule S′, where jobs are ordered by σ on all
machines and themulti-set of completion times is the same as
for S. Furthermore, since the ordering on the last machine in
S′ is the same as in S, in S′ each job has the same completion
time as in S, i.e. C j (S) = C j (S′) for all j = 1, 2, . . . , n. ��

From Lemma 15, it follows that permutation schedules
are optimal for PFBs with equal release dates, as stated in
the following theorem. The theorem generalizes the result
presented by Rachamadugu et al. (1982) for usual propor-
tionate flow shop without batching. Also compare Sung et al.
(2000, Lemma 1). In the theorem, we use the term schedul-
ing objective function to describe any objective function only
dependent on the completion times of the jobs.

Theorem 16 For any scheduling objective function, if an
optimal schedule exists for a PFB problem without release
dates, then there also exists an optimal permutation schedule.

Proof Apply Lemma 15 to an optimal schedule S∗ in order to
obtain a permutation schedule S′. Note that, by Lemma 15,
for every job, the completion time on the last machine in
schedule S′ is exactly the same as in schedule S∗. Thus, for
any completion time dependent objective function, schedules
S∗ and S′ have the same objective value. ��

Note that for all regular objective functions (including
those studied in this paper), at least one optimal solution
always exists. Indeed, Lemma 7 shows that for regular objec-
tive functions batch-active schedules are optimal, and there
are only finitelymany batch active schedules for a PFB. Thus,
the restriction in the statement of the theorem is only a for-
mality. However, Theorem 16 holds for a much wider range
of scheduling objective functions than studied in this paper.
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Importantly, since finish times for all jobs stay exactly the
same when moving from schedule S∗ to schedule S′ in the
proof of Theorem 16, the theorem holds also for non-regular
objective functions (as long as they are defined in such a way
that at least one optimal solution exists).

Of course, it may still be hard to find optimal permuta-
tions. However, the following theorem shows that for several
traditional objective functions, an optimal permutation can
be found efficiently. For the solution of due date related
objectives, earliest due date orderings are of particular impor-
tance. They are defined analogously to earliest release date
orderings: an ordering σ is an earliest due date ordering, if
dσ(1) ≤ dσ(2) ≤ . . . ≤ dσ(n).

Theorem 17 Consider a PFB without release dates.

(i) For minimizing the total weighted completion time,
any ordering by non-increasing weights is optimal.

(ii) For minimizing maximum lateness and total tardiness,
any earliest due date ordering is optimal.

Proof For proving (i), assume jobs are indexed by any given
non-increasing order of weights, i.e., w1 ≥ w2 ≥ · · · ≥ wn .
ByTheorem16, there exists an optimal permutation schedule
S∗ minimizing the total weighted completion time. Suppose
there is at least one pair of jobs J j1 , J j2 with j1 < j2, but
C j1(S

∗) > C j2(S
∗). Swapping J j1 and J j2 in S

∗ yields a new
permutation schedule S′, with objective value
∑

w jC j (S
′) =

∑
w jC j (S

∗)
+(w j1 − w j2)(C j2(S

∗) − C j1(S
∗)).

Due to j1 < j2, we have w j1 ≥ w j2 and with C j1(S
∗) >

C j2(S
∗) it follows that

(w j1 − w j2)(C j2(S
∗) − C j1(S

∗)) ≤ 0.

Therefore, it we obtain

∑
w jC j (S

′) ≤
∑

w jC j (S
∗).

Performing such exchanges of jobs sequentially, we even-
tually obtain an optimal permutation schedule in which jobs
are scheduled in the given order of non-increasing weights.
Hence, any given ordering of the jobs by non-increasing
weights is optimal.

Part (ii) can be proven by exchange arguments analogous
to (i). A detailed proof can be found in the appendix. ��

From Theorems 12 and 17, we obtain the following com-
plexity results.

Theorem 18 For a PFB without release dates and a fixed
number m of machines, the total weighted completion time

can be minimized in O(nm
2+2m−2) time. The same holds for

the maximum lateness and the total tardiness.

Proof With a time complexity of O(nm
2+4m+1), this state-

ment follows directly from Theorems 12 and 17. The
improvement in the running time can be obtained by the
following two observations. First note that, due to vanish-
ing release dates, the size of Γi is at most ni instead of ni+1.
Comparing with the estimate (4) in the proof of Theorem
12, this yields an improvement by the factor n2m because
each of the m factors |Γi |2 can be bounded by n2i instead of
n2i+2. Second, Sung et al. (2000, Theorem 1) showed that it
is optimal to use the so-called last-only-empty batching on
the first machine M1, that is, to completely fill all batches on
M1, except for the last batch, which might contain less jobs
if n is not a multiple of b1. If we do so, the schedule of M1

is fixed. This also fixes all values of the parameters k1 and t1
dependent on the current job index j . Hence, in the runtime
estimation (4), we may leave out the factor b1|Γ1|2. Since
both Γ1 and b1 are bounded by n (already considering the
improvement above), this results in a further improvement
by a factor of n3 in the total runtime. Therefore, we obtain a
total time complexity of

O(nm
2+4m+1−2m−3) = O(nm

2+2m−2). ��
It is also possible to minimize the (weighted) number of

late jobs in O(nm
2+2m−1) time. However, to achieve this

result, it is necessary to adjust the algorithm from Sect. 3
slightly. Suppose that jobs are ordered in an earliest due date
order and suppose further J is the set of on-time jobs in an
optimal solution for PFB to minimize the (weighted) number
of late jobs. Note that in this case, we can find an optimal
schedule by first scheduling all jobs inJ , in earliest due date
order, using the algorithm from Sect. 3, and then schedule all
late jobs in an arbitrary, feasible way.

Usually, however, the optimal set of on-time jobs is not
known in advance. Thus the dynamic program has to be
adapted in such a way that it finds the optimal set of on-time
jobs and a corresponding optimal schedule simultaneously.
This can be done by, roughly speaking, allowing the algo-
rithm to ignore a job: in the j-th step of the algorithm, when
job J j (in earliest due date order) is scheduled, the algo-
rithm can not only decide to schedule the job in sequence,
but can alternatively decide to skip it, making it late (and pay-
ing a penalty w j ). In all other regards, the algorithm remains
exactly the same as presented in Sect. 3. The technical details
to prove correctness and running time of the algorithm are,
as one would expect, very similar to Sect. 3 and are moved
to the appendix.

We obtain the following theorem. The additional factor n
in comparison to Theorem 18 stems from the fact that we do
not know the optimal permutation in advance, and therefore
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we cannot make use of last-only-empty batching on the first
machine as easily as in the proof of Theorem 18.

Theorem 19 For a PFB without release dates and a fixed
number m of machines, the weighted number of late jobs can
be minimized in O(nm

2+2m−1) time.

In particular, combining Theorems 18 and 19, we obtain
that, for any fixed number m of machines, the problems

Fm | pi j = pi , p-batch, bi | f

with f ∈ {∑w jC j , Lmax,
∑

Tj ,
∑

Uj ,
∑

w jU j } can be
solved in polynomial time.

Note that, while minimizing makespan and total comple-
tion time in a PFB with a fixed number m of machines and
without release dates can be handled in the same manner,
a time complexity of O(nm

2+2m−2) is strictly speaking no
longer polynomial for those two problems. Indeed, since in
problems

Fm | pi j = pi , p-batch, bi | f

with f ∈ {Cmax,
∑

C j }, jobs are completely identical, an
instance can be encoded concisely by simply encoding the
number n of jobs, rather than every job on its own. Such an
encoding of the jobs takes only O(log n) space, meaning that
even algorithms linear in n would no longer be polynomial
in the length of the instance.

In the literature, scheduling problems for which such a
concise encoding in O(log n) space is possible are usu-
ally referred to as high-multiplicity scheduling problems
(Hochbaum and Shamir 1990, 1991). They are often difficult
to handle and require additional algorithmic consideration,
since even specifying a full schedule normally takes at least
O(mn) time (one start and end time for each job on each
machine). In order to resolve this issue, for these high-
multiplicity scheduling problems special attention is often
paid to finding optimal schedules with specific, regular struc-
tures. Such a structure may then allow for a concise O(log n)

encoding of the solution. Notice, however, that a priori the
dynamic programming algorithmpresented in this paper does
not give rise to such a regular structure.

In the case of m = 2 machines and the makespan objec-
tive, Hertrich (2018) shows that the O(n) algorithm by
Ahmadi et al. (1992) can be adjusted to run in polynomial
time, even in the high multiplicity sense. For all other cases,
the theoretical complexity of the two problems

Fm | pi j = pi , p-batch, bi | f

with f ∈ {Cmax,
∑

C j } is left open for future research.
However, note that in practical applications jobs usually have
additional meaning attached (for instance patient identifiers,

in our pharmacy example from the beginning) and thus such
instances are usually encoded with a length of at least n.

5 Conclusions and future work

In this paper, motivated by an application in modern phar-
maceutical production, we investigated the complexity of
scheduling a proportionate flow shop of batching machines
(PFB). The focus was to provide the first complexity results
and polynomial time algorithms for PFBs with m > 2
machines.

Our main result is the construction of a new algorithm,
using a dynamic programming approach, which schedules a
PFB with release dates to minimize the makespan or total
completion time in polynomial time for any fixed number
m of machines. In addition, we showed that, if all release
dates are equal, the constructed algorithm can also be used
to minimize the weighted total completion time, the maxi-
mum lateness, the total tardiness, and the (weighted) number
of late jobs. Hence, for a PFB without release dates and with
a fixed number of m machines, these objective functions can
beminimized in polynomial time. Previously these complex-
ity results were only known for the special case of m = 2
machines, while for each m ≥ 3 the complexity status was
unknown. For minimizing weighted total completion time
and weighted number of late jobs, these results were even
unknown in the case of m = 2.

An important structural result in this paper is that permu-
tation schedules are optimal for PFBs with release dates and
the makespan or total completion time objective, as well as
for any PFB problem without release dates. This result was
needed in order to show that the constructed algorithm can
be correctly applied to the problems named above.

Concerning PFBs with release dates, recall that in the
presence of release dates permutation schedules are not
necessarily optimal for traditional scheduling objective func-
tions other than makespan and total completion time (see
Example 4). However, there are several special cases for
which permutation schedules remain optimal, in particular
if the order of release dates corresponds well to the order of
due dates (in the case of due date objectives) and/or weights
(in the case of weighted objectives). For example, Hertrich
(2018) shows that, whenminimizing the weighted total tardi-
ness, if there exists a job order σ that is an earliest release date
ordering, an earliest due date ordering, and a non-increasing
weight ordering at the same time, then there exists an optimal
schedule which is a permutation schedule with jobs ordered
by σ . This, of course, implies analogous results for weighted
total completion time, total tardiness and maximum lateness
(again, see Hertrich (2018)). In those special cases, clearly
the algorithm presented in this paper can be used to solve the
problems in polynomial time. Still, the complexity status of
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PFBs with release dates in the general case, where orderings
do not correspond well with each other, remains open for all
traditional scheduling objectives other than makespan and
total completion time.

Another problem left open for future study is the com-
plexity of minimizing the weighted total tardiness in the case
where all release dates are equal. This problem is open, even
for the special case of m = 2. In this paper, it is shown that
permutation schedules are optimal for all objective functions
in the absence of release dates. Furthermore, if an optimal
job order is known and the number of machines is fixed, then
an optimal schedule can be found in polynomial time, using
the algorithm presented in this paper.

Unfortunately, the complexity of finding an optimal job
order to minimize the weighted total tardiness in a PFB
remains open. Note that for scheduling a single batching
machine with equal processing times and for usual pro-
portionate flow shop without batching the weighted total
tardiness can be minimized in polynomial time (Brucker and
Knust (2009)). Here, proportionate flow shop can be reduced
to the singlemachine problemwith all processing times equal
to the processing time of the bottleneck machine (see, e.g.,
Sung et al. (2000)). However, such a reduction is not pos-
sible for PFBs, since there may be several local bottleneck
machines which influence the quality of a solution.

Observe also that, in the special case of m = 2 machines,
given an arbitrary schedule for the first machine, finding an
optimal schedule for the secondmachine is similar to solving
problem 1 | p j = p, r j | ∑

w j Tj or the analogous problem
on a batching machine, which also both have open complex-
ity status (seeBaptiste (2000), Brucker andKnust (2009)). So
attempting to split up the problem in such a manner does not
work either. Of course, if instead of an arbitrary schedule on
the first machine, some special schedule is selected, it may be
possible that the special structure for the release dates on the
second machine helps to solve the problem. Notice, though,
that this still leaves open the question of which schedule to
select on the first machine.

The last open complexity question concerns the case
where the number of machines is no longer fixed, but instead
part of the input. We are unfortunately not aware of any
promising approaches to find reductions fromNP-hard prob-
lems. However, interestingly, Hertrich (2018) proves that for
all versions of PFBs, minimizing the total completion time
is always at least as hard as minimizing the makespan. This
reduction does not hold for scheduling problems in general.

One noteworthy special case, where positive complexity
may be more readily achievable, arises from fixing the num-
ber of jobs n, leaving only the number of machines m as
part of the input. Note that in this case, high-multiplicity,
as described in Sect. 4, is not a concern: since n is fixed, a
schedule can be put out in O(m) time and since eachmachine
has an individual processing time, the input also has at least

size O(m). For PFBs with exactly two jobs, n = 2, and an
arbitrary number of machines, Hertrich (2018) shows that
the makespan can be minimized in O(m2) time. A machine-
wise dynamic program is provided that finds all schedules,
in which the completion time of one job cannot be improved
without delaying the other job. In other words, the program
constructs all Pareto-optimal schedules, if the completion
time of each job is considered as a separate objective. If the
number of jobs n is larger than 2, then the dynamic program
can still be applied, but its runtime in that case is pseudo-
polynomial (see Hertrich (2018)).

Finally, note that while the algorithm provided in this
paper has the benefit of being very general, thus being appli-
cable to many different problems, it incurs some practical
limitations due to its relatively large running time. For exam-
ple, for m = 2, our algorithm to minimize the makespan
has a runtime ofO(n6) (Corollary 14). In contrast, the algo-
rithm specialized to the case of m = 2 by Sung and Yoon
(1997) runs in O(n2). The reason for the larger runtime of
our dynamic program is that, due to its generality, it needs
to consider all possible job completion times in the set Γ ,
while the algorithm by Sung and Yoon (1997) makes use of
the fact that this is not necessary in the special case m = 2.

Now that many of the previously open complexity ques-
tions are solved, for future research it would be interesting
to find more practically efficient algorithms, in particular for
small numbers of machines like m = 3 or m = 4, and/or for
specific objective functions. This might be possible by using
some easy structural properties, which were not of use for
speeding up the algorithm in the general case but which may
well help with dedicated algorithms for small numbers of
machines. For example, if the objective function is regular,
then on any machine, when a batch is started, it is always
optimal to include as many jobs as possible (either all wait-
ing jobs, or as many as the maximum batch size). For the
general algorithm provided in this paper, this property was
not of use, as our algorithm adds the jobs one by one to the
schedule and it only becomes clear how many jobs wait at
a machine during the backtracking phase. For a dedicated
algorithm, on the other hand, it may well be possible use
this property to reduce the number of possible schedules that
have to be considered.

If fast, dedicated algorithms cannot be obtained, then
instead approximations or heuristics need to be considered
in order to solve PFBs in practice. In the literature, approx-
imations and heuristics often use restrictions to permutation
schedules in order to simplify difficult scheduling problems.
To this end, the results on the optimality of permutation
schedules presented in this paper can be of great use to future
work. In particular, the results from Sect. 2 can be of help
when designing fast heuristics for makespan, total comple-
tion time and related objective functions. For the same reason,
it would be interesting to quantify the quality of permutation
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schedules (e.g. in terms of an approximation factor) for PFB
problems where permutation schedules are not optimal.

Another approach to improving the algorithms’ efficiency,
especially if negative complexity results for the case with an
arbitrary number of machines are achieved, would be to con-
sider PFBs from a parameterized complexity point of view.
Recently, parameterized complexity has started to receive
more attention in the scheduling community (cf. Mnich and
Wiese (2015), Weiß et al. (2016), Mnich and van Bevern
(2018), Diessel and Ackermann (2019)). A problem with
input size n is said to be fixed-parameter tractable with
respect to a parameter k if it can be solved in a running time
ofO( f (k)p(n))where f is an arbitrary computable function
and p a polynomial not depending on k. Although our algo-
rithm is polynomial for any fixed number m of machines, it
is not fixed-parameter tractable in m because m appears in
the exponent of the running time. Clearly, a fixed-parameter
tractable algorithm would be preferable, both in theory and,
most likely, in practice, if one could be found.
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Appendix A: Proof of Theorem 17 (ii)

In this appendix we give a detailed proof of Theorem 17 (ii).
Assume jobs are indexed in any given earliest due date order-
ing, i.e. d1 ≤ d2 ≤ · · · ≤ dn . By Theorem 16, there exists an
optimal permutation schedule S∗ with respect to maximum
lateness or total tardiness. Suppose there is at least one pair
of jobs J j1 , J j2 with j1 < j2, but C j1(S

∗) > C j2(S
∗). Swap-

ping J j1 and J j2 in S∗ yields a new permutation schedule
S′.

We first show that Lmax(S′) ≤ Lmax(S∗). Because the
lateness of all jobs other than J j1 and J j2 remains unchanged
when performing the swap, it suffices to show that

max{L j1(S
′), L j2(S

′)} ≤ max{L j1(S
∗), L j2(S

∗)}

where L j (S′) = C j (S′) − d j . However, due to j1 < j2, we
have d j1 ≤ d j2 . Hence, with C j1(S

∗) > C j2(S
∗) it follows

that

L j1(S
′) = C j2(S

∗) − d j1 < C j1(S
∗) − d j1 = L j1(S

∗)

and

L j2(S
′) = C j1(S

∗) − d j2 ≤ C j1(S
∗) − d j1 = L j1(S

∗),

which finishes the proof for maximum lateness.
Finally, we show that

∑
Tj (S′) ≤ ∑

Tj (S∗). Because the
tardiness of all jobs other than J j1 and J j2 remains unchanged
when performing the swap, it suffices to show that

Tj1(S
′) + Tj2(S

′) ≤ Tj1(S
∗) + Tj2(S

∗)

where Tj (S′) = max{C j (S′) − d j , 0}. We distinguish three
cases. Firstly, suppose J j1 and J j2 are both late in S′, i.e.,
C j1(S

′) > d j1 and C j2(S
′) > d j2 . Then it follows that

Tj1(S
′) + Tj2(S

′) = C j1(S
′) − d j1 + C j2(S

′) − d j2

= C j2(S
∗) − d j1 + C j1(S

∗) − d j2

= C j1(S
∗) − d j1 + C j2(S

∗) − d j2

≤ Tj1(S
∗) + Tj2(S

∗).

Secondly, suppose J j1 is on time in S′, i.e. C j1(S
′) ≤ d j1 .

Using d j1 ≤ d j2 , we obtain

Tj1(S
′) + Tj2(S

′) = 0 + max{C j2(S
′) − d j2 , 0}

= max{C j1(S
∗) − d j2 , 0}

≤ max{C j1(S
∗) − d j1 , 0}

= Tj1(S
∗)

≤ Tj1(S
∗) + Tj2(S

∗).

Thirdly, suppose J j2 is on time in S′, i.e. C j2(S
′) ≤ d j2 .

Using C j1(S
∗) > C j2(S

∗), we obtain

Tj1(S
′) + Tj2(S

′) = max{C j1(S
′) − d j1 , 0} + 0

= max{C j2(S
∗) − d j1 , 0}

≤ max{C j1(S
∗) − d j1 , 0}

= Tj1(S
∗)

≤ Tj1(S
∗) + Tj2(S

∗).

Hence, performing the described swap does neither
increase themaximum lateness nor the total tardiness. There-
fore, as in (i), we can perform such exchanges sequentially
in order to obtain an optimal permutation schedule with jobs
scheduled in the given earliest due date order. Hence, any
given earliest due date ordering of the jobs is optimal. ��
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Appendix B: Proof of Theorem 19

Suppose that jobs are indexed in an earliest due date order,
i.e. d1 ≤ d2 ≤ ... ≤ dn . As in Sect. 3, the modified dynamic
program tries to schedule these jobs one by one, but it is also
allowed to leave jobs out that will be late anyway, which
then will be scheduled in the end after all on-time jobs. This
procedure is justified by the following lemma.

Lemma 20 Consider a PFB instance I without release dates
to minimize the weighted number of late jobs. Suppose jobs
are indexed by an earliest due date ordering. Then there exists
an optimal permutation schedule in which the on-time jobs
are scheduled in the order of their indices.

Proof By Theorem 16, there exists an optimal permutation
schedule S∗. Let J be the set of on-time jobs in S∗. Let IJ
be the modified PFB instance that contains only the jobs in
J . By ignoring all jobs outside of J , schedule S∗ defines a
feasible permutation schedule S∗

J for IJ that has maximum
lateness 0. By Theorem 17 (ii), there exists also a permuta-
tion schedule S′

J for IJ in which jobs are scheduled in the
order of their indices and that has maximum lateness 0. By
scheduling the remaining jobs arbitrarily after the on-time
jobs, S′

J can be extended to a schedule S′ for I which has
the same weighted number of late jobs as S∗ and in which
all on-time jobs are scheduled in the order of their indices. ��

Recall that for a PFB instance I and a job index j ∈ [n], I j
denotes themodified instance containingonly jobs J1, . . . , J j .
Also, recall the notation Γ = Γ1 × Γ2 × . . . × Γm and
B = [b1]× [b2]× . . .× [bm], where × is the standard Carte-
sian product. The variables of the new dynamic program are
defined almost as in Sect. 3. However, in contrast, we say
that a permutation schedule S for instance I j corresponds to
vectors

t = (t1, t2, . . . , ti , . . . , tm−1, tm) ∈ Γ

and

k = (k1, k2, . . . , ki , . . . , km−1, km) ∈ B

if the last on-time job in S finishes machine Mi at time ti
and is processed in a batch with exactly ki on-time jobs there
for all i ∈ [m]. If there are no on-time jobs, then S cannot
correspond to any vectors t and k. Note that we do not require
that J j itself is on time, just that there is some on-time job.
The difference to Sect. 3 is that we ignore all late jobs in this
definition. Therefore, only for the on-time jobs it is assumed
that they are processed in the order of job indices.

Similar to Sect. 3, we define S̃( j, t, k) to be the set of
feasible permutation schedules S for instance I j satisfying
the following properties:

1. the on-time jobs in S are ordered by their indices,
2. S corresponds to t and k, and
3. S is Γ -active.

The variables of our new dynamic program are defined as
follows. For j ∈ [n], t ∈ Γ , and k ∈ B, let

w( j, t, k) = w( j, t1, t2, . . . , tm, k1, k2, . . . , km)

be the minimum weighted number of late jobs of a schedule
S ∈ S̃( j, t, k). If no such schedule exists, the value of w is
defined to be +∞.

Using the above definitions as well as Lemmas 9 and 20,
if there is at least one on-time job in the optimal sched-
ule, the minimum weighted number of late jobs is given
by mint,k w(n, t, k), t ∈ Γ , k ∈ B. In Lemmas 21 and 22
(below) we provide formulas to recursively compute the val-
ues w( j, t, k), j = 1, 2, . . . , n, t ∈ Γ , k ∈ B. In total,
we then obtain Algorithm 2 as our modified dynamic
program.

Algorithm 2
Input: A PFB instance without release dates with

jobs indexed in an earliest due date ordering.
Output: A schedule minimizing the weighted

number of late jobs.

1: For each t ∈ Γ and k ∈ B, compute w(1, t, k) according to
Lemma 21.

2: For each j = 2, 3, . . . , n, t ∈ Γ , and k ∈ B, compute w( j, t, k)
according to Lemma 22. If w( j, t, k) < +∞, also store which job
was the last on-time job added to the schedule and its corresponding
t and k values.

3: If there are t and k with w(n, t, k) < +∞, find the values of t
and k that minimize w(n, t, k) and start a backtracking procedure
from them to reconstruct the optimal schedule using the information
stored in Step 2. Otherwise, return an arbitrary feasible schedule.

We now turn to providing and proving the correctness
of the recursive formula to compute the values w( j, t, k),
j = 1, 2, . . . , n, t ∈ Γ , k ∈ B. As the recursion is slightly
more complicated than in Sect. 3, we first introduce two
kinds of auxiliary variables x and y for our dynamic pro-
gram. These are then used to formulate and prove Lemmas
21 and 22, which deal with the starting values w(1, t, k)
and the actual recurrence relation, respectively, in analogy to
Lemmas 10 and 11. Finally, by connecting these results, we
obtain the correctness and runtime of Algorithm 2 as stated
in Theorem 19.

For any j ∈ [n], ti ∈ Γi , and ki ∈ [bi ], i ∈ [m], let

x( j, t, k) =
{∑ j−1

j ′=1 w j ′, if (i)–(iv) hold,
+∞, otherwise,

(5)
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where

(i) ki = 1 for all i ∈ [m],
(ii) t1 ≥ p1,
(iii) ti+1 ≥ ti + pi+1 for all i ∈ [m − 1], and
(iv) tm ≤ d j .

The values of x can be interpreted as the objective value of a
schedule in S̃( j, t, k) for I j that only schedules J j on time
and all other jobs late.

For j > 1, ti ∈ Γi , and ki ∈ [bi ], i ∈ [m], let

y( j, t, k)

=
{
min{w( j − 1, t ′, k′) | (∗∗)}, if (ii)–(iv) hold,
+∞, otherwise,

(6)

where the minimum over the empty set is defined to be +∞.
Here, (∗∗) is given by conditions

(v) t ′i ∈ Γi ,
(vi) k′

i ∈ [bi ],
(vii) if ki = 1, then t ′i ≤ ti − pi , and
(viii) if ki > 1, then t ′i = ti and k′

i = ki − 1,

for all i ∈ [m]. The values of y can be interpreted as the
best possible objective value of a schedule in S̃( j, t, k) that
schedules J j and at least one other job on time.

Analogous to Lemma 10, we obtain the following lemma.

Lemma 21 For ti ∈ Γi and ki ∈ [bi ], i ∈ [m], we have
w(1, t, k) = x(1, t, k).

Proof As in the proof of Lemma 10, conditions (i)–(iii) are
necessary for the existence of a schedule in S̃(1, t, k). Also,
since a schedule for I1 can only correspond to t and k if J1
is on time, (iv) is necessary as well. Conversely, if (i)–(iv)
are satisfied, then the vector t of completion times uniquely
defines a feasible schedule S ∈ S̃(1, t, k) by ci1(S) = ti .
Note that S is the only schedule in S̃(1, t, k) and has objective
value 0 and therefore, clearly, is optimal. ��

Analogous to Lemma 11, we now turn to the recurrence
formula to calculate w for j > 1 from the values of w for
j − 1.

Lemma 22 For j ≥ 2, ti ∈ Γi , and ki ∈ [bi ], i ∈ [m], the
values of w are given by

w( j, t, k) = min{x( j, t, k), y( j, t, k), w( j − 1, t, k) + w j }.

Roughly speaking, for scheduling J j there are three possi-
bilities: either job J j is scheduled as the only on-time job, as
one of several on-time jobs, or as a late job. In the first two
cases, w( j, t, k) equals x( j, t, k) or y( j, t, k), respectively,

while in the third case it equals w( j − 1, t, k) + w j , as we
will see in the proof.

Proof of Lemma 22: We first prove the “≥” direction. If the
left-hand side equals +∞, then this direction follows imme-
diately. Otherwise, by definition ofw, there exists a schedule
S for I j in S̃( j, t, k) with objective value w( j, t, k). Sched-
ule S naturally defines a feasible permutation schedule S′ for
instance I j−1 by ignoring job J j . We distinguish three cases.

Firstly, if J j is not on time in S, then S′ is in S̃( j −1, t, k)
and has an objective value of w( j, t, k) − w j because J j is
not contained in instance J j−1. Therefore, by definition of
w( j−1, t, k), it follows thatw( j−1, t, k) ≤ w( j, t, k)−w j ,
which implies the “≥” direction in the first case.

Secondly, if J j is the only on-time job in S, then (i) must
hold because S corresponds to k and only on-time jobs are
counted in this definition. Furthermore, (ii) and (iii) must
hold because S is feasible and corresponds to t . Finally (iv)
holds because J j is on time. Hence, we obtain x( j, t, k) =
∑ j−1

j ′=1 w j ′ = w( j, t, k) in this case, which implies the “≥”
direction in the second case.

Thirdly, if J j is one of at least two on-time jobs in S, then
S′ corresponds to unique vectors t ′ and k′. Hence, we obtain
S′ ∈ S̃( j − 1, t ′, k′) and, therefore,

w( j, t, k) =
j∑

j ′=1

w j ′Uj ′(S)

=
j−1∑

j ′=1

w j ′Uj ′(S
′)

≥ w( j − 1, t ′, k′).

Analogous arguments to the proof of Lemma 11 show that t ′
and k′ satisfy (∗∗). Moreover, as in the second case, (ii)–(iv)
hold because S is feasible, corresponds to t , and J j is on
time. Therefore, we have

w( j, t, k) ≥ w( j − 1, t ′, k′) ≥ y( j, t, k),

which completes the “≥” direction.
Now we prove the “≤” direction. If the right-hand side

equals +∞, then this direction follows immediately. Other-
wise, we again distinguish three cases.

Firstly, suppose the minimum on the right-hand side is
attained by the term w( j − 1, t, k) + w j . Since this must be
finite, there is a schedule S′ ∈ S̃( j − 1, t, k) for instance
I j−1 with objective value w( j − 1, t, k). By scheduling J j
as a late job, S′ can be extended to a schedule S that has
objective value w( j − 1, t, k) + w j . Moreover, since J j is
late, S still corresponds to t and k, i.e. S ∈ S̃( j, t, k), which
implies w( j, t, k) ≤ w( j − 1, t, k) + w j . Hence, the “≤”
direction follows in this case.
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Secondly, suppose the minimum on the right-hand side
is attained by the term x( j, t, k). Since this must be finite,
we obtain that (i)–(iv) hold. Hence, the schedule S which
schedules J j such that ci j = ti and all other jobs late is fea-
sible for I j , an element of S̃( j, t, k), and has objective value

x( j, t, k) = ∑ j−1
j ′=1 w j ′ . This impliesw( j, t, k) ≤ x( j, t, k).

Hence, the “≤” direction follows in this case.
Thirdly, suppose the minimum on the right-hand side is

attained by the term y( j, t, k). Since this must be finite, we
obtain that (ii)–(iv) hold. Let t ′ and k′ be theminimizers in the
definition of y( j, t, k). Again due to finiteness, there must
be a schedule S′ ∈ S̃( j − 1, t ′, k′) for I j−1 with objective
value w( j − 1, t ′, k′) = y( j, t, k). By ignoring late jobs in
S′ (which can be scheduled arbitrary late), we can use the
same arguments as in the proof of Lemma 11 to extend S′
to schedule S ∈ S̃( j, t, k) for I j . Due to (iv), J j is on time
in S. Hence, S has the same objective value as S′, namely
y( j, t, k). Thus, it follows thatw( j, t, k) ≤ y( j, t, k), which
completes the “≤” direction. ��

Analogous to Theorem12,we nowdeduce the desired the-
orem by proving correctness and running time of
Algorithm 2.

Theorem 19 For a PFB without release dates and a fixed
number m of machines, the weighted number of late jobs can
be minimized in O(nm

2+2m−1) time.

Proof Without loss of generality, jobs are indexed in an ear-
liest due date ordering. By Lemmas 21 and 22, Algorithm 2
correctly computes the values of functionw. If there is a fea-
sible schedule where at least one job is on time, we obtain
due to Lemmas 9 and 20 that the minimumweighted number
of late jobs is exactly mint,k w(n, t, k), where the minimum
is taken over each t ∈ Γ and k ∈ B. In this case the back-
tracking procedure in Step 3 retrieves an optimal schedule.
If, however, in every feasible schedule all jobs are late, then
all values of w will be +∞. In this case, any feasible sched-
ule is optimal, with objective value

∑n
j=1 wn . Hence, in any

case, the schedule returned by Algorithm 2 is optimal.
Recall from the proof of Theorem 12 that |Γ | · |B| ≤

n
m2
2 + 5m

2 . Therefore, Step 1 of Algorithm 2 involves at most

n
m2
2 + 5m

2 iterations, each of which can be performed in con-
stant time because m is fixed.

Similarly, Step 2 involves at most (n − 1) n
m2
2 + 5m

2 ≤
n

m2
2 + 5m

2 +1 iterations. In each of these iterations, comput-
ing x( j, t, k) with (5) can be done in constant time since
m is fixed. The same holds for computing w( j, t, k) using
Lemma 22, once y( j, t, k) is known. However, the compu-
tation of y( j, t, k) by applying (6) is the bottleneck of this
step. In full analogy to the proof of Theorem 12, we obtain
that the total time complexity of computing all y-values is
bounded by O (

n
∏m

i=1 bi |Γi |2
)
. Due to vanishing release

dates, we have |Γi | ≤ ni . Comparing with the estimation (4)
in the proof of Theorem 12, this results in a runtime bound
of O(nm

2+2m+1).
However, the following argument allows us to reduce this

runtime by another factor of n2, resulting in O(nm
2+2m−1).

Even though we do not know the optimal job permutation
beforehand, we know by Sung et al. (2000, Theorem 1) that
it is optimal to use the so-called last-only-empty batching on
the first machine M1, that is, to completely fill all batches on
M1, except for the last batch, which might contain less jobs
if n is not a multiple of b1. This has two consequences. First,

it suffices to consider the
⌈

n
b1

⌉
possible completion times

Γ ′
1 =

{
p1, 2p1, . . . ,

⌈
n
b1

⌉
p1

}
onM1, instead of all elements

of Γ1. Second, for given t1 ∈ Γ ′
1 and k1 ∈ [b1], the possible

previous values t ′1 and k′
1 are uniquely determined. Thus, in

our runtime estimate,wemay replace |Γ1|with |Γ ′
1| and leave

out the square, such that instead of the term b1|Γ1|2 we now
have b1|Γ ′

1| ∈ O
(
b1

n
b1

)
= O(n). Previously, this term was

bounded by O(n3), resulting in the claimed improvement.
Finally, in Step 3, we take the minimum over at most

n
m2
2 + 5m

2 many values. The backtracking and reconstruction
of the final schedule can be done in time O(n) for constant
m.

Hence, in total, Step 2 is the bottleneck and the total time
complexity is O(nm

2+2m−1). ��
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