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Abstract
Efficient feasibility tests are important in many heuristics for routing problems. This
paper considers several variants of pickup-and-delivery problemswith trailers. Its con-
tribution consists in the description of constant-time procedures for testing observance
of capacity constraintswhen inserting tasks into routes. It is demonstrated that the pres-
ence of vehicles with detachable trailers makes capacity feasibility tests considerably
more involved.

Keywords Routing · Pickup-and-delivery · Trailers · Constant-time feasibility test

Mathematics Subject Classification 90B06: Transportation, logistics · 90C59:
Approximation methods and heuristics

1 Introduction

Pickup-and-delivery problems (PDPs) are concerned with the transport of goods or
persons from different origins to different destinations. PDPs come in several variants
and have received a lot of attention in the literature (see the surveys by Parragh et al.
(2008a), Parragh et al. (2008b), Doerner and Salazar-González (2014), and Battarra
et al. (2014)). Whereas vehicle routing problems (VRPs, the special case of the PDP
where either all pickups or all deliveries occur at a central depot) with trailers are
rather well examined (see the surveys by Prodhon and Prins (2014), Section 3.3, Cuda
et al. (2015), Section 4, and the more recent works by Parragh and Cordeau (2017)
and Rothenbächer et al. (2018)), PDPs with trailers (PDPTs) are rarely studied in the
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literature, despite their practical relevance. Trailers are advantageous as they increase
the overall vehicle capacity. However, some locations may be accessible only by a
lorry without a trailer, e.g., because of insufficient manoeuvring space. Therefore,
special parking and transshipment locations (PTLs) are available where trailers can
be parked while lorries visit accessibility-constrained locations. This induces a non-
trivial trade-off between an enlarged vehicle capacity and the necessity of making
detours to park and reattach trailers, and, as will be demonstrated in this paper, makes
capacity feasibility tests considerably more involved.

There are several works on PDPs where vehicles consisting of a tractor and a semi-
trailer are employed to perform full-load tasks, i.e., where a vehicle can transport only
one task at a time (for example, Cheung et al. (2008), Xue et al. (2014), Tilk et al.
(2018)), but the author of the present work is aware of only two papers (Bürckert et al.
(2000), Drexl (2018)) dealing with less-than-truckload tasks, i.e., the case where more
than one task can be on a vehicle at the same time. The present paper is concerned
with PDPTs of the latter type.

Heuristics based on neighbourhood search are widely used approaches for solving
many different kinds of vehicle routing problem, including the various types of PDPs.
A decisive aspect for the performance of suchmethods is their ability to quickly test the
feasibility of an insertion of a customer or task into a route. There are several theoretical
papers on efficient feasibility testing, for example, Hunsaker and Savelsbergh (2002),
Haugland and Ho (2010), Firat and Woeginger (2011) (dial-a-ride problems), and
Masson et al. (2013) (PDP with time windows and transfers).

In a similar vein, the present work deals with efficient testing whether the insertion
of a task into a feasible PDPT route at specified positions for the pickup and for the
delivery part of the task maintains capacity feasibility of the route. ‘Efficient’ means
that, given auxiliary data which is computed in a preprocessing step that requires
quadratic time in the number of tasks on the route, the test itself takes constant time
for any pair of positions at which to insert the pickup and the delivery of the task. For
testing whether a certain task can be feasibly inserted at all into a certain route, in
the worst case, insertion of the pickup must be tried at each position (after the first
and before the last one), and insertion of the delivery must be tried at all subsequent
positions (ditto). With a naïve procedure that passes linearly over each such tentative
enlargement of a route, a test whether a certain task can be feasibly inserted at all
takes cubic time in the number of tasks on that route. Consequently, a constant-time
test for insertion at specified positions can reduce the one-round time (a term coined
by Yagiura and Ibaraki (1999)), i.e., the time for determining the task to insert in
one iteration of an insertion heuristic or a local search procedure, by one order of
magnitude. The contribution of the present paper consists precisely in the description
of such a test for several variants of PDPTs.

An efficient test for time window feasibility that can be used for all PDP(T) types
considered in this paper is presented in Drexl (2018), based on earlier work by Savels-
bergh (1992) and Masson et al. (2013). Other seminal papers on feasibility tests for
routing problems are Savelsbergh (1985), Savelsbergh (1990), Kindervater and Savels-
bergh (1997), Funke et al. (2005), Irnich et al. (2006), Irnich (2008a), Irnich (2008b),
Vidal et al. (2014), Grangier et al. (2016), and Gschwind and Drexl (2019), but none
of these considers routing problems with trailers.
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On efficient testing of capacity constraints…

The rest of the paper is structured as follows. In the next section, the PDP(T) types
of interest in this work are specified. Then, the notation used in the paper and the
formal modelling of the different PDPT variants are explained in Sect. 3. Afterwards,
Sect. 4 describes how capacities can be tested in linear and in constant time. Section 5
concludes the paper with a summary and an outlook.

2 PDP variants

Following the PDP classification of Battarra et al. (2014), the problem variants covered
in this paper are:

• One-to-one problems: each task consists in the transport of a particular commodity
from a given pickup location to a given delivery location. The transported com-
modities are not interchangeable. This is obvious for passenger transport. In goods
transport, applications arise, e.g., in letter mail and parcel services as well as full
and less-than-truckload forwarding.

• One-to-many-to-one problems: each task consists in either the transport of a com-
modity from a central depot to a delivery location (linehaul tasks) or the transport
from a pickup location to the depot (backhaul tasks). Practical applications are
common in supplying supermarkets, beverage stores, apparel stores and, above
all, in the less-than-truckload business. Several subtypes of one-to-many-to-one
problems can be distinguished:

– The VRP with mixed backhauls: linehaul and backhaul tasks can occur any-
where on a route.

– The VRP with backhauls: all linehaul tasks on a route must be fulfilled before
a pickup location of a backhaul task can be visited. In this and the previous
subtype, it is possible that a route fulfils only linehaul or only backhaul tasks.

– The VRP: the special case where all tasks are either linehaul or backhaul tasks.
– The simultaneous PDP: any task location may require a delivery of a good
from the depot and a pickup of another good for transport back to the depot;
the delivery and the pickup must be performed during one visit.

Note that the goods to be transported in one-to-many-to-one problems may be
interchangeable or not. For linehaul tasks, this makes a difference. For example,
in soft drink distribution, crates with full bottles are delivered to households, and
empty crates are taken back. It is irrelevant whether household A receives crate 1
of a particular soft drink brand and household B receives crate 2 of the same brand
or the other way round. By contrast, in freight forwarding of consignments on
pallets, each loaded pallet of a linehaul task has a specific destination. For the
algorithmic treatment of such problems, these issues do not matter. What counts
is that the capacity requirements of each task are taken into account correctly. In
reality, however, if goods are not interchangeable, the driver must ensure that the
right items are delivered to linehaul customers.

• Many-to-many PDPs: goods picked up at a location can be used to fulfil demand
at several other locations (e.g., bike-sharing systems, empty container movement,
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raw milk bulk transports). Mostly, only a single commodity is considered in this
problem type. Many-to-many PDPs come in four sub-variants: it may be allowed
or forbidden that a vehicle leave or enter the depot with some load.

For all these problem variants, it is sensible to consider the use of vehicles with
detachable trailers.

3 Notation andmodelling

The following subsections describe howeachof the abovePDPTvariants is represented
by a suitable digraph D = (V , A). This is helpful to understand which insertions
of tasks into routes are possible and how capacity feasibility can be tested. In all
variants, each task t has a pickup capacity requirement qtp ≥ 0 and a delivery capacity
requirement qtd ≤ 0. The vertex set V of D contains a start and an end depot vertex,
s and e respectively, one pickup and one delivery vertex for each task, and one vertex
for each PTL. The pickup and the delivery vertices are referred to as task vertices.
Each vertex v ∈ V has an associated capacity requirement qv ∈ R, which is zero for
the depot and the PTL vertices. Moreover, for modelling some of the above PDPT
variants, ‘artificial’ task vertices are used. Each task vertex is visited exactly once in
a feasible solution, whereas PTL vertices can be visited more than once. All artificial
vertices are reachable with a trailer. The arc set A, in principle, contains one arc for
each pair of vertices, and, to model the possibility of consecutive subroutes (definition
in next paragraph), there is a loop on each PTL vertex. Some exceptions apply: there
is no arc entering s, leaving e, leading from s to a delivery vertex, from a pickup vertex
to e, or from a delivery vertex to the associated pickup vertex. Moreover, there are
additional restrictions on the arc sets of the different problem variants as specified in
the respective subsections below.

Associated with D is a vehicle fleet made up of single lorries and lorry-trailer
combinations (LTCs). All vehicles start their routes at s and end them at e. Each
vehicle k has a lorry capacity of Ql

k and a trailer capacity of Qt
k . For single lorries k,

Qt
k = 0. The route of an LTC consists of themain route, where the lorry pulls its trailer,

and zero or more subroutes starting and ending at a PTL where the trailer is parked
while the lorry performs one or more pickups and/or deliveries. Several consecutive
subroutes can start and end at the same PTL before the trailer is re-coupled and pulled
away. If the pickup of a task whose delivery is performed on a subroute has been
performed before this subroute, the entire load of the task must be on the lorry at the
start of the subroute. This may require a load transfer from a trailer to its lorry when
decoupling. In the present paper, it is assumed that such load transfers are possible
without restrictions, and that, at pickup locations reachable by trailer, the load to be
picked up can be split arbitrarily between a lorry and its trailer.

Although costs and times are not relevant for capacity tests, note that the locations
associated with any two vertices u and v determine the distance-dependent costs and
the travel times of the arcs (u, v) and (v, u), if these exist, and are therefore relevant
for the definition of the objective function and for time-window feasibility tests. With
regard to the PDPTs considered here, for non-artificial (‘real’) vertices, travel costs
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On efficient testing of capacity constraints…

and times are computed on the basis of the respective physical locations, and artificial
task vertices are located at the start or the end depot, as indicated in each case.

3.1 The one-to-one PDPT

The one-to-one PDPT is the simplest case. For any task t , the associated pickup vertex
has a capacity requirement of qtp > 0, and the delivery vertex requires qtd < 0 capacity
units. There is an arc between each pair of vertices, with the exceptions mentioned
above.

3.2 TheVRPT withmixed backhauls

Extending the approach by Ropke and Pisinger (2006) to trailers, this problem type is
modelled as follows. Each linehaul task is represented by an artificial pickup vertex
located at the central depot and a delivery vertex at the physical delivery location.
Similarly, for each backhaul task, there is a pickup vertex at the physical pickup
location and an artificial delivery vertex at the depot. For a linehaul or backhaul task t ,
the capacity requirements of linehaul and backhaul pickup and delivery vertices are
qtp > 0 and qtd < 0. The only arcs leading to an artificial pickup vertex come from the
start depot vertex or other artificial pickup vertices, the only arcs emanating from an
artificial delivery vertex lead to other artificial delivery vertices or to the end depot.
There is no arc from an artificial pickup to an artificial delivery vertex.

3.3 TheVRPT with backhauls

When all linehauls must be performed before any backhaul, the setup described in the
previous subsection can be modified as follows. No arc exists from an artificial pickup
vertex to a real pickup vertex or from a real pickup vertex to a real delivery vertex.
Moreover, it must be ensured that the precedence requirements are not undermined
by visiting PTLs; i.e., sequences such as … → linehaul delivery → decoupling →
backhaul pickup → coupling → linehaul delivery → … must not be allowed. This
can be achieved by storing, for each route, the position of the last linehaul delivery.
When an insertion is tested and the pickup vertex is a pickup of a backhaul, i.e., a
non-artificial pickup, insertion of this vertex is considered only after the last linehaul
delivery position. Similarly, the last insertion position to consider for a non-artificial
delivery of a linehaul is after the last non-artificial delivery. Ropke and Pisinger (2006)
use a different concept, that of precedences, which is applicable in the presence of
trailers as well.

3.4 TheVRPT

Vehicle routing problems with trailers can be represented as instances of VRPTs with
mixed backhauls without requiring further modelling.
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3.5 The simultaneous PDPT

Ropke and Pisinger (2006) propose the following modelling approach for the simul-
taneous PDP: each task location requiring a delivery and a pickup is represented by
a ‘delivery task’ and a ‘pickup task’. The delivery (pickup) vertex of each pickup
(delivery) task is located at the depot. Moreover, the costs of all arcs emanating from
a delivery vertex of a delivery task are set to a very high value, except for the arc
leading to the pickup vertex of the partner task, which has cost zero. These high-cost
arcs are necessary, because otherwise, inserting a single task would be impossible.
After inserting a single task, whether a delivery or a pickup task, the next task that is
inserted will always be the partner task, because this will remove a high-cost arc and
will thus dramatically improve the current solution.

An alternative approach that avoids having to create two tasks for each original task,
i.e., avoids doubling the instance size, and prevents difficulties with precedences in the
presence of PTLs works as follows. Each task t is represented by an artificial pickup
vertex located at the start depot and a delivery vertex located where the simultaneous
delivery and pickup must occur. The amount to be picked up at the artificial pickup
vertex equals qtd , the original amount to be delivered. The actual amount to be delivered
at the delivery vertex is set to qtp − qtd , i.e., to (original pickup amount − original
delivery amount). This means that delivery verticeswith positive capacity requirement
are possible (note that the delivery amount of a task is always non-positive), and that
there can be different absolute values for the pickup and the delivery amount of a task;
see the example in Sect. 4.2.1. No arc exists from a delivery vertex or from a PTL
vertex to an artificial pickup vertex.

3.6 Themany-to-many PDPT

Similar to the modelling of backhauling problems, a task is represented by an artificial
vertex located at the depot, and similar to the approach for the simultaneous PDP(T),
the absolute values of the pickup and the delivery amount of a task may differ. If the
task consists of a pickup (delivery) at a vertex, the artificial vertex is located at the
end (start) depot. The capacity requirement at an artificial vertex is zero; its partner
vertex has the original positive (if it is a pickup) or negative (if it is a delivery) capacity
requirement. The only arcs leading to an artificial pickup vertex come from the start
depot or other artificial pickup vertices, the only arcs emanating from an artificial
delivery vertex lead to other artificial delivery vertices or the end depot. Moreover,
there is no arc from an artificial pickup to an artificial delivery vertex.

Many-to-many PDP(T)s are special in (at least) two respects. First, as mentioned,
four sub-variants are possible: it may be allowed or forbidden that a vehicle leave or
enter the depot with some load.

When no loading at the start depot is allowed but load may be brought to the end
depot, it should be tested in a preprocessing step whether the total load to be picked
up is at least as much as the total load to be delivered. If this is not the case, no
feasible solution exists. Moreover, on each route, sufficiently many pickups must be
performed before any deliveries are possible, and it must be ensured in the capacity
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tests that the total load of a single lorry or an LTC is always non-negative. Likewise, if
it is forbidden to bring load to the end depot, but loading at the start depot is allowed,
it should be tested in advance whether the total load to be delivered is at least as much
as the total load to be picked up, and one or more delivery tasks must be inserted into
an empty route before any pickup task. If it is forbidden that a loaded vehicle leave
or enter the depot, a route with one task is necessarily infeasible, and the insertion
of a task into a feasible route also makes the route infeasible. This can be handled
by allowing (penalized) infeasible solutions in a surrounding algorithm that uses the
capacity test. Then, the return value of the test should not be simply ‘true’ or ‘false’,
but the amount by which the vehicle capacity and/or the zero load balance at the start
and/or end depot is/are violated.

Second, many-to-many PDP(T)s are special because they possess the property,
rarely encountered in vehicle routing problems, that removing a task from a feasible
route can make the route infeasible. This holds true irrespective of whether or not it
is allowed to pick up or deliver load at the depot. For example, consider the following
route, performed by a single lorry with capacity 100 (the artificial pickup and delivery
vertices at the depot are omitted for simplicity):

Vertex s 1 2 3 4 5 6 e

Capacity requirement 0 +50 +50 –50 –50 +50 –30 0

Removing vertex 5makes the route infeasible even if loading at the depot is allowed.
In the present paper, however, the focus is on (feasible) insertions, so issues arising
when removing tasks are not discussed further here.

4 Feasibility tests

Generally speaking, for a route to be feasible regarding capacity constraints, it must be
ensured that the vehicle capacity is not exceeded at any vertex, and that enough load can
be aboard the LTC (when on themain route) or the lorry (when on a subroute) to satisfy
any subsequent negative capacity requirements. Put differently, it must be ensured on
the main route and on all subroutes that, when reaching a vertex with positive capacity
requirement, the load in the LTC or the lorry plus this positive capacity requirement
does not exceed the LTC or the lorry capacity; likewise, when reaching a vertex with
negative capacity requirement, enough load must be in the LTC or the lorry to satisfy
this capacity requirement. It will become clear in the following that in particular the
latter aspect is non-trivial on subroutes and, for the many-to-many PDPT, also on the
main route.

The algorithms and data structures presented in this section are extensions of those
described in Drexl (2018) for the one-to-one PDPT. The algorithmic descriptions
assume that the feasibility of an insertion of a task t with associated pickup vertex p and
delivery vertex d, written as t = (p, d), into a feasible route r = (0, 1, . . . , n − 1, n)
which is performed by single lorry or LTC k is to be tested. Vertex p is to be inserted
directly after position (zero-based index of the route) h; d is to be inserted directly
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after position/index i . If p cannot be reached with a trailer, r is performed by an LTC,
and the trailer is attached when leaving h, a location triple p̃ = ptl p → p → ptl p
corresponding to a new subroute must be inserted after h; similar for i and d. ptl p
is a PTL vertex; similar for d. Note that p, d, ptl p, and ptld are vertices, whereas h
and i are indices on a route. However, to simplify notation, when referring to a vertex
visited at a certain position on a route, only the index is used: for example, the capacity
requirement of the vertex at index i is denoted by qi .

Indices h and i indicate positions in the route before p and d are inserted. Hence, if
h == i , then d is to be inserted directly after p, or, if a triple p̃ = ptl p → p → ptl p
must be inserted, directly after the triple. If, however, d cannot be reached with a
trailer and p is left with the trailer attached or a triple p̃ is to be inserted, then a
triple d̃ = ptld → d → ptld is inserted. If h == i and p and/or d must be
surrounded by a decouple-couple pair, it would also be possible to surround both p
and d by one such pair, but this makes no difference for capacity feasibility. Several
consecutive subroutes by one LTC lorry at the same PTL are modelled by inserting a
decouple-couple pair for each subroute. For simplicity, the vehicle index k is omitted:
Ql and Qt are used instead of Ql

k and Qt
k to denote the lorry and the trailer capacity.

The capacity requirements of the task t = (p, d) to be inserted are indicated by qp
and qd . For each problem type, qp and qd are determined from the original capacity
requirements of task t as described in Sects. 3.1–3.6. In the pseudocode, the symbol
‘==’ serves as equality operator, ‘=’ is the assignment operator, and ‘x += y’ is
used as shortcut for ‘x = x + y’.

4.1 Testing capacities in linear time

Testing capacity in linear time for single-lorry routes is simple: the to-be-inserted task is
tentatively inserted, one pass over the route is performed, and the capacity requirement
at each visited vertex is added to the total load and compared with the lorry capacity,
cf. lines 16–20 in Algorithm 1. By contrast, testing capacity in the presence of trailers
is not entirely straightforward. The procedure detailed in Algorithm 1 can be used.
The procedure covers all problem types considered in this paper, because large parts
of the routine apply to all types. As indicated in the pseudocode, lines 2–15 can be
omitted for problem types other than many-to-many, and lines 23–30 can be ignored
for many-to-many-problems.

For problem types other than many-to-many, it must be known at the start of a sub-
route how much load must be in the lorry to be able to perform the deliveries whose
pickups are not on this subroute. This information is gathered in one forward pass over
the route (lines 23– 30) and stored in an array LoadDeliveredButNotPickedUpOnSub-
route. Note that, in practice, it is not sufficient to have the correct amount of load in
the lorry at the start of a subroute. It is also necessary to have the right commodities
on the lorry, those that must be delivered on this subroute, but this must be ensured by
the driver.

For many-to-many problems, one forward pass over the route is performed to deter-
mine how much load must be picked up at the depot. This amount is determined by
the most negative load balance at any vertex on the route. If loading at the start depot
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is not allowed and a negative load balance occurs at a vertex, the insertion is infeasible
(lines 2–8). If load may be picked up at the start depot, a second pass over the route
(lines 17–20 or 34–52) tests whether there is sufficient capacity taking this load into
account. If no load may be brought to the end depot, but the load balance from any
index to the end of the route is positive, the route is infeasible as well (lines 9–14).
Moreover, for many-to-many problems, it must be ensured for all subroutes that at
each non-artificial delivery vertex, sufficient load is available on the lorry to perform
the delivery. This load may have been picked up earlier on the subroute or before the
subroute. It is possible that not enough load has been picked up earlier on the subroute
and that, at the same time, not enough load has been picked up before the subroute.
This is tested in lines 50–52.

4.2 Testing capacities in constant time

In the following, it is described how capacity feasibility can be tested in constant time.
Algorithm 2 is for the one-to-one and the one-to-many-to-one problem types. The
constant-time test for many-to-many PDPTs differs significantly from the tests for the
other problem types. Thus, it is presented separately, in Algorithm 3.

4.2.1 One-to-one and one-to-many-to-one PDPTs

The following data structures are used in the test for the one-to-one and the one-to-
many-to-onePDPTvariants. Thesewere introduced byDrexl (2018) for the one-to-one
PDPT.

1. MaxTotalLoadOfSegment[i][offset] is the maximal load balance from the start
of the route at any index from i up to and including i + offset. In particular,
MaxTotalLoadOfSegment[i][0] is the overall load picked up but not delivered yet
from the start depot to and including the location at index i .
For example, consider the following route in a one-to-one PDPT:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Capacity
require-
ment

0 +30 +10 0 +20 –30 +10 +15 –10 –10 0 –20 –15 0

This route contains a subroute that starts at index 3 and ends at index 10.
The load balances at indices 1 to 6 are +30, +40, +40, +60, +30, and +40;
thus, MaxTotalLoadOfSegment[1][5] = +60. Moreover, MaxTotalLoadOfSeg-
ment[7][0] = +55.

2. TrailerAttached[i] is true if the trailer is attached when leaving i , false otherwise.
3. IndexOfLastPrecedingDecouple[i] stores the index of the last decoupling that

precedes i .
4. If i is the start of a subroute, LoadDeliveredButNotPickedUpOnSubroute[i] is the

sum of the pickup amounts of those tasks on the subroute whose pickups lie before
i .
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Algorithm 1 TestCapacityLinear(r , k)
Input: Route r = (0, 1, 2, . . . , n)with to-be-inserted task tentatively inserted, including decoupling and

coupling vertices where necessary, and capacity requirements qv ∈ R, v = 0, 1, 2, . . . , n
Vehicle k (single lorry or LTC) with capacities Ql and Qt ; for single lorries, Qt == 0

Result: Returns true iff lorry and, if applicable, trailer capacity of k are maintained at each vertex of r ;
false otherwise

1 TotalLoad = 0
2 if Problem type is many-to-many
3 LoadBalance = 0
4 for v = 1, 2, 3, . . . , n − 1
5 LoadBalance += qv
6 TotalLoad = min(TotalLoad, LoadBalance)
7 if Loading at start depot is not allowed and TotalLoad < 0
8 return false
9 if Unloading at end depot is not allowed

10 LoadBalance = 0
11 for v = n − 1, n − 2, n − 3, . . . , 1
12 LoadBalance += qv
13 if LoadBalance > 0
14 return false
15 TotalLoad = (−1) · TotalLoad
16 if Qt == 0 // Test for single lorries
17 for v = 1, 2, 3, . . . , n − 1
18 TotalLoad += qv
19 if TotalLoad > Ql

20 return false
21 else // Test for LTCs
22 LoadDeliveredButNotPickedUpOnSubroute = array of integers of length n + 1, initialized to 0
23 if Problem type is not many-to-many
24 IndexOfLastDecouple = 0
25 for v = 1, 2, 3, . . . , n − 1
26 if v is a decoupling vertex
27 IndexOfLastDecouple = v

28 if Trailer is not attached upon leaving v
29 if v is a delivery vertex and corresponding pickup v′ < IndexOfLastDecouple
30 LoadDeliveredButNotPickedUpOnSubroute[IndexOfLastDecouple] += qv′
31 MinLorryLoadSinceLastDecouple = 0
32 MaxLorryLoad = 0
33 MaxLorryLoadSinceLastDecouple = 0
34 for v = 1, 2, 3, . . . , n − 1
35 TotalLoad += qv
36 if TotalLoad > Ql + Qt

37 return false
38 MaxLorryLoad = min(TotalLoad, Ql )
39 if v is a decoupling vertex
40 MinLorryLoadSinceLastDecouple =
41 max(TotalLoad − Qt , LoadDeliveredButNotPickedUpOnSubroute[v])
42 if MinLorryLoadSinceLastDecouple > Ql

43 return false
44 MinLorryLoadSinceLastDecouple = max(MinLorryLoadSinceLastDecouple, 0)
45 MaxLorryLoadSinceLastDecouple = MaxLorryLoad
46 if Trailer is not attached upon leaving v
47 MinLorryLoadSinceLastDecouple = max(MinLorryLoadSinceLastDecouple + qv, 0)
48 if MinLorryLoadSinceLastDecouple > Ql

49 return false
50 MaxLorryLoadSinceLastDecouple = min(MaxLorryLoadSinceLastDecouple + qv, Ql )
51 if MaxLorryLoadSinceLastDecouple < 0
52 return false
53 return true
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5. If i is on a subroute, LoadBalanceFromStartOfSubroute[i] is the positive, negative
or zero load balance from the start of the subroute up to and including i .
In the above example route, LoadBalanceFromStartOfSubroute[9] = −5 = 20−
30 + 10 + 15 − 10 − 10.

6. OffsetOfNextCoupling[i] stores the number of positions from i to the next index
of a coupling process.

7. If i is on a subroute, MaxLoadBalanceFromStartOfSubroute[i][offset] stores the
maximum of zero and the largest load balance from the start of the subroute to any
index from i up to and including i + offset.
In the example, MaxLoadBalanceFromStartOfSubroute[5][3] = +15 = max(0,
−10, 0,+15,+5) = max(0, LoadBalanceFromStartOfSubroute[7]).

As an example of the simultaneous PDPT, consider the following five tasks:

Task t1 t2 t3 t4 t5

Original amount to be delivered +5 +20 +10 +12 +16
Original amount to be picked up +10 +15 +10 +18 +13
qtp +5 +20 +10 +12 +16
qtd +5 –5 0 +6 –3

Assume these five tasks are fulfilled by the following route:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task – t1 t2 t3 t4 t5 t5 – t1 t3 t2 – t4 –
Vertex type s P P P P P D Dec D D D Co D e
Artificial? No Yes Yes Yes Yes Yes No No No No No No No No
Capacity
require-
ment

0 +5 +20 +10 +12 +16 –3 0 +5 0 –5 0 +6 0

This route contains a subroute that starts at index 7 and ends at index 11. The
load balances at indices 2 to 10 are +25, +35, +47, +63, +60, +60, +65,
+65, and +60; thus, MaxTotalLoadOfSegment[2][8] = +65. Moreover, MaxTotal-
LoadOfSegment[12][0] = +66, LoadBalanceFromStartOfSubroute[10] = 0, and
MaxLoadBalanceFromStartOfSubroute[10] = +5 = max(0,+5,+5, 0) = Load-
BalanceFromStartOfSubroute[8] = LoadBalanceFromStartOfSubroute[9].

The decisive aspect for the feasibility test of simultaneous PDPTs is that the delivery
amount is not necessarily the negative of the pickup amount. In Algorithm 2, this is
taken into account in lines 6–8 and 32–36.

MaxTotalLoadOfSegment andMaxLoadBalanceFromStartOfSubroute can be ini-
tialized and updated with a nested loop, by iterating over all indices j ≥ i for each
index i . The other data structures can be determined in a single loop. Hence, comput-
ing the preprocessing data is possible in quadratic time in the number of tasks on the
route.

Algorithm 2 uses these data to test the capacity feasibility of an insertion of a
task t = (p, d) into an existing route r , with p to be inserted directly after position
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(zero-based index of the route) h and d to be inserted directly after position i . It is
evident that the running time of the algorithm is constant, independent of the number
of vertices visited on the route.

Algorithm 2 returns false in line 4 if the total capacity is less than the maximal total
load between the pickup and the delivery plus the pickup amount. For the simultaneous
PDPT, false is returned in line 8 if the former condition is fulfilled or the total capacity
is less than the maximal load between the delivery and the end of the route plus
the pickup plus the delivery amount. The latter condition must be tested because,
as explained in Sect. 3.5, for the simultaneous PDPT the sum of the pickup and the
delivery amount indicates the change of load at deliveries.

The algorithm returns false in line 23 if p is to be inserted on a subroute and the
minimal load that must be in the lorry when leaving the decoupling vertex plus the
load balance from the start of the subroute up to h plus qp plus the maximal load
balance, counted from the beginning of the subroute, from h + 1 to i or to the end of
the subroute, whichever vertex is visited earlier, exceeds the lorry capacity.

False is also returned if d is to be inserted on a subroute and the minimal load that
must be in the lorry when leaving the decoupling vertex plus the maximal load balance
from the start of the subroute up to i plus qp exceeds the lorry capacity (line 31).

Moreover, for the simultaneous PDPT, similar to the situation on the main route,
the algorithm returns false in line 36 if the minimal load aboard the lorry when leaving
i plus qd plus the maximal load balance from i + 1 to the end of the subroute exceeds
the lorry capacity.

Finally, Algorithm 2 returns false in line 43 if d is to be inserted directly after p on
a subroute and the total load upon leaving h plus qp exceeds the lorry capacity.

If Algorithm 2 returns false from line 4, 8, or 23, further potential insertion positions
for d need not be tested with the current insertion position of p. Instead, the next
potential position for inserting p can be considered. Hence, it is sufficient to execute
lines 2–23 of Algorithm 2 only once for each h.

Note also that lines 14–23 and 37–43 in Algorithm 2 are never reached for the
simultaneous PDPT, as a pickup is never on a subroute.

4.2.2 The many-to-many PDPT

In the capacity test for the many-to-many PDPT, all data structures from Sect. 4.2.1
are employed, except for LoadDeliveredButNotPickedUpOnSubroute. In addition,
the following data structures are used:

For testing the total vehicle capacity:

1. OffsetsToWhereActualTotalLoadIsMaximal[i] indicates, for each index i on the
route, the non-negative offset from i to the index where the overall load in the
vehicle, not taking into account what might have to be picked up at the depot, is
maximal.

2. MaxActualTotalLoad[i] stores the maximal physical load from each index i
until the end of the route, not taking into account any load that might have
to be picked up at the depot. This load is aboard the vehicle at index i +
OffsetsToWhereActualTotalLoadIsMaximal[i].
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Algorithm 2 TestCapacityConstantOneToOneAndOneToManyToOnePDPT
(p, d, r , h, i, k)
Input: Pickup-and-delivery task t = (p, d) with capacity requirements qp ≥ 0 and qd ∈ R

Route r = (0, 1, 2, . . . , n)
Indices of insertion positions h, i with 0 ≤ h ≤ i ≤ n − 1
Vehicle k (single lorry or LTC) with lorry and trailer capacities Ql and Qt ; for single lorries, Qt == 0

Result: Returns true iff inserting p or a triple p̃ = ptl p → p → ptl p into r after index h and d or a
triple d̃ = ptld → d → ptld after i (or, iff h == i , after p or p̃) is feasible regarding lorry and trailer
capacity, false otherwise

1 // Evaluate feasibility of insertion regarding total capacity
2 if Problem type is not simultaneous
3 if Ql + Qt < MaxTotalLoadOfSegment[h][i − h] + qp
4 return false
5 else
6 if Ql + Qt < max{MaxTotalLoadOfSegment[h][i − h] + qp,
7 MaxTotalLoadOfSegment[i][n − i] + qp + qd }
8 return false
9 if Qt == 0
10 return true
11 // Evaluate feasibility of insertion regarding lorry capacity
12 if i > h // Delivery not directly after pickup
13 // Evaluate feasibility of insertion of pickup
14 if TrailerAttached[h] == false // Trailer not attached when leaving h
15 ind = IndexOfLastPrecedingDecouple[h]
16 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] − Qt ,

17 LoadDeliveredButNotPickedUpOnSubroute[ind])
18 LoadAfterPickup = MinLoadAtDecouple + LoadBalanceFromStartOfSubroute[h] + qp
19 offset = OffsetOfNextCoupling[h + 1]
20 if h + OffsetOfNextCoupling[h] ≥ i
21 offset = i − h

22 if LoadAfterPickup + MaxLoadBalanceFromStartOfSubroute[h + 1][max(0, offset − 1)] > Ql

23 return false
24 // Evaluate feasibility of insertion of delivery
25 if TrailerAttached[i] == false
26 if i − h ≥ OffsetOfNextCoupling[h] // Delivery not on same subroute as pickup
27 ind = IndexOfLastPrecedingDecouple[i]
28 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] − Qt ,

29 LoadDeliveredButNotPickedUpOnSubroute[ind])
30 if MinLoadAtDecouple + MaxLoadBalanceFromStartOfSubroute[ind][i − ind] + qp > Ql

31 return false
32 if Problem type is simultaneous
33 offset = OffsetOfNextCoupling[i + 1]
34 if MinLoadAtDecouple + qp + LoadBalanceFromStartOfSubroute[i]
35 +qd + MaxLoadBalanceFromStartOfSubroute[i + 1][offset] > Ql

36 return false
37 else // i == h, i.e., delivery directly after pickup
38 if TrailerAttached[h] == false
39 ind = IndexOfLastPrecedingDecouple[h]
40 MinLoadAtDecouple = max(MaxTotalLoadOfSegment[ind][0] − Qt ,

41 LoadDeliveredButNotPickedUpOnSubroute[ind])
42 if MinLoadAtDecouple + LoadBalanceFromStartOfSubroute[i] + qp > Ql

43 return false
44 return true
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As an example, consider the following route:

Index 0 1 2 3 4 5 6 7 8 9

Capacity requirement 0 +50 +10 –70 +30 +25 –5 +15 –25 0

For this route, MaxActualTotalLoad[3] = +65 = 0 + 30 + 25 − 5 + 15, and
OffsetsToWhereActualTotalLoadIsMaximal[3] = 4.

3. MostNegativeLoadBalanceFromStart[i] indicates, for each index i , the most neg-
ative load balance (or zero if there are only pickups up to i) from the start of the
route to i . The term ‘most negative’ is used instead of ‘smallest’ or ‘minimal’ to
point out that all values are less than or equal to zero. A ‘minimal’ or ‘smallest’
element of an arbitrary set of numbers may be positive.
In the example, MostNegativeLoadBalanceFromStart[2] = 0, and MostNega-
tiveLoadBalanceFromStart[3] = −10.

4. MostNegativeLoadBalancesFromPosToEndOfRoute[i] specifies, for each index i ,
the most negative load balance (or zero if there are only pickups) from i until the
end of the route.
In the example, for indices 3, 4, and 6, MostNegativeLoadBalancesFromPos-
ToEndOfRoute equals −70, 0, and −15.

5. LoadBalanceFromTo[i][offset] is the load balance from i to i + offset.
In the example, LoadBalanceFromTo[2][2] = −30, LoadBalanceFromTo[3][4] =
−5, and LoadBalanceFromTo[4][1] = +55.

For testing lorry capacities on subroutes:

1. MostNegativeLoadBalanceOnSubrouteFromTo[i][offset] is the most negative
load balance from i until i + offset on the subroute where i is visited, counted
from the beginning of the subroute.
As an example, consider the following route:

Index 0 1 2 3 4 5 6 7 8 9

Capacity requirement 0 +50 0 –20 +30 –25 –5 0 –25 0

This route contains a subroute that starts at index 2 and ends at index 7.MostNeg-
ativeLoadBalanceOnSubrouteFromTo[2][offset] equals zero for offset = 0 and
−20 for offset = 1, . . . , 4. For index 4 and offset = 0, 1, and 2, the values are 0,
−15, and −20.

2. MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i] speci-
fies the most negative load balance from any vertex that precedes i on the subroute,
including i , up to i .
In the example, the values for indices 2–6 are 0, −20, 0, −25, −30.

3. MostNegativeLoadBalanceFromIUntilEndOfSubroute[i] indicates the most neg-
ative load balance on the segment from any index i until the end of the subroute,
counted from i .
In the above example, the values of MostNegativeLoadBalanceFromIUntilEndOf-
Subroute, for indices 2–6, are −20, −20, 0, −30, and −5.
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LoadBalanceFromTo and MostNegativeLoadBalanceOnSubrouteFromTo can be
filled using a nested forward pass, i.e., by iterating over all indices j ≥ i for each
index i on the route; the other data structures can be filled or updated in one pass.
As explained in Sect. 4.2, MaxTotalLoadOfSegment[i][offset] is the maximal load
balance from the start of the route at any index from i up to and including i + offset.
For the many-to-many problem where loading at the start depot is allowed,MaxTotal-
LoadOfSegment also takes into account the load that must be picked up at the depot,
by adding this load to each component of MaxTotalLoadOfSegment. Computing the
load to be picked up at the depot can be done in one additional forward pass over the
route, which does not change the time complexity of determining the preprocessing
data. Hence, the preprocessing data for a many-to-many-PDPT route can be com-
puted in quadratic time in the number of tasks on the route. With these data structures,
capacity feasibility can be tested as described in Algorithm 3. It is easy to see that the
algorithm itself runs in constant time.

Algorithm 3 returns false in line 8 if the maximal load in the vehicle, disregarding
any load brought from the depot, at any index from and including h until the end of the
route (i.e.,MaxActualTotalLoad[h]) plus qp plus the rest of the load that still needs to
be picked up at the depot even after inserting p exceeds the total vehicle capacity. To
exemplify this, consider the following route and assume h = 3 and qp = 40:

Index 0 1 2 3 4 5 6 7

Capacity requirement 0 –10 +10 +10 –30 +30 –100 0

It is easy to see that 90 units of load must be picked up at the depot for the route to be
feasible, 10 units of which are needed at index 1, 10 at index 4, and 70 at index 6. The
maximal load in the vehicle anywhere after h, not taking into account load brought from
the depot, is 30 at index 5. Up to this point, 20 units of load picked up at the depot have
been unloaded. Hence, the expression in line 5 equals (−1) · (−90)+ (−20) = +70.
The value to be subtracted from qp in line 6 is (−1) · (−90) + (−10) = +80. This
value is greater than qp, so that the overall value of line 6 is negative, and this means
that the entire amount qp can be used to substitute load brought from the depot.
This, in turn, means that inserting p does not increase the load at any index, which
implies that the insertion is feasible. Now assume that the capacity requirement at
index 6 is −50. Then, 40 units must be picked up at the depot, and line 5 equals
(−1) · (−40)+ (−20) = +20. In line 6, +30 must be subtracted from qp, so that the
value of line 6 is +40 − 30 = +10. This means that 30 units of qp can be used to
help satisfy the negative capacity requirements at indices 4 and 6, so that the 30 units
picked up at the depot to this end are no longer necessary. This, in turn, means that
inserting p after h increases the load from h + 1 onwards by 10 units, which may or
may not violate the total vehicle capacity.

The return false in line 11 is self-explanatory.
The return false in line 19 has the following rationale: qp ≤ 0 implies that |qd | > 0.

To satisfy this negative capacity requirement, additional load can be picked up at the
depot if this is allowed and if there is free capacity up to index i . In any case, for the
insertion of d to be feasible, it must still be possible to satisfy all negative capacity
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requirements after i , which, in other words, means that the maximal possible load after
d must be at least as much as the absolute value of the most negative load balance
computed from i until the end of the route.

The return false in line 35 can be explained as follows. The minimal load aboard
the lorry when leaving a decoupling vertex must be the maximum of the following
quantities: (i) the absolute value of the most negative load balance on the subroute up
to and including h, (ii) the absolute value of the most negative load balance on the
subroute from h + 1 until the end of the subroute minus qp, and (iii) the total load in
the vehicle when leaving the decoupling vertex minus the trailer capacity. Then, when
p is inserted, the load after p is the sum of this minimal load, the load balance from
the start of the subroute up to h, and qp. If this sum exceeds the lorry capacity, the
insertion is infeasible.

The algorithm returns false in line 40 if the absolute value of the most negative
load balance on the subroute on which d is to be inserted, computed from any index
before i up to i , plus |qd | exceeds the lorry capacity, as this quantity is a lower bound
for the amount of load that must be aboard the lorry after decoupling when d shall be
inserted after i .

Finally, Algorithm 3 returns false in line 51 when, after inserting d directly behind
i , not enough load can be in the lorry to satisfy the most negative load balance on
the subroute after i . This is tested as follows. The load that can be in the lorry at
the decoupling vertex equals the load balance from the start of the route up to the
decoupling vertex plus the maximal additional load that can be picked up at the depot.
The load at i is the minimum of the lorry capacity and the load at the decoupling vertex
plus the most positive load balance from the start of the subroute up to i plus the most
negative load balance on the subroute from any vertex before up to i . The load after
visiting d is then equal to the load at i plus qd , and this load must be non-negative
and greater than or equal to the absolute value of the most negative load balance from
i + 1 to the end of the subroute.

Note that lines 21 ff. are valid whether or not loading at the start depot is allowed.
An alternative feasibility testing procedure for the many-to-many PDP without

trailers is described by Kindervater and Savelsbergh (1997).

5 Conclusion and outlook

This paper has studied several variants of the PDPT, a routing problem where trans-
port tasks between pickup and delivery locations must be fulfilled by a fleet of
capacity-constrained single lorries and lorry-trailer combinations subject to accessi-
bility restrictions at locations. Procedures to test the capacitive feasibility of inserting
a task into an existing route have been presented. The procedures run in constant time,
given appropriate auxiliary data that can be computed in a preprocessing step.

In their survey, Battarra et al. (2014) write (p. 181): ‘When looking at the pickup
and delivery literature as a whole, one cannot fail to notice that there exists a very
large number of problem variants which differ in their structure but nevertheless share
many similarities. One can thus hope to see the development of general modelling and
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Algorithm 3 TestCapacityConstantManyToManyPDPT(p, d, r , h, i, k)
Input: Pickup-and-delivery task (p, d) with capacity requirements qp ≥ 0 and qd ≤ 0

Route r = (0, 1, 2, . . . , n)
Indices of insertion positions h, i with 0 ≤ h ≤ i ≤ n − 1
Vehicle k (single lorry or LTC) with lorry and trailer capacities Ql and Qt ; for single lorries, Qt == 0

Result: Returns true iff inserting p or a triple p̃ = ptl p → p → ptl p into r after index h and d or a triple d̃ = ptld →
d → ptld after i (or, iff h == i , after p or p̃) is feasible regarding lorry and trailer capacity, false otherwise

1 // Evaluate feasibility of insertion regarding total capacity
2 if qp > 0
3 offset = OffsetsToWhereActualTotalLoadIsMaximal[h]
4 if MaxActualTotalLoad[h]
5 +((−1) · MostNegativeLoadBalanceFromStart[n] + MostNegativeLoadBalanceFromStart[h + offset])
6 +(qp − ((−1) · MostNegativeLoadBalanceFromStart[n] + MostNegativeLoadBalanceFromStart[h]))
7 > Ql + Qt

8 return false
9 if Unloading at end depot is not allowed
10 if max(0, LoadBalanceFromTo[0][h]) + qp + LoadBalanceFromTo[h + 1][n − (h + 1)] > 0
11 return false
12 else
13 MaxAdditionalLoadThatCanBePickedUpAtDepot = 0
14 if Loading at start depot is allowed
15 MaxAdditionalLoadThatCanBePickedUpAtDepot = Ql + Qt − MaxTotalLoadOfSegment[0][i]
16 MaxTotalLoadAfterDelivery =
17 MaxTotalLoadOfSegment[i][0] +MaxAdditionalLoadThatCanBePickedUpAtDepot + qd
18 if MaxTotalLoadAfterDelivery < max(0, (−1) · MostNegativeLoadBalancesFromPosToEndOfRoute[i + 1])
19 return false
20 // Evaluate feasibility of insertion regarding lorry capacity
21 if Qt > 0 and i > h // Vehicle is an LTC and delivery is not directly after pickup
22 // Evaluate feasibility of insertion of pickup
23 if qp > 0 and TrailerAttached[h] == false
24 ind = IndexOfLastPrecedingDecouple[h]
25 MinLoadAtDecouple = (−1) · MostNegativeLoadBalanceOnSubrouteFromTo[ind][h − ind]
26 offset = OffsetOfNextCoupling[h + 1]
27 MinLoadAtDecouple =
28 max(MinLoadAtDecouple, (−1) · MostNegativeLoadBalanceOnSubrouteFromTo[h + 1][offset] − qp)
29 MinLoadAtDecouple = max(MinLoadAtDecouple,MaxTotalLoadOfSegment[ind][0] − Qt )
30 LoadAfterPickup = MinLoadAtDecouple + LoadBalanceFromStartOfSubroute[h] + qp
31 offset = OffsetOfNextCoupling[h + 1]
32 if h + OffsetOfNextCoupling[h] ≥ i
33 offset = i − h
34 if LoadAfterPickup + MaxLoadBalanceFromStartOfSubroute[h + 1][max(0, offset − 1)] > Ql

35 return false
36 // Evaluate feasibility of insertion of delivery
37 if qd < 0 and TrailerAttached[i] == false
38 ind = IndexOfLastPrecedingDecouple[i]
39 if (−1) · MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i] + (−1) · qd > Ql

40 return false
41 MaxAdditionalLoadThatCanBePickedUpAtDepot = 0
42 if Loading at start depot is allowed
43 MaxAdditionalLoadThatCanBePickedUpAtDepot = Ql + Qt − MaxTotalLoadOfSegment[0][ind]
44 PossibleLorryLoadAtDecouple =
45 MaxTotalLoadOfSegment[ind][0] + MaxAdditionalLoadThatCanBePickedUpAtDepot
46 LoadAtPredOfDelivery =
47 min(Ql , PossibleLorryLoadAtDecouple + MaxLoadBalanceFromStartOfSubroute[ind][i − ind])
48 +MostNegativeLoadBalanceOnSubrouteFromAnyVertexBeforeUntilPos[i]
49 LoadAfterDelivery = LoadAtPredOfDelivery + qd
50 if LoadAfterDelivery < max(0, (−1) · MostNegativeLoadBalanceFromIUntilEndOfSubroute[i + 1])
51 return false
52 return true

solution techniques capable of handling multiple variants with a unified framework.’
The author hopes that the present paper constitutes a step in this direction.

In any case, there is ample opportunity for further research: throughout the paper
at hand, it was assumed that the goods to be transported are homogeneous and load
can be split arbitrarily between a lorry and its trailer. This is true for many practical
situations, most notably, for the transport of liquids, bulk cargo, and palleted goods.
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However, in all problem variants, the transported goods might just as well consist of a
number of distinct items with different sizes, so that load splitting between lorry and
trailer is possible only in discrete amounts. The transfer of load between a lorry and its
trailer can even be completely forbidden or impossible for technical reasons. Taking
this into account would require major changes to the procedures described above. It
is thus beyond the scope of the present work and left for future research.
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