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Abstract
The best constant re-balanced portfolio represents the standard estimator for the log-
optimal portfolio. It is shown that a quadratic approximation of log-returns works very
well on a daily basis and a mean-variance estimator is proposed as an alternative to
the best constant re-balanced portfolio. It can easily be computed and the numerical
algorithm is very fast even if the number of dimensions is high. Some small-sample and
the basic large-sample properties of the estimators are derived. The asymptotic results
can be used for constructing hypothesis tests and for computing confidence regions.
For this purpose, one should apply a finite-sample correction, which substantially
improves the large-sample approximation. However, it is shown that the impact of
estimation errors concerning the expected asset returns is serious. The given results
confirm a general rule, which has become folklore during the last decades, namely
that portfolio optimization typically fails on estimating expected asset returns.

Keywords Best constant re-balanced portfolio · Estimation risk · Growth-optimal
portfolio · Log-optimal portfolio · Mean-variance optimization

JEL Classification C13 · G11

1 Motivation

During the last decades, the log-optimal portfolio (LOP) has become increasingly
important in portfolio theory.There is a significant number of publications related to the
LOP—or to the growth-optimal portfolio (GOP), which is often treated synonymously.
The reader can find a huge number of articles inMacLean et al. (2011). For an overview
on the subject matter see Christensen (2005). In spite of a controversial debate (Merton
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2 G. Frahm

and Samuelson 1974), it cannot be denied that the LOP has a number of nice and
beautiful properties. For example, it is asymptotically optimal among all portfolios
that share the same constraints on the portfolio weights (Cover and Thomas 1991,
Chapter 15). Moreover, the LOP can be considered a discrete-time approximation of
the GOP, which serves as a numéraire portfolio and thus plays a major role in financial
mathematics (Karatzas andKardaras 2007; Platen andHeath 2006). TheGOPprovides
a link between financial mathematics, neoclassical finance, and financial econometrics
(Frahm 2016). Hence, the LOP is of particular interest for a variety of reasons.

In this work, the statistical properties of LOP estimators are investigated. To the best
of my knowledge, this is not done so far in the literature. We will consider the standard
estimator for the LOP, i.e., the best constant re-balanced portfolio (BCRP), and the
mean-variance estimator (MVE), which is based on a quadratic approximation of log-
returns. The question of whether or not the BCRP or the MVE outperforms any other
investment strategy is not discussed in this work. This seems to be well-investigated in
the literature. In particular, the BCRP and theMVE are not compared with one another
in order to clarify whether maximizing the logarithmic utility or the mean-variance
objective function is more preferable (Hakansson 1971). Instead, the MVE is used
only to approximate the BCRP. Correspondingly, the mean-variance optimal portfolio
(MVOP) does not end in itself. Here, it just represents an approximation of the LOP.

The main conclusions of this work are as follows:

(i) TheMVE provides a very good approximation of the BCRP if re-balancing takes
place on a daily basis. The numerical implementation of the MVE is quite easy
and the corresponding algorithm is very fast even if the number of dimensions
is high.

(ii) One typically overestimates the expected out-of-sample log-return on the BCRP
and even the expected log-return on the LOP. Similar statements hold true for
the expected out-of-sample performance of the MVE and the performance of the
MVOP.

(iii) The BCRP exists and is unique under mild regularity conditions. Moreover, it
is strongly consistent, which holds true also for the expected out-of-sample log-
return on the BCRP and its in-sample average log-return. Similar results are
obtained for the MVE.

(iv) Although both the BCRP and the MVE are affected by short-selling constraints,
they are

√
n -consistent. The asymptotic results can be used in order to construct

hypothesis tests and to compute confidence regions.
(v) Due to the constraints on the portfolio weights, the asymptotic results are inaccu-

rate in most practical applications. Nonetheless, a finite-sample correction exists.
It substantially improves the large-sample approximation of the MVE (and thus
of the BCRP).

(vi) However, the impact of estimation risk that comes from estimating expected asset
returns is tremendous in most real-life situations. This problem is so serious that
estimating the LOP becomes a futile endeavour if we have no prediction power.

The rest of this work is organized as follows: In Sect. 2 the basic assumptions are
made and the mathematical notation is explained. Section 3 contains some elementary
results and provides a simple characterization of the LOP. In Sect. 4 the small-sample
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Statistical properties of estimators for the LOP 3

and large-sample properties of the BCRP are derived, which includes its existence,
uniqueness, and consistency. That section contains also the asymptotic distribution of
the BCRP. The reader can find the corresponding results for the MVE in Sect. 5. In
Sect. 6 some computational issues that are related to the BCRP are discussed and the
finite-sample correction for the MVE is demonstrated. Section 7 concludes this work.
Finally, the “Appendix” contains an important but quite tedious derivation.

2 Basic assumptions and notation

Throughout this work, N denotes the set of positive integers, i.e., N := {
1, 2, . . .

}
,

and the symbol “log” stands for the natural logarithm. The symbol 0 denotes a vector
of zeros and 1 is a vector of ones. The dimensions of 0 and 1 should always be clear
from the context. Any tuple x = (x1, x2, . . . , xd) ∈ R

d is understood to be a column
vector and x ′ = [

x1 x2 . . . xd
]
is the transpose of x . It is implicitly assumed that we

have an underlying probability space
(
�,A,P

)
, where � is some state space, A is a

σ -algebra on �, and P is a probability measure onA, which is often referred to as the
physical or real-world probability measure in financial mathematics (Frahm 2016). A
random quantity is a (measurable) real-valued function on�. According to probability
theory, two random quantities are considered identical if and only if they coincide with
probability 1. Analogously, any statement about a random quantity is meant to be true
almost surely (a.s.). Hence, we can drop the additional remarks “P(·) = 1” and “a.s.”
for convenience. For example, if X is a random variable, “X = x” with x ∈ R means
that P(X = x) = 1 and if Y is a random variable, too, then “X > Y ” means that X
is greater than Y with probability 1, etc. Further, if

{
Xn

}
n∈N is a random sequence,

“Xn → x” means that Xn converges a.s. to x as n tends to infinity. Thus, we may drop
also the notation “n → ∞”.

Consider an asset universe with one riskless asset and N ∈ N risky assets. It is
assumed that the assets are infinitely divisible and any market frictions are ignored.
Let St = (

S0t , S1t , . . . , SNt
)
be the vector of asset prices at time t = 0, 1, . . . , where

S0t denotes the price of the riskless asset. The unit of time is one trading day. It is
assumed that S0t = 1 for t = 0, 1, . . . and that Si0 = 1 for i = 1, 2, . . . , N . In the
following, each statement that contains the index i or t is meant to be true for all i
and t that are appropriate in the given context. The price process

{
St

}
t=0,1,... shall be

positive. The time-index set is always
{
0, 1, . . .

}
and thus the subscript in “{·}t=0,1,...”

will be omitted for notational convenience.
Let Xt := St/St−1 be the vector of price relatives after the trading day t , where the

division of St by St−1 is understood to be componentwise. Any capital appreciation for
Asset i during Day t , e.g., interest or dividend income, is considered part of the asset
price Sit . The portfolio weights of the risky assets are denoted by w1, w2, . . . , wN ,
whereasw0 is the weight of the riskless asset. Hence,w = (w0, w1, . . . , wN ) ∈ R

N+1

is a portfolio that consists of the riskless asset and N risky assets. Each single asset
is considered a portfolio, i.e., a canonical vector in R

N+1. In order to distinguish the
weights of the risky assets, w1, w2, . . . , wN , from the weight of the riskless asset, w0,
the notation w̃ = (w1, w2, . . . , wN ) ∈ R

N is used. This means that w = (w0, w̃).
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4 G. Frahm

Analogously, X̃t indicates the risky part of Xt , i.e., we have that Xt = (1, X̃t ). Finally,
the return on Asset i after Day t is given by Rit := Xit − 1 and Rt = X̃t − 1 =
(R1t , R2t , . . . , RNt ) denotes the vector of risky asset returns. Since we assume that
S0t = 1 for t = 0, 1, . . ., the risk-free interest rate is supposed to be zero. This
assumption is made without loss of generality, which will be explained below.

Although the following terms will be defined later on, their notation is used
throughout this work and so it shall be clarified beforehand: The symbol w∗ =
(w∗

0, w
∗
1, . . . , w

∗
N ) denotes the LOP, whereas w� = (w�

0, w
�
1, . . . , w

�
N ) is the MVOP.

Note that the former superscript, “∗,” has 6 spikes, whereas the latter, “�,” consists of 5
spikes. This shall symbolize a key observation of this work, namely that the LOP and
theMVOPare almost indistinguishable inmost practical applications,which hopefully
does not hold for the symbols themselves. The symbols w̃∗ = (w∗

1, w
∗
2, . . . , w

∗
N ) and

w̃� = (w�
1, w

�
2, . . . , w

�
N ) denote the “risky parts” of w∗ and w�, respectively. Further,

wi is the portfolio weight of Asset i . By contrast, wn is an estimator for the portfolio
w, where n ∈ N is the number of observations.1 Consequently, win is the estimator
for the portfolio weight of Asset i .

At the end of each trading day, the investor re-balances his portfolio according to a
constant vector of portfolio weights w satisfying the budget constraint 1′w = 1. The
portfolio value at Day n ∈ N amounts to Vwn := ∏n

t=1 w′Xt . The investment capital
might vanish during some trading day if we do not pose any additional constraints
on the portfolio weights. In fact, if we allow the investor to enter short positions,
the probability of going bankrupt, i.e., Vwn ≤ 0, is positive unless we make some
additional assumption about

{
Xt

}
, but this is omitted in this work. Hence, the portfolio

w must be an element of the (unit) simplex

S :=
{
w ∈ R

N+1 : w ≥ 0 ∧ 1′w = 1
}
.

The assumption thatw ∈ S is crucial. It guarantees thatw′Xt > 0 so that Vwn > 0 for
all n ∈ N. Hence, the log-value process log Vwn = ∑n

t=1 logw′Xt exists for allw ∈ S
and n ∈ N, where logw′Xt is referred to as the log-return on the portfolio after Day t .
The short-selling constraints are indispensable because otherwise logw′Xt might not
be defined.

As already mentioned above, we can assume without loss of generality that the
risk-free interest rate is zero: Let r ≡ R0 > − 1 be the risk-free interest rate and Yt the
vector of relative prices with Y0t = 1+ r . Then we could use the discounted relative-
price vector Xt := Yt/(1 + r). The log-return on any portfolio w ∈ S amounts
to log(w′Yt ) = log(1 + r) + log(w′Xt ). We can ignore the first term, log(1 + r),
provided we are interested only in maximizing the expected log-return on the portfolio
w, which is our main focus here. Throughout this work, we suppose that Xt contains
the discounted relative prices but omit the word “discounted” for convenience.

Now, the following basic assumptions are made:

A1. The relative-price process
{
Xt

}
is strictly stationary,

A2. the expected value of logw′Xt is finite for all w ∈ S, and

1 Actually, it is assumed that n > N and so there should be no confusion.
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Statistical properties of estimators for the LOP 5

A3. w′
1Xt and w′

2Xt do not coincide for any w1, w2 ∈ R
N+1 with w1 �= w2.

A1 is a fundamental assumption in econometrics and implies that the elements of{
Xt

}
are identically distributed, but it is not assumed that they are serially independent.

Further,A2 guarantees thatwe canworkwith the quantityE(logw′Xt ) andA3 requires
the relative prices to span (0,∞)N+1. It follows that no risky asset can be replicated
by a convex combination of other assets. More precisely, since P

(
w′
1Xt = w′

2Xt
) �= 1

for all w1, w2 ∈ R
N+1 with w1 �= w2, it holds that P

(
w′Xt = 0

) �= 1 for all
w ∈ R

N+1 with w �= 0 and vice versa. Hence, it cannot happen that w̃′Rt = c ∈ R

for any w̃ ∈ R
N with w̃ �= 0. Otherwise, we could define w0 := − (c + 1′w̃) so that

w′Xt = − (c+ 1′w̃) + (1′w̃ + c) = 0 with w �= 0. Conversely, if there is no w̃ ∈ R
N

with w̃ �= 0 such that w̃′Rt = c ∈ R, then we cannot have that w′Xt = 0 with w �= 0
because otherwise w̃′R = − (w0 + 1′w̃) ∈ R with w̃ �= 0.

To sum up, it holds that P
(
w′Xt = 0

) �= 1 ⇔ P
(
w̃′Rt = c

) �= 1 with w̃ �= 0. How
can we interpret this basic condition from an economical point of view? Suppose that
w̃′Rt = c �= 0. Then we have an arbitrage opportunity, which is not possible if the
market is in equilibrium and the market participants are rational (Frahm 2018). By
contrast, in the case that w̃′Rt = 0, at least one risky asset is redundant. For example, let
us assume that w̃N �= 0 without loss of generality. Then we can construct the portfolio
ṽ := − w̃/w̃N of risky assets so that ṽ′Rt = 0 with ṽN = − 1. Now, we are able to
replicate Asset N by a linear combination of all other assets, including the riskless
asset, by using the portfolio (1 − 1′(ṽ1, ṽ2, . . . , ṽN−1), ṽ1, ṽ2, . . . , ṽN−1) ∈ R

N ,
which satisfies the budget constraint. Hence, we can ignore Asset N and reduce the
asset universe to N − 1 risky assets. Of course, also the converse is true. That is, if we
are able to replicate a risky asset by linear combination of all other assets, we must
have that w̃′Rt = 0 with w̃ �= 0.

Throughout this work, it is assumed that the dimension reduction has already been
made in advance. Note also that without the dimension reduction the covariancematrix
of Rt would not be positive definite because w̃′Rt = c implies that w̃′Var

(
Rt

)
w̃ =

Var
(
w̃′Rt

) = 0 for w̃ �= 0 and vice versa. Hence, A3 is indispensable also for
statistical reasons. In fact, this assumption plays a major role in portfolio theory,
where it is typically required that Var(Rt ) > 0, i.e., that the covariance matrix of the
risky asset returns is positive definite.

3 The log-optimal portfolio

Definition 1 A log-optimal portfolio is a portfoliow∗ ∈ S thatmaximizes the expected
log-return, i.e.,

w∗ ∈ argmaxw∈S E
(
logw′Xt

)
.

The LOP is often associated with the “Kelly criterion” (Kelly 1956). Its asymptotic
optimality properties are elaborated by Algoet and Cover (1988); Bell and Cover
(1980) as well as Breiman (1961).2 Although it was originally studied in information

2 See also Chapter 15 in Cover and Thomas (1991).
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6 G. Frahm

theory, it becameof growing interest to the finance community over the last decades.As
already mentioned in Sect. 1, the LOP is sometimes referred to as the GOP. However,
the GOP is typically studied in a continuous-time framework, whereas the LOP is
based on a discrete-time setting.3

The Lagrange function of the optimization problem given by Definition 1 is

L(w, κ, λ) = −E
(
logw′Xt

) − κ ′w + λ(1′w − 1)

with κ = (κ0, κ1, . . . , κN ) ≥ 0 and λ ∈ R. The corresponding Karush-Kuhn-Tucker
(KKT) conditions are quite nice (Cover and Thomas 1991, Theorem 15.2.1). The
following theorem establishes also the existence and uniqueness of the LOP.

Theorem 1 The LOP exists and is unique. It is characterized by w∗ ∈ S such that

E
(

Xit

w∗′Xt

) {= 1, w∗
i > 0

≤ 1, w∗
i = 0

.

Proof The simplex S is compact and convex. Further, the random variables v′Xt and
w′Xt do not coincide for any v,w ∈ S with v �= w. Hence, since the natural logarithm
is strictly concave, for each 0 < π < 1 and v,w ∈ S with v �= w it holds that

log
[
πv + (1 − π)w

]′
Xt = log

(
πv′Xt + (1 − π)w′Xt

)

≥ π log v′Xt + (1 − π) logw′Xt

and

P

(
log

[
πv + (1 − π)w

]′
Xt > π log v′Xt + (1 − π) logw′Xt

)
> 0 .

This means that the objective function w �→ E
(
logw′Xt

)
is strictly concave, which

implies that w∗ exists and is unique. Further, the partial difference quotient

log
(
w′x + �wi xi

) − logw′x
�wi

= 1

�wi
log

w′x + �wi xi
w′x

= 1

�wi
log

(
1 + �wi xi

w′x

)
> 0, �wi > 0,

increases monotonically and tends to xi/w′x > 0 as �wi ↘ 0 for each x > 0. From
the Monotone Convergence Theorem, we conclude that

∂

∂w
E

(
logw′Xt

) = E
(

Xt

w′Xt

)
.

Hence, we have that E
(
Xt/w

∗′Xt
) = λ1 − κ with w∗ ∈ S, λ ∈ R, κ =

(κ0, κ1, . . . , κN ) ≥ 0, and w∗
i κi = 0. From w∗′E

(
Xt/w

∗′Xt
) = E

(
w∗′Xt/w

∗′Xt
) =

3 See Karatzas and Kardaras (2007) for a detailed analysis of the GOP.
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Statistical properties of estimators for the LOP 7

1, w∗′1 = 1, and w∗′κ = 0, we conclude that λ = 1. Thus, we obtain

E
(

Xt

w∗′Xt

)
= 1 − κ ,

which leads to the given expression in the theorem. ��
The portfolio weightw∗

i is bounded by S if and only ifE(Xit/w
∗′Xt ) < 1, whereas

the partial derivative equals 1 whenever w∗
i > 0. If all (optimal) portfolio weights are

positive, the solution of the optimization problem, w∗, lies in the interior of S, which
is denoted by So. Since we have that

(w − w∗)′E
(

Xt

w∗′Xt

)
= w′E

(
Xt

w∗′Xt

)

︸ ︷︷ ︸
= 1

− E
(

w∗′Xt

w∗′Xt

)

︸ ︷︷ ︸
=1

= 1 − 1 = 0 , ∀w ∈ So,

the expected log-return stays constant after a local change of the portfolio weights.4

This could be true even on the boundary of S, ∂S, as long as E(Xt/w
∗′Xt ) = 1. In

this case, all portfolio weights are still unbounded by S. By contrast, if (at least) one
partial derivative is lower than 1, some portfolio weight must be zero, i.e., w∗ ∈ ∂S.
Then the expected log-return decreases after a local change of a portfolio weight that
is bounded by S. These basic considerations will be important later on when deriving
the asymptotic properties of the LOP estimators.

4 The best constant re-balanced portfolio

Definition 2 A best constant re-balanced portfolio is a portfolio w∗
n ∈ S that maxi-

mizes the in-sample average log-return, i.e.,

w∗
n ∈ argmaxw∈S

1

n

n∑

t=1

logw′Xt . (1)

The relative prices contained in X1, X2, . . . , Xn , except for the relative price 1 of the
riskless asset, are nondegenerate randomvariables and so, in general, 1n

∑n
t=1 logw′Xt

is a nondegenerate random variable, too. This means that for each element of the
state space, ω ∈ �, and so for each realization of X1, X2, . . . , Xn , we maximize
1
n

∑n
t=1 logw′Xt (ω), which leads us to a particular realization, w∗

n(ω), of a BCRP
w∗
n , which thus represents a random vector.
A BCRP can be considered an empirical version of the LOP. It is said to be the

“best” constant re-balancedportfolio becausew∗
n maximizes thefinal value after Period

n ∈ N, i.e., Vwn , over all constant re-balanced portfolios w ∈ S. However, the max-
imization is done in hindsight, i.e., after all asset prices have been revealed to the
investor, and thus the BCRP is unknown in advance.

4 Note that, after any local change, w must still belong to S.

123



8 G. Frahm

4.1 Small-sample properties

4.1.1 Existence and uniqueness

Let n ∈ N be the number of price observations. The following additional assumption
is made for statistical reasons:

A4. The sample of price relatives, i.e., X = [
X1 X2 · · · Xn

]
, has rank N + 1.

A4 can be considered an empirical version of A3, which implies that no risky asset
is redundant. It requires that the number of observations exceeds the number of risky
assets, i.e., n > N .

Theorem 2 The BCRP exists and is unique. It is characterized by w∗
n ∈ S such that

1

n

n∑

t=1

Xit

w∗′
n Xt

{= 1, w∗
in > 0

≤ 1, w∗
in = 0

.

Proof Since w �→ 1
n

∑n
t=1 logw′Xt is a concave objective function, Eq. 1 represents

a convex optimization problem and, because the simplex is compact and convex, the
BCRP exists. The rank of X is full so that v,w ∈ R

N+1 must lead to different value
processes unless v = w. That is, the given objective function is strictly concave, which
implies that the BCRP is unique. The rest of the proof follows by the arguments that
are used in the proof of Theorem 1. ��

A simple numerical algorithm for computing the BCRP is developed by Cover
(1984). We will come back to this point in Sect. 6.

4.1.2 Finite-sample bias

Let wn be a portfolio that is based only on the price observations that have been made
up to Day n. A standard assumption of portfolio theory is that wn is stochastically
independent of Rn+1 or, equivalently, of Xn+1 (Frahm 2015). If wn would depend
on Rn+1, the decision of the investor at time n would be influenced by some asset
returns at time n + 1 or, vice versa, his financial transactions would have an impact
on forthcoming asset prices. In this case he would be able to predict the future price
evolution on the basis of past asset prices. This is typically ruled out in finance theory
and, especially, in portfolio theory. Put another way, we assume that the investor has
no prediction power. This basic assumption will be elaborated also in Sect. 5.1.2.

For example, suppose that X1, X2, . . . , Xn+1 are serially independent. Since wn

is a function of X1, X2, . . . , Xn , the portfolio wn does not dependent on Xn+1.
However, the converse is not true. Consider some (measurable) real-valued func-
tion f of some random variable ξ . The fact that f (ξ) is independent of another
random variable ζ does not imply that ξ is independent of ζ . A trivial example
is any constant function f . Another well-known and more sophisticated example
is the case in which ξ1, ξ2, . . . , ξn are independent and identically normally dis-
tributed. Obviously, ξn+1 := 1

n

∑n
t=1 ξt depends on ξ1, ξ2, . . . , ξn , but it is known
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Statistical properties of estimators for the LOP 9

that f (ξ1, ξ2, . . . , ξn) = ∑n
t=1(ξt − ξn+1)

2 is independent of ξn+1.5 Thus, although
ξn+1 depends on ξ1, ξ2, . . . , ξn and f (ξ1, ξ2, . . . , ξn) is not constant, but a nondegen-
erate random variable, f (ξ1, ξ2, . . . , ξn) is still independent of ξn+1.We conclude that,
although X1, X2, . . . , Xn+1 may be serially dependent, a (random) portfolio based on
X1, X2, . . . , Xn need not depend on Xn+1.

Hence, we can make the following additional assumptions:

A5. The BCRP w∗
n is stochastically independent of Xn+1.

A6. The BCRP does not coincide with the LOP, i.e., P
(
w∗
n = w∗) �= 1.

A6 just states thatw∗
n = w∗ holds only with probability lower than 1. This assump-

tion is trivial, since otherwise we would not have any estimation risk at all.
Let X be any positive random vector that has the same distribution as the vectors

X1, X2, . . . of price relatives and define the following quantities:

• ϕ(w) := E
(
logw′X

)
,

• ϕn(w) := E
( 1
n

∑n
t=1 logw′Xt

)
, and

• ϕn+1(w) := E
(
logw′Xn+1

)
.

Hence, by substituting w with w∗ or w∗
n , respectively, we can see that

• ϕ(w∗) is the expected log-return on the LOP,
• ϕn(w

∗
n) represents the expected in-sample average log-return on the BCRP, and

• ϕn+1(w
∗
n) denotes the expected out-of-sample log-return on the BCRP.

The investor cannot achieve ϕ(w∗) because the LOP is unknown to him. Instead, he
maximizes the average log-return 1

n

∑n
t=1 logw∗′

n Xt in order to compute the BCRP.
At the end of Day n he applies the BCRP and one day later he obtains the log-return
logw∗′

n Xn+1. For this reason, ϕn+1(w
∗
n) may be considered the basic performance

measure for w∗
n .

The following theorem describes why the BCRP might lead to wrong conclusions
in real-life situations, especially if the number of observations, n, is small.

Theorem 3 ϕn+1(w
∗
n) < ϕ(w∗) < ϕn(w

∗
n)

Proof By definition, w∗ is the element of S that maximizes the expected log-return.
Moreover, due to A5 and A6, and the fact that w∗ is unique, we have that

E
(
logw′Xn+1 | w∗

n = w
) = E

(
logw′Xn+1

) ≤ E
(
logw∗′Xn+1

)

with probability 1 but E
(
logw′Xn+1

)
< E

(
logw∗′Xn+1

)
with positive probability.

From the Law of Total Expectation and the stationarity of
{
Xt

}
we conclude that

ϕn+1(w
∗
n) = E

(
E

(
logw∗′

n Xn+1 | w∗
n

))

< E
(
logw∗′Xn+1

) = E
(
logw∗′X

) = ϕ(w∗) .

5 This follows from Cochran’s Theorem and represents a special result of Basu’s Theorem.
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10 G. Frahm

Moreover, since w∗
n is unique and does not coincide with w∗, we have that

P

(
1

n

n∑

t=1

logw∗′
n Xt ≥ 1

n

n∑

t=1

logw∗′Xt

)

= 1

and

P

(
1

n

n∑

t=1

logw∗′
n Xt >

1

n

n∑

t=1

logw∗′Xt

)

> 0.

This means that

ϕn(w
∗
n) = E

(
1

n

n∑

t=1

logw∗′
n Xt

)

> E

(
1

n

n∑

t=1

logw∗′Xt

)

= E
(
logw∗′X

) = ϕ(w∗) .

��
Hence, the expected out-of-sample log-return on the BCRP, ϕn+1(w

∗
n), is always

lower than the expected log-return on the LOP, i.e., ϕ(w∗). Nonetheless, the investor
typically overestimates not only ϕn+1(w

∗
n) but even ϕ(w∗) when computing ϕn(w

∗
n)

by maximizing 1
n

∑n
t=1 logw′Xt . This phenomenon is not limited to the BCRP. It is a

general problem of portfolio optimization (see, e.g., Frahm 2015; Frahm andMemmel
2010; Kan and Zhou 2007; Memmel 2004).

4.2 Large-sample properties

4.2.1 Consistency

For the subsequent analysis it is convenient to define the function x �→ fw(x) :=
logw′x for all w ∈ S and x > 0 as well as the functions

w �→ M(w) := E
(
fw(X)

)
and w �→ Mn(w) := 1

n

n∑

t=1

fw(Xt )

for all n ∈ N. We make the following statistical assumption, which is often used in
the theory of empirical processes (see, e.g., van der Vaart 1998, Chapter 19):

A7. The family F = {
fw

}
w∈S is Glivenko-Cantelli, i.e.,

sup
w∈S

|Mn(w) − M(w)| → 0 .

Hence, the Strong Law of Large Numbers shall hold true for the sequence
{
Mn(w)

}

uniformly in S. For example, according to van der Vaart (1998, p. 46), it is sufficient
to guarantee that
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Statistical properties of estimators for the LOP 11

(i) w stems from a compact set,
(ii) the elements of F are continuous for every x > 0, and
(iii) they are dominated by an integrable function,

provided X1, X2, . . . are serially independent.6 The first two properties are clearly
satisfied in our context. In order to see that the third property is satisfied, too, note that

− 1′(log x)− ≤ w′ log x ≤ logw′x ≤ log 1′x

for all x > 0, where (log x)− denotes the negative part of the vector log x . Hence, the
function

x �→ g(x) = max
{
1′(log x)−, log 1′x

}

dominates each fw. Since E
(| logw′Xt |

)
< ∞ for all w ∈ S, we have that

E
(| log Xit |

)
< ∞ and thusE

(
1′(log Xt )

−)
< ∞.Moreover, note thatE

(
logw′Xt

)
<

∞ for w = 1/N and 1′Xt > 1 because X0t = 1. Hence, we obtain

∞ > log N + E
(
log

1′Xt

N

)
= E

(
log N + log

1′Xt

N

)
= E

(
log 1′Xt

)
.

The maximum of two nonnegative and integrable random variables is also integrable.
Thus, we conclude that E

(
g(Xt )

)
< ∞, i.e., the dominating function g is integrable.

At the beginning of Sect. 2 it has already been mentioned that each statement
that refers to a random quantity is meant to be true with probability 1. The next
theorem asserts that the BCRP is strongly consistent for the LOP. This means that w∗

n
converges almost surely to w∗, which is simply denoted by “w∗

n → w∗,” i.e., without
the additional remark “a.s.,” for convenience.

Theorem 4 w∗
n → w∗

Proof The BCRP w∗
n represents an M-estimator, whose criterion functions are given

byM andMn . Let ε be any positive real number andPε := {
w ∈ S : ‖w−w∗‖ = ε

}
.7

Since M is strictly concave, there exists some δ > 0 such that M(w∗) − M(w) > δ

for all w ∈ Pε. Now, since F is Glivenko-Cantelli, we can find a sufficiently large
number m ∈ N such that, for all natural numbers n ≥ m, |Mn(w

∗) − M(w∗)| ≤ δ/2
and |Mn(w)− M(w)| ≤ δ/2 for all w ∈ Pε. Thus, Mn(w) < Mn(w

∗) for all w ∈ Pε.
Since Mn is strictly concave, too, we have that ‖w∗

n − w∗‖ < ε for all n ≥ m. This
holds true for every ε > 0 and thus w∗

n → w∗. ��
The next theorem asserts that the expected out-of-sample log-return on the BCRP

converges to the expected log-return on the LOP.

Theorem 5 ϕn+1(w
∗
n) → ϕ(w∗)

6 See also Example 19.8 in van der Vaart (1998).
7 Here, “Pε” stands for “ε-periphery.” Note that it contains only those w with distance ε to w∗ that belong
to S.
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12 G. Frahm

Proof Theorem 4 and the Continuous Mapping Theorem reveal that logw∗′
n x →

logw∗′x for all x > 0. Further, we already know that there exists an integrable
function x �→ g(x) such that | fw(x)| ≤ g(x) for all w ∈ S and x > 0. Hence, by the
Dominated Convergence Theorem, we obtain

ϕn+1(w
∗
n) = E

(
logw∗′

n Xn+1
) → E

(
logw∗′Xn+1

) = E
(
logw∗′X

) = ϕ(w∗) .

��
Finally, also the in-sample average log-return on the BCRP converges to the

expected log-return on the LOP as the number of observations grows to infinity.

Theorem 6 1
n

∑n
t=1 logw∗′

n Xt → ϕ(w∗)

Proof The statement is equivalent to |Mn(w
∗
n) − M(w∗)| → 0. Thus, it suffices to

demonstrate that

∣∣Mn(w
∗
n) − M(w∗

n)
∣∣ → 0 and

∣∣M(w∗
n) − M(w∗)

∣∣ → 0.

The former is an immediate consequence of A7. Moreover, the Dominated Conver-
gence Theorem tells us that M(wn) → M(w) for every sequence {wn} with wn ∈ S
such that wn → w ∈ S. This means that M is continuous at each w ∈ S. Theorem 4
and the Continuous Mapping Theorem complete the proof. ��

4.2.2 Asymptotic distribution

In this section, the asymptotic distribution of
√
n

(
w∗
n − w∗) is established. This can

be done for all dimensions of w∗ that are not bounded by S, i.e., E
(
Xit/w

∗′Xt
) = 1.

As already explained at the end of Sect. 3, each other component of w∗ is bounded
by the simplex. If w∗

i = 0 represents such a component, i.e., E
(
Xit/w

∗′Xt
)

< 1, it is
well-known that

√
n (w∗

in − w∗
i ) = √

n w∗
in

p→ 0 ,

i.e., w∗
in is superconsistent. However, not all components of the LOP can be affected

by the given constraints on the portfolio weights. Indeed, we must have that
E

(
Xit/w

∗′Xt
) = 1 for at least one asset because otherwise the KKT conditions given

by Theorem 1 cannot be satisfied. Thus, we can reduce the asset universe until there
is no portfolio weight that is bounded by S. The riskless asset need not be part of the
reduced asset universe. However, in order to avoid the trivial solution w∗

n = 1, there
should be at least two remaining assets in the universe.

Hence, we assume that the given asset universe has been reduced such that
E

(
Xt/w

∗′Xt
) = 1. This guarantees that

(w − w∗)′∇M(w∗) = (w − w∗)′E
(

X

w∗′X

)
= 0 .
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Statistical properties of estimators for the LOP 13

This means that the function M can be locally approximated at w∗ by

M(w) = M(w∗) + 1

2
(w − w∗)′∇2M(w∗)(w − w∗) + o

(‖w − w∗‖2).

From the Monotone Convergence Theorem we conclude that the Hessian is given by

∇2M(w∗) = −E
(

XX ′

(w∗′X)2

)
.

The following assumption implies that the Hessian is finite. Finally, A3 guarantees
that ∇2M(w∗) is negative definite.

A8. The second moments of Xt/(w
∗′Xt ) are finite.

Further, we have to make the following assumptions:

A9. The function fw can be locally approximated at w∗ by

fw(Xt ) = fw∗(Xt ) + (w − w∗)′
(

Xt

w∗′Xt

)
+ ‖w − w∗‖ r(Xt ;w),

where the process
{
r(Xt ;w)

}
is stochastically equicontinuous. This means that

for every ε > 0 and η > 0 there exists a neighborhood U of w∗ in the simplex
S such that

lim sup
n→∞

P
∗
(

sup
w∈U

∣∣∣∣∣
√
n

(
1

n

n∑

t=1

r(Xt ;w) − E
(
r(X;w)

)
)∣∣∣∣∣

> η

)

< ε,

where P∗ is an outer measure associated with P.
A10. We have that

√
n

(
1

n

n∑

t=1

Xt

w∗′Xt
− 1

)

� N
(
0, A

)
.8

A9 is a basic regularity condition, which guarantees that the remainder r(Xt , w)

of the linear approximation becomes negligible as n → ∞. To be more precise, it
requires that

√
n
(
Mn(w) − M(w)

) ≈ √
n
(
Mn(w

∗) − M(w∗)
) + √

n (w − w∗)′
(
1

n

n∑

t=1

Xt

w∗′Xt
− 1

)

8 Here, “�” denotes convergence in distribution.
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14 G. Frahm

if the sample size, n, is large and w is close to w∗.9 Further, A10 says that the process{
Xt/w

∗′Xt
}
satisfies the Central Limit Theorem. In particular, if the elements of

{
Xt

}

are serially independent, we obtain the asymptotic covariance matrix

A = Var
(

X

w∗′X

)
= E

(
XX ′

(w∗′X)2

)
− 11′.

Nonetheless, we could take also any form of serial dependence into account, provided
the Central Limit Theorem expressed byA10 is satisfied. There exist many strongmix-
ing conditions that guarantee that this theorem holds true for the process

{
Xt/w

∗′Xt
}

(see, e.g., Bradley 2005).
Suppose that � ⊆ R

d is any parameter set and let θ ∈ � be the “true” parameter.
The tangent cone at θ is the set that we obtain after centering � at θ , blowing it up
by some factor τ > 0, and taking the set limit for τ → ∞ (Geyer 1994, p. 1993). In
order to study the asymptotic behavior of a sequence {θn} of global optimizers that
converges to θ it is crucial to guarantee that the parameter set � is Chernoff regular
(Geyer 1994), viz.

lim inf
τ→∞ τ

(
� − θ

) = lim sup
τ→∞

τ
(
� − θ

) =: lim
τ→∞ τ

(
� − θ

)
.

In our context, the parameter θ corresponds to w∗ ∈ S, which represents the global
solution of the convex optimization problem expressed by Definition 1. The simplex
S is Chernoff regular and so let TS(w∗) := limτ→∞ τ

(
S − w∗) be the tangent cone

of the simplex at w∗.10
Consider any random vector Y ∼ N

(
0, A

)
and define the function

ζ �→ �Y (ζ ) := ζ ′Y − 1

2
ζ ′E

(
XX ′

(w∗′X)2

)
ζ , ζ ∈ R

N+1.

The (unique) maximizer of �Y is denoted by

ζ ∗ := argmaxζ∈TS (w∗) �Y (ζ ) .

The following theorem describes the asymptotic behavior of the BCRP.

Theorem 7 We have that

√
n

(
w∗
n − w∗) � argmaxζ∈TS (w∗) ζ ′N

(
0, A

) − 1

2
ζ ′E

(
XX ′

(w∗′X)2

)
ζ .

Proof The theorem asserts that
√
n

(
w∗
n − w∗) � ζ ∗, which is an immediate conse-

quence of Theorem 4.4 in Geyer (1994). ��
9 Remember that E

(
Xt/w

∗′Xt
) = 1 holds true by construction.

10 We could imaginew∗ ∈ S seeing through a microscope and increasing by and by the magnification. The
visible part of S aroundw∗ converges to TS (w∗), i.e., τ

(
S −w∗) → TS (w∗), in the Painlevé-Kuratowski

sense.
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Statistical properties of estimators for the LOP 15

Hence, if the sample size is large,
√
n

(
w∗
n − w∗) behaves essentially like the

solution of a relatively simple quadratic optimization problem. In the case in which
the elements of

{
Xt

}
are serially independent, we obtain

√
n

(
w∗
n − w∗) � argmaxζ∈TS (w∗) ζ ′N

(
0,Var

(
X

w∗′X

))
− 1

2
ζ ′E

(
XX ′

(w∗′X)2

)
ζ .

The following corollary establishes the long-run distribution of the log-return on
the BCRP relative to the log-return on the LOP.

Corollary 1

log
Vw∗

nn

Vw∗n
� ζ ∗′N

(
0, A

) − 1

2
ζ ∗′E

(
XX ′

(w∗′X)2

)
ζ ∗.

Proof Note that

Mn(w
∗
n) = 1

n

n∑

t=1

logw∗′
n Xt and Mn(w

∗) = 1

n

n∑

t=1

logw∗′Xt ,

i.e.,

n
(
Mn(w

∗
n) − Mn(w

∗)
) =

n∑

t=1

log
w∗′
n Xt

w∗′Xt
= log

Vw∗
nn

Vw∗n
.

The rest of the proof follows from Theorem 4.4 in Geyer (1994). ��
This completes our analysis of the BCRP. In the next section we focus on the MVE

and derive its corresponding statistical properties.

5 Themean-variance estimator

Consider some portfolio w ∈ S and let w̃ = (w1, w2, . . . , wN ) be the “risky part”
of that portfolio. The return on Asset i after Day t is given by Rit = Xit − 1 and so
the return on w amounts to Rwt = w̃′Rt , where Rt = (R1, R2, . . . , RN ) denotes the
vector of risky asset returns.11 The assumptions A1 to A10 shall still hold true. Now,
we make the following additional assumption:

B1. The second moments of Rt are finite.

Let R be any random vector that has the same distribution as R1, R2, . . . . Define
μ := E(R) and � := E(RR′). Note that the matrix � contains the second noncentral
moments of the risky asset returns and thus it is not the covariance matrix of R. We
already know that A3 guarantees that there cannot be any w̃ ∈ R

N with w̃ �= 0 such
that w̃′R = c ∈ R, i.e., � is positive definite.

11 Remember that the risk-free interest rate is supposed to be zero without loss of generality.
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16 G. Frahm

Now, we may apply the quadratic approximation log(1 + r) ≈ r − 1
2r

2 and come
to the conclusion that

E
(
log(1 + Rwt )

) ≈ E
(

w̃′Rt − 1

2
(w̃′Rt )

2
)

= w̃′μ − 1

2
w̃′� w̃ . (2)

This section is build upon the observation that this approximation is very good in most
practical applications. Hence, instead of maximizing the expected log-return, we can
simply maximize the objective function w �→ w̃′μ − 1

2 w̃′� w̃.12 In the following,
this objective function is called “mean-variance” although � contains the second
noncentral moments of R and so it does not coincide with the covariance matrix
Var(R).

Definition 3 A mean-variance optimal portfolio is a portfolio w� ∈ S that maximizes
the mean-variance objective function, i.e.,

w� ∈ argmaxw∈S w̃′μ − 1

2
w̃′� w̃ .

Some important remarks may be appropriate at this point:

• The vector w� is called mean-variance optimal, although � is not a covariance
matrix. However, in most practical applications, � is close to Var(R) whenever
R is a vector of daily asset returns.

• We focus on the feasible set S only because w� serves as an approximation of the
LOP. However, in general a mean-variance optimal portfolio need not be restricted
to S.

• Under general (but quite technical) regularity conditions, the MVOP can be con-
sidered an approximation of the GOP (Karatzas and Kardaras 2007). Nonetheless,
due to the reasons explained in Sect. 3, we should refrain from calling w� “GOP.”

Now, the Lagrange function of the optimization problem expressed by Definition 3
is

L(w, κ, λ) = − w̃′μ + 1

2
w̃′� w̃ − κ ′w + λ(1′w − 1).

The following theorem is analogous to Theorem 2.

Theorem 8 The MVOP exists and is unique. It is characterized by w� ∈ S such that
the i th component of μ − � w̃� is

{= λ, w�
i > 0

≤ λ, w�
i = 0

, λ ≥ 0 .

12 Note that the domain of the objective function is S but its value is determined only by the “risky part”
of w, i.e., w̃.
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Statistical properties of estimators for the LOP 17

Proof The objective function

w̃ �→ w̃′μ − 1

2
w̃′� w̃

is strictly concave and the given set of constraints on the portfolio weights
w1, w2, . . . , wN , i.e., w̃ ≥ 0 and 1′w̃ ≤ 1, is closed and convex. Hence, the “risky
part” of w�, i.e., w̃�, exists and is unique, which means that w� exists and is unique,
too. Thus, we must have that

[
0

μ − � w̃�

]
= λ1 − κ

with w� ∈ S, λ ∈ R, κ = (κ0, κ1, . . . , κN ) ≥ 0, and w�
i κi = 0 for i = 0, 1, . . . , N . It

follows that λ = κ0 ≥ 0. ��

The next corollary shows how to identify the components of w� that are bounded
by S. This will be helpful later on.

Corollary 2 The numberλ in Theorem 8 is uniquely determined byλ = w̃�′(μ−� w̃�
)
.

Moreover, the portfolio weight

• w�
0 is bounded by S if and only if λ > 0, whereas

• w�
i is bounded by S if and only if the i th component of μ − � w̃� is lower than λ.

Proof The proof of Theorem 8 reveals that w̃�′(μ − � w̃�
) = λ = κ0. Since w� is

unique, the same holds true for λ. Moreover,w�
0 is bounded by S if and only if κ0 > 0,

i.e., λ > 0, whereas w�
i is bounded by S if and only if κi > 0, i.e., the i th component

of μ − � w̃� is below λ. ��

In the following, let

μn := 1

n

n∑

t=1

Rt and �n := 1

n

n∑

t=1

Rt R
′
t

be the moment estimators for μ and �. Now, we are ready to define the MVE for w�,
which serves also as an estimator for the LOP w∗.

Definition 4 A mean-variance estimator for w� is a portfolio w�
n ∈ S that maximizes

the in-sample mean-variance objective function, i.e.,

w�
n ∈ argmaxw∈S w̃′μn − 1

2
w̃′�nw̃ .
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18 G. Frahm

5.1 Small-sample properties

5.1.1 Existence and uniqueness

Let R = [
R1 R2 . . . Rn

]
be the sample of risky asset returns. A4 implies that we

cannot find any w̃ ∈ R
N with w̃ �= 0 such that R′w̃ = 0. Hence, we have that

w̃′�nw̃ = w̃′
(
1

n

n∑

t=1

Rt R
′
t

)

w̃ = w̃′RR′w̃
n

> 0

for all w̃ ∈ R
N with w̃ �= 0, which means that �n is positive definite.

The following corollary is a straightforward consequence of Theorem 8 and thus
its proof can be skipped.

Corollary 3 The MVE exists and is unique. It is characterized by w�
n ∈ S such that the

i th component of μn − �nw̃
�
n is

{= λn, w�
in > 0

≤ λn, w�
in = 0

, λn ≥ 0 .

Numerical procedures for solving quadratic optimization problems exist in abun-
dance and so it is easy to compute w�

n even if the number of dimensions is high. Two
points, which are discussed in more detail in Sect. 6, are worth emphasizing:

(i) The estimates w∗
in and w�

in are indistinguishable in most real-life situations.13

Put another way, the MVE leads to a very good approximation of the BCRP.
(ii) Cover’s algorithm (1984) for w∗

n is slow compared to quadratic optimization
algorithms for w�

n . In particular, this holds true in the high-dimensional case.

5.1.2 Finite-sample bias

Let wn be any portfolio that is constructed on the basis of the asset returns
R1, R2, . . . , Rn . We know that the quantity w̃′

n Rn+1 − 1
2

(
w̃′
n Rn+1

)2 approximates
the out-of-sample log-return on wn and thus we call

E
(

w̃′
n Rn+1 − 1

2

(
w̃′
n Rn+1

)2
)

the expected out-of-sample performance of wn . As already mentioned before, it is
reasonable to presume that wn is stochastically independent of Rn+1. Otherwise, the
investment decision at time t would depend on some asset returns that occur one day
later, which is usually considered implausible in finance theory. Thus, we obtain the

13 When using daily asset returns, the portfolio weights typically differ only from the fourth digit.
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conditional expectation

E
(

w̃′
n Rn+1 − 1

2

(
w̃′
n Rn+1

)2 | wn

)
= w̃′

nE
(
Rn+1 | wn

)

︸ ︷︷ ︸
=μ

− 1

2
w̃′
nE

(
Rn+1R

′
n+1 | wn

)

︸ ︷︷ ︸
=�

w̃n

= w̃′
nμ − 1

2
w̃′
n� w̃n,

which can be viewed as the out-of-sample performance of wn . Correspondingly, due
to the Law of Total Expectation, its expected out-of-sample performance is

φn+1(wn) := E
(

w̃′
n Rn+1 − 1

2

(
w̃′
n Rn+1

)2
)

= E
(

w̃′
nμ − 1

2
w̃′
n� w̃n

)
.

The latter expectation is a basic performance measure in portfolio optimization (see,
e.g., Frahm 2015; Kan and Zhou 2007; Markowitz and Usmen 2003).14 Hence, as
already mentioned before, it is an implicit assumption of portfolio theory that wn is
stochastically independent of Rn+1.

If wn ≡ w is a fixed portfolio, we have that φn+1(w) = w̃′μ − 1
2 w̃′� w̃. In this

case we may drop the prefix “expected out-of-sample” and just say that φn+1(w) is
the performance of w. Further, then we can simply write φ(w) instead of φn+1(w). In
particular,

φ(w�) = w̃�′μ − 1

2
w̃�′� w̃�

represents the performance of the MVOP.
Hence, the following assumptions, which are analogous to A5 and A6, are made:

B2. The MVE w�
n is stochastically independent of Rn+1.

B3. The MVE does not coincide with the MVOP, i.e., P(w�
n = w�) �= 1.

Due to B2 the expected out-of-sample performance of the MVE amounts to

φn+1(w
�
n) = E

(
w̃�′
n μ − 1

2
w̃�′
n � w̃�

n

)
.

Finally, w̃′
nμn − 1

2 w̃
′
n�nw̃n represents the in-sample performance of the portfolio wn

and thus

φn(w
�
n) := E

(
w̃�′
n μn − 1

2
w̃�′
n �nw̃

�
n

)

is the expected in-sample performance of the MVE.
The following theorem is similar to Theorem 3.

Theorem 9 φn+1(w
�
n) < φ(w�) < φn(w

�
n)

14 Some authors use the covariance matrix of R instead of � = E(RR′).
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Proof By definition, w� is the portfolio that maximizes the performance. Due to B2
and B3, we conclude that

φn+1(w
�
n) = E

(
w̃�′
n μ − 1

2
w̃�′
n � w̃�

n

)
< w̃�′μ − 1

2
w̃�′� w̃� = φ(w�) .

Moreover, since w�
n is unique and does not coincide with w�, we have that

P

(
w̃�′
n μn − 1

2
w̃�′
n �nw̃

�
n ≥ w̃�′μn − 1

2
w̃�′�nw̃

�

)
= 1

and

P

(
w̃�′
n μn − 1

2
w̃�′
n �nw̃

�
n > w̃�′μn − 1

2
w̃�′�nw̃

�

)
> 0 ,

which means that

φn(w
�
n) = E

(
w̃�′
n μn − 1

2
w̃�′
n �nw̃

�
n

)
> E

(
w̃�′μn − 1

2
w̃�′�nw̃

�

)

= w̃�′μ − 1

2
w̃�′� w̃� = φ(w�) .

��

Theorem 9 shows that we still suffer from the same problems that we have already
found for the BCRP. This means that the in-sample performance of the MVE typically
overestimates its expected out-of-sample performance and even the performance of
the MVOP.

5.2 Large-sample properties

5.2.1 Consistency

The next assumption requires that
{
Rt

}
and

{
Rt R′

t

}
obey the Strong Law of Large

Numbers. This holds true under very mild regularity conditions. If R1, R2, . . . are seri-
ally independent, B1 is already sufficient. However, there exist much weaker mixing
conditions, which guarantee that the Strong Law of Large Numbers is satisfied both
for

{
Rt

}
and for

{
Rt R′

t

}
. These mixing conditions are typically discussed in ergodic

theory (see, e.g., Davidson 1994).

B4. The estimators μn and �n are strongly consistent for μ and �, i.e., μn → μ

and �n → �.

Theorem 10 w�
n → w�
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Proof Note that

w�
n = argmaxw∈S w̃′μn − 1

2
w̃′�nw̃

represents a function of μn and �n . Since S is convex, this function is continu-
ous in μn and �n . From B4 and the Continuous Mapping Theorem it follows that
w�
n → w�. ��
The next theorem is analogous to Theorem 5.

Theorem 11 φn+1(w
�
n) → φ(w�)

Proof The objective function w �→ w̃′μ − 1
2 w̃′� w̃ is continuous in w ∈ S and

the set S is compact. From the Extreme Value Theorem we conclude that it has a
minimum, a, and a maximum b. Hence, w �→ max

{|a|, |b|} is a dominating function
and it is clearly integrable. We already know that w�

n → w� and from the Dominated
Convergence Theorem it follows that

φn+1(w
�
n) = E

(
w̃�′
n μ − 1

2
w̃�′
n � w̃�

n

)
→ w̃�′μ − 1

2
w̃�′� w̃� = φ(w�) .

��
Moreover, analogous toTheorem6, theContinuousMappingTheorem immediately

implies that

w̃�′
n μn − 1

2
w̃�′
n �nw̃

�
n → w̃�′μ − 1

2
w̃�′� w̃� = φ(w�),

i.e., the in-sample performance of the MVE converges to the performance of the
MVOP.

5.2.2 Asymptotic distribution

Now, the asymptotic distribution of
√
n (w�

n −w�) is derived. If some portfolio weight
w�
i is bounded by S it must be zero and the associated MVE is superconsistent, i.e.,√
n w�

in
p→ 0. Hence, in order to derive the asymptotic distribution of

√
n (w�

n − w�),
we must guarantee that no component of theMVOPw� is bounded by S. According to
Corollary 2, this holds true if and only if μ − � w̃� = 0, i.e., w̃� = �−1μ. However,
in practical situations it often happens that the weight of the riskless asset, w�

0, is
bounded by S, which means that the Lagrange multiplier λ in Theorem 8 is positive.
In this case, we must abandon the riskless asset from our asset universe and focus on
the risky assets. Then the MVOP is simply characterized by w̃� ∈ S such that the i th
component of μ − � w̃� is

{= λ, w�
i > 0

≤ λ, w�
i = 0
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with λ > 0. Thus, in the case in which the riskless asset has been removed, we assume
that the remaining asset universe is such that μ − � w̃� = λ1 for any λ > 0.

Consider the family F = {
fw

}
w∈S with

r �→ fw(r) = w̃′r − 1

2
(w̃′r)2

for all w ∈ S and r ∈ R
N . Further, define the functions

w �→ F(w) := E
(
fw(R)

) = w̃′μ − 1

2
w̃′� w̃

and

w �→ Fn(w) := 1

n

n∑

t=1

fw(Rt ) = w̃′μn − 1

2
w̃′�nw̃ .

It is obvious that the function F can be locally approximated at w� by

F(w) = F(w�) − 1

2
(w̃ − w̃�)′� (w̃ − w̃�),

where � is positive definite.
The next regularity conditions are analogous to A9 and A10:

B5. The function fw can be locally approximated at w� by

fw(Rt ) = fw�(Rt ) + (w̃ − w̃�)′
(
Rt − Rt R

′
t w̃

�
) + ‖w̃ − w̃�‖ r(Rt ; w̃),

where the process
{
r(Rt ; w̃)

}
is stochastically equicontinuous.

B6. We have that

√
n

(
μn − μ

) − √
n

(
�n − �

)
w̃� � N

(
0, B

)
.

Once again, B5 guarantees that the remainder r(Xt , w) of the linear approximation
becomes negligible as n → ∞. Further, B6 requires the joint asymptotic normality
of the given estimators for μ and � after the usual standardization. Since μn and �n

represent the moment estimators of μ and �, basically it states that
{
Rt − Rt R′

t w̃
�
}

should satisfy the Central Limit Theorem.15

The latter assumption indicates that we can decompose the estimation risk into two
parts:

(i)
√
n

(
μn − μ

)
represents the estimation risk that can be attributed to μ, whereas

(ii)
√
n

(
�n − �

)
w̃� stands for the estimation risk that is related to �.

15 See also the explanations about the Central Limit Theorem regarding A10.
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Note that such a risk decomposition cannot be accomplished for the BCRP.
In some cases it is possible to calculate the asymptotic covariance matrix B in B6.

For example, if R1, R2, . . . are serially independent and normally distributed, we have
that

B = (1 − w̃�′μ)2 � − (1 − w̃�′μ)(� w̃�)μ′ − (1 − w̃�′μ)μ(� w̃�)′

+(
w̃�′� w̃�

) (
� + μμ′) + (

� w̃�
)(

� w̃�
)′
,

where � = � − μμ′ denotes the covariance matrix of R.16 More precisely, we can
apply the decomposition B = Bμ + B� , where

Bμ = � −
[(

� w̃�
)
μ′ + 2(w̃�′μ)� + μ

(
� w̃�

)′]

quantifies the estimation risk that is associated with μ and

B� = (w̃�′μ)2 � + (w̃�′μ)(� w̃�)μ′ + (w̃�′μ)μ(� w̃�)′ + (
w̃�′� w̃�

)(
� + μμ′)

+(
� w̃�

)(
� w̃�

)′

measures the estimation risk related to �. Similar results can be obtained if we
assume that R has an elliptical distribution possessing heavy tails and tail dependence.
Alternatively, we could apply a (block) bootstrap (see, e.g., Politis 2003) in order to
approximate B, or even Bμ and B� , without making any parametric assumption.

Consider any random vector Z ∼ N
(
0, B

)
. Now, we may define

ς �→ �Z (ς) := ς̃ ′Z − 1

2
ς̃ ′� ς̃, ς ∈ R

N+1,

with ς = (ς0, ς1, . . . , ςN ) and ς̃ = (ς1, ς2, . . . , ςN ). The (unique) maximizer of�Z

is given by

ς� = argmaxς∈TS (w�) �Z (ς) .

The following theorem clarifies the asymptotic behavior of the MVE. This result
follows by the same arguments that were used for Theorem 7 and so the proof can be
skipped.

Theorem 12 We have that

√
n

(
w�
n − w�

)
� argmaxς∈TS (w�) ς̃ ′N

(
0, B

) − 1

2
ς̃ ′� ς̃ .

In the case in which the riskless asset has been removed from the asset universe,
we may consider the (unique) maximizer

ς̃ � = argmaxς̃∈TS (w̃�) ς̃ ′Z − 1

2
ς̃ ′� ς̃

16 The derivation of B can be found in the “Appendix”.
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and then Theorem 12 reads

√
n

(
w̃�
n − w̃�

)
� argmaxς̃∈TS (w̃�) ς̃ ′N

(
0, B

) − 1

2
ς̃ ′� ς̃ .

6 Some practical remarks

6.1 Computational issues

Cover’s (1984) algorithm for the BCRP is simple and works like this:

(i) Choose any initial portfolio w(0) ∈ S and set k ← 0.
(ii) Update the portfolio according to

w(k+1) = w(k)� 1

n

n∑

t=1

Xt

w(k)′Xt

and set k ← k + 1.17

(iii) Repeat the second step until the largest component of the vector

1

n

n∑

t=1

Xt

w(k)′Xt

falls below a critical threshold just above 1.

The computations made during this work are based on MATLAB. The critical
threshold for the BCRP is exp 10−6. Further, the MOSEK optimization toolbox for
MATLAB is used in order to compute the MVE, which proves to be very fast and reli-
able. It turns out that the BCRP, w∗

n , and the MVE, w�
n , are almost identical. However,

computing w�
n by quadratic optimization is much faster. In order to demonstrate these

statements, we can simulate n independent and identically distributed vectors of daily
asset returns R1, R2, . . . , Rn ∼ N

(
μ,�

)
with

μ = 0.1

250
1 and � = 0.22

250

(
0.3 11′ + 0.7 IN

)
. (3)

Let us assume that the number of risky assets is N = 100 and the number of daily
observations is n = 250. In this case, both w∗

0 and w�
0 are bounded by S, i.e., w∗

0 =
w�
0 = 0. Thus, we abandon the riskless asset from the asset universe.
The numerical simulations are done 100 times. Each time Cover’s algorithm for w̃∗

n
and the quadratic optimizer for w̃�

n is applied. On average, Cover’s algorithm needs
5.5914 s, whereas MOSEK takes only 0.0103 s.18 The supremum norm of w̃∗

n − w̃�
n

is 0.0173. Although Cover’s algorithm is much slower than the quadratic optimizer,

17 Here, “�” denotes the Hadamard, i.e., componentwise, matrix product.
18 The computations are done on a Windows Laptop with Intel Core i7-5500U CPU (2.4 GHz).
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the outcome of the latter turns out to be slightly better: The quadratic optimizer leads
to an annualized average log-return of 0.4892, whereas Cover’s algorithm yields only
0.4890 per year. That is, the quadratic optimizer comes even closer to the (true) BCRP
than Cover’s algorithm. In fact, the average log-returns produced by the quadratic
optimizer are always better than those of Cover’s algorithm. Hence, w̃�

n dominates w̃∗
n

in a numerical sense. Moreover, Cover’s algorithm is very slow in high dimensions,
whereas the quadratic optimizer works well even for N = 1000 and n = 2500, in
which case the computational time for w̃�

n is still below 1 s.
There is another computational issue. For applying the asymptotic results derived in

Sect. 4.2.2 we have to simulate the random vector Y ∼ N (0, A), where the covariance
matrix A appears in A10. The problem is that A is singular. More precisely, we have
that

w̃∗′A w̃∗ = w̃∗′E
(

XX ′

(w̃∗′X)2

)
w̃∗ − w̃∗′11′w̃∗ = E

(
(w̃∗′X)2

(w̃∗′X)2

)
− 12 = 0,

which means that A is not positive definite. Thus, we have to apply a matrix decompo-
sition in order to simulate Y . This issue does not arise when applying the asymptotic
results derived in Sect. 5.2.2, in which case we must simulate the random vector
Z ∼ N (0, B). As alreadymentioned in Sect. 5.2.2, we can even provide a closed-form
expression for B in many standard situations. The principal approach is demonstrated
in the “Appendix”.

To sum up, the quadratic approximation proposed at the beginning of Sect. 5 works
very well and, in contrast to the BCRP, the MVE does not suffer from computational
issues. For this reason, we focus on w̃�

n in the following discussion.

6.2 Statistical inference

Let us assume that the elements of
{
Rt

}
are serially independent and normally dis-

tributed. To keep things as simple as possible, we may choose the parameterization in
Eq. 3. Further, let the number of risky assets be N = 2 and the number of observations
be n = 250.19 Once again, we generate 100 samples and with each one we compute a
realization of w̃�

n . On the upper left of Fig. 1 we can see that most of the estimates are
far away from w̃� = (0.5, 0.5). The vast majority of the estimates are boundary solu-
tions. More precisely, we have 50 estimates that equal (0, 1) and 41 that correspond
to (1, 0). The given result does not improve, essentially, if we increase the number of
observations to n = 2500 and it is still sobering even for 1 million observations. By
contrast, if we assume that μ was known, the estimates turn out to be much better (see
the lower part of Fig. 1). In particular, there is no more estimate at the boundary of the
simplex, and in the case of n = 106 observations the estimates are almost identical
with w̃�.

Are we able to replicate the finite-sample results by a large-sample approximation?
For this purposewe could useTheorem12and the expressions for Bμ and B� presented
in Sect. 5.2.2. The corresponding realizations of the synthetic estimator w̃∞

n := w̃� +
19 The weight of the riskless asset is still bounded by S and thus w�

0 = 0.
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Fig. 1 100 realizations of w̃�
n on the basis of 250, 2500, and 1 million daily observations (from left to right)

if μ is unknown (upper part) and if it is known (lower part)

ς̃ �/
√
n are depicted in Fig. 2. The upper left of this figure indicates that there are

90 realizations outside the simplex. This is because the large-sample approximation
is based on the maximizer ς̃ �, which belongs to the tangent cone of S at w̃�. Hence,
the support of w̃∞

n does not correspond to S. Similarly, there are 82 realizations of
w̃∞
n missing in the simplex on the upper center. By contrast, the simplex on the upper

right contains all 100 realizations of w̃∞
n . The picture changes essentially on the lower

part of Fig. 2, where it is assumed that μ is known. In this case, we cannot find any
realization of w̃∞

n outside S. Moreover, the large-sample approximation satisfyingly
reproduces the finite-sample results that are depicted on the lower part of Fig. 1.

The problem is that the expected asset returns are unknown in real life. However, we
can essentially improve the large-sample approximation by applying a finite-sample
correction in order to guarantee that the realizations always belong to the simplex.
We know from Theorem 12 that, if the sample size is large,

√
n

(
w̃�
n − w̃�

)
behaves

essentially like the maximizer, ς̃ �, of ς̃ �→ ς̃ ′Z − 1
2 ς̃ ′� ς̃ over the tangent cone of S

at w̃�. Hence, since the sample size is not large enough, we may substitute ς̃ � with

ς̃ �
n := argmaxς̃∈√

n (S−w̃�) ς̃ ′Z − 1

2
ς̃ ′� ς̃ .20

The corrected version of w̃∞
n reads w̃�

n := w̃� + ς̃ �
n/

√
n , which always belongs to the

simplex.

20 The constraint ς̃ ∈√
n (S − w̃�) can simply be implemented, numerically, by setting ς̃ ≥ −√

n w̃� and
1′ς̃ = 0.
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Fig. 2 100 realizations of w̃∞
n on the basis of 250, 2500, and 1 million daily observations (from left to

right) if μ is unknown (upper part) and if it is known (lower part)

Fig. 3 Empirical distribution functions of w�
1n (black line) versus w�

1n (green line) for 250, 2500, and 1
million observations (from left to right). (Color figure online)

In order to verify that the finite-sample correction works fine, we may compare
the empirical distribution functions of 10,000 realizations of w�

1n and w�
1n , where μ

is assumed to be unknown. We still have only N = 2 risky assets and the parameter-
ization is the same as before (see Eq. 3). The results are given in Fig. 3. Obviously,
the finite-sample correction serves its purpose. Indeed, the corrected large-sample
approximation is very accurate for all sample sizes.

Figure 3 reveals that most realizations of w̃�
n are either (0, 1) or (1, 0) unless the

sample size equals n = 106. The LOP corresponds to w̃� = (0.5, 0.5) and thus
it is precisely in between (0, 1) and (1, 0). It seems that estimating the LOP is a
mission impossible in real-life situations—at least without any prior information about
μ. Table 1 contains the probability that the realization of the MVE is a single-asset
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Table 1 Probability that w̃�
n is a

single-asset portfolio
N n

250 2500 5000 10000 106

0.817 0.527 0.337 0.216 0

50 0.698 0.264 0.135 0.055 0

100 0.652 0.224 0.121 0.046 0

500 – 0.196 0.081 0.030 0

1000 – 0.154 0.070 0.018 0

portfolio for different numbers of assets (N = 5, 50, 100, 500, 1000) and observations
(n = 250, 2500, 5000, 10,000, 106). The results are based on 1000 realizations of w̃�

n
for each combination of N and n. Note that the LOP always corresponds to the equally
weighted portfolio, i.e., w̃� = 1/N . The table shows that, in all practical applications,
the MVE proposes a single-asset portfolio with high probability although the LOP is
well-diversified. It is worth emphasizing that the results would not change essentially
if we substitute theMVEwith the BCRP, since these estimators for the LOP are almost
identical.

Now, in principle, we are able to construct hypothesis tests and compute confidence
regions. For example, we could try to apply a hypothesis test of the form H0 : w̃� = w̃�

0
vs. H1 : w̃� �= w̃�

0 for any w̃�
0 ∈ S even in the case of N > 2.21 However, in the light of

the previous results, we may doubt that any hypothesis test will ever lead to a rejection
or that a confidence region will ever be sufficiently small in real-life situations. This
conclusion might appear negative to the reader, but the author fears that this is the
price we sometimes have to pay in science.

7 Conclusion

A quadratic approximation of log-returns works very well on a daily basis. Thus, in
order to find the BCRP, we may focus on the MVE, which can easily be computed.
The corresponding algorithm is very fast even if the number of dimensions is high
and the results are even better compared to Cover’s algorithm for the BCRP. However,
in most practical applications, we typically overestimate the expected out-of-sample
performance of theMVE and even the performance of theMVOP. The same holds true
for the expected out-of-sample log-return on the BCRP and the expected log-return
on the LOP.

Both the BCRP and theMVE exist and are unique under mild regularity conditions.
Moreover, they are strongly consistent. Analogously, both their out-of-sample perfor-
mance measures and their in-sample performances converge to the performance of
the LOP or the MVOP, respectively, as the number of observations grows to infinity.
The given estimators for the LOP are even

√
n -consistent. In principle, the asymp-

totic results derived in this work can be used for constructing hypothesis tests and for

21 Note that w̃�
0 is not the weight of the riskless asset but some portfolio of N risky assets.
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computing confidence regions, but for this purpose one should apply a finite-sample
correction, which substantially improves the large-sample approximation.

However, it turns out that the impact of estimation risk concerning μ is tremen-
dous in most real-life situations. Estimating the LOP without having any prediction
power seems to be a futile undertaking. The estimators often lead to a single-asset
portfolio even if the LOP corresponds to the equally weighted portfolio and thus is
well-diversified. The given results confirm a general rule, which has become folklore
during the last decades, namely that portfolio optimization typically fails on estimating
expected asset returns.
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A The asymptotic covariancematrix

Here, the asymptotic covariance matrix B, which occurs in Sect. 5.2.2, is derived. We
assume that R1, R2, . . . are serially independent and normally distributed. Write

√
n

(
�n − �

) = √
n

[
(�n − μμ′) − (� − μμ′)︸ ︷︷ ︸

=�

]
,

where � is the covariance matrix of R. The empirical covariance matrix of
R1, R2, . . . , Rn is

�n = 1

n

n∑

t=1

(
Rt − μn

)(
Rt − μn

)′ = 1

n

n∑

t=1

Rt R
′
t − μnμ

′
n = �n − μnμ

′
n .

Thus, we obtain

√
n

(
�n − �

) = √
n

(
�n − �

) + √
n

(
μnμ

′
n − μμ′).

Note that

√
n

(
μnμ

′
n − μμ′) = √

n
(
μn − μ

)(
μn − μ

)′ + √
n

(
μnμ

′ + μμ′
n − 2μμ′),

where
√
n

(
μn − μ

)(
μn − μ

)′ vanishes (in probability) as n → ∞ and

√
n

(
μnμ

′ + μμ′
n − 2μμ′) = √

n (μn − μ)μ′ + μ
√
n (μn − μ)′.
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Thus, we conclude that

√
n

(
�n − �

) = √
n

(
�n − �

) + √
n (μn − μ)μ′ + μ

√
n (μn − μ)′ + o p(1) ,

where
√
n

(
μn − μ

)
and

√
n

(
�n − �

)
are asymptotically independent. Moreover,

the given terms converge to a joint normal distribution. The asymptotic covariance
matrix of

√
n vec

(
�n − �

)
is

(
IN2 + KN2

)(
� ⊗ �

)
, where the vec operator stacks the

columns of a matrix on top of one another, IN2 is the N 2 × N 2 identity matrix, KN2

is the N 2 × N 2 commutation matrix, and “⊗” denotes the Kronecker matrix product.
According to Magnus and Neudecker (1979, Eq. 2.1) we have that

√
n

(
�n − �

)
w̃� = (

w̃�′⊗ IN
)√

n vec
(
�n − �

)
,

which means that

(
w̃�′⊗ IN

)(
IN2 + KN2

)(
� ⊗ �

)(
w̃�⊗ IN

)

is the asymptotic covariance matrix of
√
n

(
�n − �

)
w̃�. Due to Neudecker (1969,

Eq. 2.2) we obtain

(
w̃�′⊗ IN

)(
� ⊗ �

)(
w̃�⊗ IN

) = (
w̃�′� ⊗ �

)(
w̃�⊗ IN

) = (
w̃�′� w̃�

)
�

and from Theorem 3.1 in Magnus and Neudecker (1979) it follows that

(
w̃�′⊗ IN

)
KN2

(
� ⊗ �

)(
w̃�⊗ IN

) = (
IN ⊗ w̃�′)(� ⊗ �

)(
w̃�⊗ IN

)

= (
� ⊗ w̃�′�

)(
w̃�⊗ IN

) = (
� w̃�

)(
w̃�′�

)
.

Hence, the asymptotic covariance matrix of
√
n

(
�n − �

)
w̃� is

(
w̃�′� w̃�

)
� + (

� w̃�
)(

� w̃�
)′
.

It remains to calculate the asymptotic covariance matrix of

√
n (μn − μ)μ′w̃� + μ

√
n (μn − μ)′w̃�.

The asymptotic covariance matrix of
√
n (μn − μ) is �, which leads to

(w̃�′μ)2 � + (w̃�′μ)(� w̃�)μ′ + (w̃�′μ)μ(� w̃�)′ + (
w̃�′� w̃�

)
μμ′.

Thus, the asymptotic covariance matrix of
√
n

(
�n − �

)
is

B� = (w̃�′μ)2 � + (w̃�′μ)(� w̃�)μ′ + (w̃�′μ)μ(� w̃�)′ + (
w̃�′� w̃�

)(
� + μμ′)

+(
� w̃�

)(
� w̃�

)′
,
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which quantifies the estimation risk if the parameter μ was known to the investor.
However, in real life the expected asset returns are unknown and so B equals the
asymptotic covariance matrix of

√
n

(
μn − μ

) − √
n

(
�n − �

)
w̃� − √

n (μn − μ)μ′w̃� − μ
√
n (μn − μ)′w̃� ,

which can be rewritten as

√
n

(
μn − μ

)(
1 − w̃�′μ

) − μ
√
n (μn − μ)′w̃� − √

n
(
�n − �

)
w̃� .

By using the above arguments we conclude that

B = (1 − w̃�′μ)2 � − (1 − w̃�′μ)(� w̃�)μ′ − (1 − w̃�′μ)μ(� w̃�)′

+(
w̃�′� w̃�

) (
� + μμ′) + (

� w̃�
)(

� w̃�
)′
.

Now, the reader can verify that the impact of estimating the expected asset returns is

Bμ = � −
[(

� w̃�
)
μ′ + 2(w̃�′μ)� + μ

(
� w̃�

)′]
.
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