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Abstract
We consider Bayesian sample size determination using a criterion that utilizes the

first two moments of the posterior variance. We study the resulting sample size in

dependence on the chosen prior and explore the success rate for bounding the

posterior variance below a prescribed limit under the true sampling distribution.

Compared with sample size determination based on the average of the posterior

variance the proposed criterion leads to an increase in sample size and significantly

improved success rates. Generic asymptotic properties are proven, such as an

asymptotic expression for the sample size and a sort of phase transition. Our study is

illustrated using two real world datasets with Poisson and normally distributed data.

Based on our results some recommendations are given.

1 Introduction

Sample size determination (SSD) is the attempt to estimate the data size that is

needed in order to meet a certain criterion (Desu 2012). This task is usually

performed at a planning stage before any data is actually measured or recorded so

that especially in the context of high financial or temporal expenses a careful SSD

becomes indispensable. In the design, say, of animal experiments or clinical trials

SSD can even have an ethical dimension (Charan and Kantharia 2013; Dell et al.

2002). In this article we study a Bayesian method for SSD that limits the expected

fluctuations of the uncertainty of the result. By ‘‘uncertainty’’ we will here mean

(the square root of) the posterior variance. For n data points xn ¼ ðx1; . . .; xnÞ drawn
from a sampling distribution pðxnjhÞ with parameter h the posterior distribution is

defined by
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pðhjxnÞ / pðhÞ � pðxnjhÞ; ð1Þ

where pðhÞ denotes the prior for the parameter h. The posterior variance is then

given as

u2n :¼ Varh�pðhjxnÞðhÞ: ð2Þ

In practice, a scientist performing an experiment might desire to specify her/his

result with an according uncertainty, say

ĥ� un;

with un being the square root of u2n as defined in (2) and with ĥ being the posterior

mean. In order for this result to be precise enough the scientist might desire to fulfill

a condition such as un\e or, equivalently,

u2n\e2 ð3Þ

for some small, positive e that is chosen a priori. As the posterior distribution is

dependent on the data xn, so is u2n. Choosing an appropriate sample size n so that (3)

is guaranteed before xn is known is only possible for a few restricted scenarios, for

instance Bernoulli distributed samples (Pham-Gia and Turkkan 1992; Joseph and

Bélisle 2019). A more generally applicable criterion is to require instead of (3)

u2n ¼ Exn �mðxnÞ½u2n�\e2; ð4Þ

where mðxnÞ ¼
R
pðxnjhÞpðhÞdh denotes the prior predictive. This is known as the

average posterior variance criterion (APVC) in the literature (Wang and Gelfand

2002; Pham-Gia and Turkkan 1992; De Santis 2007). For many standard cases

explicit expressions for u2n can be derived. The usage of the prior predictive mðxnÞ is
quite natural as it describes what is known about the data xn given our prior

knowledge. We will denote the smallest n such that the APVC (4) is satisfied

throughout this article by ene. In the literature many alternative criteria can be found

that replace u2n by some other, data dependent random variable TðxnÞ, compare for

instance (Adcock 1997; M’lan et al. 2008; De Santis 2006; Wang and Gelfand

2002; Rubin and Stern 1998). While we will stick in this article to the choice

TðxnÞ ¼ u2n many of the ideas presented here can, in principle, be translated to such

approaches.1

The APVC has a rather obvious drawback: it only guarantees (3) to hold on

average. Consequently, one expects that uene is larger than e for certain data samples

xene , cf. also Fig. 3a below. To get a better grasp on the variability of the uncertainty

one can make more extensive usage of the prior predictive mðxnÞ (De Santis

2006, 2007; Brutti et al. 2008; Gubbiotti and De Santis 2011; Sambucini 2008; Sahu

and Smith 2006). This article aims at studying the behavior of such criteria and

1 Section 3 of this article, for instance, relies on Assumption 3.1. Provided similar assumptions hold for

TðxnÞ then all the proofs given there carry through.
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thereby to give some guidance or, at least, a deeper understanding for a SSD based

on mðxnÞ. In order to do so we will use an extension of the APVC (4) which we will

call the variation of the posterior variance criterion (VPVC) and which takes the

form

u2n þ k � Du2n\e2: ð5Þ

where k is a parameter to be chosen and where

Du2n ¼ ðVarx�mðxnÞðu2nÞÞ
1=2: ð6Þ

Throughout this article we will denote the smallest n such that (5) is satisfied by ne.
We will see in Sect. 2 below that taking (5) into account leads to substantially

different sample sizes than the sole consideration of the APVC (4) and to a better

compliance with (3). We will often take k ¼ 2 in this article (loosely motivated

from the normal distribution) but will show that for e ! 0 there is an optimal k�. We

will give some ideas on how to guess k� in practice. Moreover, we will provide an

asymptotic formula for the sample size ne in the small e regime.

As the VPVC (5) only uses the first two moments it is of course not as exhaustive

in its description as a criterion that considers the full law mðxnÞ—compare for

instance (De Santis 2006, 2007; Brutti et al. 2008; Gubbiotti and De Santis 2011;

Sambucini 2008), but for different criteria than the one considered here. In Sect. 2.1

below we will compare ourselves to a more extensive usage of mðxnÞ and will find

that in many cases (5) is a good approximation. Taking this approximation on the

other hand is quite convenient for our purposes: it provides us with explicit

expressions, spares us numerical issues and allows for a rather concise discussion of

asymptotic properties in Sect. 3. We will discuss our method for two common cases,

namely Poisson and normally distributed data, and illustrate our discussion with real

world datasets.

The authors are, to the best of their knowledge, not aware of work in the literature

that considers a criterion in the exact same shape of (5). (In Pham-Gia and Turkkan

1992) Pham-Gia and Turkkan consider an object such as Du2n from (6) for a

Binomial distribution but apply it in a different manner. Our approach is inspired

from the quite common idea of using mðxnÞ for studying u2n. We believe that the

discussion in this paper deepens the understanding of SSD methods built on mðxnÞ
in general. The paper is organized as follows: Sect. 2 discusses the application of

the VPVC to Poisson and normally distributed data. We will compare our results to

the simpler AVPC method (4), visualize the effect of using a prior that is

inconsistent with the underlying parameter and debate how a conservative SSD

could be performed. For this purpose we will use actual datasets, namely the daily

number of accidents in Leeds in 2018 (Leeds City Council 2019) and the mercury

concentration in the blood of alligators in South Carolina and Florida (Lawson and

Jodice 2019; Nilsen et al. 2019). In Sect. 3 we will look at the behavior of the

VPVC for e ! 0. The results from that section, especially Theorem 3.5, indicate

that SSD methods based on mðxnÞ exhibit some sort of phase transition in this limit.

We will show that a k� exists such that for k[ k� a SSD based on the VPVC (5) will
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ensure that (3) will asymptotically be true with probability 1 under the true sampling

distribution. As k� will depend on the (usually unknown) true value of h, we will

discuss a method to get an upper bound based on the prior knowledge. Moreover, in

Lemma 3.4 we will provide a generic, asymptotic formula for the sample ne
predicted by the VPVC.

2 SSD based on the variation of the posterior variance

In this section we study the effects of using the VPVC as proposed in (5) and discuss

its dependency on the prior knowledge and the true parameter. The discussion is

first carried out for the case of a single parameter and Poisson distributed data. In

Sect. 2.2 we then consider an example that involves nuisance parameters and

normally distributed data.

2.1 Single parameter: poisson distributed data

The histogram in Fig. 1 shows the daily number of traffic accidents that happened in

Leeds (UK), taken from Leeds City Council (2019). The number of accidents is an

important metric when judging the effect of traffic planning (Hadayeghi et al. 2010).

While evaluating awhole year will give a good precision on the expected daily number

of accidents, this might be an intolerable time scale for judging the effect of traffic

measures such as a revised speed limit. Planning an evaluation at a too early stage on

the other hand might turn out to be too vague and therefore useless.

What is a suitable number of days before we can give a decent estimate? To

formalize this question let us suppose that the data for n days follows the product of

n Poisson distributions with the (unknown) parameter h:2

pðxnjhÞ ¼
Yn

i¼1

PoiðxijhÞ ¼
Yn

i¼1

hxi

xi!
e�h; ð7Þ

where xn ¼ ðx1; . . .; xnÞ and each xi for i ¼ 1; . . .; n should be read as the number of

accidents on a day.Wewant to find n such that the uncertainty un about h is less than some

e, for which we take e ¼ 0:3 in this section. To specify our prior knowledge about h we

will use a gamma distribution pðhÞ ¼ Gammaðhja; bÞ with shape a and rate b. As
uncertainty un for our result we take the square root of the posterior variance

u2n ¼
aþ
Pn

i¼1
xi

ðnþbÞ2 . The inequalityu2n\e2 hasno solution forn that holds for anyxn.However,

we can average over prior predictive mðxnÞ and choose the smallest n� 1 such that

u2n ¼ Exn �mðxnÞ½u2n� ¼
a
b
� 1

nþ b
\e2: ð8Þ

We referred to this as the APVC in the introduction and denoted the corresponding n

2 This is an approximation. The ratio of variance and mean is around 2 for the full dataset, however to

keep the setup simple we will stick to the Poisson assumption and treat the mean, i.e. the MLE, as the true

parameter.
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by ene. The result of such an SSD for e ¼ 0:3 is shown in Fig. 2a: for various values

of the prior mean Eh�pðhÞ½h� ¼ a
b and its standard deviation ððVarh� pðhÞðhÞÞÞ1=2 ¼

a1=2
b we plotted the sample size ene predicted by (8). Naturally, as the mean of pðhÞ
increases the sample size ene increases as well since h is linked to the variance of the

Poisson distributed data. The standard deviation of pðhÞ seems to have only a minor

influence on the sample size with one exception: below a certain threshold the prior

variance pushes the posterior variance into the right ballpark so that even a minimal

sample size of ene ¼ 1 is enough to fulfill (8).

Figure 3a illustrates for which prior choices the SSD based on the APVC is

successful based on the full year accident dataset we depicted in Fig. 1: for each

prior mean and standard deviation and the corresponding sample sizes ene from

Fig. 2a 100 random samples of size ene were drawn from the Leeds accident data and

the corresponding uene were computed. Figure 3a shows the fraction of uene
that is

actually below e.
For comparison the ‘‘true’’ value (the average of the full data shown in Fig. 1) is

depicted by the dashed line. The result is rather disappointing. Only beyond the true

h of 5.46 the quota rises above 60%. The reason is quite apparent: according to the

APVC u2ene
is expected to be small enough only on average.

As we pointed out in the introduction we therefore here use a refined criterion,

which we called the VPVC and which takes the form

u2n þ k � Du2n\e2; ð9Þ

where Du2n ¼ ðVarxn �mðxnÞðu2nÞÞ
1=2 ¼ a1=2

b � n1=2

ðnþbÞ3=2
and where we choose k ¼ 2. The

result of the VPVC is depicted in Fig. 2b. There are two clear differences compared

to Fig. 2a: first, the sample sizes ne are higher than the numbers ene we obtained from
the APVC, which was expected as we added an additional positive term kDu2n to the

left hand side of the criterion. Second, and perhaps more important, the result of the

SSD substantially increases once we increase the standard deviation of the prior.

This allows us to make our sample choice more conservative for a given prior mean

by increasing its standard deviation, i.e. our prior uncertainty about h, which is quite

natural. The most conservative SSD is thus located in the right upper corner of the

Fig. 1 Daily number of
accidents in Leeds in 2018,
taken from (2018)
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plot. This phenomenon for parameters that describe the variance of the data will

appear again in the next subsection.

The success of the refined criterion is depicted in Fig. 3b. The percentage of une
below e reaches now much higher values, at many positions beyond 95%. This

success is also more robust against deviations from the true value. Even for a mean

of the prior pðhÞ which is well below the true h a high enough standard deviation of

pðhÞ will allow to reach a quota of 95%.

Figure 3b therefore splits in three areas. As in Fig. 3a there is a bottom part

where the posterior variance is dominated by the small prior uncertainty so that

une\e is easily satisfied even for the minimal sample size of ne ¼ 1. As the standard

deviation of pðhÞ gets larger a too small value of the prior mean will result in a low

quota: the prior was chosen too optimistic. Increasing either the mean of pðhÞ or its

(a) (b)

Fig. 2 Left: sample sizes predicted for PoiðxnjhÞ distributed data and various priors pðhÞ ¼
Gammaðhja;bÞ for e ¼ 0:3 by the APVC (8). Right: sample sizes ne predicted by the VPVC (9) for
the same setup

(a) (b)

Fig. 3 Left: fraction of u2ene
below e2 for the data from Fig. 1 using the sample sizes ene predicted by the

APVC (Fig. 2a). Right: Fraction of u2ne below e2 for the sample sizes ne predicted by the VPVC (Fig. 2b)
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standard deviation will lead however to a more conservative SSD and to a better

compliance of une\e. The highest percentage can therefore be found in the upper

right corner of Fig. 3b and in the bottom area.

We already pointed out in the introduction of this article that enhancing the mean by

the variance as in the VPVC (5) is, in a certain sense, only an approximation and an

exhaustive treatment would use the full distributionmðxnÞ. In fact manymethods in the

literature (De Santis 2006, 2007; Brutti et al. 2008; Gubbiotti and De Santis 2011;

Sambucini 2008;Wang andGelfand 2002; Chen et al. 2011; Psioda and Ibrahim 2019)

use a criterion that is formulated as a probability when xn is drawn from mðxnÞ. The
cited works use different criteria that are not directly comparable to the VPVC

presented here. To allow for some comparison let us forge (5) into a probabilistic shape

Pxn �mðxnÞðu2n\e2Þ� p ð10Þ

where p can be chosen between 0 and 1.Wewill denote the smallest n for which (10) is

satisfied as nPe . In a way (10) resembles the length probability criterion (LPC) from the

literature, compare for example (Santis et al. 2004; De Santis and Pacifico 2004; De

Santis 2007; Joseph and Belisle 1997). For most cases nPe can only be estimated

numerically via sampling and even for rather easy cases, such as the one from the next

subsection, we observed that finding a stable nPe is rather elaborate. For the Poisson

setup a computation shows that
Pn

i¼1 xi ¼ ðnþ bÞ2u2n � a follows a negative binomial

distribution with failures a and success probability n
nþb so that we can in fact precisely

compute nPe in this case. Figure 9 in the appendix shows the relative deviation between

ne and n
P
e for various choices of p in (10) together with the corresponding success rates

unPe \e. For values of p between 0.95 and 0.97 we observe a good accordance between

theVPVC and (10): the relative deviation between ne and n
P
e is below 5% for almost all

priors, with exception of extremely skew choices (in the upper left corner) where a

strong dependency of nPe on p can be observed. A value of p ¼ 0:98, which would arise
for a normal distribution for k ¼ 2 and thus ignore any skewness, produces for a range

of prior choices substantially larger sample sizes.

2.2 Nuisance parameters: normally distributed data

Figure 4 shows 356 measurements of mercury concentration in the whole blood of

alligators, collected at the Yawkey Wildlife Center in South Carolina (Lawson and

Jodice 2019) and at the Merritt Island National Wildlife Refuge in Florida (Nilsen

et al. 2019) between 2010–2017 and 2007–2014. The bioaccumulation of mercury

in alligators can serve, due their role as top predators, as an indicator of pollution

(Rumbold et al. 2002; Grillitsch and Schiesari 2010).

We want to study the minimal number of alligators that is needed in order to

specify the Hg concentration up to a pre-specified precision e and will, in a similar

manner as in Sect. 2.1, use the data collection from (Lawson and Jodice 2019;

Nilsen et al. 2019) to validate the success of this sample size planning.

It is common to model the concentration of pollutants via a log-Normal

distribution (Ott 1990): for n measurements of mercury concentration cHg;i we set
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xi ¼ logð cHg;i
mg=kgÞ and assume that pðxnjl; r2Þ ¼

Qn
i¼1 Nðxijl; r2Þ with mean l and

standard deviation r2. Both parameters l and r2 are unknown, with l as the

parameter of interest and r2 as nuisance parameter. We take the normal-inverse-

gamma prior (Fink 1997) pðl; r2Þ ¼ N ðljl0; kr2Þ � IGðr2ja; bÞ; where IG denotes

the inverse-gamma distribution and where a[ 2; k; b[ 0 and l0 are hyperparam-

eters. The squared uncertainty u2n for l is given by the variance of the marginal

posterior pðljxnÞ, that is u2n ¼ Varl�pðljxnÞðlÞ ¼
2bþ
Pn

i¼1
ðxi�xÞ2þ n

knk
ðx�l0Þ2

nkðnþ2a�2Þ with nk ¼
nþ k�1 and x ¼ 1

n

Pn
i¼1 xi. Let ne be again the smallest n such that u2n þ k � Du2n\e2;

where u2n ¼ Exn �mðxnÞ½u2n� ¼
b

nk ða�1Þ,

Du2n ¼ ðVarxn �mðxnÞðu2nÞÞ
1=2 ¼ b

nkða� 1Þða� 2Þ1=2
n

nþ 2a� 2

� �1=2

and where we choose once more k ¼ 2. The sample sizes ne for various choices of

the prior pðl; r2Þ and e ¼ 0:1 are depicted in Fig. 5.

To visualize the impact of the prior knowledge we varied one of the marginals

pðlÞ and pðr2Þ while keeping the other one fixed. In Fig. 5a we varied the marginal

prior pðlÞ, while fixing the marginal pðr2Þ to have a mean of 0.15 and a standard

deviation of 0.10, for comparison this pðr2Þ was marked by the black cross in

Fig. 5b. For Fig. 5b we fixed pðlÞ to have a mean �1:4 and a standard deviation of

0.6 (marked by the black cross in Fig. 5a) and varied pðr2Þ. In particular, the two

crosses in Fig. 5a, b both mark positions with an equal sample size of n ¼ 33. The

APVC criterion from (4) and the average coverage criterion from (Adcock 1988,

Joseph et al. 1995) both yield a sample size of 15 for this prior.

Note, that the effect of the marginal pðlÞ is rather minimal, once pðr2Þ is kept

fixed. In fact, the VPVC turns out to be independent of the hyperparameter l0—
compare the vertical symmetry in Fig. 5a. Varying the standard deviation of pðlÞ
while keeping pðr2Þ fixed will only affect the hyperparameter k which has only a

minor influence on the SSD result. The only exception to this is the bottom area of

Fig. 5 where the small standard deviation of pðlÞ forces the posterior variance to be

Fig. 4 Logarithmic
concentration of mercury
measured in the whole blood of
alligators in South Carolina and
Florida. This dataset is a
combination of (Lawson and
Jodice 2019, Nilsen et al. 2019)
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small and thus predicts a small sample size of 1, which is similar to a phenomenon

we observed in Sect. 2.1. Figure 5b shows that the variance parameter r2 has a

similar influence on the sample size as the Poisson parameter in Sect. 2.1: increasing

either the mean or the standard deviation of pðr2Þ will increase the sample size so

that the most conservative experimental design is located in the upper right corner.

This behavior can again be expected since increasing the mean of pðr2Þ one will

expect data that have larger variability and contain less information. In contrast to

Figs. 2b and 5a there is no distinct bottom area of minimal sample sizes.

As in Sect. 2.1 we can use the full dataset, the one depicted in Fig. 4, to judge the

success of our sample size planning. Figure 6 displays, for the same priors as in Fig. 5

the proportion of une below e for une computed from random samples of size ne, drawn
from full dataset. The left plot, Fig. 6a, reveals that the choice of the marginal pðlÞ has
mostly an impact on the success of the SSD if itsmean is far-off from the true parameter.

Moreover, a very precise prior knowledge about l, will result in a high proportion of

une\e, which is similar to the observations we made in Sect. 2.1. The behavior of the

percentage forwhichune\ewhenvaryingpðr2Þ is similar towhatwehave observed for

the Poisson parameter in Sect. 2.1. For small values of the mean of pðr2Þ the quota
drops, which can be cured by increasing the standard deviation of pðr2Þ. The highest
percentage can be found in the upper right corner. For the prior marked by the black

crosses in Fig. 6, the same as the one marked in Fig. 5, the quota is around 95% while

the sample size predicted by the APVC and average coverage criterion only yields a

percentage of around 35%. The bottom area of Fig. 6b, where the posterior variance is

heavily influenced by the prior, is not as distinct as in Fig. 3b, this role seems to be

played in this context by l - compare Fig. 6a.

Let us shortly summarize the most important observations we have made

concerning SSD based on the prior predictive mðxnÞ via using the VPVC (5). There

are two strategies to have a good chance of achieving un\e:

(a) (b)

Fig. 5 Sample sizes predicted by the VPVC for different pðlÞ and pðr2Þ. Left: pðr2Þ is fixed as indicated
by the black cross in Fig. 5b and the sample sizes n is depicted for various pðlÞ. Right: Sample sizes for

various pðr2Þ and a fixed pðlÞ marked by the black cross in Fig. 5a
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1. A precise prior knowledge about the parameter of interest. This will result in

small sample sizes

2. A conservative estimate of the parameter that determines the variation of the

data. This will result in larger sample sizes. We have observed two different

ways to achieve this:

• Make a conservative (that is rather large) guess for the mean of the prior

marginal w.r.t this parameter.

• Choose a large enough standard deviation for this marginal prior. In order

for this to work it is not sufficient to base the SSD on the average u2n only but
higher moments as in the VPVC have to be taken into account.

In the Poisson example from Sect. 2.1 both strategies 1 and 2 concern the same

parameter h. For the case of normally distributed data we have observed that

strategy 1 concerns the parameter of interest l while to follow strategy 2 the

parameter r2, that describes the variance of the data, was central.

3 Behavior for small e

We have seen in Sect. 2 that the determination of the sample size via the VPVC can

be successful, provided the prior knowledge is either precise enough or sufficiently

conservative. Being ‘‘conservative’’ is of course a rather vague quality, but in this

section we want to answer what happens if e from (5) becomes smaller. Will it

become easier or harder to be conservative? In Theorem 3.5 we show that as e ! 0

the VPVC tends to satisfy (3) perfectly provided k is bigger then some threshold k�.
In other words for such a k the VPVC has a tendency to become conservative. If k is

(a) (b)

Fig. 6 Percentage of u2ne\e2 for the sample sizes ne from Fig. 5 within the dataset from Fig. 4. Axes of

both plots and the positions of the black crosses are the same as in Fig. 5. The ‘‘true’’ value within the full
dataset is depicted by the dashed lines
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smaller than k� on the other hand we will show that, asymptotically, the uncertainty

will almost surely be above the expression used for the VPVC. This phase transition

with respect to k, compare Fig. 8 in the appendix, gives some insight on SSD based

on the prior predictive in the small e regime. We will give some ideas how to get an

upper bound on k�. Another result of this section is Lemma 3.4, where we show an

asymptotic formula for the sample size ne determined by the VPVC.

First let us fix our setup. Similar as in Sect. 2 we will assume that there is a

univariate parameter of interest h0 and a, possibly empty or multivariate, nuisance

parameter h0, so that the total parameter that determines our sampling distribution

pðxnjhÞ ¼ pðx1; . . .; xnjhÞ is given by

h ¼ ðh0; h0Þ: ð11Þ

We will denote the Fisher information matrix of the single sample distribution

pðx1jhÞ by Ih and its first component (the one linked to h0) by Ih0 . Note, that since h0
is univariate Ih0 is a non-negative number. The knowledge about h is described by

the prior pðhÞ with marginals pðh0Þ and pðh0Þ. We further fix a value htrue ¼
ðhtrue;0; h0trueÞ in the support of pðhÞ that we treat as the true parameter. In practice

htrue will of course be unknown. Given some data xn ¼ ðx1; . . .; xnÞ we introduce as
above the squared uncertainty by u2n ¼ Varh0 �pðh0jxnÞðh0Þ as well as

u2n ¼ Exn �mðxnÞ½u2n�, Du2n ¼ ðVarxn �mðxnÞðu2nÞÞ
1=2

with mðxnÞ ¼
R
pðxnjhÞpðhÞdh and

formulate the VPVC for e[ 0 as

u2n þ kDu2n\e2: ð12Þ

The smallest n satisfying (12) will be called once more ne.

Assumption 3.1 We assume that for pðhÞ and htrue it holds:

1. Fisher information sufficiently regular The Fisher information Ih0 is strictly

positive for h ¼ htrue and almost every h in the domain of pðhÞ. Moreover we

assume that the second moment Eh� pðhÞ½I�2
h0
� exists and that Varh�pðhÞðI�1

h0
Þ[ 0.

2. B.-v.-Mises limit holds in L2 The quantity n � u2n converges in L2 against I�1
h0

conditional under h ¼ htrue and pðhÞ in the sense that:

lim
n!1

Exn � pðxnjhtrueÞ½jn � u2n � I�1
htrue;0 j

2� ¼ 0 and

lim
n!1

Eh� pðhÞ½Exn � pðxnjhÞ½jn � u2n � I�1
h0
j2�� ¼ 0:

ð13Þ

3. No trivial SSD For all n we have u2n [ 0.

From these assumptions point 2 is probably the one that needs the most

explanation. The Bernstein-von-Mises theorem (Van der Vaart 2000) indicates that

under relatively mild conditions, and conditional on h, the posterior distribution is

asymptotically normal with variance 1
n I

�1
h0
, which motivates (13). When considering

variances, as in this paper, it is then quite natural to require convergence in L2, while
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the B.-v.-Mises theorem only ensures convergence in probability. While standard

methods, such as Vitali’s convergence theorem, could be applied to provide the first

convergence (13) these seems more involved for the second limit as it is in a rather

non-standard form. Examining this point in more detail would stray far away from

the scope of this paper and could be subject to future research. However, we found

that both identities (13) were rather easy to check for many standard cases such as

the ones from Sect. 2 or a Bernoulli distribution with a Beta prior.

Under Assumptions 3.1 the posterior variance is, conditional on h, asymptoti-

cally proportional to I�1
h0
. The following quantity therefore describes the variation of

the asymptotic posterior variance given the prior knowledge pðhÞ:

c ¼
ðVarh� pðhÞðI�1

h0
ÞÞ1=2

Eh�pðhÞ½I�1
h0
� : ð14Þ

Let us make these considerations more precise.

Lemma 3.2 Define the coefficient of variation under the prior predictive mðxnÞ and
under htrue as

cn ¼
Du2n
u2n

and ctrue;n ¼
ðVarxn � pðxnjhtrueÞðu2nÞÞ

1=2

Exn � pðxnjhtrueÞ½u2n�
:

Under Assumptions 3.1 we then have

lim
n!1

cn ¼ c and lim
n!1

ctrue;n ¼ 0:

Remark 3.3 The limit of ctrue;n is a special case of the one for cn by taking the delta

distribution dhtrue , centered at htrue, as a prior.

Proof Let us first consider the limit of cn. Note that the second condition of point 2

in Assumption 3.1 states that Xn :¼ n u2n converges to I�1
h0

in L2 with respect to the

law pðh; xnÞ ¼ pðhÞ � pðxnjhÞ. Since Xn is not dependent on h, Ih0 is not dependent
on xn and the marginals of pðh; xnÞ are pðhÞ and mðxnÞ we conclude that

Varxn �mðxnÞðXnÞ ¼Varðh;xnÞ� pðh;xnÞðXnÞ
! Varðh;xnÞ� pðh;xnÞðI�1

h0 Þ ¼ Varh�pðhÞðI�1
h0 Þ

and similar Exn �mðxnÞ½Xn� ! Eh� pðhÞ½I�1
h0
�. From this we obtain the claimed limit of cn:

cn ¼Xn¼n u2n ðVarxn �mðxnÞðXnÞÞ1=2

Exn �mðxnÞ½Xn�
!

ðVarh� pðhÞðI�1
h0
ÞÞ1=2

Eh�pðhÞ½I�1
h0
� ¼ c:

For the second part of the claim we use that by the first condition in point 2 of

Assumption 3.1 we have L2 convergence of Xn conditional on htrue from which we

obtain indeed
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ctrue;n ¼
ðVarxn � pðxnjhtrueÞðXnÞÞ1=2

Exn � pðxnjhtrueÞ½Xn�
!

ðVarxn � pðxnjhtrueÞðI�1
htrue;0

ÞÞ1=2

Exn � pðxnjhtrueÞ½I�1
htrue;0

� ¼ 0;

where we used on the right hand side that Ihtrue;0 does not depend on xn. h

We see from Lemma 3.2 that the variation of u2n under the marginal mðxnÞ is

behaving in a different manner as under the true parameter htrue. The object Du2n ¼
ðVarxn �mðxnÞðu2nÞÞ

1=2
decays at the same order as u2n ¼ Exn �mðxnÞ½u2n� whereas, being

conditional on a parameter, the standard deviation ðVarxn � pðxnjhtrueÞðu2nÞÞ
1=2

decays

faster than Exn � pðxnjhtrueÞ½u2n�. The distributions mðxnÞ and pðxnjhtrueÞ result in quite

different asymptotic behavior for the moments of the posterior variance. We will see

in Theorem 3.5 below that these different asymptotic properties will provoke some

phase transition with respect to k in the limit e ! 0.

As a first consequence of the observations from Lemma 3.2 we will now see that

the variance term kDu2n in the VPVC will strongly affect the sample size even as

e ! 0.

Lemma 3.4 (VPVC sample size for small e) Provided Assumption 3.1 is true, we
have

lim
e!0

ne
e�2 � ð1þ k cÞEh�pðhÞ½I�1

h0
� ¼ 1 ð15Þ

Proof We have used already in the first part of the proof of Lemma 3.2 that

nu2n ! Eh� pðhÞ½I�1
h0
� so that applying in addition the convergence cn ! c from

Lemma 3.2 we arrive at

sn :¼ n ðu2n þ kDu2nÞ ¼ nu2nð1þ k cnÞ�!
n!1ð1þ k cÞEh� pðhÞ½I�1

h0 � ¼: s1: ð16Þ

Next, observe that since u2n [ 0 by point 3 of Assumption 3.1 this implies that we

can find a constant c[ 0 such that for any n we have c
n\u2n þ kDu2n, from which we

get ne [ c � e�2 and in particular

lim
e!0

ne ¼ 1: ð17Þ

Let us rewrite the claim of the lemma as

lim
e!0

ne
e�2 � s1

¼ 1: ð18Þ

From (16), and the choice of ne, we already have one inequality of (18):

lim inf
e!0

ne
e�2s1

�
def. of ne

lim inf
e!0

ne � ðu2ne þ kDu2neÞ
s1

¼ lim inf
e!0

sne
s1

¼(16), (17)
1:

To show the opposite inequality we argue by contradiction. Suppose that there is a

d[ 0 such that
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lim sup
e!0

ne
e�2 � s1

� 1þ 2 d: ð19Þ

Define me ¼ bs1e�2c, the largest integer less equal s1e�2, and note that for e small

enough there is an integer n0e such that the following nested inequality is true

1	me\ð1þ d=2Þð1þ meÞ	 n0e 	með1þ dÞ \
(19)

ne:
ð20Þ

Choose further e small enough such that for any n[me we have sn=s1\ð1þ d=2Þ.
But then the following inequality holds:

u2n0e þ k � Du2n0e ¼
sn0e
n0e

\
n0e [me ð1þ d=2Þ � s1

n0e
	
ð20Þ s1

1þ bs1e�2c 	 e2:

By (20) we have thus found a smaller integer 1	 n0e\ne that satisfies the VPVC

(12), which contradicts the choice of ne. h

For the setup considered in Sect. 2.2 we sketched the convergence of the object

from Lemma 3.4 for various priors in Fig. 7a.

The formula from Lemma 3.4 allows for a few interesting observations. First, we

see that asymptotically the prior pðhÞ has an impact on the sample size through

Eh� pðhÞ½I�1
h0
� (the expectation of the rescaled B.-v.-Mises limit of the posterior

variance) and through the coefficient of variation c. The higher the latter the more

impact will the choice of k have on the sample size. Moreover, comparing the

sample sizes ne from the VPVC and ~ne from the APVC (k ¼ 0) we see that taking

the variance into account will increase the sample size by a factor of ne
~ne
’ 1þ k � c.

Finally, note that we do not need any explicit expression for u2n when using the

asymptotic expression of ne. Given the Fisher information Ih0 of the sampling

distribution and any prior pðhÞ we can directly compute the sample size for small e
without any need of computing the posterior distribution.

We will now turn to the main result of this section. In Sect. 2 we have evaluated

the ‘‘success’’ of the SSD by evaluating how often we will have une\e on the actual

dataset, recall for instance Fig. 3b. In the following we want to do this for e ! 0 in a

purely generic setup by assuming that the data xn follows the distribution pðxnjhtrueÞ
with the true parameter htrue. We have already observed in Lemma 3.2 that

conditioning on a parameter like htrue leads to a different asymptotic behavior than

considering the marginal mðxnÞ. The following theorem shows the consequence of

this disparity concerning the success of the SSD.

Theorem 3.5 (VPVC becomes conservative for k[ k� and small e) Assume that
Assumptions 3.1 hold and define

k� ¼ k�ðhtrueÞ :¼
maxðI�1

htrue;0
� Eh�pðhÞ½I�1

h0
�; 0Þ

ðVarh�pðhÞðI�1
h0
ÞÞ1=2

: ð21Þ

We then have for any k[ k�
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lim
n!1

Pxn � pðxnjhtrueÞ u2n [ u2n þ kDu2n

� �
¼ 0: ð22Þ

In particular, we have for any SSD built on the VPVC (12) with such a k

lim
e!0

Pxne � pðxne jhtrueÞ u2ne � e2
� �

¼ 0: ð23Þ

Moreover, k� is optimal in the sense that for any 0\k\k� we have

lim
n!1

Pxn � pðxnjhtrueÞ u2n\u2n þ kDu2n

� �
¼ 0: ð24Þ

Proof We introduce q ¼
I�1
htrue;0

Eh� pðhÞ½I�1
h0

� � 1 so that k� can be written as k� ¼
maxðq; 0Þ=c with c as in Lemma 3.2. Similar as in the proof of Lemma 3.2 we

see that

q ¼ lim
n!0

Exn � pðxnjhtrueÞ½u2n�
u2n

� 1: ð25Þ

Let us first show (22). We can rewrite the inequality inside the probability as

u2n � Exn � pðxnjhtrueÞ½u2n�[ u2n � Exn � pðxnjhtrueÞ½u2n� þ kDu2n: ð26Þ

The expression on the right hand side becomes finally positive when n is high

enough. Indeed, we can we reshape it, using point 3 of Assumption 3.1 and the

object cn from Lemma 3.2, as

(a) Illustration of Lemma 3.4 (b) Illustration of Theorem 3.5

Fig. 7 Convergence of the expression from Lemma 3.4 forthe setup from Sect, 2.2 k ¼ 2 various

priorspðr2Þ and the fixed prior pðlÞmarked in Fig 5a with mean and standard deviation �1:4� 0:6.

Choices forpðr2Þ: blue 0:30� 0:10, cyan: 0:15� 0:10, green: 0:20� 0:05. Illustration of Theorem 3.5

for an actual dataset. Samples of u2n (inred) for different sample sizes using the data and setup from Sect

2.1 and a prior pðhÞwith mean and standard deviation 4:0� 2:0. The black lines mark u2n þ
kDu2n for k ¼ k� ¼ 0:73 (computed from the full dataset) and k ¼ k� � 0:30
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u2n � 1�
Exn � pðxnjhtrueÞ½u2n�

u2n
þ kcn

 !

¼: u2n � hn

where hn satisfies limn!1 hn ¼ �qþ k � c[ 0 due to Lemma 3.2, (25) and the

choice k[ k� ¼ maxðq; 0Þ=c. For n large enough such that the right hand side of

(26) is positive, we can apply Chebyshev’s inequality, which yields

lim sup
n!1

Pxn � pðxnjhtrueÞ u2n [ u2n þ kDu2n

� �

	 lim sup
n!1

Varxn � pðxnjhtrueÞðu2nÞ
ðu2n � Exn � pðxnjhtrueÞ½u2n� þ kDu2nÞ

2

¼ lim sup
n!1

c2true;n �
Exn � pðxnjhtrueÞ½u2n�

2

u2n � h2n
	 lim

n!1
c2true;n �

1þ q
�qþ kc

� �2

¼ 0;

where we used once more (25) and that we know from Lemma 3.2 that ctrue;n
converges to 0. From (22) we immediately obtain (23) by the definition of ne and the
fact that ne ! 1, due to Lemma 3.4. To show (24) we reshape the expression

inside the parentheses of (24) into

Exn � pðxnjhtrueÞ½u2n� � u2n [ Exn � pðxnjhtrueÞ½u2n� � ðu2n þ kDu2nÞ: ð27Þ

The rest of the argument then follows along the lines of the first part of the proof. h

Theorem 3.5 reveals a sort of phase transition. For a k smaller than some

threshold k� the squared uncertainty u2n will asymptotically be above u2n þ kDu2n,

while for k[ k� we will have u2n\u2n þ kDu2n with probability almost 1 for large n
(or small e). This effect is shown in Fig. 7b for the Leeds accident data from

Sect. 2.1 and a fixed prior.

The behavior predicted by Theorem 3.5 might be surprising at first glance: recall

that u2n is defined as an average and that the object Du2n is the according standard

deviation. Naively one might expect that the range of k times the standard deviation

around the mean might always cover some percentage strictly between 0 and 1. The

reason behind the observed phenomenon is that we use one distribution, mðxnÞ, to
perform the SSD and another one, pðxnjhtrueÞ, to evaluate its success. The different

asymptotics between these two distributions then gives rise to the erratic behavior

around k ¼ k�. The effect for a fixed k and various priors is depicted by Fig. 8 in the

appendix: As e gets small we get two sharply separated regions for the

hyperparameters where one region has a quota of u2ne\e2 around 0% while the

other one approaches 100%. We expect that this phenomenon is not solely adherent

to the VPVC. For instance, it seems reasonable that for many cases a credible

interval for u2n under mðxnÞ is, at least loosely, related to a certain k so that similar

effects are likely to arise for a framework based on other approaches using mðxnÞ.
Investigating such a point further might be an interesting subject for future research.

We have seen in Theorem 3.5 that for small e the success of the SSD crucially

depends on having k[ k�. Now, k� is dependent on the true parameter htrue and thus
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unknown in practice. For the prior used for Fig. 7b we have a k� around 0.21 and

therefore much smaller than the k ¼ 2 used in the analysis of Sect. 2.1. In general

one might choose for an area H in the domain of pðhÞ as an upper bound for k�

kup:b:� ¼ sup
h2H

k�ðhÞ: ð28Þ

Taking a single standard deviation around the prior mean for pðhÞ and pðr2Þ
respectively we get for the prior from Fig. 7b kup:b:� ¼ 1:7 and for the one marked by

the black cross in Fig. 6b kup:b:� ¼ 1:0, which are both below the choice k ¼ 2 we

used in Sect. 2. The actual values of kH, with ‘‘true’’ parameter estimated from the

full dataset, are 0.73 and 0.75 respectively.

4 Conclusions

We discussed a Bayesian criterion for sample size determination, based on the prior

predictive, which we called the variation of posterior variance criterion (VPVC).

Compared with the classical average posterior variance criterion (APVC) this

criterion leads to a better compliance with the objective to restrain the uncertainty

by some e, while still providing explicit expressions in contrast to a full treatment of

the law of the uncertainty under the prior predictive. In particular this allows to treat

the asymptotic behavior for small e in a generic manner and thus to enhance the

understanding of sample size methods based on the prior predictive.

Using two different datasets we discussed the dependency of the sample size

determination and its success on the chosen prior and the true parameter and

deduced concepts on how to choose the prior to lead the sample size determination

more likely to a success. In particular, we observed that a part of these strategies

cannot be applied for the APVC but only for methods such as the VPVC that take

higher moments with respect to the prior predictive into account.

Finally, we gave some results concerning the behavior of the VPVC for e ! 0.

We proved an explicit formula for the predicted sample size in this regime and

showed that there is an exact limit for the portion of the variance w.r.t. prior

predictive that can be used in order to guarantee the success of the sample size

determination in this limit.
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Appendix

See Figs. 8 and 9.

(a) (b)

(c) (b)

Fig. 8 Percentage of une\e for the setup and data from Sect. 2.2 for various e (in decreasing order),

k ¼ 2, various marginals pðr2Þ and the same fixed marginal pðlÞ as in Fig. 6b. The ‘‘true’’ value of r2

(computed from the dataset) is depicted by the dashed lines. We used a smaller resolution compared to
Fig. 6b for numerical reasons

cFig. 9 Left column: Relative deviation ðne � nPe Þ=nPe between the sample sizes ne from the VPVC and nPe
predicted by (10) in steps of 5% for the setup from Sect. 2.1 and various choices of p in (10). Right
column: Percentage of unPe \e for the data from Fig. 1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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