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Abstract
In travel demand modelling, trip distance distributions or trip time distributions are used 
to evaluate how well a model fits with observed sample data. Therefore, the comparison of 
distributions is an essential part in the model validation process. Despite its importance, the 
common modelling guidelines from the UK, the USA or Austria provide little information 
about the correct structure and handling of such distributions. Likewise, common statistical 
methods are not practicable for the validation of transport models. This lack of rules leads 
to individual solutions, which complicate a model validation and the comparison of mod-
els. For example, when comparing two distributions the quality indicator strongly depends 
on the number of classes. Therefore, guidelines for model validation need to suggest an 
appropriate way to determine the number of classes. The paper suggests a method for eval-
uating trip distance distributions and trip time distributions within the model validation 
process of a travel demand model. It proposes (a) indicators for a classification which con-
sider mode-specific trip distances and trip times (b) a generic classification method based 
on an equiquantile class width, quality indicators for comparing two distributions and (c) 
to use relative frequencies instead of absolute frequencies for the calculation of the quality 
indicators.

Keywords  Quality assessment · Travel demand modelling · Trip distance distributions · 
Trip time distributions · Frequency distributions · Key performance indicators

Motivation

Within the process of building a travel demand model calibration and validation are two 
iterative and repetitive steps. Calibration describes the process of modifying the model, 
refinement of specifications, correction of (previously undiscovered) erroneous input data 
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or adjustment of (non-empirically verified) parameters. The validation on the other hand 
describes the process of testing if the model has reached a certain goodness-of-fit. This 
goodness-of-fit does not refer to a particular key performance indicator. Ideally, before 
the model building process starts, the tendering institution determines how accurately 
the model should reproduce e.g. number of trips, traffic volumes, mean trip distances and 
mean trip times for each mode and trip purpose, keeping in mind the availability of refer-
ence data and its quality. If the validation process concludes that the model quality is not 
sufficient, adjustments are made to the model in the step of calibration.

Frequency distributions, which are another type of key performance indicators, describe 
travel behaviour using specific indicators in discrete classes. There are two common cases: 
frequency distributions of (1) the time travelled, which are also known as trip time distribu-
tions or trip time frequency distributions, and (2) the distance travelled commonly known 
as trip distance distributions or trip length frequency distributions.

Among others, those distributions are an important tool to evaluate how well a model 
fits with observed sample data. Therefore, the comparison of distributions is an essential 
part in the model validation process. Despite its importance the common modelling guide-
lines from the UK (WebTAG (Department for Transport 2014)), the USA (Travel Model 
Validation and Reasonableness Checking Manual (Cambridge Systematics Inc. 2014)) or 
Austria (draft of Qualivermo (Sammer  et  al.  2012)) provide little information about the 
correct structure and handling of such distributions. Likewise, common statistical methods 
that check whether two samples derive from a common population are not practicable for 
application during the validation of transport models, as will be explained later. This lack 
of rules leads to individual solutions, which complicate the model validation process, the 
comparison of models and the definition of thresholds for quality indicators in guidelines.

The following Fig.  1 is intended to illustrate this issue. The same data set (number 
of trips with their corresponding trip length from a household travel survey and from a 
travel demand model) is classified into discrete classes in three different ways: the left fig-
ure is classified into 20 equidistant classes (1.5 km each), the middle figure into 10 equi-
distant classes (3  km  each) and the right figure into 5 equidistant classes (6  km  each). 
The overlap of the observed and modelled distribution, which is measured by the Coin-
cidence Ratio (CR, which will be explained in more detail later), shows that the lower 
the number of classes, the less overlap there is. In other words, in an extreme case with 
only one or two classes, there would be a very high overlap. In this example, it would 
mean that the classes would only have to be large enough to reach the threshold of CR ≥ 7 
proposed in the Travel Model Validation and Reasonableness Checking Manual 
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Fig. 1   Classifying the same data set with different classification rules leads to different valuation results
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(Cambridge  Systematics  Inc.  2014). Having said this, the modelled distribution in the 
left figure would probably be rejected, while the others would be acceptable, although the 
underlying data set is the same in all three figures.

In general, this means that the resulting distribution evaluation is meaningless if there 
are no rules for creating the distribution, because even a poor model can be twisted so that 
the results look fine. Thus the overall goodness–of–fit is at risk. Therefore, guidelines for 
model validation need to suggest an appropriate way of how to build the distributions.

This is one of the reasons for many misunderstandings between the model users (ten-
dering institutions) and the model developers (contractors) in the context of model devel-
opment. When validating a model with distributions of time and distance the following 
questions inevitably appear and they should be answered beforehand by the tendering 
institutions:

•	 What indicator should be used for the classification?
•	 Which area is covered by the distribution?
•	 What is the reference for a comparison of distributions?
•	 How many classes should be distinguished? What is the appropriate size of each class? 

Should the class size increase with the distance travelled? How to proceed with empty 
classes?

•	 What quality indicator should be used when comparing two distributions? Should abso-
lute or relative frequencies or both be evaluated?

The questions above are also related to the issue that the classification often depends on 
the dimensions of the study area. This is another reason for individual and not compara-
ble solutions. In order to provide general guidance on how to handle frequency distribu-
tions within the model validation process this paper proposes a standardized classification 
method that can be applied independent from the indicator used and from the dimensions 
of the study area. For the data set in the example in Fig.  1, this would lead to a single 
generic classification. It is therefore a necessary complement to the existing guidelines in 
order to make model validation results more evaluable and comparable.

Selection of indicators for a classification

In a trip distance or a trip time distribution, the trips are assigned to discrete classes. This 
requires the number of trips as well as distance or time values on the level of origin–desti-
nation-pairs (OD-pairs).

Figure 2 shows a simple example with two OD-pairs (from A to B and from B to C) and 
two modes (car and public transport - PuT). The modes require different amounts of time 
to cover the distance between the OD-pairs. This can lead to cases where the trips of one 
OD-pair fall in different classes for different modes. Such cases occur frequently for trip 
time, but they can also occur for trip distance, as public transport trips are often longer than 
car trips. In the example of Fig. 2 the lower left chart shows that the travel demand for each 
OD-pair is assigned to different trip time classes, because a mode-specific indicator was 
used for classification.

This effect is difficult to understand in more complex multi-modal trip distribu-
tions. In order to avoid this effect entirely and for comparisons on OD-pair level (e.g. a 
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distance-dependent modal share), the travel demand of all modes on one OD-pair should 
fall into the same class.

To achieve this, a mode-independent indicator should be used for the classification. In 
case of trip distance distributions, the direct distance between an OD-pair can serve as a 
“natural” mode-independent indicator. For trip time distributions, such a “natural” mode-
independent indicator does not exist. An indicator weighted with the number of trips pro-
vides a solution for this.

In the example of Fig. 2, the lower right chart displays a trip time distribution, which 
uses a mode-independent indicator for classification. As a result, both car and PuT travel 
demand fall in the same trip time class for each OD-pair.

Table 1 summarizes the options for selecting a frequency distribution indicator.
A standardized classification requires rules for handling intrazonal trips. In the case 

of a macroscopic travel demand matrix the main diagonal represents the intrazonal 
trips. Since this part of the demand is not assigned to the network model, indicators 

Fig. 2   The classification by a mode-specific indicator causes the demand of one OD-pair to be assigned 
to different classes (left chart), whereas with a mode-independent indicator the demand of one OD-pair is 
assigned to the same class (right chart)

Table 1   Classification indicators for trip distance and trip time distributions

Trip distance Trip time

Mode-specific indicator Mode-specific trip distance Mode-specific trip-time
Mode-independent indicator Direct distance or mean weighted trip 

distance
Mean weighted trip time
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like trip time or trip distance cannot be calculated, but must be estimated in such a way 
that they represent an average movement within a zone. Those mean indicators will 
never fit to an observed intrazonal trip. Therefore, when using distribution compari-
sons for model validation it is advisable to exclude the intrazonal trips.

Nevertheless, as Bhatta and Larsen (2011) point out omitting intrazonal trips leads 
to different results in model estimation. Therefore, the model developers are obligated 
to check the intrazonal trips in a separate analysis. Such an analysis should investigate 
the number and the modal split of intrazonal trips. A separate examination for different 
zone sizes may also be reasonable.

Selection of the study area and a reference distribution

A travel demand model computes demand for a defined study area. The model is cali-
brated with observed data from a household travel survey. This survey ideally covers a 
sample of the population from the entire study area. If the study area of the survey and 
the study area of the travel demand model do not match completely, the comparison 
of observed and modelled values should only include trips starting and ending in the 
common study area. This also means that observed trips leaving the common study 
area have to be excluded from the survey when comparing the observed and the mod-
elled distributions. A comparison of two distributions is only meaningful if observed 
and modelled trips relate to the same area. A separate analysis is recommended for 
modelled trips where no comparison data is available.

An additional point to consider is that only home-based trips can be used for valida-
tion. For example, modelled trips from home to work can be compared directly with 
survey data, while modelled trips from shopping to leisure are not necessarily made by 
residents of the study area and therefore not comparable to a survey of the study area.

Calibrating the destination choice of a travel demand model requires observed 
distance or time distributions from a household travel survey as a reference distribu-
tion. Since interviewed persons tend to round estimates of distance and time for their 
reported trips, reported distance and time values should not be used directly from the 
survey. Instead, the distance and time values should be computed with the model using 
the geocoded origins and destinations from the survey (FGSV 2012).

As Sammer et al.  (2018) point out, it should be noted that a household travel sur-
vey always contains a systematic error, which results from underreporting of travel 
behaviour. Hence, even a complete fit of observed and modelled distribution does not 
mean, that a realistic behaviour is modelled. Sammer et al. (2018) give advice how to 
increase the quality of a household travel survey.

The purpose of a model is to analyse impacts of scenarios compared to the impacts 
of a base case. For this, planers look at key performance indicators. Key performance 
indicators can be single values (e.g. volumes at certain locations, total distance trav-
elled and total time spend) and distributions of travel time and distance. For comparing 
distributions of a base case and scenarios, distributions derived from the base case of 
the travel demand model replace observed distributions from the household travel sur-
vey as reference distribution.
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Selection of a classification method

Class width versus class size

Usually distribution classes are determined in such a way that the class width and a 
number of classes are predefined. Based on the classification indicator the demand is 
then assigned to the resulting classes. If the class width is the same across all distribu-
tion classes (and the number of classes is infinite in an extreme case), the term “equi-
distant” distribution is used. However, in many cases insufficiently populated classes are 
aggregated, resulting in classes of varying width.

A different approach defines the share of demand in each class and uses it to deter-
mine the class width. The resulting classes vary in width but they are equally popu-
lated. This method of classifying distributions is called “equiquantile” (based on e.g. 
Paluš (1995)).

In the case of an equidistant classification, three questions need to be addressed:

•	 What is the size of the classes?
•	 How many classes should there be in total?
•	 Should classes be grouped together and, if so, how?

On the other hand, the method of equiquantile distribution only raises the question about 
the number of classes. For this reason, the equiquantile classification method is presented 
first. Based on this, a procedure is explained to answer the question about the class width 
of equidistant distributions.

Analysis with equiquantile classes

The class boundaries of this classification method are calculated using weighted quantiles, 
with the elements of the indicator matrix representing the classification variable and the 
demand matrix elements representing the weight. The calculation used for the classifica-
tion and an example calculation are shown in the appendix.

Although all classes should have the same quantity, the actual demand per class may 
differ slightly from the desired quantity. This may be due to the following reasons:

•	 A discrete demand cannot always be distributed completely and evenly across all 
classes. This is the case, when (demand) mod (number of classes) ≠ 0. As a result, at 
least one class has a greater demand than other classes. The smaller the population, the 
greater the deviation from theoretically equal classes. However, this effect is reduced as 
the sample size increases.

•	 A single OD-pair with a large demand can also lead to a distortion, for example when 
demandod > demandtotal∕number of classes.

•	 A rounding of class boundaries prior to classification can lead to shifts in demand 
between neighbouring classes.

As mentioned above, the number of classes must be defined for the equiquantile classifica-
tion. Dividing the demand into 10% steps, i.e. into ten classes, is one possible pragmatic 
assumption. Figure 3 shows a sample of a trip distance distribution. It is shown that each 
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class has approximately the same number of trips and the resulting graph approximates a 
straight line.

Equiquantile classes can be applied for a particular demand segment, for the total 
demand and for the person distance travelled. Those applications are described in detail in 
the appendix.

Analysis with equidistant classes

As previously mentioned, the number of classes and the class width must be predefined for 
the equidistant classification method. A common procedure to determine those parameters 
is Sturges’ rule for constructing histograms, which is discussed e.g. by Hyndman (1995).

Another way of determining the class width is to define the smallest class of the equi-
quantile distributed total demand as the equidistant class width. This class width repre-
sents the smallest class with 10% of the total demand. In a strictly equidistant distribution, 
the number of classes is not important, i.e. classes of equal width are created until the larg-
est classification indicator is reached. However, in this case empty classes may occur.

In a variation of the equidistant classification, the statistically unreliable, i.e. low-occu-
pied, classes are aggregated. However, in order to use this particular classification method 
the input parameters number of classes, size of the grouped classes and minimum occu-
pancy of a class need to be defined in advance. Qualivermo (Sammer et al. 2012) suggests 
class widths for these cases:

•	 for metropolitan traffic in short distance areas: 2 km or 5 min,
•	 for regional and long-distance traffic: 5 km or 10 min.

Application of distributions for validation and presentation purposes

The equidistant classification method requires three parameters as input (number, size, 
aggregation rules of classes). This leads to several reasonable combinations of parame-
ters. In contrast, the equiquantile method requires only one parameter (number of classes). 
As the equiquantile method it the more generic representation of a demand distribution it 
should be used for model validation purposes.

Fig. 3   Example of an equiquantile trip distance distribution
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Results from an equidistant classification display typical patterns of travel demand, e.g. 
decreasing demand with increasing distance. This may be helpful for interpreting results. 
Thus, an equidistant classification should be used for presentation purposes, but not for 
validation purposes.

Selection of a quality indicator for distribution comparisons

To check the congruence of two distributions they can be plotted in a common diagram. 
However, a mere visual examination of congruence is often not adequate. In the following, 
a selection of different indicators to quantify the similarity or conformity of two distribu-
tions is presented.

Comparison of distribution parameters

In general, distributions, i.e. their position, appearance and properties, can be described by 
distribution parameters. By a comparison of those distribution parameters, it is possible to 
determine the similarity between two distributions. Therefore, it is essential to record them 
for each distribution. These parameters are in particular:

•	 sample size N (this is equivalent to the total number of trips),
•	 weighted mean m̄ (this represents the mean indicator, e.g. mean trip distance),
•	 standard deviation sm,
•	 coefficient of variation Vm,
•	 skew of the distribution �m and
•	 percentiles of the distribution, e.g. Q0.05, Q0.15, Q0.25, Q0.5, Q0.75, Q0.85, Q0.95.

The calculation specifications of the parameters are shown in the appendix.

Statistical tests

Various statistical tests can be used to check for differences between distributions and their 
parameters, respectively. For example, the t-test checks for significant deviations of the 
mean and the F-test checks for significant variance deviations (Backhaus et al. 2011).

In addition to these parametric tests, which check the distribution parameters, there are 
non-parametric or distribution-free tests, which check whether two samples derive from 
a common population. An example of this is the Kolmogorov-Smirnoff-test, suitable for 
interval scaled data. (Herz et al. 1992)

The Kolmogorov-Smirnoff-test initially determines the largest deviation in terms of 
absolute values between two discrete relative frequency distributions. A comparative meas-
ure is then obtained depending on the sample sizes and the accepted level of error. It should 
be noted that in this test only the position of relative frequencies is assessed.

In contrast to a household travel survey, a travel demand model represents a full cen-
sus, which means that it covers a large sample size. Consequently, the test criterion is very 
strict, which often results in a negative test result (i.e. the distributions do not originate 
from a common population).
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Quality indicators

Quality indicators consider the similarity of two distributions x and y. This section will 
give an executive summary about available quality indicators. The corresponding calcula-
tion specifications for each indicator are shown in the appendix.

Correlation Coefficient and Coefficient of Determination

The Correlation Coefficient R and the Coefficient of Determination R2 represent quality 
indicators that check the dependency on two (typically unclassified) datasets. R is a non-
dimensional variable ranging between − 1.0 and 1.0 and reflecting the extent of the lin-
ear dependency between two data sets. R2 expresses the amount of variation explained by 
the independent variables of the model. The higher the Coefficient of Determination, the 
higher the proportion of data explained by the regression function.

It is to be considered critically that the Coefficient of Determination on the one 
hand does not indicate any causality of the observed correlation and on the other hand 
inevitably increases with an increasing number of examined factors (Cambridge  Sys-
tematics  Inc.  2014; Backhaus  et  al.  2011). Therefore, R2 is suitable as a quality indica-
tor only to a limited extent. The thresholds for acceptable R2 values mentioned in 
the literature vary between 0.88, 0.95 (Cambridge  Systematics  Inc.  2014) and 0.98 
(Department for Transport 2014).

Mean Absolute Error, Euclidean Distance and Root Mean Squared Error

A common quality indicator is the Mean Absolute Error (MAE). It describes, as the name 
implies, the average of all deviations between the modelled and observed values. One way 
to scale the MAE to a unit-less quality indicator is to divide the MAE by the sum of the 
observed values. The resulting quality indicator is called Relative Mean Absolute Error 
(%MAE). This  %MAE should not be confused with the Mean Absolute Percentage Error 
(MAPE) (Vandeput 2019).

The Euclidean Distance d considers the sum of the squared deviations across all distri-
bution classes. Since, as will be explained later, the use of relative frequencies is advisable, 
a standardization to a common unit, as recommended e.g. by Backhaus et al. 2011, is not 
necessary.

Another common quality indicator is the Root Mean Squared Error (RMSE) and its rela-
tive and unit-less form (%RMSE). Compared to the MAE, the RMSE weights errors more 
strongly and thus has a stronger influence on the evaluation result (Cambridge Systemat-
ics Inc. 2014; Vandeput 2019).

Theil’s Forecast Accuracy Coefficient

Theil’s Forecast Accuracy Coefficient examines the conformity of two distributions. Unfor-
tunately, two indicators with the same name U have been developed. In order to distinguish 
them they are called U1 and U2.

•	 U1 ranges between 0 and 1, where 0 indicates a perfect match and 1 indicates the 
worst match. The worst match occurs either with a negative proportionality between 
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the considered distributions or when both distributions are continuously equal to zero. 
Since all distributions are evaluated better than a naïve forecast, it is not possible to 
interpret them unambiguously and therefore U1 should not be used (Bliemel  1973; 
Andres and Spiwoks 2000).

•	 U2 ranges from 0 to ∞, where 0 indicates a perfect match. At U2 = 1 the comparative 
distribution has the same quality as a naïve forecast. Consequently, U2 > 1 indicates that 
the comparative distribution is worse to evaluate since even a naïve forecast is evalu-
ated better. U2 is always preferable to U1 (Bliemel 1973, Andres and Spiwoks 2000).

Furthermore, the deviations between two distributions can be analysed more pre-
cisely with three components of error UM, US and UC (FGSV  2006; Bliemel  1973; 
Andres and Spiwoks 2000).

•	 UM indicates the proportion of the mean squared error resulting from an inequality 
of the mean values, which in turn results from a systematic over- or underestimation.

•	 US indicates systematic differences in the variances.
•	 UC indicates the absence of a linear correlation between the two distributions. It is an 

indicator for unsystematic, random errors.

According to Andres and Spiwoks (2000) and FGSV (2006) a good conformity is assumed 
if UM and US are close to 0 ( UM ,US

→ 0 or at least UM ,US < 0.2 ) and when the total error 
is mostly due to unsystematic errors 

(
UC

→ 1
)
.

Vortisch’s Indicator of Similarity

A distance indicator presented by Vortisch  (2006) takes into account the similarity in 
form and position of two distributions (see Fig. 4).

The Correlation Coefficient R describes the similarity of the shapes. Furthermore, 
the positional similarity θ and the overlapping of the domains σ are determined. The 
individual components are then combined to a general distance indicator ∆. If the dis-
tributions match perfectly, ∆ = 0 will result and with increasing difference it will strive 
against ∆ = 1.

Fig. 4   Similarity in form and position of two distributions (modified figure according to (Vortisch 2006))
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Coincidence Ratio

The Coincidence Ratio (CR) determines the degree to which two distributions overlap (see 
Fig. 5). Input value for the calculation are relative frequencies of classified distributions. 
The CR ranges from 0 to 1, where 1 indicates a perfect match and 0 indicates no match. 
According to Travel Model Validation and Reasonableness Checking Manual (Cam-
bridge Systematics Inc. 2014), a high degree of congruence applies if CR > 0.7.

Absolute or relative frequencies

As shown in Table 2, a comparison of two distributions can either use relative or abso-
lute frequencies. The choice of relative or absolute frequencies influences the value of the 
quality indicators. Hence, if two distributions are to be evaluated in terms of their similar-
ity, it must be clarified beforehand whether the quality indicator used should operate with 
absolute or relative frequencies. As distance and time distributions derived from surveys 
are usually provided only as relative values, relative frequencies should be used. Further-
more, in a travel demand model, the absolute number of generated trips should be checked 
directly after trip generation. If this trip generation validation is omitted, systematic differ-
ences, such as permanently too few trips per class, are not recognized.

Summary on quality indicators

Table 2 compares the presented quality indicators by the following criteria (☒ meaning 
“yes” and ☐ meaning “no”):

•	 What is the possible range of values of the indicators?
•	 Does the calculation specification require absolute or relative frequencies?
•	 Is there a difference in the resulting values of the indicator when using relative and 

absolute frequencies?
•	 Is there a possibility for in-depth analysis using the same indicator?
•	 Are there applicable thresholds for the indicator?

Fig. 5   Overlapping of distributions
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In a benchmark comparison, over 30 equiquantile distributions with 10 classes were 
compared. These were derived from real travel demand models as well as systematically 
generated in order to examine certain characteristics of the indicators (see top Fig. 6). The 
box plots in bottom Fig. 6 show the result of this comparison. The following conclusions 
can be derived:

•	 Correlation Coefficient R and Coefficient of Determination R2 fail for ideal equiquantile 
distributions, because the mean of the reference distribution matches the demand per 
class, resulting in an unsolvable expression.

•	 The results for Euclidean Distance d, Mean Absolute Error MAE and Root Mean 
Squared Error RMSE show a very small bandwidth in the present case of relative fre-

Fig. 6   Top figure: distribution types examined for a benchmark comparison, Bottom figure: result from the 
benchmark comparison of the different quality indicators
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quencies. Therefore, their relative forms Relative Mean Absolute Error  %MAE or rela-
tive Root Mean Squared Error  %RMSE are to be preferred. A general statement as to 
which of these quality indicators is more suitable is not possible, since this depends, 
among other things, on the respective accuracy requirements of the model.

•	 The expressions for Relative Root Mean Squared Error  %RMSE and Theil’s Forecast 
Accuracy Coefficient U2 are mathematically identical in this case of relative deviations 
and classified data.

•	 Due to the properties described above, Theil’s Forecast Accuracy Coefficient U2 and 
Vortisch’s Indicator of Similarity ∆ are suitable because of their sophisticated analysis 
options. However, the latter is less sensitive, which is reflected in the fact that it does 
not make full use of its value range even in the case of large deviations.

•	 The Coincidence Ratio CR is sensitive to changes, it can take values in its entire value 
range and its value range from 0 to 1 speaks for a straightforward interpretability. In 
addition, specific thresholds from the Travel Model Validation and Reasonableness 
Checking Manual (Cambridge Systematics Inc. 2014) provide good orientation for the 
evaluation of quality.

In summary, the Coincidence Ratio CR, the Relative Root Mean Squared Error  %RMSE (or 
Theil’s Forecast Accuracy Coefficient U2) and the Relative Mean Absolute Error  %MAE 
seem suitable for the evaluation of equiquantile classified relative frequency distributions. 
In addition, the three components of Theil’s Forecast Accuracy Coefficient UM, US and UC 
are useful for in-depth analyses.

Conclusion and recommendations

Appropriate transport planning requires appropriate travel demand models. Currently, 
many discussions are taking place about what “appropriate” actually means. This paper is a 
contribution to those discussions. Frequency distributions are an important quality feature 
of travel demand models. In quality assessment it is particularly important that the clas-
sification method is known, because the current techniques that are used in everyday prac-
tice lead to individual classifications and thus to different evaluation results. This makes it 
impossible to compare validation results of different models and to define a quality indica-
tor threshold in modelling guidelines.

In the previous chapters, various classification and quality determination methods have 
been presented. In order to ensure a uniform classification method in quality assurance, the 
following procedure is proposed for the standardized creation and assessment of distribu-
tions. This proposal is intended to serve as a basic concept. For specific travel demand 
model applications, the specifications have to be adjusted if necessary. Modelling guide-
lines should define a generally obligatory procedure in the future.

1.	 Selection of mode-independent classification indicators for each distribution:

•	 for trip distance distributions: direct distance,
•	 for trip time distributions: mean weighted trip time in the reference situation.
•	 The intrazonal trips are not taken into account in this evaluation. They have to be 

evaluated separately.
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2.	 Specification of the study area:

•	 only areas covered by the reference and the model are considered,
•	 only trips with origin and destination inside the study area are considered,
•	 other trips have to be evaluated separately.

3.	 Specification of the reference distribution for each application:

•	 for calibrating and validating a travel demand model: a distribution from a house-
hold travel survey (keeping in mind that such surveys contain a systematic error),

•	 for comparisons of modelled scenarios: a distribution from the base case of a travel 
demand model.

4.	 Calculation of ten equiquantile classes for all relevant demand segments and for the 
total demand and

•	 visualization of the distributions with relative frequencies,
•	 presentation of the distribution parameters,
•	 using the Coincidence Ratio as quality indicator (calculation with relative frequen-

cies). According to Travel Model Validation and Reasonableness Checking Man-
ual (Cambridge Systematics Inc. 2014), the Coincidence Ratio should be CR ≥ 0.7 
for a high level of congruence.

5.	 Optional: Visualization of equidistant distributions. To determine the class width, it 
is possible to use the smallest class of the equiquantile classified of the total demand. 
Equidistant distributions should not be used for quality tests. They are created for display 
purposes only.
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Appendix

Calculation specification and example of the equiquantile classification method

Initially, the indicator values vn are sorted in ascending order. The demand values wn are 
sorted according to the indicator sorting. Formula (1) is used to calculate the unweighted 
quantiles qn.

Formula (1) is then extended by the demand values (weight) wn to formula (2):

The desired (upper) class boundaries of the indicators vq are the result of a linear inter-
polation between the relevant weighted discrete quantiles qw,n. The demand is allocated to 
the resulting classes. This leads to the classified equiquantile demand wq.

Annotations:

n: nth element of the distribution
N: population size (number of individual values)
qn: nth quantile
qw,n: nth weighted quantile
vn: nth indicator
vq: upper indicator class boundaries of the qth-quantile
wn: nth demand element (weight)
wcum,n: cumulated weight of the nth element
wq: equiquantile demand within the qth-quantile

The following example with 20 OD-pairs illustrates the calculation procedure. Please 
note that with such a small sample size it is not possible to distribute the demand com-
pletely and evenly across all classes, but that this effect is reduced as the sample size 
increases.

(1)qn =
(n − 0, 5)

N
; qn ∈ (0;1]

(2)qw,n =

�
wcum,n − 0, 5 ⋅ wn

�

∑N

n=1
wn

; qw,n ∈ (0;1]

http://creativecommons.org/licenses/by/4.0/
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•	 Input variables:

•	 Calculation:

column 
index →

1 2 3 4 5 6

row index n sorted 
indicators 
vn

sorted 
Demand 
(weight) wn

0.5 * col. 2 col. 2 
cumulated

col. 4–col. 3 col. 5 / sum(col. 2)  
= weighted  
quantile qw,n

1 1.0 562.5 281.3 562.5 281.3 0.033
2 3.0 196.6 98.3 759.1 660.8 0.078
3 7.0 90.3 45.2 849.4 804.3 0.095
4 15.0 846.6 423.3 1696.0 1272.7 0.151
5 17.0 841.8 420.9 2537.8 2116.9 0.251
6 20.0 223.6 111.8 2761.4 2649.6 0.314
7 21.0 403.7 201.9 3165.1 2963.3 0.351
8 30.0 220.5 110.3 3385.6 3275.4 0.388
9 34.0 43.5 21.8 3429.1 3407.4 0.404
10 35.0 268.5 134.3 3697.6 3563.4 0.422
11 37.0 506.5 253.3 4204.1 3950.9 0.468
12 43.0 814.0 407.0 5018.1 4611.1 0.546
13 53.0 34.1 17.1 5052.2 5035.2 0.597
14 54.0 550.4 275.2 5602.6 5327.4 0.631

Desired quantile q

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

OD-indicators v OD-demand w

92.0 627.0

17.0 841.8

53.0 34.1

86.0 592.2

83.0 846.6

15.0 846.6

3.0 196.6

54.0 550.4

20.0 223.6

21.0 403.7

35.0 268.5

90.0 255.2

7.0 90.3

62.0 301.6

94.0 213.7

37.0 506.5

30.0 220.5

1.0 562.5

34.0 43.5

43.0 814.0
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column 
index →

1 2 3 4 5 6

row index n sorted 
indicators 
vn

sorted 
Demand 
(weight) wn

0.5 * col. 2 col. 2 
cumulated

col. 4–col. 3 col. 5 / sum(col. 2)  
= weighted  
quantile qw,n

15 62.0 301.6 150.8 5904.2 5753.4 0.682
16 83.0 846.6 423.3 6750.8 6327.5 0.750
17 86.0 592.2 296.1 7343.0 7046.9 0.835
18 90.0 255.2 127.6 7598.2 7470.6 0.885
19 92.0 627.0 313.5 8225.2 7911.7 0.938
20 94.0 213.7 106.9 8438.9 8332.1 0.987
∑ 8438.9

•	 Result:

desired quantile q upper indicator class bounda-
ries vq

absolute demand per class 
wq [−]

relative demand 
per class wq [%]

0.1 7.7 849.4 10.1
0.2 16.0 846.6 10.0
0.3 19.3 841.8 10.0
0.4 33.0 847.8 10.0
0.5 39.4 818.5 9.7
0.6 53.1 848.1 10.0
0.7 67.6 852.0 10.1
0.8 84.8 846.6 10.0
0.9 90.6 847.4 10.0
1.0 94.0 840.7 10.0

Applications of the equiquantile classification method

Equiquantile classes for a particular demand segment

Demand segments are a subset of the total demand. Usually demand is segmented by 
mode, by trip purpose or by the combination of mode and purpose. As each demand 
segment has a specific distribution, this leads to specific class widths for each segment. 
A demand segment “pedestrians” will have more short distance classes then a demand 
segment “car”. For comparing distributions of a particular demand segment in different 
scenarios, it is therefore recommendable to determine the class widths with the base 
case demand of that particular demand segment. The classification should be deter-
mined once for the reference distribution of the base case and then preserved for all 
scenarios.

Figure  7 shows an example of an equiquantile trip distance distribution of the 
mode car for a realism test, in which the number of inhabitants is changed by ± 10% 
and ± 20%. The base case serves as reference distribution. In the example, it can be seen 
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that in the case of less inhabitants (80% or 90%) the number of trips decreases across 
all classes. However, the decrease is not equal in all classes. Short distance classes show 
a lower share of the total demand, longer distance classes a higher share. This can be 
explained by the relationship between demand and supply, where lower demand leads to 
travel time reductions, which then increase travel distance. The opposite applies to the 
case with more inhabitants (110% or 120%).

Equiquantile classes for the total demand

Similar to the evaluation for particular demand segments, it is possible to perform an eval-
uation of the total demand across all modes to analyse the changes of the total demand in 
the different distribution classes.

In addition, individual demand segments can also be presented with the classification of 
the total demand. For example, a distance-dependent modal split (see Fig. 8) or the devel-
opment of individual modes in comparison to the total demand for different scenarios (see 
Fig. 9) can be displayed.

Fig. 7   Example of an equiquantile trip distance distribution of mode car with different numbers of inhabit-
ants

Fig. 8   Example of an equiquan-
tile trip distance distribution of 
all modes (distance-dependent 
modal split)
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Equiquantile classes from person distance travelled

As a modification of the equiquantile classification, it is possible to use the combination of 
demand and trip distance (person distance travelled) as classification indicator. For vehicle 
distance travelled or person time travelled, an analogous approach has to be used.

This is important in the calibration process, where it is more important to match the per-
son distance travelled than the actual number of trips. An equal number of trips in all dis-
tance classes leads to an increasing person distance travelled with increasing distance class, 
as is shown in Fig. 10 (left). In contrast, Fig. 10 (right) shows a distribution where each class 
contains the same amount of person distance travelled, while the number of trips is decreas-
ing monotonously with increasing distance classes. In comparison to a “normal” equiquantile 
distribution, shown in Fig. 10 (left), it becomes obvious that the class width in the short-range 
distances increases while the long distance classes are displayed in greater detail.

Fig. 9   Example of an equiquan-
tile trip distance distribution 
of mode car and for the total 
demand with different numbers 
of inhabitants

Fig. 10   Comparison of an 
equiquantile distribution accord-
ing to the number of trips (left) 
and an equiquantile distribution 
according to the person distance 
travelled (right).
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Calculation specification and explanation of the distribution parameters

The calculation specifications presented refer to classified data—therefore it is irrelevant 
whether relative or absolute frequencies are used.

Annotations:

m̄ : weighted mean across all classes (mean indicator)
sm : weighted standard deviation (standard deviation of the mean indicator)
Vm : coefficient of variation
�m : skewness of the distribution
xk : frequency in class k
mk : mean of the class k
K : number of classes
N : population size (number of individual values).

Calculation specification and explanation of the quality indicators

Correlation Coefficient and Coefficient of Determination (adapted for classified 
datasets)

Annotations:

(3)m̄ =

∑K

k=1

�
xk ⋅ mk

�

N

(4)
sm =

����
∑K

k=1

�
xk ⋅

�
mk − m̄

�2�

N − 1
(for a sample)

(5)
sm =

����
∑K

k=1

�
xk ⋅

�
mk − m̄

�2�

N
(for a finite population)

(6)Vm =
sm

m̄

(7)
𝛾m =

∑K

k=1

�
xk ⋅(mk−m̄)

3
�

(N−1)
����

�∑K

k=1

�
xk ⋅(mk−m̄)

2
�

(N−1)

�3

(8)R =

∑K

k=1

�
xk − x

��
yk − y

�

�∑K

k=1

�
xk − x

�2
⋅

∑K

k=1

�
yk − y

�2
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R : Correlation Coefficient
xk or yk : frequency of distribution x or y in class k
K : number of classes
x̄ or ȳ : mean of dataset x or y.

Mean Absolute Error and Relative Mean Absolute Error (adapted for classified datasets)

Annotations:

MAE : Mean Absolute Error
%MAE : Relative Mean Absolute Error
xk or yk : frequency of distribution x or y in class k
K : number of classes

Euclidean Distance (adapted for classified datasets)

Annotations:

d : Euclidean Distance
K : number of classes
xk or yk : frequency of distribution x or y in class k

Root Mean Squared Error (adapted for classified datasets)

Annotations:

RMSE : Root Mean Squared Error
%RMSE : Relative Root Mean Squared Error
xk or yk : frequency of distribution x or y in class k
K : number of classes

(9)MAE =

∑K

k=1
��xk − yk

��
K

(10)%MAE =
MAE

1

K
⋅

∑K

k=1
xk

=

∑K

k=1
��xk − yk

��
∑K

k=1
xk

(11)d =

√√√√
K∑

k=1

(
xk − yk

)2

(12)RMSE =

�∑K

k=1

�
xk − yk

�2

K

(13)%RMSE =
RMSE

1

K
⋅

∑K

k=1
xk

=

�
K ⋅

∑K

k=1

�
xk − yk

�2

∑K

k=1
xk
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Theil’s Forecast Accuracy Coefficient (adapted for classified datasets)

Annotations:

U1 : Theil’s Forecast Accuracy Coefficient (old form; not recommended according to 
Bliemel (1973)⁠ and Andres and Spiwoks (2000).
U2 : Theil’s Forecast Accuracy Coefficient (new form)
UM : proportion of error from systematic differences in the means
US : proportion of error from systematic differences in the variances
UC : proportion of error from unsystematic errors
K : number of classes
xk or yk : frequency of distribution x or y in class k, for U2 explicitly relative frequencies 
(Bliemel 1973)
x̄ or ȳ : mean of distribution x or y across all classes
sx or sy : standard deviation of distribution x or y
R : Correlation Coefficient

Vortisch’s Indicator of Similarity

(14)U1 =

�
1

K

∑K

k=1

�
xk − yk

�2

�
1

K

∑K

k=1

�
xk
�2

+

�
1

K

∑K

k=1

�
yk
�2

(15)U2 =

�∑K

k=1

�
xk − yk

�2
�∑K

k=1

�
xk
�2

(16)UM =
(x̄ − ȳ)2

1

K

∑K

k=1

�
xk − yk

�2

(17)US =

�
sx − sy

�2

1

K

∑K

k=1

�
xk − yk

�2

(18)UC =
2 ⋅ (1 − R) ⋅ sx ⋅ sy

1

K

∑K

k=1

�
xk − yk

�2

(19)� =
1

|D(x, y)|

K∑

k=1

min
{
xk, yk

}

max
{
xk, yk

}

(20)� =
|D(x, y)|

|D(x) ∪ D(y)|
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The parameters � and � can be used to control the influence of shape, position and domain. 
Vortisch (2006) recommends � = � = 0.5 by default.

Please note the following special cases:

•	 one of the two distributions is constant: R = 0

•	 both distributions are constant: R = 1

•	 if xk = yk = 0 , then � = 1 applies
•	 if |D(x, y)| = 0 , then � = 0 applies

Annotations:

∆: Vortisch’s Indicator of Similarity
θ: similarity of the shape
σ: similarity of the position
R: Correlation Coefficient
K: number of classes
xk or yk : absolute frequency of distribution x or y in class k
D (x, y): common domain of distribution x and y
D (x) or D (y): domain of distribution x or y
α: influence of shape and position ∈ [0;1]

γ: influence of domain ∈ [0;1]

Coincidence Ratio

where

Annotations:

CR: Coincidence Ratio
K: number of classes
pk or qk : relative frequency of distribution x or y in class k
xk or yk : absolute frequency of distribution x or y in class k.

(21)Δ = 1 − (� ⋅ R + (1 − �) ⋅ �) ⋅ (� ⋅ � + (1 − �) ⋅ 1)

(22)CR =

∑K

k=1
min

�
pk, qk

�

∑K

k=1
max

�
pk, qk

�

(23)pk =
xk

∑K

k=1
xk

(24)qk =
yk

∑K

k=1
yk
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