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Abstract We consider a government that aims at reducing the debt-to-(gross do-
mestic product) (GDP) ratio of a country. The government observes the level of the
debt-to-GDP ratio and an indicator of the state of the economy, but does not directly
observe the development of the underlying macroeconomic conditions. The govern-
ment’s criterion is to minimise the sum of the total expected costs of holding debt
and of debt reduction policies. We model this problem as a singular stochastic control
problem under partial observation. The contribution of the paper is twofold. Firstly,
we provide a general formulation of the model in which the level of the debt-to-
GDP ratio and the value of the macroeconomic indicator evolve as a diffusion and a
jump-diffusion, respectively, with coefficients depending on the regimes of the econ-
omy. The latter are described through a finite-state continuous-time Markov chain.
We reduce the original problem via filtering techniques to an equivalent one with full
information (the so-called separated problem), and we provide a general verification
result in terms of a related optimal stopping problem under full information. Sec-
ondly, we specialise to a case study in which the economy faces only two regimes
and the macroeconomic indicator has a suitable diffusive dynamics. In this setting,
we provide the optimal debt reduction policy. This is given in terms of the contin-
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uous free boundary arising in an auxiliary fully two-dimensional optimal stopping
problem.

Keywords Singular stochastic control · Partial observation · Optimal stopping ·
Free boundary · Debt-to-GDP ratio
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1 Introduction

The question of optimally managing the debt-to-GDP ratio (also called “debt ratio”)
of a country has become particularly important in the last years. Indeed, concurrently
with the financial crisis started in 2007, debt-to-GDP ratios exploded from an average
of 53% to circa 80% in developed countries. Clearly, the debt management policy of
a government highly depends on the underlying macroeconomic conditions; indeed,
these affect for example the growth rate of the GDP which in turn determines the
growth rate of the debt-to-GDP ratio of a country. However, in practice, it is typically
neither possible to measure in real time the growth rate of the GDP, nor can one
directly observe the underlying business cycles. On August 24, 2018, during a speech
at “Changing Market Structure and Implications for Monetary Policy” – a symposium
sponsored by the Federal Reserve Bank of Kansas City in Jackson Hole, Wyoming –,
the chairman of the Federal Reserve Jerome H. Powell said:

. . . In conventional models of the economy, major economic quantities such as
inflation, unemployment and the growth rate of the gross domestic product fluctuate
around values that are considered “normal” or “natural” or “desired”. The FOMC
(Federal Open Market Committee) has chosen a 2 percent inflation objective as one
of these desired values. The other values are not directly observed, nor can they be
chosen by anyone. . .

Following an idea that dates back to Hamilton [38], we assume in this paper that
the GDP growth rate of a country is modulated by a continuous-time Markov chain
that is not directly observable. The Markov chain has Q ≥ 2 states modelling the
different business cycles of the economy, so that a shift in the macroeconomic con-
ditions induces a change in the value of the growth rate of the GDP. The government
can observe only the current levels of the debt-to-GDP ratio and of a macroeco-
nomic indicator. The latter might be e.g. one of the so-called “Big Four” which are
usually considered proxies of the industrial production index, hence of the business
conditions. These indicators constitute the Conference Board’s Index of Coincident
Indicators; they are employment in non-agricultural businesses, industrial produc-
tion, real personal income less transfers, and real manufacturing and trade sales. We
refer to e.g. Stock and Watson [60], where the authors present a wide range of eco-
nomic indicators and examine the forecasting performance of various of them in the
recession of 2001.
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Motivated by the recent aforementioned debt crisis, we consider a government
that has the priority to return debt to less dangerous levels, to move away from the
dark corners (O. Blanchard, former chief economist of the International Monetary
Fund (2014)) e.g. through fiscal policies or imposing austerity policies in the form
of spending cuts. In our model, we thus preclude the possibility for the government
to increase the level of the debt ratio and we neglect any possible potential benefit
resulting from holding debt, even if we acknowledge that a policy of debt reduction
might not be always the most sensible approach, as also observed by Ostry et al.
[55] (see also the discussion in Remark 2.6 below). We further assume that the loss
resulting from holding debt can be measured through a convex and nondecreasing
cost function, and that the debt ratio is instantaneously affected by any reduction.
The latter need not necessarily be performed at rates, but also lump sum actions
are allowed, and the cumulative amount of the debt ratio’s decrease is the govern-
ment’s control variable. Any decrease of the debt ratio results in proportional costs,
and the government aims at choosing a debt-reduction policy that minimises the total
expected loss of holding debt, plus the total expected costs of interventions on the
debt ratio. In line with recent papers on stochastic control methods for optimal debt
management (see Cadenillas and Huamán-Aguilar [8, 9], Ferrari [31] and Ferrari and
Rodosthenous [32]), we model the previous problem as a singular stochastic control
problem. However, differently to all previous works, our problem is formulated in a
partial observation setting, thus leading to a completely different mathematical anal-
ysis. In our model, the observations consist of the debt ratio and the macroeconomic
indicator. The debt ratio is a linearly controlled geometric Brownian motion, and its
drift is given in terms of the GDP growth rate, which is modulated by the unobserv-
able continuous-time Markov chain Z. The macroeconomic indicator is a real-valued
jump-diffusion which is correlated to the debt ratio process, and which has drift and
both intensity and jump sizes depending on Z.

Our contributions. Our study of the optimal debt reduction problem is performed
thought three main steps.

First of all, via advanced filtering techniques with mixed-type observations, we
reduce the original problem to an equivalent problem under full information, the
so-called separated problem. This is a classical procedure used to handle optimal
stochastic control problems under partial information (see e.g. Fleming and Pardoux
[33], Bensoussan [4, Chap. 7.1] and Ceci and Gerardi [12]) The filtering problem
consists in characterising the conditional distribution of the unobservable Markov
chain Z at any time t , given observations up to time t . The case of diffusion ob-
servations has been widely studied in the literature, and textbook treatments can be
found in Elliott et al. [29, Chap. 8], Kallianpur [44, Chap. 8] and Liptser and Shiryaev
[49, Chap. 8]. There are also known results for pure-jump observations (see e.g. Bré-
maud [7, Chap. IV], Ceci and Gerardi [13, 14], Kliemann et al. [47] and references
therein). More recently, filtering problems with mixed-type information which in-
volve pure-jump processes and diffusions have been studied by Ceci and Colaneri
[15, 16], among others.

Notice that also the economic and financial literature has experienced papers on
models under partial observation where a reduction to a complete information setting
is performed via filtering techniques and the problem is split into the so-called “two-
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step procedure”. We refer e.g. to the literature on portfolio selection in the seminal pa-
pers by Detemple [25] and Gennotte [36] (in a continuous-time setting, with diffusive
observations leading to a Gaussian filter process); to Veronesi [62] for an equilibrium
model with uncertain dividend drift in the field of market over- and under-reaction to
information; to the more recent work by Luo [51], where different uncertainty models
are analysed in a Gaussian setting with the aim of studying strategic consumption–
portfolio rules when dealing with precautionary savings. Generally, the economic and
financial literature refers to well-known results in filtering theory, in the case of diffu-
sive observation processes such as additive Gaussian white noise (e.g. Detemple [25],
Gennotte [36] and Luo [51]) or in the case of pure-jump observations (see Bäuerle
and Rieder [3] and Ceci [11], among others). A few papers consider mixed-type in-
formation (see e.g. Callegaro et al. [10] and Frey and Schmidt [35], among others).
In our paper, we deal with a more general setting with a two-dimensional observation
process allowing jumps, for which known results cannot be invoked.

Usually, two filtering approaches are followed: the so-called reference probability
approach (see the seminal paper by Zakai [65] and the more recent papers Frey and
Runggaldier [34], Ceci and Colaneri [16] and Colaneri et al. [18], among others)
and the innovation approach (see e.g. Brémaud [7, Chap. IV.1], Ceci and Colaneri
[15], Eksi and Ku [27] and Frey and Schmidt [35]). Due to the general structure of
our observations’ dynamics, the innovation approach is more suitable to handle our
filtering problem, and this leads to the so-called Kushner–Stratonovich equation. In
particular, it turns out that the dynamics of our filter and of the observation process
are coupled, thus making the proof of uniqueness of the solution to the Kushner–
Stratonovich system more delicate. After providing such a result, we are then able to
show that the original problem under partial observation and the separated problem
are equivalent, that is, they share the same value and the same optimal control.

Secondly, we exploit the convex structure of the separated problem and provide a
general probabilistic verification theorem. This result – which is in line with findings
in Baldursson and Karatzas [2], De Angelis et al. [20] and Ferrari [31], among others
– relates the optimal control process to the solution to an auxiliary optimal stopping
problem. Moreover, it proves that the value function of the separated problem is the
integral – with respect to the controlled state variable – of the value function of the
optimal stopping problem. The stopping problem thus gives the optimal timing at
which debt should be marginally reduced.

Finally, by specifying a setting in which the continuous-time Markov chain faces
only two regimes (a fast growth or slow growth phase) and the macroeconomic in-
dicator is a suitable diffusion process, we are able to characterise the optimal debt
reduction policy. In this framework, the filter process is a two-dimensional process
(πt ,1 − πt )t≥0, where πt is the conditional probability at time t that the economy
enjoys the fast growth phase. We prove that the optimal control prescribes to keep at
any time the debt ratio below an endogenously determined curve that is a function of
the government’s belief about the current state of the economy. Such a debt ceiling
is the free boundary of the fully two-dimensional optimal stopping problem that is
related to the separated problem (in the sense of the previously discussed verification
theorem). By using almost exclusively probabilistic arguments, we are able to show
that the value function of the auxiliary optimal stopping problem is a C1-function of
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its arguments, and thus enjoys the so-called smooth-fit property. Moreover, the free
boundary is a continuous, bounded and increasing function of the filter process. This
last monotonicity property has also a clear economic interpretation: the more the gov-
ernment believes that the economy enjoys a regime of fast growth, the less strict the
optimal debt reduction policy should be.

As a remarkable byproduct of the regularity of the value function of the optimal
stopping problem, we also obtain that the value function of the singular stochastic
control problem is a classical solution to its associated Hamilton–Jacobi–Bellman
(HJB) equation. The latter takes the form of a variational inequality involving an
elliptic second-order partial differential equation (PDE). It is worth noticing that the
C2-regularity of the value function implies the validity of a second-order principle of
smooth fit, usually observed in one-dimensional problems.

We believe that the study of the auxiliary fully two-dimensional optimal stopping
problem is a valuable contribution to the literature on its own. Indeed, while the lit-
erature on one-dimensional optimal stopping problems is very rich, the problem of
characterising the optimal stopping rule in multi-dimensional settings has been so far
rarely explored in the literature (see the recent work by Christensen et al. [17], De
Angelis et al. [20] as well as Johnson and Peskir [43] among the very few papers
dealing with multi-dimensional stopping problems). This discrepancy is due to the
fact that a standard guess-and-verify approach, based on the construction of an ex-
plicit solution to the variational inequality arising in the considered optimal stopping
problem, is no longer applicable in multi-dimensional settings where the variational
inequality involves a PDE rather than an ordinary differential equation.

Related literature. As already noticed above, our paper is placed among those re-
cent works addressing the problem of optimal debt management via continuous-time
stochastic control techniques. In particular, Cadenillas and Huamán-Aguilar [8, 9]
model an optimal debt reduction problem as a one-dimensional control problem with
singular and bounded-velocity controls, respectively. In the work by Ferrari and Ro-
dosthenous [32], the government is allowed to increase and decrease the current level
of the debt ratio, and the interest rate on debt is modulated by a continuous-time
observable Markov chain. The mathematical formulation leads to a one-dimensional
bounded-variation stochastic control problem with regime switching. In the model by
Ferrari [31], when optimally reducing the debt ratio, the government takes into con-
sideration the evolution of the inflation rate of the country. The latter evolves as an
uncontrolled diffusion process and affects the growth rate of the debt ratio, which is
a process of bounded variation. In this setting, the debt reduction problem is formu-
lated as a two-dimensional singular stochastic control problem whose HJB equation
involves a second-order linear parabolic partial differential equation. All the previ-
ous papers are formulated in a full information setting, while ours is under partial
observation.

The literature on singular stochastic control problems under partial observation is
also still quite limited. Theoretical results on the PDE characterisation of the value
function of a two-dimensional optimal correction problem under partial observation
are obtained by Menaldi and Robin [53], whereas a general maximum principle for
a not necessarily Markovian singular stochastic control problem under partial infor-
mation has more recently been derived by Øksendal and Sulem [54]. We also refer
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to De Angelis [19] and Decámps and Villeneuve [23] who provide a thorough study
of the optimal dividend strategy in models in which the surplus process evolves as a
drifted Brownian motion with unknown drift that can take only two constant values,
with given probabilities.

Outline of the paper. The rest of the paper is organised as follows. In Sect. 2, we
introduce the setting and formulate the problem. The reduction of the problem under
partial observation to the separated problem is performed in Sect. 3; in particular, the
filtering results are presented in Sect. 3.1. The probabilistic verification theorem con-
necting the separated problem to one of optimal stopping is then proved in Sect. 3.3.
In Sect. 4, we consider a case study in which the economy faces only two regimes.
Its solution, presented in Sects. 4.2 and 4.3, hinges on the study of a two-dimensional
optimal stopping problem that is performed in Sect. 4.1. Finally, Appendix A collects
the proofs of some technical filtering results.

2 Setting and problem formulation

2.1 The setting

Consider the complete filtered probability space (�,F ,F,P) capturing all the uncer-
tainty of our setting. Here, F := (Ft )t≥0 denotes the full information filtration. We
suppose that it satisfies the usual hypotheses of completeness and right-continuity.

We denote by Z a continuous-time finite-state Markov chain describing the differ-
ent states of the economy. For Q ≥ 2, let S := {1,2, . . . ,Q} be the state space of Z
and (λij )1≤i,j≤Q its generator matrix. Here λij , i �= j , gives the intensity of a transi-

tion from state i to state j and is such that λij ≥ 0 for i �= j and
∑Q
j=1,j �=i λij = −λii .

For any time t ≥ 0, Zt is Ft -measurable.
In the absence of any intervention by the government, we assume that the (uncon-

trolled) debt-to-GDP ratio evolves as

dX0
t = (

r − g(Zt )
)
X0
t dt + σX0

t dWt , X0
0 = x ∈ (0,∞), (2.1)

where W is a standard F-Brownian motion on (�,F) independent of Z, r ≥ 0 and
σ > 0 are constants and g : S→ R. The constant r is the real interest rate on debt, σ is
the debt’s volatility and g(i) ∈ R is the rate of the GDP growth when the economy is
in state i ∈ S.

It is clear that (2.1) admits a unique strong solution, and when needed, we denote
it by Xx,0 for any x > 0. The current level of the debt-to-GDP ratio is known to the
government at any time t , and Xx,0 is therefore the first component of the so-called
observation process.

The government also observes a macroeconomic stochastic indicator η, e.g. one of
the so-called “Big Four”, which we interpret as a proxy of the business conditions. We
assume that η is a jump-diffusion process solving the stochastic differential equation

dηt = b1(ηt ,Zt )dt + σ1(ηt )dWt + σ2(ηt )dBt + c(ηt−,Zt−)dNt ,
η0 = q ∈ I,

(2.2)
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where σ1 > 0, σ2 > 0 and b1, c are measurable functions of their arguments and
I ⊆ R is the state space of η. Here, B is an F-standard Brownian motion independent
of W and Z. Moreover, N is an F-adapted point process, without common jump
times with Z, independent of W and B . The predictable intensity of N is denoted
by (λN(Zt−))t≥0 and depends on the current state of the economy, with λN( · ) > 0
being a measurable function. From now on, we make the following assumptions
that ensure strong existence and uniqueness of the solution to (2.2) (by a standard
localising argument, one can indeed argue as e.g. in the proof of Xi and Zhu [64,
Theorem 2.1], performed in a setting more general than ours by employing Ikeda and
Watanabe [40, Theorem IV.9.1]).

Assumption 2.1 The functions b1 : I × S → R, σ1 : I → (0,∞), σ2 : I → (0,∞)
and c : I × S→ R are such that for any i ∈ S,

(i) (continuity) b1(·, i), σ1(·), σ2(·) and c(·, i) are continuous;
(ii) (local Lipschitz conditions) for any R > 0, there exists a constant LR > 0 such

that if |q|<R, |q ′|<R, q, q ′ ∈ I , then

|b1(q, i)− b1(q
′, i)| + |σ1(q)− σ1(q

′)| + |σ2(q)− σ2(q
′)| + |c(q, i)− c(q ′, i)|

≤ LR|q − q ′|;
(iii) (growth conditions) there exists a constant C > 0 such that

|b1(q, i)|2 + |σ1(q)|2 + |σ2(q)|2 + |c(q, i)|2 ≤ C(1 + |q|2).

The dynamics proposed in (2.2) is of jump-diffusive type and allows size and
intensity of the jumps to be affected by the state of the economy. It is therefore flexible
enough to describe a large class of stochastic factors which may exhibit jumps.

The observation filtration H = (Ht )t≥0 is defined as

H := F
X0 ∨ F

η,

where F
X0

and F
η denote the natural filtrations generated by X0 and η, respectively,

as usual augmented by P-null sets. Clearly, (X0, η) is adapted to both H and F, and

H ⊆ F.

The above inclusion means that the government cannot directly observe the state Z
of the economy, but that this has to be inferred through the observation of (X0, η).
We are therefore working in a partial information setting.

2.2 The optimal debt reduction problem

The government can reduce the level of the debt-to-GDP ratio by intervening on the
primary budget balance (i.e., the overall difference between government revenues and
spending), for example through austerity policies in the form of spending cuts. When
doing so, the debt ratio dynamics becomes

dXνt = (
r − g(Zt )

)
Xνt dt + σXνt dWt − dνt , Xν0− = x > 0. (2.3)
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The process ν is the control that the government chooses based on the information at
its disposal. More precisely, νt defines the cumulative reduction of the debt-to-GDP
ratio made by the government up to time t , and ν is therefore a nondecreasing process
belonging to the set

M(x, y, q) := {
ν :�×R+ →R+ : (νt (ω) := ν(ω, t)

)
t≥0 is nondecreasing,

right-continuous, H-adapted and such that

Xνt ≥ 0 for every t ≥ 0, Xν0− = x,
P[Z0 = i] = yi , i ∈ S, η0 = q a.s.

}
,

for any given and fixed initial value x ∈ (0,∞) of Xν , initial value q ∈ I of η, and
y ∈ Y . Here

Y :=
{

y = (y1, . . . , yQ) : yi ∈ [0,1], i = 1, . . .Q,
Q∑

i=1

yi = 1

}

is the probability simplex on R
Q, representing the space of initial distributions of the

process Z. From now on, we set ν0− = 0 a.s. for any ν ∈ M(x, y, q).

Remark 2.2 Notice that in the definition of the set M above, as well as in (2.4)
and in (2.5) below, we have stressed the dependency on the initial data (x, y, q) just
for notational convenience, not to indicate any Markovian nature of the considered
problem, which is in fact not given.

For any (x, y, q) ∈ (0,∞) × Y × I and ν ∈ M(x, y, q), there exists a unique
solution to (2.3), denoted by Xx,νt , that is given by

X
x,ν
t =X1,0

t

(

x −
∫ t

0

dνs

X
1,0
s

)

, t ≥ 0, X
x,ν
0− = x,

where

X
1,0
t = e

∫ t
0 (r−g(Zs))ds− 1

2σ
2t+σWt , t ≥ 0.

Here and in the rest of this paper, we use the notation
∫ t

0 ( · )dνs = ∫
[0,t]( · )dνs for

the Lebesgue–Stieltjes integral with respect to the random measure dν· induced by
the nondecreasing process ν on [0,∞).
Remark 2.3 The dynamics (2.3) might be justified in the following way. Suppose that
the public debt (in real terms) D and the GDP Y follow the classical dynamics

{
dDt = rDtdt − dξt , D0− = d > 0,
dYt = g(Zt )Ytdt + σYtdW̃t , Y0 = y > 0,

where ξt is the cumulative real budget balance up to time t and W̃ is a Brownian
motion. An easy application of Itô’s formula and a change of measure then gives that
the ratio X :=D/Y evolves as in (2.3), upon setting ν· :=

∫ ·
0 dξs/Ys and x := d/y.
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The government aims at reducing the level of the debt ratio. Having a level of
Xt = x at time t ≥ 0 when the state of the economy is Zt = i, the government in-
curs an instantaneous cost (loss) h(x, i). This may be interpreted as an opportunity
cost resulting from private investments’ crowding out, less room for financing public
investments, and from a tendency to suffer low subsequent growth (see the technical
report [30] and the work by Woo and Kumar [63], among others). The cost function
h :R×S �→ R+ fulfils the following requirements (see also Cadenillas and Huamán-
Aguilar [8] and Ferrari [31]).

Assumption 2.4 (i) For any i ∈ S, the mapping x �→ h(x, i) is strictly convex, con-
tinuously differentiable and nondecreasing on R+. Moreover, h(0, i)= 0.

(ii) For any given x ∈ (0,∞) and i ∈ S, one has

E

[∫ ∞

0
e−ρth(Xx,0t , i)dt

]

+E

[∫ ∞

0
e−ρtX1,0

t hx(X
x,0
t , i)dt

]

<∞.

Remark 2.5 1) As an example, the power function given by h(x, i) = ϑix
ni+1 for

(x, i) ∈ [0,∞)× S, ϑi > 0, ni ≥ 1 satisfies Assumption 2.4 (for a suitable ρ > 0 tak-
ing care of requirement (ii) above). Inspired by the careful discussion of Cadenillas
and Huamán-Aguilar in [8, Sect. 2], ni is a subjective regime-dependent parameter
capturing the government’s aversion/intolerance towards the debt ratio. On the other
hand, the parameter ϑi can be thought of as a measure (in monetary terms) of the im-
portance of debt: the better the debt’s characteristics (for example, a larger portion of
debt is domestic rather than external, cf. Japan), the lower the parameter ϑi (relative
to marginal cost of intervention, see below). A power cost function as the one above
is in line with the usual quadratic loss function adopted in the economic literature
(see the influential paper by Tabellini [61], among many others).

2) Notice that the integrability conditions in Assumption 2.4 (ii) ensure that the
expected cost and marginal cost of having debt and not intervening on it are finite
for any possible regime of the economy. In particular, the finiteness of the second
expectation in Assumption 2.4 (ii) guarantees that the stopping functional considered
in Sect. 3.3 below is finite.

Whenever the government intervenes in order to reduce the debt-to-GDP ratio, it
incurs a proportional cost. This might be seen as a measure of the social and finan-
cial consequences deriving from a debt-reduction policy, and the associated regime-
dependent marginal cost κ(Zt ) allows to express it in monetary terms (we refer e.g.
to Lukkezen and Suyker [50] for an empirical evaluation of those costs). We assume
that κ( · ) > 0 is a measurable finite function.

Given an intertemporal discount rate ρ > 0, for any given and fixed triple
(x, y, q) ∈ (0,∞)×Y × I , the government thus aims to minimise the expected total
cost functional

Jx,y,q(ν) := E

[∫ ∞

0
e−ρth(Xx,νt ,Zt )dt +

∫ ∞

0
e−ρtκ(Zt )dνt

]

(2.4)
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for ν ∈ M(x, y, q). The government’s problem under partial observation can be
therefore defined as

Vpo(x, y, q) := inf
ν∈M(x,y,q)

Jx,y,q(ν), (x, y, q) ∈ (0,∞)×Y × I. (2.5)

Remark 2.6 1) We provide here some comments on our formulation of the optimal
debt reduction problem. In line with the recent literature [8, 9, 31, 32] on stochas-
tic control models for debt management, the cost/loss function h appearing in the
government’s objective functional is nondecreasing and null when the debt level is
zero. While the latter requirement can be made without loss of generality, the for-
mer implicitly means that the government believes that disadvantages arising from
debt far outweigh the advantages, and therefore neglects any potential social and fi-
nancial benefit arising from having debt (cf. Holmström and Tirole [39]). One could
think that this assumption is more appropriate for those countries that have faced se-
vere debt crises during the last financial crisis and whose governments trust that high
government debt has a negative effect on the long-term economic growth, makes the
economy less resilient to macroeconomic shocks (e.g. sovereign default risks and
liquidity shocks) and poses limits to the adoption of counter-cyclical fiscal policies
(see e.g. the book by Blanchard [5, Chap. 22], the technical report [30] and Won and
Kumar [63] for empirical studies).

However, it is also worth noticing that the general results of Sect. 3 of this paper
still hold if we take x �→ h(x, i) convex and bounded from below and remove the
condition of being nondecreasing on R+ (thus allowing potential benefits arising
from debt). On the other hand, the monotonicity of h(·, i) has an important role in
our analysis of Sects. 3.3 and 4 (see Propositions 4.4 and 4.6).

2) In our model, we do not allow policies that might lead to an increase of the debt
like e.g. investments in infrastructure, healthcare, education and research, and we ne-
glect any possible social and financial benefit that those economic measures might
induce (see Ostry et al. [55]). From a mathematical point of view, allowing policies
of debt increase would lead to a singular stochastic control problem with controls of
bounded variation, where the two nondecreasing processes giving the minimal de-
composition of any admissible control represent the cumulative amount of the debt’s
increase and decrease. In this case, one might also allow in the government’s objec-
tive functional the total expected social and financial benefits arising from a policy
of debt expansion. We refer to Ferrari and Rodosthenous [32] where a similar setting
has been considered in a problem of debt management under complete observation.

The function Vpo is well defined and finite. Indeed, it is nonnegative due to the
nonnegativity of h; moreover, since the admissible policy “instantaneously reduce at
initial time the debt ratio to 0” is a priori suboptimal and has cost x, we have Vpo ≤ x.

We should like to stress once more that any ν ∈ M(x, y, q) is H-adapted, and
therefore (2.5) is a stochastic control problem under partial observation. In particu-
lar, it is a singular stochastic control problem under partial observation, that is, an
optimal control problem in which the random measures induced by the nondecreas-
ing control processes on [0,∞) might be singular with respect to Lebesgue measure,
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and in which one component Z of the state variable is not directly observable by the
controller.

In its current formulation, the optimal debt reduction problem is not Markovian
and the dynamic programming approach via an HJB equation is not applicable. In
the next section, by using techniques from filtering theory, we introduce an equiv-
alent problem under complete information, the so-called separated problem. This
enjoys a Markovian structure, and its solution is characterised in Sect. 3.3 through a
Markovian optimal stopping problem.

3 Reduction to an equivalent problem under complete information

In this section, we derive the separated problem. To this end, we first study the fil-
tering problem arising in our model. As already discussed in the introduction, results
on such a filtering problem cannot be directly obtained from existing literature due to
the structure of our dynamics.

3.1 The filtering problem

The filtering problem consists in finding the best mean-squared estimate of f (Zt ), for
any t and any measurable function f , on the basis of the information available up to
time t . In our setting, that information flow is given by the filtration H. The estimate
can be described through the filter process (πt )t≥0 which provides the conditional
distribution of Zt given Ht for any time t (see for instance Liptser and Shiryaev [49,
Chap. 8]). For any probability measure μ on S = {1, . . . ,Q} and any function f on S,
we write μ(f ) := ∫

S
f dμ= ∑Q

i=1 f (i)μ({i}). It is known that there exists a càdlàg
(right-continuous with left limits) process taking values in the space of probability
measures on S = {1, . . . ,Q} such that for any measurable function f on S,

πt (f )= E[f (Zt )|Ht ]; (3.1)

see for further details Kurtz and Ocone [48, Lemma 1.1]. Moreover, since Z takes
only a finite number of values, the filter is completely described by the vector

πt (fi)= P[Zt = i|Ht ], i ∈ S,

where fi(z) := 1{z=i}, i ∈ S. With a slight abuse of notation, we denote in the fol-
lowing by π(i) the process π(fi), so that for all measurable functions f , (3.1) gives

πt (f )=
Q∑

i=1

f (i)πt (i).

Setting β(Zt ) := r − g(Zt ) and β(i) := r − g(i), i ∈ S, notice that β is clearly a
bounded function. Then we define two processes I and I 1 such that for any t ≥ 0,
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It :=Wt −
∫ t

0
σ−1(πs(β)− β(Zs)

)
ds,

I 1
t := Bt −

∫ t

0

(
πs

(
α(ηs, · )) − α(ηs,Zs)

)
ds, (3.2)

where

α(q, i) := σ2(q)
−1(b1(q, i)− σ−1β(i)σ1(q)

)
, (q, i) ∈ I × S. (3.3)

Henceforth, we work under the following Novikov condition.

Assumption 3.1

E
[
e

1
2

∫ t
0 α

2(ηs ,Zs)ds
]
<∞ for any t ≥ 0.

Under Assumption 3.1, by classical results from filtering theory (see e.g. [49,
Chap. 7]), the innovation processes I and I 1 are Brownian motions with respect
to the filtration H. Moreover, given the assumed independence of B andW , they turn
out to be independent.

The integer-valued random measure associated to the jumps of η is defined as

m(dt, dq) :=
∑

s:�ηs �=0

δ(s,�ηs)(ds, dq), (3.4)

where δ(a1,a2) denotes the Dirac measure at the point (a1, a2) ∈ R+ ×R. Notice that
the H-adapted random measure m is such that

∫ t

0
c(ηs−,Zs−)1{c(ηs−,Zs−)�=0}dNs =

∫ t

0

∫

R

q m(ds, dq), t > 0.

To proceed further we need the following useful definitions.

Definition 3.2 For any filtration G, we denote by P(G) the predictable σ -field on
the product space (0,∞)×�. Moreover, let B(R) be the Borel σ -algebra on R. Any
mapping H : (0,∞)×�×R →R which is P(G) × B(R)-measurable is called a
G-predictable process indexed by R.

Letting

Fmt := σ{
m

(
(0, s] ×A) : 0 ≤ s ≤ t,A ∈ B(R)

}
, (3.5)

we denote by F
m := (Fmt )t≥0 the filtration which is generated by the random measure

m(dt, dq). It is right-continuous by [7, Theorem T25 in Appendix A2].

Definition 3.3 Given any filtration G with F
m ⊆ G, the G-dual predictable projec-

tion of m, denoted by mp,G(dt, dq), is the unique positive G-predictable random
measure such that for any nonnegative G-predictable process � indexed by R,

E

[∫ ∞

0

∫

R

�(s, q)m(ds, dq)

]

= E

[∫ ∞

0

∫

R

�(s, q)mp,G(ds, dq)

]

. (3.6)
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To prove that a given positive G-predictable random measure is the G-dual pre-
dictable projection of m, it suffices to verify (3.6) for any process which has the form
�(t, q)= Ct1A(q) with C a nonnegative G-predictable process and A ∈ B(R). For
further details, we refer to the books by Brémaud [7, Sect. VIII.4] and Jacod [41,
Sect. III.1].

We now aim at deriving an equation for the evolution of the filter (the filtering
equation). To this end, we use the so-called innovation approach (see Brémaud
[7, Chap. IV.1], Liptser and Shiryaev [49, Chaps. 7.4 and 10.1.5] and Ceci and
Colaneri [15], among others), which in our setting requires the introduction of the
H-compensated jump measure of η,

mπ(dt, dq) :=m(dt, dq)−mp,H(dt, dq). (3.7)

The triplet (I, I 1,mπ) also represents a building block for the construction of H-mar-
tingales as shown in Proposition 3.5 below. We start by determining the form ofmp,H.

Proposition 3.4 The H-dual predictable projection of m is given by

mp,H(dt, dq)=
Q∑

i=1

πt−(i)λN(i)1{c(ηt−,i)�=0}δc(ηt−,i)(dq)dt, (3.8)

where δa denotes the Dirac measure at the point a ∈R.

Proof 1) We first prove that the F-dual predictable projection of m is given by

mp,F(dt, dq) := λN(Zt−)1{c(ηt−,Zt−)�=0}δc(ηt−,Zt−)(dq)dt. (3.9)

Let A ∈ B(R) and introduce

Nt (A) :=m
(
(0, t] ×A) =

∑

s≤t
1{�ηs∈A\{0}}, t ≥ 0. (3.10)

Then N (A) is the point process counting the number of jumps of η up to time t with
jump size in the setA. Since (2.2) implies that�ηs = c(ηs−,Zs−)1{c(ηs−,Zs−)�=0}�Ns
for s≥ 0 andN is a point process with F-predictable intensity given by (λN(Zt−))t≥0,
we obtain for each nonnegative F-predictable process C that

E

[∫ t

0
Cs dNs(A)

]

= E

[∫ t

0
Cs1{c(ηs−,Zs−)∈A\{0}}dNs

]

= E

[∫ t

0
Cs1{c(ηs−,Zs−)∈A\{0}}λN(Zs−)ds

]

.

So for any A ∈ B(R), (λN(Zt−)1{c(ηt−,Zt−)∈A\{0}})t≥0 provides the F-predictable in-
tensity of the counting process N (A). Recalling (3.10) and Definition 3.3, this im-
plies thatmp,F(dt, dq) in (3.9) coincides with the F-dual predictable projection ofm,
since (3.6) holds with the choice G = F and �(t, q)= Ct1A(q).
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2) As in Ceci [11, Proposition 2.3], we can now derive the H-dual predictable
projection of mp,F by projecting mp,F onto the observation flow H. More precisely,
the H-predictable intensity of the point process N (A), A ∈ B(R), is given by

πt−
(
λN(·)1{c(ηt−,·)∈A\{0}}

) =
Q∑

i=1

πt−(i)λN(i)1{c(ηt−,i)∈A\{0}}, ∀A ∈ B(R).

This implies that mp,H(dt, dq) is given by (3.8), since (3.6) is satisfied with the
choice G= H, �(t, q)= Ct1A(q). �

An essential tool to prove that the original problem under partial information is
equivalent to the separated one is the characterisation of the filter as the unique so-
lution to the filtering equation (see El Karoui et al. [28], Mazliak [52] and Ceci and
Gerardi [12]). In order to derive the filtering equation solved by π , we first give a rep-
resentation theorem for H-martingales. The proof of the following technical result is
given in Appendix A.

Proposition 3.5 Under Assumptions 2.1 and 3.1, every H-local martingaleM admits
the decomposition

Mt =M0 +
∫ t

0
ϕsdIs +

∫ t

0
ψsdI

1
s +

∫ t

0

∫

R

w(s, q)mπ(ds, dq),

where ϕ and ψ are H-predictable processes and w is an H-predictable process in-
dexed by R such that a.s.

∫ t

0
ϕ2
s ds <∞,

∫ t

0
ψ2
s ds <∞,

∫ t

0

∫

R

|w(s, q)|mp,H(ds, dq) <∞, t ≥ 0.

We are now in the position to prove the following fundamental result, whose proof
is postponed to Appendix A.

Theorem 3.6 Recall (3.7), let y ∈ Y be the initial distribution of Z and let Assump-
tions 2.1 and 3.1 hold. Then the filter (πt )t≥0 := (πt (i); i ∈ S)t≥0 solves the Kushner–
Stratonovich system

πt (i) = yi +
∫ t

0

Q∑

j=1

λjiπs(j)ds +
∫ t

0
πs(i)σ

−1
(

β(i)−
Q∑

j=1

β(j)πs(j)

)

dIs

+
∫ t

0
πs(i)

(

α(ηs, i)−
Q∑

j=1

α(ηs, j)πs(j)

)

dI 1
s

+
∫ t

0

∫

R

(
wπi (s, q)− πs−(i)

)
mπ(ds, dq) (3.11)
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for any i ∈ S. Here, β(i)= r − g(i) and

wπi (s, q) :=
dλN(i)πs−(i)1{c(ηs−,i)�=0}δc(ηs−,i)(dq)

d(
∑Q
j=1 πs−(j)λN(j)1{c(ηs−,j)�=0}δc(ηs−,j)(dq))

(3.12)

denotes the Radon–Nikodým derivative of λN(i)πs−(i)1{c(ηs−,i)�=0}δc(ηs−,i)(dq) with

respect to
∑Q
j=1 πs−(j)λN(j)1{c(ηs−,j)�=0}δc(ηs−,j)(dq).

Let us introduce the sequence of jump times and jump sizes of the process η,
denoted by (Tn, ζn)n≥1 and recursively defined, with T0 := 0, as

Tn+1 := inf

{

t > Tn :
∫ t

Tn

c(ηs−,Zs−)dNs �= 0

}

,

ζn := ηTn − ηTn− = c(ηTn−,ZTn−), n≥ 1.

We use the standard convention that inf∅ = +∞. Then the integer-valued measure
associated to the jumps of η (cf. (3.4)) can also be written as

m(dt, dq)=
∑

n≥1

δ(Tn,ζn)(dt, dq)1{Tn<+∞}. (3.13)

The filtering system (3.11) has a natural recursive structure in terms of the sequence
(Tn)n≥1, as shown in the next proposition.

Proposition 3.7 Between two consecutive jump times, i.e., for t ∈ [Tn,Tn+1), the
filtering system (3.11) reads as

πt (i) = πTn(i)+
∫ t

Tn

( Q∑

j=1

λjiπs(j)− πs(i)
(
λN(i)1{c(ηs−,i)�=0}

−
Q∑

j=1

λN(j)πs(j)1{c(ηs−,j)�=0}
))

ds

+
∫ t

Tn

σ−1πs(i)

(

β(i)−
Q∑

j=1

β(j)πs(j)

)

dIs

+
∫ t

Tn

πs(i)

(

α(ηs, i)−
Q∑

j=1

α(ηs, j)πs(j)

)

dI 1
s (3.14)

for any i ∈ S. At a jump time Tn of η, (πt )t≥0 = (πt (i); i ∈ S)t≥0 jumps as well, and
its value is given by

πTn(i)=
λN(i)πTn−(i)1{ζn=c(ηTn−,i)}

∑Q
j=1 λ

N(j)πTn−(j)1{ζn=c(ηTn−,j)}
, i ∈ S. (3.15)
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Proof First, recalling that mπ(dt, dq)=m(dt, dq)−mp,H(dt, dq) and

mp,H(dt, dq)=
Q∑

j=1

πt−(j)λN(j)1{c(ηt−,j)�=0}δc(ηt−,j)(dq)dt,

we obtain that
∫ t

0

∫

R

(
wπi (s, q)− πs−(i)

)
mp,H(ds, dq)

=
∫ t

0
πs(i)

(

λN(i)1{c(ηs−,i)�=0} −
Q∑

j=1

λN(j)πs(j)1{c(ηs−,j)�=0}
)

ds,

which from (3.11) implies that πt (i) solves (3.14) for any t ∈ [Tn,Tn+1). Finally,
(3.15) follows by (3.12) and

πTn(i)=wπi (Tn, ζn)=
λN(i)πTn−(i)1{c(ηTn−,i)�=0}δc(ηTn−,i)(ζn)

∑Q
j=1 πTn−(j)λN(j)1{c(ηTn−,j)�=0}δc(ηTn−,j)(ζn)

. �

We want to stress that (3.15) shows that the vector πTn is completely deter-
mined by the observed data η and the knowledge of πt for t ∈ [Tn−1, Tn), since
πTn−(i) := limt↑Tn πt (i), i ∈ S.

Example 3.8 1) In the case c(q, i)≡ c �= 0 for any i ∈ S and q ∈ I , the sequences of
jump times of η and N coincide and the filtering system (3.11) reduces to (for i ∈ S)

πt (i)= yi +
∫ t

0

Q∑

j=1

λjiπs(j)ds +
∫ t

0
πs(i)σ

−1
(

β(i)−
Q∑

j=1

β(j)πs(j)

)

dIs

+
∫ t

0
πs(i)

(

α(ηs, i)−
Q∑

j=1

α(ηs, j)πs(j)

)

dI 1
s

+
∫ t

0

(
λN(i)πs−(i)

∑Q
j=1 πs−(j)λN(j)

− πs−(i)
)(

dNs −
Q∑

j=1

πs−(j)λN(j)ds
)

.

2) In the case α(q, i)= α(i) and c(q, i)≡ 0 for any i ∈ S and q ∈ I , the filtering
system (3.11) does not depend explicitly on the process η. In particular, one has

πt (i)= yi +
∫ t

0

Q∑

j=1

λjiπs(j)ds +
∫ t

0
πs(i)σ

−1
(

β(i)−
Q∑

j=1

β(j)πs(j)

)

dIs

+
∫ t

0
πs(i)

(

α(i)−
Q∑

j=1

α(j)πs(j)

)

dI 1
s , i ∈ S,
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where we have set α(i) := σ−1
2 (b1(i)− σ−1β(i)σ1). In Sect. 4, we provide the ex-

plicit solution to the optimal debt reduction problem within this setting. With refer-
ence to (2.2) and (3.3), this setting corresponds e.g. to the purely diffusive arithmetic
case c(q, i)= 0, b1(q, i)= b1(i) and σ1(q)= σ1 > 0, σ2(q)= σ2 > 0 for any i ∈ S
and q ∈ I , or to the purely diffusive geometric case c(q, i) = 0, b1(q, i) = b1(i)q

and σ1(q)= σ1q , σ2(q)= σ2q for any i ∈ S and q ∈ I .

3.2 The separated problem

Thanks to the introduction of the filter, (2.1)–(2.3) can now be rewritten in terms of
observable processes. In particular, we have that

dX0
t = πt (β)X0

t dt + σX0
t dIt ,

X0
0 = x > 0,

(3.16)

dηt = πt
(
b1(ηt , ·)

)
dt + σ1(ηt )dIt + σ2(ηt )dI

1
t +

∫

R

ζm(dt, dζ ),

η0 = q ∈ I,
(3.17)

dXνt = πt (β)Xνt dt + σXνt dIt − dνt ,
Xν0− = x > 0.

(3.18)

Notice that for any ν ∈ M(x, y, q), the process Xν turns out to be H-adapted and
depends on the vector (πt )t≥0 = (πt (i); i ∈ S)t≥0 with π0 = y ∈ Y .

Definition 3.9 We say that a process (π̃ t , η̃t )t≥0 with values in Y × I is a strong
solution to (3.11) and (3.17) if it satisfies those equations pathwise. We say that
strong uniqueness for the system (3.11) and (3.17) holds if for any strong solution
(π̃ t , η̃t )t≥0 to (3.11) and (3.17), one has π̃ t = πt and η̃t = ηt a.s. for all t ≥ 0.

Proposition 3.10 Let Assumptions 2.1 and 3.1 hold and suppose that α(·, i) is local-
ly Lipschitz for any i ∈ S and there existsM > 0 such that |α(q, i)| ≤M(1 + |q|) for
any q ∈ I and any i ∈ S. Then the system (3.11) and (3.17) admits a unique strong
solution.

The proof of Proposition 3.10 is postponed to Appendix A. Notice that under
Assumption 2.1, the requirement on α of Proposition 3.10 is verified e.g. whenever
σ2(q) ≥ σ for some σ > 0 and for any q ∈ I , or if b1/σ2 and σ1/σ2 are locally
Lipschitz in q ∈ I and have sublinear growth. As a byproduct of Proposition 3.10,
we also have strong uniqueness of the solution to (3.18). In the following, when there
is a need to stress the dependence with respect to the initial value x > 0, we denote
the solution to (3.16) and (3.18) by Xx,0 and Xx,ν , respectively. Since

E
[
πt

(
h(X

x,ν
t , ·))] = E

[
E[h(Xx,νt ,Zt )|Ht ]

]
,
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an application of the Fubini–Tonelli theorem allows writing

E

[∫ ∞

0
e−ρth(Xx,νt ,Zt )dt

]

= E(x,y,q)

[∫ ∞

0
e−ρtπt

(
h(Xνt , ·)

)
dt

]

,

where E(x,y,q) denotes the expectation conditioned on Xν0− = x > 0, π0 = y ∈ Y ,
and η0 = q ∈ I . Also, because π(κ) is the H-optional projection of the process κ(Z)
(cf. [48, Lemma 1.1]) and any admissible control ν is increasing and H-adapted, an
application of Dellacherie and Meyer [24, Theorem VI.57, in particular (VI.57.1)]
yields

E

[∫ ∞

0
e−ρtκ(Zt )dνt

]

= E(x,y,q)

[∫ ∞

0
e−ρtπt

(
κ(·))dνt

]

.

Hence, the cost functional of (2.4) can be rewritten in terms of observable quanti-
ties as

Jx,y,q(ν)= E(x,y,q)

[∫ ∞

0
e−ρtπt

(
h(Xνt , ·)

)
dt +

∫ ∞

0
e−ρtπt

(
κ(·))dνt

]

.

Notice that the latter expression does not depend on the unobservable process Z
any more, and this allows us to introduce a control problem with complete infor-
mation, the separated problem, in which the new state variable is given by the triplet
(Xν,π,η). For this problem, we introduce the set A(x, y, q) of admissible controls,
given in terms of the observable processes in (3.11), (3.17) and (3.18) as

A(x, y, q) := {
ν :�×R+ → R+ : (νt (ω) := ν(ω, t)

)
t≥0, is nondecreasing,

right-continuous, H-adapted and such that

X
x,ν
t ≥ 0 for every t ≥ 0, Xx,ν0− = x,
π0 = y,η0 = q a.s.

}

for every initial value x ∈ (0,∞) of Xx,ν defined in (3.18), any initial value y ∈ Y
of the process (πt )t≥0 = (πt (i); i ∈ S)t≥0 solving (3.11) and any initial value q ∈ I
of η. In the following, we set ν0− = 0 a.s. for any ν ∈A(x, y, q).

Given ν ∈ A(x, y, q), the triplet (Xx,νt , π t , ηt )t≥0 solves (3.18), (3.11) and (3.17)
and the jump measure associated to η has H-predictable dual projection given by
(3.8). Hence, the process (Xx,νt , πt , ηt )t≥0 is an H-Markov process and we therefore
define the Markovian separated problem as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V (x, y, q) := infν∈A(x,y,q)E(x,y,q)
[∫ ∞

0
e−ρtπt

(
h(Xνt , ·)

)
dt

+
∫ ∞

0
e−ρtπt

(
κ(·))dνt

]

dX
x,ν
t = πt (β)Xx,νt dt + σXx,νt dIt − dνt , X

x,ν
0− = x > 0,

(π, η) solution to (3.11) and (3.17).

(3.19)

This is now a singular stochastic problem under complete information, since all the
processes involved are H-adapted.



Public debt control under partial information 1101

The next proposition immediately follows from the construction of the separated
problem and the strong uniqueness of the solutions to (3.11), (3.17) and (3.18).

Proposition 3.11 Assume strong uniqueness for the system of (3.11) and (3.17), and
let (x, y, q) ∈ (0,∞) × Y × I be the initial values of the process (X,Z,η) in the
problem (2.5) under partial observation. Then

Vpo(x, y, q)= V (x, y, q).
Moreover, A(x, y, q) = M(x, y, q) and ν∗ is an optimal control for the separated
problem (3.19) if and only if it is optimal for the original problem (2.5) under partial
observation.

Remark 3.12 Notice that in the setting of Example 3.8, 2), the pair (Xx,ν,π) solv-
ing (3.18) and (3.11) is an H-Markov process for any given control ν ∈A(x, y, q),
(x, y, q) ∈ (0,∞)× Y × I . As a consequence, since the cost functional and the set
of admissible controls do not depend explicitly on the process η, the value function
of the separated problem (3.19) does not depend on the variable q . We consider this
setting in Sect. 4.

3.3 A probabilistic verification theorem via reduction to optimal stopping

In this section, we relate the separated problem to a Markovian optimal stopping
problem and show that the solution to the latter is directly related to the optimal con-
trol of the former. The following analysis is fully probabilistic and based on a change-
of-variable formula for Lebesgue–Stieltjes integrals that has already been employed
in singular control problems (see e.g. Baldursson and Karatzas [2] and Ferrari [31]).
The result of this section is then employed in Sect. 4 where in a case study, we de-
termine the optimal debt reduction policy by solving an auxiliary optimal stopping
problem.

With regard to (3.19), notice that we can write πt (κ(·)) = ∑Q
i=1 πt (i)κ(i) as

well as πt (h(X
x,ν
t , ·)) = ∑Q

i=1 πt (i)h(X
x,ν
t , i) a.s. for any t ≥ 0. For any (x,π) in

(0,∞)×Y , set

ĥ(x,π) :=
Q∑

i=1

π(i)h(x, i), κ̂(π) :=
Q∑

i=1

π(i)κ(i),

and given z ∈ (0,∞), we introduce the optimal stopping problem

Ũt (z) := ess inf
τ≥t E

[∫ τ

t

e−ρ(s−t)X1,0
s ĥx(X

z,0
s , πs)ds

+ e−ρ(τ−t)κ̂(πτ )X1,0
τ

∣
∣
∣
∣Ht

]

, t ≥ 0, (3.20)

where the optimisation is taken over all H-stopping times τ ≥ t .
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Under Assumption 2.4, the expectation in (3.20) is finite for any H-stopping time
τ ≥ t , for any t ≥ 0. Observing that κ(i) <∞ for any i ∈ S, in order to take care of
the event {τ = ∞}, we use in (3.20) the convention

e−ρτX1,0
τ := lim inf

t↑∞ e−ρtX1,0
t on {τ = ∞}. (3.21)

Denote by U(z) a càdlàg modification of Ũ (z) (which under our assumptions ex-
ists due to the results in Karatzas and Shreve [46, Appendix D]), and observe that
0 ≤Ut(z)≤ κ̂(π t )X1,0

t for any t ≥ 0, a.s. Also, define the stopping time

τ ∗
t (z) := inf{s ≥ t :Us(z)≥ κ̂(πs)X1,0

s }, z ∈ (0,∞), (3.22)

with the usual convention inf∅ = ∞. Then by [46, Theorem D.12], τ ∗
t (z) is an opti-

mal stopping time for (3.20). In particular, τ ∗(z) := τ ∗
0 (z) is optimal for the problem

U0(z) := inf
τ≥0

E

[∫ τ

0
e−ρtX1,0

t ĥx(X
z,0
t , π t )dt + e−ρτ κ̂(πτ )X1,0

τ

]

.

Notice that since hx(·,π) is a.s. increasing, z �→ τ ∗(z) is a.s. decreasing. This mono-
tonicity of τ ∗( · ) will be important in the sequel as we need to consider its gener-
alised inverse. Moreover, since the triplet (Xz,0,π, η) is a homogeneous H-Markov
process, there exists a measurable function U : (0,∞) × Y × I → R such that
Ut(z) = U(X

z,0
t , π t , ηt ) for any t ≥ 0, a.s. Hence U0(z) = U(z, y, q), and for any

(x, y, q) ∈ (0,∞)×Y × I , we define

Ṽ (x, y, q) :=
∫ x

0
U(z, y, q)dz. (3.23)

Moreover, we introduce the nondecreasing right-continuous process

ν∗
t := sup{α ∈ [0, x] : τ ∗(x − α)≤ t}, t ≥ 0, ν∗

0− = 0, (3.24)

and then also the process

ν∗
t :=

∫ t

0
X1,0
s dν

∗
s , t > 0, ν∗

0− = 0.

Notice that ν∗· is the right-continuous inverse of τ ∗( · ).

Theorem 3.13 Let Ṽ be as in (3.23) and V as in the definition (3.19). Then Ṽ = V ,
and ν∗ is the (unique) optimal control for (3.19).

Proof 1) Let x > 0, y ∈ Y and q ∈ I be given and fixed. For ν ∈ A(x, y, q), we

introduce the process ν such that νt :=
∫ t

0
dνs

X
1,0
s

, t ≥ 0, and define its inverse (see e.g.

Revuz and Yor [59, Sect. 0.4]) by

τ ν(z) := inf{t ≥ 0 : x − νt < z}, 0< z≤ x.
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Notice that the process (τ ν(z))z≤x has decreasing left-continuous sample paths, and
hence it admits right limits

τ ν+(z) := inf{t ≥ 0 : x − νt ≤ z}, z≤ x. (3.25)

Moreover, the set of points z ∈ R at which τ ν(z)(ω) �= τ ν+(z)(ω) is a.s. countable for
a.e. ω ∈�. The random time τ ν(z) is actually an H-stopping time because it is the en-
try time into an open set of the right-continuous process ν, and H is right-continuous.
Moreover, since τ ν+(z) is the first entry time of the right-continuous process ν into a
closed set, it is an H-stopping time as well for any z≤ x.

Proceeding then as in Ferrari [31, Step 1 of the proof of Theorem 3.1], by employ-
ing the change-of-variable formula in [59, Proposition 0.4.9], one finds that

Ṽ (x, y, q)=
∫ x

0
U(z, y, q)dz≤ Jx,y,q(ν).

Hence, since ν was arbitrary, we find that

Ṽ (x, y, q)≤ V (x, y, q), (x, y, q) ∈ (0,∞)×Y × I. (3.26)

2) To complete the proof, we have to show the reverse inequality. Let x ∈ (0,∞),
y ∈ Y and q ∈ I be initial values ofXx,ν , π and η. We first notice that ν∗∈A(x, y, q).
Indeed, ν∗ is nondecreasing, right-continuous and such thatXx,ν

∗
t =X1,0

t (x − ν∗
t )≥ 0

a.s. for all t ≥ 0, since ν∗
t ≤ x a.s. by definition. Moreover, for any 0< z≤ x, we can

write by (3.24) and (3.25) that

τ ν
∗

+ (z)≤ t ⇐⇒ ν∗
t ≥ x − z ⇐⇒ τ ∗(z)≤ t.

Then recalling that τ ν
∗

+ (z) = τ ν
∗
(z) P-a.s. for almost every z ≤ x, we pick ν = ν∗

(equivalently, ν = ν∗) and following [31, Step 2 in the proof of Theorem 3.1], we
obtain Ṽ (x, y, q) = Jx,y,q(ν∗) ≥ V (x, y, q), where the last inequality is due to the

admissibility of ν∗. Hence, by (3.26), we have Ṽ = V and ν∗ is optimal. In fact, by
strict convexity of Jx,y,q( · ), ν∗ is the unique optimal control in the class of controls
belonging to A(x, y, q) and such that Jx,y,q(ν) <∞. �

Remark 3.14 For any given (x, y, q) ∈ (0,∞)×Y×I , define the Markovian optimal
stopping problem

v(x, y, q) := inf
τ≥0

E

[∫ τ

0
e−ρtXx,0t ĥx(X

x,0
t , π

y

t )dt + e−ρτ κ̂(π
y
τ )X

x,0
τ

]

,

where π y denotes the filter process starting at time zero from y ∈ Y . Then, since

Xx,0 = xX1,0 by (3.16) and U0(z)=U(z, y, q) for some measurable function U , one
can easily see that v(x, y, q) = xU(x, y, q). Moreover, the previous considerations
together with (3.22) (evaluated at t = 0) ensure that the stopping time

τ ∗(x, y, q) := inf{t ≥ 0 : v(Xx,0t , π
y

t , η
q
t )≥ κ̂(π

y

t )X
x,0
t }

is optimal for v(x, y, q), where q = η0.
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4 The solution in a case study with Q = 2 economic regimes

In this section, we build on the general filtering analysis developed in the previous
sections and on the result of Theorem 3.13, and provide the form of the optimal debt
reduction policy in a case study defined through the following standing assumption.

Assumption 4.1 1) Z takes values in S = {1,2}, and with reference to (2.3), we
assume g2 := g(2) < g(1)=: g1.

2) For any q ∈ I and i ∈ {1,2}, one has c(q, i) = 0, and for α as in (3.3), we
assume α(q, i)= α(i).

3) h(x, i)= h(x) for all (x, i) ∈ (0,∞)× {1,2}, with h :R → R such that
(i) x �→ h(x) is strictly convex, twice continuously differentiable and nonde-

creasing on R+ with h(0)= 0 and limx↑∞ h(x)= ∞;
(ii) there exist γ > 1, 0<Ko <K and K1,K2 > 0 such that

Ko|x+|γ −K ≤ h(x)≤K(1 + |x|γ ),
|h′(x)| ≤K1(1 + |x|γ−1),

|h′′(x)| ≤K2(1 + |x|(γ−2)+).

4) κ(i)= 1 for i ∈ {1,2}.

Notice that under Assumption 4.1, 2), the macroeconomic indicator η has a suit-
able diffusive dynamics whose coefficients b1, σ1, σ2 are such that the function α is
independent of q . As discussed in Example 3.8, 2), this is the case of a geometric or
arithmetic diffusive dynamics for η. In this setting, the Kushner–Stratonovich system
(3.11) reduces to

dπt (1)=
(
λ2 − (λ1 + λ2)πt (1)

)
dt

+ πt (1)
(
1 − πt (1)

)
(
β1 − β2

σ
dIt + (α1 − α2)dI

1
t

)

(4.1)

and πt (2)= 1 − πt (1). Here, λ1 := λ12 > 0 and λ2 := λ21 > 0.
Setting πt := πt (1), t ≥ 0, (3.19) then reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V (x, y) = infν∈A(x,y)E(x,y)
[∫ ∞

0
e−ρth(Xνt )dt +

∫ ∞

0
e−ρtdνt

]

,

dX
x,y,ν
t = (

β2 + πyt (g2 − g1)
)
X
x,y,ν
t dt + σXx,y,νt dIt − dνt ,

dπ
y
t = (

λ2 − (λ1 + λ2)π
y
t

)
dt

+ πyt (1 − πyt )
(
g2−g1
σ
dIt + (α1 − α2)dI

1
t

)

,

(4.2)

with initial conditionsXx,y,ν0− = x > 0, π0 = y ∈ (0,1), and where gi = r−βi denotes
the rate of economic growth in the state i, i = 1,2. Note that we switch here from
arguments (i) to subscripts i .
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It is worth noticing that there is no need to involve the process η in the Marko-
vian formulation (4.2). This is due to the fact that the couple (Xν,π) solving the two
stochastic differential equations above is a strong Markov process and the cost func-
tional and the set of admissible controls A(x, y, q) do not depend explicitly on η;
hence we simply write A(x, y) instead of A(x, y, q) (cf. (4.2) above). For this rea-
son, the value function of (4.2) does not depend on the initial value q of the process η.
However, the memory of the macroeconomic indicator process η appears in the filter
π through the constant term α1 − α2 in its dynamics.

Since (4.1) admits a unique strong solution, Proposition 3.11 implies the following
result.

Proposition 4.2 Under Assumption 4.1, solving (4.2) is equivalent to solving the
original problem (2.5). That is,

Vpo(x, y)= V (x, y) for any given and fixed (x, y) ∈ (0,∞)× (0,1),

and a control is optimal for the separated problem (4.2) if and only if it is optimal for
the original problem (2.5) under partial observation.

In the following analysis, we need (for technical reasons due to the infinite horizon
of our problem) to take a sufficiently large discount factor. Namely, defining

ρo :=
(

β2 + 1

2
σ 2

)

∨
(

γβ2 + 1

2
σ 2γ (γ − 1)

)

∨ (2β2 + σ 2)∨ (
24θ2 − (λ1 + λ2)

)

∨ (4β2 + 6σ 2)∨
(

4β2(2 ∨ γ )+ 2σ 2(2 ∨ γ )(4(2 ∨ γ )− 1
))
,

with θ2 := 1
2 (
(g1−g2)

2

σ 2 + (α1 − α2)
2), we assume the following.

Assumption 4.3 One has ρ > ρ+
o .

Due to the growth condition on h, let us notice that Assumption 4.3 in particular
ensures that ρ > γβ2 + 1

2σ
2γ (γ − 1) so that the (trivial) admissible control ν ≡ 0

has a finite total expected cost.

4.1 The related optimal stopping problem

Motivated by the results of the previous sections (in particular Theorem 3.13), we
now aim at solving (4.2) through the study of an auxiliary optimal stopping problem
whose value function can be interpreted as the marginal value of the optimal debt
reduction problem (cf. (3.23) and Theorem 3.13). Therefore, we can think informally
of the solution to that optimal stopping problem as the optimal time at which the
government should marginally reduce the debt ratio. The optimal stopping problem
involves a two-dimensional diffusive process, and in the sequel, we provide an almost
exclusively probabilistic analysis.
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4.1.1 Formulation and preliminary results

Recall that (It , I 1
t )t≥0 is a two-dimensional standard H-Brownian motion, and in-

troduce the two-dimensional diffusion process (X̂,π) := (X̂t , πt )t≥0 solving the
stochastic differential equations (SDEs)
⎧
⎪⎨

⎪⎩

dX̂t = X̂t
(
β2 + (g2 − g1)πt

)
dt + σX̂tdIt ,

dπt = (
λ2 − (λ1 + λ2)πt

)
dt + πt (1 − πt )

(
g2 − g1

σ
dIt + (α1 − α2)dI

1
t

) (4.3)

with initial conditions X̂0 = x, π0 = y for any (x, y) ∈ O := (0,∞)× (0,1). Recall
that β2 = r − g2.

Since the process π is bounded, classical results on SDEs ensure that (4.3) admits
a unique strong solution that, when needed, we denote by (X̂x,y,πy) to stress its
dependence on the initial datum (x, y) ∈ O. In particular, one easily obtains

X̂
x,y
t = xe(β2− 1

2σ
2)t+σIt+(g2−g1)

∫ t
0 π

y
s ds, t ≥ 0. (4.4)

Moreover, it can be shown that Feller’s test of explosion (see e.g. Karatzas and Shreve
[45, Chap. 5.5]) gives 1 = P[πyt ∈ (0,1),∀t ≥ 0] for all y ∈ (0,1). In fact, the bound-
ary points 0 and 1 are classified as “entrance-not-exit”, hence are unattainable for
the process π . In other words, the diffusion π can start from 0 and 1, but it cannot
reach any of those two points when starting from y ∈ (0,1) (we refer to Borodin and
Salminen [6, Sect. II.6] for further details on boundary classification).

With regard to Remark 3.14, we study here the fully two-dimensional Markovian
optimal stopping problem with value function

v(x, y) := inf
τ≥0

E(x,y)

[∫ τ

0
e−ρt X̂th′(X̂t )dt + e−ρτ X̂τ

]

=: inf
τ≥0

Ĵ(x,y)(τ ), (x, y) ∈ O. (4.5)

In (4.5), the optimisation is taken over all H-stopping times, and E(x,y) denotes the
expectation under the probability measure P(x,y)[ · ] := P[ · |X̂0 = x,π0 = y].

Because π is positive, g2 − g1 < 0 and ρ > β2 by Assumption 4.3, (4.4) gives

lim inf
t↑∞ e−ρt X̂t = 0 P(x,y)-a.s.,

which implies via the convention (3.21) that e−ρτ X̂τ = 0 on {τ = ∞} for any
H-stopping time τ .

Clearly, v ≥ 0 since X̂ is positive and h is increasing on R+. Also, v ≤ x on O,
and we can therefore define the continuation region and the stopping region as

C := {(x, y) ∈O : v(x, y) < x}, S := {(x, y) ∈O : v(x, y)= x}. (4.6)

Notice that integrating by parts the term e−ρτ X̂τ , taking expectations and exploiting
that E[∫ τ0 e−ρsX̂sdIs] = 0 for any H-stopping time τ (because ρ > β2 + 1

2σ
2 by
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Assumption 4.3), we can equivalently rewrite (4.5) as

v(x, y) := x + inf
τ≥0

E(x,y)

[∫ τ

0
e−ρt X̂t

(
h′(X̂t )−

(
ρ − β2 − (g2 − g1)πt

))
dt

]

(4.7)

for any (x, y) ∈O. From (4.7), it is readily seen that

{
(x, y) ∈O : h′(x)− (

ρ − β2 − (g2 − g1)y
)
< 0

} ⊆ C,

which implies

S ⊆ {
(x, y) ∈O : h′(x)− (

ρ − β2 − (g2 − g1)y
) ≥ 0

}
. (4.8)

Moreover, since ρ satisfies Assumption 4.3 and 0 ≤ πt ≤ 1 for any (x, y) ∈ O, one
has that

E(x,y)

[∫ ∞

0
e−ρt X̂t

(
h′(X̂t )+ ρ + |β2| + |g2 − g1|

)
dt

]

<∞, (4.9)

and the family of random variables

{∫ τ

0
e−ρt X̂t

(
h′(X̂t )−

(
ρ − β2 − (g2 − g1)πt

))
dt : τ is an H-stopping time

}

is therefore H-uniformly integrable under P(x,y).
Preliminary properties of v are given in the next proposition.

Proposition 4.4 The following hold:
(i) x �→ v(x, y) is increasing for any y ∈ (0,1).
(ii) y �→ v(x, y) is decreasing for any x ∈ (0,∞).
(iii) (x, y) �→ v(x, y) is continuous in O.

Proof (i) Recall (4.5). By the strict convexity and monotonicity of h and (4.4), it fol-
lows that x �→ Ĵ(x,y)(τ ) is increasing for any H-stopping time τ and any y ∈ (0,1).
Hence the claim is proved.

(ii) This is due to the fact that y �→ Ĵ(x,y)(τ ) is decreasing for any stopping time
τ and x ∈ (0,∞). Indeed, the mapping y �→ X̂

x,y
t is a.s. decreasing for any t ≥ 0

because y �→ π
y
t is a.s. increasing by the comparison theorem of Yamada and Watan-

abe (see e.g. Karatzas and Shreve [45, Proposition 5.2.18]) and g2 − g1 < 0, and
x �→ xh′(x) is increasing.

(iii) Since (x, y) �→ (X̂
x,y
t , π

y
t ) is a.s. continuous for any t ≥ 0, it is not hard to

verify that (x, y) �→ Ĵ(x,y)(τ ) is continuous for any given τ ≥ 0. Hence v is upper
semicontinuous. We now show that it is also lower semicontinuous.

Let (x, y) ∈ O and let (xn, yn)n∈N ⊆ O be any sequence converging to (x, y).
Without loss of generality, we may take (xn, yn) ∈ (x− δ, x+ δ)× (y− δ, y+ δ) for
a suitable δ > 0. Letting τnε := τnε (xn, yn) be ε-optimal for v(xn, yn), but suboptimal
for v(x, y), we can then write
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v(x, y)− v(xn, yn)≤ E

[∫ τnε

0
e−ρt

(
X̂
x,y
t h′(X̂x,yt )− X̂xn,ynt h′(X̂xn,ynt )

)
dt

]

+E
[
e−ρτnε

(
X̂
x,y
τnε

− X̂xn,ynτnε

)] + ε.
Notice now that a.s.

∫ τnε

0
e−ρt

∣
∣X̂
x,y
t h′(X̂x,yt )− X̂xn,ynh′(X̂xn,ynt )

∣
∣dt

≤
∫ ∞

0
e−ρt

(
X̂
x,y
t h′(X̂x,yt )+ X̂x+δ,y−δt h′(X̂x+δ,y−δt )

)
dt,

where we have used that x �→ X̂x,y is increasing, y �→ X̂x,y is decreasing and
x �→ xh′(x) is positive and increasing. The random variable on the right-hand side
above is independent of n and integrable due to (4.9). Also, using integration by parts
and performing standard estimates, we can write that a.s.

e−ρτnε
(
X̂
x,y
τnε

− X̂xn,ynτnε

)

≤ |x − xn| +
∫ ∞

0
e−ρs(ρ + |β2| + |g2 − g1|)(X̂x,ys + X̂x+δ,y−δs )ds,

and the last integral above is independent of n and has finite expectation due to (4.9).
Then taking limits as n ↑ ∞, invoking the dominated convergence theorem thanks to
the previous estimates and using that (x, y) �→ (X̂

x,y
t , π

y
t ) is a.s. continuous for any

t ≥ 0, we find (after rearranging terms) that

lim inf
n↑∞ v(xn, yn)≥ v(x, y)− ε.

We thus conclude that v is lower semicontinuous at (x, y) by arbitrariness of ε. Since
(x, y) ∈ O was arbitrary as well, v is lower semicontinuous on O. �

Due to Proposition 4.4 (iii), the stopping region is closed whereas the continuation
region is open. Moreover, thanks to (4.9) and the P̂(x,y)-a.s. continuity of the paths
of the process (

∫ t
0 e

−ρsX̂s(h′(X̂s) − (ρ − β2 − (g2 − g1))πs)ds)t≥0, we can apply
Karatzas and Shreve [46, Theorem D.12] to obtain that the first entry time of (X̂,π)
into S is optimal for (4.5), that is,

τ �(x, y) := inf{t ≥ 0 : (X̂t , πt ) ∈ S} P(x,y)-a.s., (x, y) ∈O, (4.10)

attains the infimum in (4.5) (with the usual convention inf∅ = ∞). Also, standard ar-
guments based on the strong Markov property of (X̂,π) (see e.g. Peskir and Shiryaev
[57, Theorem I.2.4]) allow one to show that P(x,y)-a.s., the process S := (St )t≥0 with

St := e−ρtv(X̂t , πt )+
∫ t

0
e−ρsX̂sh′(X̂t )dt

is an H-submartingale, and the stopped process (St∧τ�)t≥0 is an H-martingale. The
latter two conditions are usually referred to as the subharmonic characterisation of
the value function v.
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We now rule out the possibility of an empty stopping region.

Lemma 4.5 The stopping region of (4.6) is not empty.

Proof We argue by contradiction and suppose that S = ∅. Hence for any (x, y) ∈ O,
we can write

x > v(x, y) = E(x,y)

[∫ ∞

0
e−ρt X̂th′(X̂t )dt

]

≥ KoxγE(1,y)
[∫ ∞

0
e−ρt X̂γt dt

]

− K

ρ
,

where the inequality xh′(x)≥ h(x), due to convexity of h, and the growth condition
assumed on h (cf. Assumption 4.1) have been used. Now by taking x sufficiently
large, we reach a contradiction since γ > 1 by assumption. Hence S �= ∅. �

Proposition 4.6 For any y ∈ (0,1), let

x(y) := inf{x > 0 : v(x, y)≥ x} (4.11)

with the convention inf∅ = ∞. Then:
(i) We have

C = {(x, y) ∈ O : x < x(y)}, S = {(x, y) ∈ O : x ≥ x(y)}. (4.12)

(ii) y �→ x(y) is increasing and left-continuous.
(iii) There exist 0< x� < x� <∞ such that for any y ∈ [0,1],

(h′)−1(ρ − β2)∨ x� ≤ x(y)≤ x�.

Proof (i) To show (4.12), it suffices to show that if (x1, y) ∈ S , then (x2, y) ∈ S for
any x2 ≥ x1. Let τ ε := τ ε(x2, y) be an ε-optimal stopping time for v(x2, y). Then
exploiting X̂x2,y

t = x2
x1
X̂
x1,y
t ≥ X̂x1,y

t a.s. and monotonicity of h′, (4.7) yields

0 ≥ v(x2, y)− x2

≥ E

[∫ τ ε

0
e−ρt X̂x2,y

t

(
h′(X̂x2,y

t )− (
ρ − β2 − (g2 − g1)π

y
t

))
dt

]

− ε

≥ x2

x1
E

[∫ τ ε

0
e−ρt X̂x1,y

t

(
h′(X̂x1,y

t )− (
ρ − β2 − (g2 − g1)π

y
t

))
dt

]

− ε

≥ x2

x1

(
v(x1, y)− x1

) − ε = −ε.

Therefore, by arbitrariness of ε, we conclude that (x2, y) ∈ S as well, and therefore
that x in (4.11) splits C and S as in (4.12).

(ii) Let (x, y1) ∈ C. Since y �→ v(x, y) is decreasing by Proposition 4.4 (ii), it fol-
lows that (x, y2) ∈ C for any y2 ≥ y1. This in turn implies that y �→ x(y) is increasing.
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The monotonicity of y �→ x(y) together with the fact that S is closed then gives the
claimed left-continuity by standard arguments.

(iii) Let �xt := x exp((β2 − 1
2σ

2 + (g2 − g1))t + σIt ) and introduce the one-
dimensional optimal stopping problem

v�(x) := inf
τ≥0

E

[∫ τ

0
e−ρt�xt h′(�xt )dt + e−ρτ�xτ

]

, x > 0.

Because g2 − g1 < 0, h′ is increasing and πyt ≤ 1 a.s. for all t ≥ 0 and y ∈ (0,1), it
is not hard to see that v(x, y)≥ v�(x) for any (x, y) ∈ O.

By arguments similar to those employed to prove (i), one can show that there exists
x� such that {x ∈ (0,∞) : v�(x)≥ x} = {x ∈ (0,∞) : x ≥ x�}. In fact, by arguing as
in the proof of Lemma 4.5, the latter set is not empty. Then we have the inclusions

{x ∈ (0,∞) : x ≥ x�} ⊆ {(x, y) ∈O : v(x, y)≥ x} = {(x, y) ∈ O : x ≥ x(y)},
which in turn show that x(y) ≤ x� for all y ∈ (0,1). Hence also x(y) ≤ x� for all
y ∈ [0,1], setting x(0+) := limy↓0 x(y) by monotonicity and x(1) := limy↑1 x(y) by
left-continuity. As for the lower bound of x, notice that (4.8) implies

x(y)≥ (h′)−1(ρ − β2 − (g2 − g1)y
) =: ζ(y), y ∈ (0,1), (4.13)

where (h′)−1( · ) is the inverse of the strictly increasing function h′ : [0,∞)→ (0,∞)
(notice that ρ − β2 − (g2 − g1)y ≥ 0 since ρ > β2, g2 − g1 < 0 and y > 0). Since
(h′)−1 is strictly increasing and −(g2 − g1)y ≥ 0, we can conclude from (4.13) that
x(y)≥ (h′)−1(ρ − β2) for every y ∈ [0,1]. Moreover, setting

�xt := x
((
β2 − 1

2
σ 2

)
t + σIt

)

and introducing the one-dimensional optimal stopping problem

v�(x) := inf
τ≥0

E

[∫ τ

0
e−ρt�xt h′(�xt )dt + e−ρτ�xτ

]

, x > 0,

one has v(x, y)≤ v�(x) for any (x, y) ∈ O. Following arguments as those employed
above and defining x� := inf{x > 0 : v�(x)≥ x} ∈ (0,∞), the last inequality implies
that x(y)≥ x� for all y ∈ [0,1]. �

4.1.2 Smooth-fit property and continuity of the free boundary

We now aim at proving further regularity of v and the free boundary x.
The second-order linear elliptic differential operator

L := (
β2 + (g2 − g1)y

)
x
∂

∂x
+ 1

2
σ 2x2 ∂

2

∂x2
+ (
λ2 − (λ1 + λ2)y

) ∂

∂y

+ 1

2

(

(α1 − α2)
2 + (g2 − g1)

2

σ 2

)

y2(1 − y)2 ∂
2

∂y2
, (4.14)
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acting on any function f ∈ C2(O), is the infinitesimal generator of the process
(X̂,π). The nondegeneracy of the process (X̂,π) and the smoothness of the coef-
ficients in (4.14) together with the subharmonic characterisation of v allow proving
by standard arguments (see e.g. [57, Sect. 3.7.1]) and classical regularity results for
elliptic partial differential equations (see e.g. Gilbarg and Trudinger [37, Sect. 6.6.3])
the following result.

Lemma 4.7 The value function v of (4.5) belongs to C2 separately in the interior of
C and in the interior of S (i.e., away from the boundary ∂C of C). Moreover, in the
interior of C, it satisfies

(L− ρ)v(x, y)= −xh′(x),

with L as in (4.14).

We continue our analysis by proving that the value function of (4.5) belongs to the
class C1((0,∞)× (0,1)). This will be obtained through probabilistic methods that
rely on the regularity (in the sense of diffusions) of the stopping set S for the process
(X̂,π) (see De Angelis and Peskir [22] where this methodology has recently been
developed in a general context; for other examples, refer to De Angelis et al. [21] as
well as to Johnson and Peskir [43]). Recall that the boundary points are regular for S
with respect to (X̂,π) if (cf. Karatzas and Shreve [45, Definition 4.2.9])

τ̂ (xo, yo) := inf{t > 0 : (X̂xo,yot , π
yo
t ) ∈ S} = 0 a.s., ∀(xo, yo) ∈ ∂C. (4.15)

The time τ̂ (xo, yo) is the first hitting time of (X̂xo,yo , πyo) to S .
Notice that defining Ut := ln X̂t , one has

dUt =
(

β2 + (g2 − g1)πt − 1

2
σ 2

)

dt + σdIt

as well as E(x,y)[f (X̂t , πt )] = E(u,y)[f (eUt ,πt )] for every bounded Borel function
f :R2 �→ R, where u := lnx. Due the nondegeneracy of the process (U,π) and the
smoothness and boundedness of its coefficients, the pair (U,π) has a continuous tran-
sition density p̂(·, ·, ·;u,y), (u, y) ∈R× (0,1), such that for any (u′, y′) ∈ R× (0,1)
and t ≥ 0 (see e.g. Aronson [1]),

M

t
exp

(

− λ(u− u′)2 + (y − y′)2

t

)

≥ p̂(t, u′, y′;u,y) (4.16)

≥ m

t
exp

(

−�(u− u′)2 + (y − y′)2

t

)

,

for some constants M > m > 0 and � > λ > 0. It thus follows that the mapping
(u, y) �→ E(u,y)[f (eUt ,πt )] is continuous, so that (U,π) is a strong Feller process.
Hence (X̂,π) is strong Feller as well, and we can therefore conclude that (4.15) holds
if and only if (see Dynkin [26, Chap. 13.1-2])

τ �(xn, yn)→ 0 a.s. whenever C ⊇ (xn, yn)n∈N → (xo, yo) ∈ ∂C,

where τ � is as in (4.10).
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The next proposition shows the validity of (4.15).

Proposition 4.8 The boundary points in ∂C are regular for S with respect to (X̂,π),
that is, (4.15) holds.

Proof Let (xo, yo) ∈ ∂C and set uo := lnxo. We set σ̂ (uo, yo) := τ̂ (euo , yo) for any
given (uo, yo) ∈ R × (0,1) and equivalently rewrite (4.15) in terms of the process
(U,π), with U as defined above, as

σ̂ (uo, yo)= inf{t > 0 :Uuo,yot ≥ lnx(πyot )}
= 0 a.s., for all (uo, yo) such that uo = lnx(yo).

Given that y �→ lnx(y) is increasing like y �→ x(y), the region

Ŝ := {(u, y) ∈R× (0,1) : u≥ lnx(y)}
enjoys the so-called cone property (see Karatzas and Shreve [45, Definition 4.2.18]).
In particular, we can always construct a cone Co with vertex in (uo, yo) and aperture
0 ≤ φ ≤ π/2 such that Co ∩ (R× (0,1))⊆ Ŝ and for any to ≥ 0, we have

P[̂σ(uo, yo)≤ to] ≥ P[(Uuo,yoto
, π

yo
to
) ∈ Co]. (4.17)

Then using (4.16), one has

P[(Uuo,yoto
, π

yo
to
) ∈ Co] =

∫

Co

p̂(to, uo, yo;u,y)du dy

≥
∫

Co

m

to
e
−�(u−uo)2+(y−yo)2

to du dy

=m
∫

Co

e−�((u′)2+(y′)2)du′dy′ =: � > 0, (4.18)

using that the change of variables u′ := (u− uo)/√to and y′ := (y − yo)/√to maps
the cone Co into itself. The number � above depends on uo, yo, but is independent
of to. From (4.17) and (4.18), we thus have P[̂σ(uo, yo)≤ to] ≥ �, and letting to ↓ 0
yields P[̂σ(uo, yo) = 0] ≥ � > 0. However, {̂σ(uo, yo) = 0} ∈ H0, and by the Blu-
menthal 0–1 law, we obtain P[̂σ(uo, yo)= 0] = 1, which completes the proof. �

Theorem 4.9 One has that v ∈ C1(O).

Proof The value function belongs to C2 in the interior of the continuation region due
to Lemma 4.7, and it is C∞ in the interior of the stopping region where v(x, y)= x.
It thus only remains to prove that v is continuously differentiable across ∂C. In the
sequel, we prove that (i) the function w(x,y) := 1

x
(v(x, y) − x) has a continuous

derivative with respect to x across ∂C (and this clearly implies the continuity of vx
across ∂C); (ii) the function vy is continuous across ∂C.
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(i) Continuity of vx across ∂C: For the subsequent arguments, it is useful to notice
that the function w admits the representation (recall (4.7))

w(x,y)= inf
τ≥0

E

[∫ τ

0
e−ρt X̂1,y

s

(
h′(X̂x,ys )− (

ρ − β2 − (g2 − g1)π
y
s

))
ds

]

(4.19)

and to bear in mind that the optimal stopping time τ � for v in (4.10) is also optimal
for w since v ≥ x if and only if w ≥ 0. We now prove that wx is continuous across
∂C, thus implying continuity of vx across ∂C.

Take (x, y) ∈ C and let ε > 0 be such that x − ε > 0. Since x �→ w(x,y) is in-
creasing due to the monotonicity of h′, it is clear that (x − ε, y) ∈ C as well. Denote
by τ �ε (x, y) := τ �(x− ε, y) the optimal stopping time for w(x− ε, y) and notice that
τ �ε (x, y) is suboptimal for w(x,y) and τ �ε (x, y)→ τ �(x, y) a.s. as ε ↓ 0. To simplify
the exposition, we write τ �ε := τ �ε (x, y) and τ � := τ �(x, y) in the sequel. We then
have from (4.19) that

0 ≤ w(x,y)−w(x − ε, y)
ε

≤ 1

ε
E

[∫ τ�ε

0
e−ρt X̂1,y

t

(
h′(X̂x,yt )− h′(X̂x−ε,yt )

)
dt

]

= E

[∫ τ�ε

0
e−ρt (X̂1,y

t )2h′′(X̂ξε,yt )dt

]

(4.20)

for some ξε ∈ (x − ε, x), where we have used in the last step the mean value theorem
and the fact that X̂x,yt − X̂x−ε,yt = εX̂1,y

t . Letting ε ↓ 0, invoking dominated conver-
gence (thanks to the fact that ρ > (γβ2 + 1

2σ
2γ (γ − 1))∨ (2β2 + σ 2) by Assump-

tion 4.3) and using that w ∈ C1(C) (since v ∈ C1(C)), we then find from (4.20) that

0 ≤wx(x, y)≤ E

[∫ τ�

0
e−ρt (X̂1,y

t )2h′′(X̂x,yt )dt

]

. (4.21)

Now let (xo, yo) be an arbitrary point belonging to ∂C. Taking limits (x, y)→ (xo, yo)

in (4.21), using dominated convergence and Proposition 4.8, we obtain

0 ≤ lim inf
(x,y)→(xo,yo)∈∂C

wx(x, y)≤ lim sup
(x,y)→(xo,yo)∈∂C

wx(x, y)≤ 0,

thus proving thatwx is continuous across ∂C. This immediately implies the continuity
of vx across ∂C, upon recalling that v(x, y)= x(w(x, y)+ 1).

(ii) Continuity of vy across ∂C: Take again (x, y) ∈ C and ε > 0 such that
y + ε < 1. Since y �→ v(x, y) is decreasing by Proposition 4.4 (ii), it is clear
that (x, y + ε) ∈ C as well. Denote by τ �ε (x, y) := τ �(x, y + ε) the optimal stop-
ping time for v(x, y + ε) and notice that τ �ε (x, y) is suboptimal for v(x, y) and
τ �(x, y + ε)→ τ �(x, y) a.s. as ε ↓ 0. To simplify the notation, we write τ �ε instead
of τ �ε (x, y) in the sequel. From Proposition 4.4 (ii) and (4.7), we then have
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0 ≥ v(x, y + ε)− v(x, y)
ε

≥ 1

ε
E

[∫ τ�ε

0
e−ρt X̂x,y+εt

(
h′(X̂x,y+εt )− (

ρ − β2 − πy+εt (g2 − g1)
))
dt

]

− 1

ε
E

[∫ τ�ε

0
e−ρt X̂x,yt

(
h′(X̂x,yt )− (

ρ − β2 − πyt (g2 − g1)
))
dt

]

= 1

ε
E

[∫ τ�ε

0
e−ρt

((
X̂
x,y+ε
t h′(X̂x,y+εt )− X̂x,yt h′(X̂x,yt )

)

− (ρ − β2)(X̂
x,y+ε
t − X̂x,yt )

)
dt

]

+ 1

ε
E

[∫ τ�ε

0
e−ρt (g2 − g1)(X̂

x,y+ε
t π

y+ε
t − X̂x,yt π

y
t )dt

]

.

Now add and subtract on the right-hand side both E[∫ τ�ε0 e−ρt X̂x,y+εt h′(X̂x,yt )dt] and

(g2 − g1)E[∫ τ�ε0 e−ρt X̂x,y+εt π
y
t dt] and recall that g2 − g1 < 0, X̂x,yt ≥ 0 a.s. and

π
y+ε
t − πyt ≥ 0 a.s., for every t ≥ 0. Then after rearranging terms and using the inte-

gral mean value theorem for some Lεt ∈ (X̂x,y+εt , X̂
x,y
t ) a.s., we obtain that

0 ≥ v(x, y + ε)− v(x, y)
ε

≥ 1

ε
E

[∫ τ�ε

0
e−ρt X̂x,y+εt

(
h′(X̂x,y+εt )− h′(X̂x,yt )

)
dt

]

+ 1

ε
E

[∫ τ�ε

0
e−ρt (X̂x,y+εt − X̂x,yt )

(
h′(X̂x,yt )− (

ρ − β2 − πyt (g2 − g1)
))
dt

]

− 1

ε
|g2 − g1| E

[∫ τ�ε

0
e−ρt X̂x,y+εt (π

y+ε
t − πyt )dt

]

(4.22)

≥ 1

ε
E

[∫ τ�ε

0
e−ρt (X̂x,y+εt − X̂x,yt )

(
X̂
x,y+ε
t h′′(Lεt )+ h′(X̂x,yt )

)
dt

]

− 1

ε
|g2 − g1| E

[∫ τ�ε

0
e−ρt X̂x,y+εt (π

y+ε
t − πyt )dt

]

.

In the last inequality, we have used that ρ − β2 − πyt (g2 − g1) ≥ 0 since ρ > β2 by
Assumption 4.3, that g2 − g1 < 0 and that X̂x,y+εt ≤ X̂x,yt .

Define now �π
y
t := 1

ε
(π
y+ε
t − πyt ), t ≥ 0, and notice that by using the second

equation in (4.3), we can write for any t ≥ 0 that

�π
y
t = 1 −

∫ t

0
(λ1 + λ2)�π

y
s ds

+
∫ t

0
�π

y
s (1 − πy+εs − πys )

(
g2 − g1

σ
dIs + (α1 − α2)dI

1
s

)

.
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With the help of Itô’s formula, it can easily be shown that

�π
y
t = exp

(

− (λ1 + λ2)t − θ2
∫ t

0
(1 − πy+εs − πys )2ds

)

× exp

(∫ t

0
(1 − πy+εs − πys )

(g2 − g1

σ
dIs + (α1 − α2)dI

1
s

))

(4.23)

with θ2 := 1
2 (
(g2−g1)

2

σ 2 + (α1 − α2)
2). Also, by (4.4) and simple algebra,

1

ε
(X̂

x,y+ε
t − X̂x,yt )= X̂x,yt

eε(g2−g1)
∫ t

0 �π
y
s ds − 1

ε
. (4.24)

Using the definition of �πyt and (4.24) in (4.22) and X̂x,y+εt ≤ X̂x,yt , one finds

0 ≥ v(x, y + ε)− v(x, y)
ε

≥ E

[∫ τ�ε

0
e−ρt X̂x,yt

eε(g2−g1)
∫ t

0 �π
y
s ds − 1

ε

(
X̂
x,y
t h′′(Lεt )+ h′(X̂x,yt )

)
dt

]

− |g2 − g1| E
[∫ τ�ε

0
e−ρt X̂x,yt �π

y
t dt

]

. (4.25)

We now aim at taking limits as ε ↓ 0 in (4.25). To this end, notice that�πyt →Z
y
t a.s.

for all t ≥ 0 as ε ↓ 0, where by Protter [58, Theorem V.7.39], (Zyt )t≥0 is the unique
strong solution to

dZ
y
t = −(λ1 + λ2)Z

y
t dt +Zyt (1 − 2πyt )

(
g2 − g1

σ
dIt + (α1 − α2)dI

1
t

)

, t > 0,

with Zy0 = 1. Then, if we are allowed to invoke the dominated convergence theorem
when taking limits as ε ↓ 0 in (4.25), we obtain that

0 ≥ vy(x, y)

≥ (g2 − g1)E

[∫ τ�

0
e−ρt X̂x,yt

(∫ t

0
Z
y
s ds

)
(
X̂
x,y
t h′′(X̂x,yt )+ h′(X̂x,yt )

)
dt

]

− |g2 − g1| E
[∫ τ�

0
e−ρt X̂x,yt Z

y
t dt

]

(4.26)

upon recalling that v ∈ C2(C). Therefore, letting (xo, yo) be an arbitrary point be-
longing to ∂C, by taking limits in (4.26) as (x, y)→ (xo, yo) and using dominated
convergence and Proposition 4.8, we obtain that

0 ≥ lim sup
(x,y)→(xo,yo)∈∂C

vy(x, y)≥ lim inf
(x,y)→(xo,yo)∈∂C

vy(x, y)≥ 0,

thus proving that vy is continuous across ∂C.
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To complete the proof, it only remains to show that the dominated convergence
theorem can be applied when taking limits as ε ↓ 0 in (4.25). We show this in the two
following technical steps.

1) To prove that the dominated convergence theorem can be invoked when taking
ε ↓ 0 in the first expectation on the right-hand side of (4.25), we set

�ε :=
∫ τ�ε

0
e−ρt X̂x,yt

eε(g2−g1)
∫ t

0 �π
y
s ds − 1

ε

(
X̂
x,y
t h′′(Lεt )+ h′(X̂x,yt )

)
dt

and show that the family of random variables {�ε : ε ∈ (0,1 − y)} is bounded in
L2(�,F ,P), hence uniformly integrable.

Notice that by Assumption 4.1 (ii) and the fact that Lεt ≤ X̂x,yt a.s., one has a.s. for
any t ≥ 0 that

X̂
x,y
t

(
X̂
x,y
t h′′(Lεt )+ h′(X̂x,yt )

) ≤ K̂(
1 + (X̂x,yt )γ∨2)

for some constant K̂ > 0 independent of ε so that by Jensen’s inequality,

|�ε|2 ≤ 2K̂2

ρ2

∫ ∞

0
ρe−ρt

(
1 − eε(g2−g1)

∫ t
0 �π

y
s ds

ε

)2(
1 + (X̂x,yt )2γ∨4)dt.

Taking expectations and applying Hölder’s inequality gives

E[|�ε|2] 1
2 ≤K ′

E

[∫ ∞

0
e−ρt

(
1 − eε(g2−g1)

∫ t
0 �π

y
s ds

ε

)4

dt

] 1
4

×E

[∫ ∞

0
e−ρt

(
1 + (X̂x,yt )4γ∨8)dt

] 1
4

(4.27)

for some other constant K ′ > 0 independent of ε that in the sequel will vary from
line to line. The standard inequality 1 − e−u ≤ u with u= ε(g1 − g2)

∫ t
0 �π

y
s ds ≥ 0

allows us to continue from (4.27) and write

E[|�ε|2] 1
2 ≤K ′

E

[∫ ∞

0
e−ρt

(∫ t

0
�π

y
s ds

)4

dt

] 1
4

×E

[∫ ∞

0
e−ρt

(
1 + (X̂x,yt )4(γ∨2))dt

] 1
4

. (4.28)

We now treat the two expectations in (4.28) separately. First, by Jensen’s
inequality,

(∫ t

0
�π

y
s ds

)4

=
(

1

t

∫ t

0
t �π

y
s ds

)4

≤ t3
∫ t

0
(�π

y
s )

4ds. (4.29)

Second, thanks to the nonnegativity of (�πy)4, we can invoke the Fubini–Tonelli
theorem and using also (4.29), we obtain



Public debt control under partial information 1117

E

[∫ ∞

0
e−ρt

(∫ t

0
�π

y
s ds

)4

dt

]

≤ E

[∫ ∞

0
e−ρt t3

∫ t

0
(�π

y
s )

4dsdt

]

= 1

ρ4

∫ ∞

0
e−ρs(ρ3s3 + 3ρ2s2 + 6ρs + 6)E[(�πys )4]ds. (4.30)

To evaluate the expectation in the last integral above, notice that applying Itô’s for-
mula to the process ξyt := (�πyt )4 and using (4.23) gives for any t > 0 that

dξ
y
t = ξyt

( − (λ1 + λ2)+ 12θ2(1 − πy+εt − πyt )2
)
dt

+ 4ξyt (1 − πy+εt − πyt )
(
g2 − g1

σ
dIs + (α1 − α2)dI

1
s

)

with ξy0 = 1 and θ2 = 1
2 (
(g2−g1)

2

σ 2 + (α1 − α2)
2). Because (1 − πy+εt − πyt )2 ≤ 2 a.s.

for all t ≥ 0 and

ξ
y
t = e−(λ1+λ2)t+12θ2

∫ t
0 (1−πy+εs −πys )2dsMy

t ,

where (My
t )t≥0 is an exponential martingale, it is easy to see that

E[(�πyt )4] ≤ e−(λ1+λ2)t+24θ2t , t ≥ 0. (4.31)

Using the latter estimate in (4.30) together with Assumption 4.3, we deduce that

sup
ε∈(0,1−y)

E

[∫ ∞

0
e−ρt

(∫ t

0
�π

y
s ds

)4

dt

]

<∞. (4.32)

For the second expectation in (4.28), Assumption 4.3 and standard estimates using
(4.4) plus the fact that (g2 − g1)

∫ t
0 π

y
s ds < 0 guarantee that it is finite. Moreover, it

is independent of ε. Combining this with (4.32), we thus find from (4.28) that

sup
ε∈(0,1−y)

E[|�ε|2] 1
2 <∞.

This implies that the family of random variables {�ε : ε ∈ (0,1 − y)} is bounded in
L2(�,F ,P), hence uniformly integrable.

2) Consider the second expectation on the right-hand side of (4.25) and set

 ε :=
∫ τ�ε

0
e−ρt X̂x,yt �π

y
t dt.

We aim at proving that the family of random variables { ε : ε ∈ (0,1−y)} is bounded
in L2(�,F ,P), hence uniformly integrable.

By Jensen’s inequality and then Hölder’s inequality, one finds that

E[| ε|2] 1
2 ≤ K̂E

[∫ ∞

0
e−ρt (X̂x,yt )4dt

] 1
4

E

[∫ ∞

0
e−ρt (�πyt )4dt

] 1
4

(4.33)
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for some K̂ > 0 independent of ε. The first expectation on the right-hand side of
(4.33) is finite thanks to Assumption 4.3 and standard estimates using (4.4) plus the
fact that (g2 − g1)

∫ t
0 π

y
s ds < 0. Moreover, it is independent of ε. For the second one,

interchanging expectation and dt-integral by the Fubini–Tonelli theorem and using
(4.31), we obtain

E

[∫ ∞

0
e−ρt (�πyt )4dt

] 1
4 ≤ 1

(ρ + λ1 + λ2 − 24θ2)
1
4

by Assumption 4.3. We thus conclude by (4.33) that supε∈(0,1−y)E[| ε |2] 1
2 <∞,

which completes the proof. �

The previous theorem in particular implies the so-called smooth-fit property, a
well-known optimality principle in optimal stopping theory. Moreover, by standard
arguments based on the strong Markov property of (X̂,π) (see Peskir and Shiryaev
[57, Chap. III]), it follows from the results collected so far that the couple (v, x)
solves the free-boundary problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(L− ρ)v(x, y)= −xh′(x) on C,
v(x, y)= x on S,
vx(x, y)= 1 at x = x(y), y ∈ (0,1),
vy(x, y)= 0 at x = x(y), y ∈ (0,1),

with v ∈ C2(C).
An important consequence of Theorem 4.9 is the following result.

Proposition 4.10 The mapping y �→ x(y) is continuous on [0,1].
Proof Let T > 0 and define the probability measure Q on (�,HT ) by

dQ

dP

∣
∣
∣
∣
Ht

= e− 1
2σ

2t+σIt , t ∈ [0, T ].

Under the new measure Q, the process Ît := It − σ t , t ∈ [0, T ], is a standard Brown-
ian motion, and the dynamics of (X̂,π) read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̂t = X̂t
(
β2 + σ 2 + (g2 − g1)πt

)
dt + σX̂tdÎt ,

dπt = (
λ2 − (λ1 + λ2)πt + (g2 − g1)πt (1 − πt )

)
dt

+ πt (1 − πt )
(
g2 − g1

σ
dÎt + (α1 − α2)dI

1
t

)

,

(4.34)

with initial conditions X̂0 = x, π0 = y, (x, y) ∈ O. Now for any τ and (x, y), we have

E(x,y)

[∫ τ∧T

0
e−ρt X̂t

(
h′(X̂t )−

(
ρ − β2 − (g2 − g1)πt

))
dt

]

= E
Q

(x,y)

[∫ τ∧T

0
e−(ρ−β2)t+(g2−g1)

∫ t
0 πsdsĤ (X̂t , πt )dt

]

(4.35)
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with Ĥ (x, y) := (ρ − β2 − (g2 − g1)y − h′(x)). We cannot directly take the limit
T ↑ ∞ in (4.35) since the measure change Q depends on T . However, we notice that
the right-hand side of (4.35) only depends on the law of (X̂,π) under Q. Therefore,
we can define a new probability space (�,F ,P) equipped with a two-dimensional

Brownian motion (B
1
,B

2
) and a filtration F := (F t )t≥0 and let (X,π) be the unique

strong solution to (4.34), driven by (B
1
,B

2
). In this setting, we can then define the

stopping problems

V (x, y;T ) := sup
τ≥0

E(x,y)

[∫ τ∧T

0
e−(ρ−β2)t+(g2−g1)

∫ t
0 πsdsĤ (Xt ,πt )dt

]

,

V (x, y) := sup
τ≥0

E(x,y)

[∫ τ

0
e−(ρ−β2)t+(g2−g1)

∫ t
0 πsdsĤ (Xt ,πt )dt

]

, (4.36)

where E(x,y) is the expectation under P conditionally on (X0,π0)= (x, y). By argu-
ing as in the proof of De Angelis [19, Proposition 4.2], one can show that

lim
T ↑∞V (x, y;T )= V (x, y) and lim

T ↑∞ V̂ (x, y;T )= V̂ (x, y),

where we have set

V̂ (x, y;T ) := sup
τ≥0

E(x,y)

[∫ τ∧T

0
e−ρt X̂t

(
h′(X̂t )−

(
ρ − β2 − (g2 − g1)πt

))
dt

]

,

V̂ (x, y) := sup
τ≥0

E(x,y)

[∫ τ

0
e−ρt X̂t

(
h′(X̂t )−

(
ρ − β2 − (g2 − g1)πt

))
dt

]

.

Since now

sup
τ≥0

E
Q

(x,y)

[∫ τ∧T

0
e−(ρ−β2)t+(g2−g1)

∫ t
0 πsdsĤ (X̂t , πt )dt

]

= sup
τ≥0

E(x,y)

[∫ τ∧T

0
e−(ρ−β2)t+(g2−g1)

∫ t
0 πsdsĤ (Xt ,πt )dt

]

,

the equivalence in law of the processes (X̂,π, Î , I 1) under Q and (X,π,B
1
,B

2
)

under P on [0, T ] plus (4.35) allow us to write

V (x, y)= lim
T ↑∞V (x, y;T )= lim

T ↑∞ V̂ (x, y;T )= V̂ (x, y).

In light of this last equality, it is then not difficult to see that v as in (4.7) is such that
v(x, y) := x − V (x, y) for any (x, y) ∈ O. Since

{(x, y) ∈ O : v(x, y)≥ x} = {(x, y) ∈O : V (x, y)≤ 0},
x( · ) is the optimal stopping boundary for the problem with value V as well.

To prove the continuity of x( · ), we now aim at applying Peskir [56, Theorem
10] for (4.36). Notice that V x ≤ 0 on O since x �→ h(x) is strictly convex. Moreover,
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recalling θ2 = 1
2 ((α1 −α2)

2 + (g2−g1)
2

σ 2 ), we have ∂x Ĥ

θ2y2(1−y)2 < 0 on O again thanks

to the strict convexity of h. Also, V y is continuous across the boundary due to the
C1-property shown in Theorem 4.9 for v = x − V̂ ; hence, the horizontal smooth-fit
property holds. We can therefore apply [56, Theorem 10 ] (upon noticing that in [56],
x is the horizontal axis and y the vertical one, while in our paper, x is the vertical
axis and y the horizontal one) and conclude that x cannot have discontinuities of the
first kind at any point y ∈ [0,1). Finally, x is also continuous at y = 1 since it is
left-continuous by Proposition 4.6 (ii). �

4.2 The optimal control for the problem (4.2)

In this section, we provide the form of the optimal debt reduction policy. It is given
in terms of the free boundary studied in the previous section.

For x as in (4.11), introduce under P(x,y) the nondecreasing process

ν∗
t =

(
x − inf

0≤s≤t
(
x(πs)e

−(β2− 1
2σ

2)s−σIs−(g2−g1)
∫ s

0 πudu
)) ∨ 0, t ≥ 0, (4.37)

with ν∗
0− = 0 and then the process

ν∗
t :=

∫ t

0
e−(β2− 1

2σ
2)s−σIs−(g2−g1)

∫ s
0 πududν∗

s , t ≥ 0, ν∗
0− = 0. (4.38)

Notice that since ν∗
t ≤ x a.s. for all t ≥ 0 and t �→ ν∗

t is nondecreasing, it follows from
(4.38) that ν∗ is admissible. Moreover, t �→ ν∗

t is continuous (with the exception of
a possible initial jump at time 0), due to the continuity of y �→ x(y), t �→ It , t �→ πt
and t �→ ∫ t

0 πsds.

Theorem 4.11 Let Ṽ (x, y) := ∫ x
0

1
z
v(z, y)dz, (x, y) ∈ [0,∞)× [0,1]. Then one has

Ṽ = V on [0,∞)× [0,1], and ν∗ as in (4.38) is optimal for (4.2).

Proof Recall U =U0 as in (3.20) and notice that in our Markovian setting, one actu-
ally has 1

z
v(z, y)= U(z). By the proof of Theorem 3.13, it suffices to show that the

right-continuous inverse of the stopping time τ �(z, y) = inf{t ≥ 0 : X̂z,yt ≥ x(πyt )}
(which is optimal for v(z, y), cf. (4.10)) coincides (up to a null set) with ν∗. For that,
recall (3.25) from the proof of Theorem 3.13, fix (x, y) ∈ (0,∞)× (0,1), take t ≥ 0
arbitrary and notice that by (4.10), we have P(z,y)-a.s. the equivalences

τ �(z, y)≤ t ⇐⇒ X̂θ ≥ x(πθ ) for some θ ∈ [0, t]
⇐⇒ z≥ e−(β2− 1

2σ
2)θ−σIθ−(g2−g1)

∫ θ
0 πudux(πθ ) for some θ ∈ [0, t]

⇐⇒
(
x − inf

0≤s≤t
(
x(πs)e

−(β2− 1
2σ

2)s−(g2−g1)
∫ s

0 πudu−σIs )
)

∨ 0 ≥ x − z

⇐⇒ ν∗
t ≥ x − z

⇐⇒ τ ν
∗

+ (z)≤ t.
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Hence τ ν
∗

+ (z)= τ �(z, y) a.s. and ν∗· is the right-continuous inverse of τ �(·, y). As ν∗
is admissible, the claim follows by arguing as in the proof of Theorem 3.13, part 2). �

Notice that (4.38) and the equation for Xx,y,ν in the formulation of (4.2) yield

X
x,y,ν∗
t = e(β2− 1

2σ
2)t+(g2−g1)

∫ t
0 π

y
s ds+σIt (x − ν∗

t ),

which with regard to (4.37) shows that

0 ≤Xx,y,ν∗
t ≤ x(πyt ), t ≥ 0,P-a.s.

Moreover, it is easy to see that we can express ν∗ of (4.37) as

ν∗
t = sup

0≤s≤t

(
X
x,y,0
s − x(πys )
X

1,y,0
s

)

∨ 0, ν∗
0− = 0.

These equations allow us to make some remarks about the optimal debt management
policy of our problem.

(i) If at the initial time 0, the level x of the debt ratio is above x(y), then an
immediate lump sum reduction of x − x(y) is optimal.

(ii) At any time t ≥ 0, it is optimal to keep the debt ratio level below the belief-
dependent ceiling x.

(iii) If the level of the debt ratio at time t is strictly below x(πt ), there is no
need for interventions. The government should intervene to reduce its debt only at
those (random) times t at which the debt ratio attempts to rise above x(πt ). These
interventions are then minimal, in the sense that (Xx,y,ν

∗
,πy, ν∗) solves a Skorokhod

reflection problem at the free boundary x.
(iv) Recall that the debt ceiling x is an increasing function of the government’s

belief that the economy is enjoying a phase of fast growth. Then, with regard to the
previous description of the optimal debt reduction rule, we have that the more the
government believes that the economy is in good shape, the less strict the optimal
debt reduction policy should be.

4.3 Regularity of the value function of (4.2) and related HJB equation

Combining the results collected so far, we are now able to prove that the value func-
tion V of the control problem (4.2) is a twice continuously differentiable function. As
a byproduct, V is a classical solution to the corresponding Hamilton–Jacobi–Bellman
(HJB) equation.

From Theorem 4.11, we know that we have V (x, y) = ∫ x
0

1
z
v(z, y)dz for all

(x, y) ∈O := [0,∞)× [0,1]. Hence thanks to Theorem 4.9 and the dominated con-
vergence theorem, we immediately obtain the following result.

Lemma 4.12 One has that V ∈ C1(O) ∩ C(O). Moreover, Vxx ∈ C(O) as well as
Vxy ∈ C(O).
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To take care of the second derivative Vyy we follow ideas used in De Angelis
[19]. In particular, we determine the second weak derivative of V (recall that Vy is
continuous by Theorem 4.9) and then show that it is a continuous function. This is
accomplished in the next proposition.

Proposition 4.13 Let θ2 := 1
2 ((α1 − α2)

2 + (g2−g1)
2

σ 2 ). We have Vyy ∈ C(O) with

Vyy(x, y)

= − 1

θ2y2(1 − y)2
((
β2 + (g2 − g1)y − 1

2
σ 2

)(
v
(
x ∧ x(y), y) − v(0+, y)

)

+ h(x ∧ x(y)) + 1

2
σ 2(x ∧ x(y))vx

(
x ∧ x(y), y)

)

+ λ2 − (λ1 + λ2)y

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
vy(z, y)dz

− ρ

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
v(z, y)dz. (4.39)

Proof Notice that Vy(x, y) = ∫ x
0

1
z
vy(z, y)dz and therefore Vy(x, ·) is a continuous

function for all x > 0 by Theorem 4.9 (notice indeed that by the bounds in (4.26)
and the multiplicative dependence of X̂z,y with respect to z, 1

z
vy(z, y) is integrable

at zero). Hence its weak derivative with respect to y is a function g ∈ L1
loc(O) such

that for any test function ϕ ∈ C∞
c ((0,1)), one has

∫ 1

0
Vy(x, y)ϕ

′(y)dy = −
∫ 1

0
g(x, y)ϕ(y)dy.

We now want to evaluate g and show that it coincides with the right-hand side
of (4.39).

Denote by m(x) for x > 0 the generalised right-continuous inverse of x(y) for
y ∈ [0,1], that is, m(x) := inf{y ∈ [0,1] : x(y) ≥ x}. Then noticing that vy = 0 on
the set {(x, y) ∈O : x > x(y)} and using Fubini’s theorem, we can write

∫ 1

0
Vy(x, y)ϕ

′(y)dy =
∫ 1

0

∫ x∧x(y)

0

1

z
vy(z, y)dzϕ

′(y)dy

=
∫ x

0

1

z

∫ 1

m(z)

vy(z, y)ϕ
′(y)dydz

=
∫ x

0

1

z

(

vy(z,1)ϕ(1)− vy
(
z,m(z)

)
ϕ
(
m(z)

)

−
∫ 1

m(z)

vyy(z, y)ϕ(y)dy

)

dz

= −
∫ x

0

1

z

∫ 1

m(z)

vyy(z, y)ϕ(y)dydz, (4.40)
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where we have used vy(z,m(z))= 0 for all z ∈ (0, x) and x > 0 as well as ϕ(1)= 0.
By Lemma 4.7 (cf. also (4.14)), for any y >m(z) with z ∈ (0, x) and x > 0, we have

vyy(z, y)= 1

θ2y2(1 − y)2
(

ρv(z, y)− (
λ2 − (λ1 + λ2)y

)
vy(z, y)− zh′(z)

− 1

2
σ 2z2vxx(z, y)−

(
β2 + (g2 − g1)y

)
zvx(z, y)

)

.

Inserting this into the last integral term on the right-hand side of (4.40), using again
Fubini’s theorem and then integrating the derivatives with respect to x, we find

∫ 1

0
Vy(x, y)ϕ

′(y)dy

= −
∫ x

0

1

z

∫ 1

m(z)

vyy(z, y)ϕ(y)dydz

=
∫ 1

0

λ2 − (λ1 + λ2)y

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
vy(z, y)dzϕ(y)dy

−
∫ 1

0

ρ

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
v(z, y)dzϕ(y)dy

+
∫ 1

0

(

h
(
x ∧ x(y)) + (

β2 + (g2 − g1)y
)(
v
(
x ∧ x(y), y) − v(0+, y)

)

+ 1

2
σ 2(x ∧ x(y))vx

(
x ∧ x(y), y)

− 1

2
σ 2

(
v
(
x ∧ x(y), y) − v(0+, y)

))
ϕ(y)

θ2y2(1 − y)2 dy, (4.41)

where we have also used that h(0)= 0. Finally, setting

g(x, y)

:= − 1

θ2y2(1 − y)2
(

h
(
x ∧ x(y))

+
(
β2 + (g2 − g1)y − 1

2
σ 2

)(
v
(
x ∧ x(y), y) − v(0+, y)

)

+ 1

2
σ 2(x ∧ x(y))vx

(
x ∧ x(y), y)

)

+ λ2 − (λ1 + λ2)y

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
vy(z, y)dz

− ρ

θ2y2(1 − y)2
∫ x∧x(y)

0

1

z
v(z, y)dz,
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we see that (4.41) reads
∫ 1

0 Vy(x, y)ϕ
′(y)dy = − ∫ 1

0 g(x, y)ϕ(y)dy so that g can be
identified with the second weak derivative of V with respect to y. Notice that g is
continuous by the continuity of x, v, vx , h and the fact that

∫ x∧x(y)
0

1
z
v(z, y)dz and

∫ x∧x(y)
0

1
z
vy(z, y)dz are finite due to (4.4), (4.5) and (4.26). The proof is complete. �

Thanks to Lemma 4.12 and Proposition 4.13, we have that V ∈ C2(O) ∩ C(O).
As a byproduct of this, by the dynamic programming principle and standard methods
based on an application of Dynkin’s formula, we obtain the next result.

Proposition 4.14 Recall the second-order differential operator L defined in (4.14).
The value function V of (4.2) is a classical solution to the HJB equation

min{(L− ρ)V (x, y)+ h(x),1 − Vx(x, y)} = 0, (x, y) ∈ O,

with boundary condition V (0, y)= 0 for any y ∈ [0,1].
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Appendix A: Filtering results

Proof of Proposition 3.5 Since the innovation processes (I, I 1) from (3.2) and the
random measure m(dt, dq) from (3.4) are H-adapted, we have F

I ∨ F
I 1 ∨ F

m ⊆ H.
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In general, the inclusion could be strict. Now consider the exponential F-martingale
with L0 = 1 solving

dLt = −Lt
(
β(Zt )

σ
dWt + α(ηt ,Zt )dBt

)

, t ≥ 0.

Let T > 0 and define the probability measure Q on (�,FT ) by

dQ

dP

∣
∣
∣
∣
Ft

= Lt , t ∈ [0, T ].

Notice that Assumption 3.1 ensures that L is indeed an F-martingale. By Girsanov’s
theorem, the processes

W̃t :=Wt +
∫ t

0

β(Zs)

σ
ds, B̃t := Bt +

∫ t

0
α(ηs,Zs)ds, t ≥ 0, (A.1)

are independent (Q,F)-Brownian motions on [0, T ]. We now prove that we have
F
W̃ ∨F

B̃ ∨F
m = H. The inclusion F

W̃ ∨F
B̃ ∨F

m ⊆ H follows from the fact that W̃
and B̃ turn out to be H-adapted since they can be written as

W̃t = It +
∫ t

0

πs(β)

σ
ds, B̃t = I 1

t +
∫ t

0
πs

(
α(ηs, ·)

)
ds, t ≥ 0. (A.2)

To prove the converse, observe that under Q, the processes X0 and η solve on [0, T ]
the stochastic differential equations

dX0
t =X0

t σ dW̃t , X0
0 = x > 0,

dηt = σ1(ηt )dW̃t + σ2(ηt )dB̃t +
∫

R

qm(dt, dq), η0 = q ∈ I. (A.3)

Clearly, X0 is FW̃ -adapted. Recalling (3.13), the solution to (A.3) can be constructed
iteratively. More precisely, for t ∈ [0, T1), the process η solves

dηt = σ1(ηt )dW̃t + σ2(ηt )dB̃t , η0 = q ∈ I,

and between two consecutive jump times, i.e., for t ∈ [Tn,Tn+1), n≥ 1, one has

dηt = σ1(ηt )dW̃t + σ2(ηt )dB̃t , ηTn = ηTn− + ζn.
By Assumption 2.1, this sequence of stochastic differential equations has a unique
strong solution on any interval [Tn,Tn+1), and this in turn gives the unique strong
solution η to (A.3). Moreover, η turns out to be FW̃ ∨ F

B̃ ∨ F
m-adapted.

By Jacod and Shiryaev [42, Corollary III.4.3.1], every (Q,H)-local martingale M̃
admits the decomposition

M̃t = M̃0 +
∫ t

0
ϕ̃sdW̃s +

∫ t

0
ψ̃sdB̃s +

∫ t

0

∫

R

w̃(s, q)mπ(ds, dq), t ∈ [0, T ],
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where ϕ̃ and ψ̃ are H-predictable processes and w̃ is an H-predictable process in-
dexed by R such that for all t ≥ 0,

∫ t

0
ϕ̃2
s ds <∞,

∫ t

0
ψ̃2
s ds <∞,

∫ t

0

∫

R

|w̃(s, q)|mp,H(ds, dq) <∞, Q-a.s.

Now letM be a (P,H)-local martingale. Then M̃ :=ML̃−1 is a (Q,H)-local martin-
gale, where

L̃t := E[Lt |Ht ] = dQ

dP

∣
∣
∣
∣
Ht

, t ∈ [0, T ].

Taking into account (A.2), we have that L̃ solves

dL̃t = −L̃t
(
πt (β)

σ
dIt + πt

(
α(ηt , ·)

)
dI 1
t

)

, L̃0 = 1,

and by applying the product formula to M = M̃L̃, we easily obtain that under P for
any t ∈ [0, T ],

dMt = M̃t−dL̃t + L̃t dM̃t + d〈M̃c, L̃c〉t

=
(

L̃t ϕ̃t −Mt πt (β)
σ

)

dIt +
(
L̃t ψ̃t −Mtπt

(
α(ηt , ·)

))
dI 1
t

+
∫

R

w̃(t, q)L̃tm
π(dt, dq).

To conclude, we thus only need to set

ϕt := L̃t ϕ̃t −Mt πt (β)
σ

, ψt := L̃t ψ̃t −Mtπt
(
α(ηt , ·)

)
, w(t, q) := w̃(t, q)L̃t ,

and invoke the arbitrariness of T > 0. �

Proof of Theorem 3.6 In order to derive the filtering equation solved by the process
(πt )t≥0 = (πt (i); i ∈ S)t≥0, we apply the innovation approach (see for instance Bré-
maud [7, Chap. IV]). We write R̂ for the H-optional projection of an F-progressively
measurable process R such that E[|Rt |]<∞, ∀t ≥ 0. We recall that if (E[Rt |Ht ])t≥0

admits an optional version, then R̂t = E[Rt |Ht ], t ≥ 0. In this proof, we use two well-
known facts:

(i) For every F-martingale m, m̂t = E[mt |Ht ], t ≥ 0, and m̂ is an H-martingale.
(ii) For any F-progressively measurable and integrable process � , we have that

̂∫ t

0
�sds −

∫ t

0
�̂sds

is an H-martingale.
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The first step of the innovation method consists in writing the process 1{Zt=i},
i ∈ S, t ≥ 0, as a semimartingale. Denoting by LZ the Markov generator of the state
process Z, we have that

LZfi(j)=
∑

k∈S
λkifk(j), i, j ∈ S,

where fk(j) := 1{j=k}. Hence for any i ∈ S, we can write

1{Zt=i} = fi(Zt )= fi(Z0)+
∫ t

0
LZfi(Zs)ds +mt(i),

where (mt (i))t≥0 is an F-martingale. By taking the H-optional projection and using
(i) and (ii) above, we obtain that

πt (i)= yi +
∫ t

0

∑

k∈S
λkiπs(k)ds +Mt(i), (A.4)

where M(i) is an H-martingale null at zero. Proposition 3.5 ensures the existence of
processes ψ(i) and ϕ(i) that are H-predictable and wi which is H-predictable and
indexed by R such that

Mt(i)=
∫ t

0
ψs(i)dIs +

∫ t

0
ϕs(i)dI

1
s +

∫ t

0

∫

R

wi(s, q)m
π(ds, dq). (A.5)

To obtain (3.11), it only remains to prove that

ψs(i)= πs(i)σ−1
(

β(i)−
Q∑

j=1

β(j)πs(j)

)

,

ϕs(i)= πs(i)
(

α(ηs, i)−
Q∑

j=1

α(ηs, j)πs(j)

)

,

wi(s, q)=wπi (s, q)− πs−(i)

with wπi given in (3.12). Following the proof of Ceci and Colaneri [15, Theorem 3.1],
we can derive the structure of the processes ψ(i), ϕ(i) by exploiting the equalities

̂fi(Z)W̃ = π(i)W̃ , ̂fi(Z)B̃ = π(i)B̃, ∀i ∈ S,

where W̃ and B̃ are the H-adapted processes defined in (A.1). To derive the expres-
sion ofwi , we consider a bounded process " of the form "t =

∫ t
0

∫
R
γ (s, q)m(ds, dq)

with an H-predictable process γ indexed by R. Since " is H-adapted, the equality

f̂i (Z)" = π(i)", ∀i ∈ S, (A.6)
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holds. By applying the product rule and taking into account that there are no common
jumps between Z and N , we obtain

d
(
fi(Zt )"t

) = fi(Zt−)d"t + "t−dfi(Zt )

= "tLZfi(Zt )dt +
∫

R

fi(Zt−)γ (t, q)mp,F(dt, dq)+ dMF

t ,

where mp,F(dt, dq) is given in (3.9) and MF is an F-martingale. By taking the op-
tional projection onto H and denoting by MH a local H-martingale, we have that

d
(

̂fi(Zt )"t
) = "tπt (LZfi)dt

+ λN(i)πt−(i)γ
(
t, c(ηt−, i)

)
1{c(ηt−,i)�=0}dt + dMH

t . (A.7)

On the other hand, the product rule and (A.4) and (A.5) yield

d
(
πt (i)"t

) = πt−(i)d"t + "t−dπt (i)+ d〈π(i),"〉t
= "tπt (LZfi)dt + "t−dMt(i)+

∫

R

γ (t, q)wi(t, q)m(dt, dq).

Recalling that mp,H(dt, dq) is given in (3.8), we find

d
(
πt (i)"t

) = "tπt (LZfi)dt +
∫

R

γ (t, q)wi(t, q)m
p,H(dt, dq)+ dMH

t , (A.8)

where again MH is a local H-martingale. Gathering (A.6)–(A.8), we obtain that for
a.e. t ≥ 0,

λN(i)πt−(i)γ
(
t, c(ηt−, i)

)
1{c(ηt−,i)�=0}

=
Q∑

j=1

πt−(j)λN(j)γ
(
t, c(ηt−, j)

)
1{c(ηt−,j)�=0}

(
πt−(i)+wi

(
t, c(ηt−, j)

))
.

Choose now γ of the form γ (t, q) = Ct1A(q)1{t≤Tn}, with any bounded H-pre-

dictable positive process C and A ∈ B(R). Observe that |"t | ≤
∫ t∧Tn

0 CsdNs ≤Dn
with a positive constant D so that " is bounded. Then we have on {t ≤ Tn} the
equality

∫

A

νt (i, dq)=
∫

A

(
πt−(i)+wi(t, q)

)
νt (dq), ∀A ∈ B(R),

where we have set

νt (i, dq) := λN(i)πt−(i)1{c(ηt−,i)�=0}δc(ηt−,i)(dq), νt (dq) :=
Q∑

i=1

νt (i, dq).

Thus on {t ≤ Tn},

wπi (t, q)=wi(t, q)− πt−(i)=
dνt (i, dq)

νt (dq)
, ∀i ∈ S.
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Finally, since the counting process N is nonexplosive (as it has bounded intensity
and therefore finite expectation; see [7, Sect. 1]), Tn ↑ ∞ a.s. for n ↑ ∞, and this
yields (3.12). �

Proof of Proposition 3.10 By Proposition 3.7, (3.11) and (3.17) are equivalent
to a system of recursive equations between consecutive jump times, i.e., for
t ∈ [Tn,Tn+1), n= 0,1, . . . ,

πt (i)= πTn(i)+
∫ t

Tn

bπ (πs, ηs, i)ds +
∫ t

Tn

σπ1 (πs, i)dIs

+
∫ t

Tn

σπ2 (πs, i)dI
1
s , i ∈ S,

ηt = ηTn +
∫ t

Tn

bη(πs, ηs)ds +
∫ t

Tn

σ1(ηs)dIs +
∫ t

Tn

σ2(ηs)dI
1
s ,

where we have set

bπ(y, q, i) :=
Q∑

j=1

λjiyj − yi
(

λN(i)1{c(q,i)�=0} −
Q∑

j=1

λN(j)yj1{c(q,j)�=0}
)

,

bη(y, q) :=
Q∑

j=1

yjb1(q, j),

σπ1 (y, i) := σ−1yi

(

β(i)−
Q∑

j=1

β(j)yj

)

,

σπ2 (y, i) := yi
(

α(q, i)−
Q∑

j=1

α(q, j)yj

)

,

with the update at time Tn given by

πTn(i)=
λN(i)πTn−(i)1{ζn=c(ηTn−,i)}

∑Q
j=1 λ

N(j)πTn−(j)1{ζn=c(ηTn−,j)}
, i ∈ S, ηTn = ηTn− + ζn. (A.9)

Recall that by assumption, the function α(q, i) in (3.3) is locally Lipschitz with re-
spect to q and satisfies a (global) sublinear growth condition with respect to q ∈ I ,
uniformly in i ∈ S. We develop the proof of uniqueness first by considering two spe-
cial cases related to the jump amplitude function c, namely c �= 0 and c ≡ 0. In both
cases, the proof relies on classical results.

If c �= 0, we have

bπ(y, q, i)=
Q∑

j=1

λjiyj − yi
(

λN(i)−
Q∑

j=1

λN(j)yj

)

,
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and it is easy to verify that between two consecutive jump times, the pair (π,η) solves
a (Q+1)-dimensional stochastic differential equation with coefficients satisfying lo-
cal Lipschitz and (global) sublinear growth conditions with respect to (y, q) ∈ Y ×R,
uniformly in i ∈ S. As a consequence, strong uniqueness holds between two consec-
utive jump times, i.e., for t ∈ [Tn,Tn+1), n= 0,1, . . . Moreover, since the update at
the jump time Tn (see (A.9)) depends on the process (πt , ηt ) for t ∈ [Tn−1, Tn), we
have strong uniqueness of the solution to the system (3.11) and (3.17) for all t ≥ 0.

If c≡ 0, (3.11) and (3.17) reduce to

dπt (i)= bπ(πt , ηt , i)dt + σπ1 (πt , i)dIt + σπ2 (πt , i)dI 1
t , i ∈ S, t ≥ 0,

dηt = bη(πt , ηt )dt + σ1(ηt )dIt + σ2(ηt )dI
1
t , t ≥ 0,

where in particular bπ(y, q, i)= ∑Q
j=1 λjiyj . It is easy to check that also in this case,

strong uniqueness follows by the local Lipschitz-property of the coefficients and by
their (global) sublinear growth condition.

In the general case where c is R-valued, the jump amplitude can assume any possi-
ble real value. In particular, c can be such that η andN have not only common jumps:
N might jump at a time at which c(ηt−,Zt−)= 0, so that η does not jump at that time.
The treatment of this case is more delicate and must be performed separately. Indeed,
uniqueness cannot be proved by using the arguments employed in the previous two
cases because of the presence of 1{c(q,i)�=0} in the coefficient bπ which makes it im-
possible to prove the Lipschitz-continuity of bπ with respect to q . However, one can
prove uniqueness by relying on the filtered martingale problem associated to the in-
finitesimal generator of the triplet (Z,X0, η). We refer to the seminal paper by Kurtz
and Ocone [48], where the notion of filtered martingale problem has been introduced
and applied to prove uniqueness of the filtering equation in the case of Gaussian addi-
tive white noise, and to the more recent work by Ceci and Colaneri [15, Theorem 3.3
and Appendix B], where uniqueness for a general jump-diffusion state-observations
dynamics has been considered. We can prove analogously to [15, proof of Proposi-
tion B.1] that the boundedness of the jump intensity of η and Assumption 2.1 imply
uniqueness for the filtered martingale problem associated to the infinitesimal gener-
ator of the triplet (Z,X0, η), which in turn implies strong uniqueness of the filtering
equation by applying [15, Theorem 3.3]. �
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