
Stieber, Anke; Fügenschuh, Armin

Article — Published Version

Dealing with time in the multiple traveling salespersons
problem with moving targets

Central European Journal of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Stieber, Anke; Fügenschuh, Armin (2020) : Dealing with time in the multiple
traveling salespersons problem with moving targets, Central European Journal of Operations
Research, ISSN 1613-9178, Springer, Berlin, Heidelberg, Vol. 30, Iss. 3, pp. 991-1017,
https://doi.org/10.1007/s10100-020-00712-7

This Version is available at:
https://hdl.handle.net/10419/288402

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10100-020-00712-7%0A
https://hdl.handle.net/10419/288402
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Central European Journal of Operations Research (2022) 30:991–1017
https://doi.org/10.1007/s10100-020-00712-7

Dealing with time in the multiple traveling salespersons
problemwith moving targets

Anke Stieber1 · Armin Fügenschuh2

Accepted: 6 October 2020 / Published online: 16 October 2020
© The Author(s) 2020

Abstract
The multiple traveling salespersons problem with moving targets is a generalization
of the classical traveling salespersons problem, where the targets (nodes or objects)
are moving over time. Additionally, for each target a visibility time window is given.
The task is to find routes for several salespersons so that each target is reached exactly
once within its visibility time window and the sum of all traveled distances of all
salespersons is minimal. We present different modeling formulations for this TSP
variant. The time requirements are modeled differently in each approach. Our goal
is to examine what formulation is most suitable in terms of runtime to solve the
multiple traveling salespersons problem with moving targets with exact methods.
Computational experiments are carried out on randomly generated test instances to
compare the differentmodeling approaches. The results for large-scale instances show,
that the bestway tomodel time requirements is to directly insert them into a formulation
with discrete time steps.

Keywords Dynamic traveling salespersons problem · Moving targets ·
Time-relaxation · Integer linear programming · Second-order cone programming

1 Introduction

This research deals with a dynamic variant of the traveling salesperson problem (TSP),
where the targets or nodes are not fixed. This TSP generalization is called multiple
traveling salespersons problem with moving targets (MTSPMT). A possible applica-
tion of the MTSPMT can be found in the defense sector. An area, e.g., an airport or

B Anke Stieber
anke.stieber@hsu-hh.de

Armin Fügenschuh
fuegenschuh@b-tu.de

1 Helmut Schmidt University, Hamburg, Germany

2 Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-020-00712-7&domain=pdf
http://orcid.org/0000-0001-6289-1724

992 A. Stieber, A. Fügenschuh

a military base, must be protected from incoming hostile rocket, artillery, or mortar
(RAM) fire. Simultaneous attacks from different firing positions are considered. There
is a radar system detecting targets and estimating their trajectories. With a battery of
laser guns deployed within or nearby the protected area decisions have to be taken,
which available laser gun to select for the countermeasures to protect the area. The
selected laser gun then aims at the incoming target for a certain period of time to
destroy it. We assume that each target can be destroyed by firing the same period of
time regardless how far away it is. This period of time is set to one unit. Generally, the
closest laser gun is assigned to a target, where “close” does not refer to the physical
distance between laser gun and target, but to the angle the laser gun needs to traverse
for aiming at the target. The closest laser gun is used to prefer small angles over large
angles, because in case of failure (target is not destroyed) an adjustment of the laser
gun is then more likely to succeed. The goal is to destroy all incoming RAM. Here,
a laser gun corresponds to a salesperson and the incoming firing entities are moving
targets. Each target has got a visibility time window and a salesman can only intercept
a target within its respective time window. This window starts at that moment at which
the target is radar-detected, its trajectory is computed and reachability by all laser
guns is guaranteed. The visibility time window ends at the latest point in time where
a destruction of the target is possible (before impact).

Targetsmove continuously on their trajectorieswith a certain speed value. The num-
ber of laser guns is not fixed to one, thus, we are dealing withmultiple salespersons. As
for the classical TSP each target must be visited once by exactly one salesperson. The
objective is to minimize all traversed distances of all laserguns. Usually, the optimiza-
tion goal for TSP is minimizing travel times, however in the described application the
area is protected by laserguns, which are centered in the middle or equally spread over
the area. The concept of catching a target as early as possible could require a lasergun
to traverse a long way to intercept that target as early as possible and the lasergun
has to traverse the same way back. To save this traveling time and be ready for other
targets we minimize the distances. Moreover, it is important to safely destroy a target
than to adjust the laser gun for a second try in case of a miss. Destruction of a target
is more likely conducted when the laser traverses small angels. In our test instances
we assume a destruction of a target in the first try. The restriction that each target has
to be destroyed is above all and will be modeled as the demand constraints.

From a mathematical point of view, this application is an online optimization prob-
lem, where the complete data of the problem instance is not given in advance and a
decision has to be taken immediately. It can be solved “offline” and new data is then
integrated into the offline algorithm at runtime by a moving horizon approach. For a
detailed description of the application we refer to Stieber et al. (2014).

Obviously, ifwe restrict the number of salesman to one, fix the position of each target
to a certain point in space and extend all visibility windows to the whole considered
time horizon, we obtain the classical TSP, which is NP-hard, see Garey and Johnson
(1979). Thus, the MTSPMT as a generalization of the classical TSP is NP-hard, too.
For a survey on the TSP we refer to Lawler et al. (1985) or Reinelt (1994). Helvig
et al. (1998) addressed the Moving-Target TSP, which is the MTSPMT restricted to
one salesperson. Possible applications for the Moving-Target TSP are a supply ship,
that resupplies patrolling boats or an airplane that must intercept a number of mobile

123

Dealing with time in the multiple traveling salespersons… 993

ground units. The authors also addressed the Multi-Pursuer Moving-Target TSP with
Resupply, where multiple pursuers are considered and each pursuer must return to the
origin for resupply after intercepting a target.

The MTSPMT is similar to the Vehicle Routing Problem (VRP) with time-
dependent traveling times. However, in the MTSPMT, there is no capacity restriction
imposed and due to the moving targets, we have changing traveling times and dis-
tances between any pair of targets. This means the movement of a target does not only
influence the length of a certain arc and thus the travel time to a certain target, but to
all other targets as well. Since all targets are moving simultaneously and constantly
the length of an arc has two degrees of freedom, i.e., the length of an arc is determined
by the time the arc is entered and the time the arc is left. Both these times exactly
correspond to two spatial positions of the incident targets. Thus, the MTSPMT has
varying distances and varying travel times between two targets and both of these do not
correspond to each other since waiting is permitted. Assuming a target approaching a
salesperson, the salesperson moves the smallest distance to the trajectory of the target
with maximum speed and possibly waits there to catch the target, this results in a
smaller average speed of the salesperson. The other case is, when the target is heading
away from the salesperson, then it is better to catch the target as early as possible
and without waiting, here the average speed is the maximum speed. The change in
distances between targets is different compared to time-dependent VRP (TDVRP) as
well as minimizing the traveled distance opposed to minimizing the traveled time.

In this research paper we investigate the time aspect of the MTSPMT in modeling.
Based on different ways of integrating time into the model formulation, four different
variants are presented and compared regarding performance. Two model approaches
have already been published by Stieber et al. (2014), the time-discrete model TD and
the time-continuousmodel TC. The latter one concerning continuous times, is themost
precise model variant. Having a time discretization the objective function value of TD
cannot be less than the objective ofTC.However, the price for the preciseness of contin-
uous timemodeling usually is a higher computational burden. In addition, we generate
time-freemodels. For thesemodels we relax the time requirements completely and use
subprograms to check and create time feasibility. These feasibility checkers are either
based on discrete time steps or on a continuous time formulation. The two resulting
models are called time-free model with time-discrete feasibility checking (TFTD) and
time-free model with time-continuous feasibility checking (TFTC). The computational
complexity for feasibility checking in subproblems is less complex than for TD respec-
tively TC. The idea behind the time-free variants is to investigate if the computational
complexity for TFTD and TFTC can be reduced compared to the models “with” time.
In the discrete casewe assume, that this could be true for a sufficient fine discretization.

The contributions of this research paper are in detail:

1. The TC model from Stieber et al. (2014) is tightened, such that the distance coef-
ficients are only dependent on the arrival times of the salespersons (departure time
is equal to the former arrival time).

2. We reformulate the TCmodel as a second-order cone program (SOCP), which can
be solved by any standardMILP solver. This procedure requires some assumptions
on the target movements.

123

994 A. Stieber, A. Fügenschuh

3. The time-free modeling approach is proposed, which is a two-stage variant. In the
first stage time is completely relaxed. A time-feasible solution is computed in a
second stage by sub-problems integrating not all but necessary time restrictions.
In case of a discrete feasibility checker we obtain the TFTD model and in the
continuous case we have the TFTC model, respectively.

4. The optimal solutions of the two-stage models are computed using a branch-and-
bound framework. We present an algorithm, that uses a callback function (an
advanced feature of CPLEX).

5. Computational experiments are carried out using randomly generated and feasi-
ble problem instances with a varying number of targets, salespersons, and time
steps. Usually, trajectories can have arbitrary shapes, however since the continuous
approaches can only handle linear trajectories to be solved by the standard mixed-
integer linear programming (MILP) solver CPLEX, we restrict our instances to
straight lines.

The aim of this research is to find the best formulation to solve MTSPMT instances
with regard to performance (in terms of CPU time). The remainder of this article is
organized as follows. In Sect. 2 we provide a survey of the relevant literature. The two
model variants TD and TC, which incorporate the time as a discrete and a continuous
concept are recalled and extended in Sect. 3. The time-free approach (TFTD and
TFTC) and its solution method are addressed in Sects. 4 and 5. The computational
experiments are presented in Sect. 6 and we draw conclusions in Sect. 7.

2 Related work

This research article deals with a generalization of the classical TSP by considering
multiple salespersons and moving targets with time windows. For a survey on the
classical TSPwe refer to Reinelt (1994). There are a number of articles in the literature
that deal with dynamical TSP generalizations. However, the TSP literature concerning
moving targets is less developed (Englot et al. 2013; Helvig et al. 1998, 2003; Jiang
et al. 2005; Jindal et al. 2011). The first articles addressing the traveling salesperson
problem with moving targets (TSPMT) are Helvig et al. (1998, 2003). The authors
present an exact and an approximation algorithm for the one-dimensional case, where
targets and salespersons move on a straight line. Other specific variants of the TSPMT
with restrictions on target speed, movement, and number of targets are also addressed,
e.g., the targets move towards the origin (starting point of the salesperson) or never
reach the origin. The proposed algorithms are not applicable to the general case of
the TSPMT. Specific variants of the TSPMT and the TSPMT with resupply are also
addressed by Jiang et al. (2005), Jindal et al. (2011) and Englot et al. (2013). Solution
approaches are mainly heuristics such as genetic algorithms.

Asahiro (2006) investigated the ball collecting problem (BCP), where n balls move
in the Euclidean plane and k robots have to collect them. Each ball starts at a certain
location andmoves with constant speed in a certain direction. The robots start from the
depot and move on straight track-lines, which go through the depot. The robots able

123

Dealing with time in the multiple traveling salespersons… 995

to move in both directions have to collect all balls. Different scenarios with respect to
computational complexity are studied such as: Can k robots collect all n balls?

Time-dependent traveling salesperson problems (TDTSP) considered in Abeledo
et al. (2013), Ahrens (2015), Albiach et al. (2008), Picard and Queyranne (1978) and
time-dependent vehicle routing problems (TDVRP) addressed in Fleischmann et al.
(2004), Haghani and Jung (2005), Ichoua et al. (2003), Jung and Haghani (2001),
Malandraki and Daskin (1992) are very similar to the MTSPMT. The main difference
to the TDTSP and TDVRP is, that the travel times in the MTSPMT vary continuously
in the whole considered network instead of usually in a part of the network (e.g.,
congestion) or at a certain period of time (rush hour traffic). Furthermore, for the
MTSPMTnot only travel times change over time, but alsoEuclidean distances between
any two targets. This is due to the continuous movement of the targets. Finally, VRP
deal with restrictions on capacities of the vehicles, which is not the case for the
MTSPMT. For a comprehensive literature overview of TDTSP and TDVRP we refer
to Gendreau et al. (2015). In the following we provide some articles in more detail.

Ahrens (2015) addresses a stochastic variant of the dynamic traveling salesperson
problem. Problem instances were generated from static TSP datasets, where the move-
ment of each target is modeled by a Gaussian-distributed random distance vector that
is added to its location in the 2-d space at each time step. The instances were solved by
heuristics in an online calculation. The author examined the applicability of standard
(static) TSP solvers to dynamic instances. Computational experiments were carried
out with the Tour Construction Framework which combines global and local heuristics
and the TSP tour construction heuristic “nearest neighbor”.

There is another TSP variant, the equality generalized TSP (E-GTSP), which is very
similar to the MTSPMT. Assuming discrete time steps for the MTSPMT, we obtain
a copy of each target for each time step in the respective time window. All copies
of a target are called cluster. To this end, we have a set of clusters and the task is to
visit each cluster exactly once. Arcs between target copies of two different clusters are
realized, when a salesperson starting from the first target copy (at the respective time
step) is able to reach the second target copy with at most maximum speed. Obviously,
there are no anti-parallel arcs. In this context an instance of the TSPMT (MTSPMT
with one salesperson) can be formulated as an instance of the asymmetrical E-GTSP.
With the restriction that at least one element per cluster has to be visited we obtain
the generalized TSP (GTSP). This problem is also known as set TSP or group TSP.
The asymmetrical GTSP and E-GTSP have been investigated in Laporte et al. (1987).
Noon and Bean (1993) showed, that any problem that can be modeled as a GTSP can
be transformed into an asymmetrical TSP. The equivalent problem with more than
one salesperson is the generalized vehicle routing problem (GVRP), see Ghiani and
Improta (2000). For the symmetrical case there is a recent contribution by Sundar
and Rathinam (2016). The authors addressed the generalized multiple depot TSP
(GMDTSP) and provide a polyhedral study for this problem class. Presenting a branch-
and-bound approach that was also realized by callbacks of CPLEX, computational
experiments were carried out for 14 to 105 targets (which correspond to the number of
target copies in our notation) and amaximumnumber of 21 clusters (which correspond
to the number of targets in our notation).

123

996 A. Stieber, A. Fügenschuh

Picard and Queyranne (1978) address the TDTSP. They consider a complete graph
and travel times depending on the position of the target in the tour. Thus, the number
of targets is equal to the number of discrete time steps and the number of travel time
values is also discrete. The authors use shortest paths in a multipartite network for the
solutionwith branch-and-bound and relaxationmethods.Abeledo et al. (2013) is based
on the formulation given by Picard and Queyranne (1978) and provides a study of the
TDTSP polytope and computational experiments with their branch-and-cut-and-price
algorithm.

In the case of multiple salespersons as well as capacity restrictions and time win-
dows the TDVRP is concerned. Due to the computational complexity of TDVRP
scientific contributionsmainly focus on heuristic approaches (Fleischmann et al. 2004;
Haghani and Jung 2005; Ichoua et al. 2003; Jung and Haghani 2001; Mancini 2014).
Very few literature is published concerning exactmethods, some of them are e.g., Albi-
ach et al. (2008) and Soler et al. (2009). Based on the work of Noon and Bean (1993)
they provide a theoretical work of transforming an instance of the asymmetric TDTSP
with time windows or the TDVRP with time windows into an instance of the Asym-
metric TSP (ATSP) or VRP (AVRP) respectively. Soler et al. (2009) is a generalization
of the first one, because it deals with multiple salespersons. The conversions are car-
ried out by transforming the underlying graph into an instance of the generalized TSP
or VRP respectively, and then into the ATSP and the AVRP. Albiach et al. (2008)
also performed computational experiments using an exact algorithm for the Mixed
General Routing Problem. Instances with up to 222 vertices and one salesperson were
considered, where the number of arcs is between 5 and 20% of the arcs of a complete
graph.

Haghani and Jung (2005); Jung and Haghani (2001) report on heuristic and exact
solution methods for small and mid-sized instances and for bigger instances a lower-
bound procedure was used. Here, instances with 5 to 30 nodes and 10, 15 and 30 times
steps were considered. Woensel et al. (2007) introduced a new approach to model
potential traffic congestion. This model is based on a queuing approach to traffic
flows. Computational experiments were carried out for small instances with 10 nodes
using explicit enumeration and for up to 100 nodes with an ant colony heuristic.

Another similar problem is the VRP with roaming delivery locations (VRPRDL),
see Reyes et al. (2017). This article focuses on a delivery to a customers car (trunk),
which can be at different locations to different non-overlapping time intervals. For the
MTSPMT that would mean, that the trajectories are cut in non-overlapping pieces and
only certain pieces are considered.

In summary there are only few research contributions to the MTSPMT. Articles on
theMTSPMT or the TSPMTmainly consider specific problems or impose restrictions
on the movement of the targets. Since solving time-dependent problems is very time-
consuming, exact solution methods can handle only small and mid-sized instances.
The challenge of the MTSPMT is the continuous movement of all targets, resulting
in varying travel times and distances. In our research we confront different modeling
approaches and examine their computation times on randomly generated test instances.
Here, we concentrate on an offline approach for solving MTSPMT instances to global
optimality. In real-world online applications this can be used as a subroutine within a
moving horizon approach.

123

Dealing with time in the multiple traveling salespersons… 997

3 Mathematical models with time

Some basic notation is introduced to formulate the MTSPMT as a mixed-integer
optimization problem. We assume a finite time horizon [0, T]. The operating space is
a square in the R2 with a side length S ∈ R+, but the following models may also be
extended to the R3. Let W := {1, . . . , w} be a set of salespersons. All salespersons
start their tour at the same depot location o. Let V := {1, . . . , n} be a set of nodes
(targets or customers), then Vo := V ∪ {o} and A ⊆ Vo × V be a set of arcs. The
length of an arc depends on the time the arc is traversed and varies over time, since
the nodes are moving. Thus, the distance for salesperson k traveling from node i to
node j starting at a time in i and arriving at a time in j is given by the function
ci, j,k : [0, T] × [0, T] → R+ ∪ {∞}. Since each target i ∈ V is assigned a visibility
time window [t i , t i], we have

ci, j,k(s, t) := ∞ if and only if s /∈ [t i , t i] or t /∈ [t j , t j] or
(t − s)v <

∥
∥
∥p j (t) − pi (s)

∥
∥
∥
2
, (1)

where pi (s) and p j (t) are the respective locations of the targets at the times s and
t and v is the maximum speed value of all salespersons. The arrival time of any
salesperson at a target is equal to his departure time at the same target, because waiting
times are included in the traveling times. The depot o has the entire time horizon as
visibility window. All arcs with a finite length can be traveled with maximum speed
(v) plus potential waiting time. The goal is to reach each target from V by exactly one
salesperson such that the sum of all traveled distances of all salespersons is minimized.

3.1 A time-discrete model

The time-discrete MILP formulation has already been addressed in Stieber et al.
(2014). For the convenience of the reader it is concisely presented in the sequel. The
model consists of a multi-commodity flow formulation embedded in a time expanded
network. For an explanation of time expanded networks see Ford and Fulkerson
(1958). Here, we have discretized the whole time horizon in time steps. For each
time step there is a time layer with a copy of each target that is visible in this time
step. Let m be an integer number. The step size is defined by Δ := T /m. Then the
set of all time steps is T := {0, . . . ,m}. With Ã we denote the set of arcs in the
time-expanded network. An arc is only considered between different layers: the arc
(i, p, j, q) ∈ Ã, (i, j) ∈ A, p, q ∈ T connects target i in layer p with target j in
layer q. That means a salesperson departs in i at time step p and arrives in j at time
step q. For each salesperson the arrival time at any node in V is equal to the departure
time in the same node, since the waiting time is included in the traveling time. Having
discrete time steps p, q ∈ T we are able to evaluate the distance function c for arcs at
these times

cp,qi, j,k := ci, j,k(pΔ, qΔ).

123

998 A. Stieber, A. Fügenschuh

We introduce a family of binary decision variables x p,q
i, j,k ∈ {0, 1}. Here, x p,q

i, j,k = 1
represents the decision of sending salesperson k from i to j , departing at time step p
in i and arriving in j at time step q. The objective function is to minimize the total
traveled distances of all salespersons:

∑

k∈W

∑

(i,p, j,q)∈Ã
cp,qi, j,k x

p,q
i, j,k → min . (2)

The demand constraint requires, that each node j ∈ V must be visited once by exactly
one salesperson:

∑

k∈W

∑

(i,p,q):(i,p, j,q)∈Ã
x p,q
i, j,k = 1, ∀ j ∈ V. (3)

Each salesperson k ∈ W can only start once from the depot:

∑

(j,p,q):(o,p, j,q)∈Ã
x p,q
o, j,k ≤ 1, ∀ k ∈ W. (4)

The following flow constraints ensure the feasibility of time. Conservation is ensured
at each node of the salesperson tour except for the last one, this can be regarded as the
sink of the flow:

∑

(i,p):(i,p, j,q)∈Ã
x p,q
i, j,k ≥

∑

(i,p):(j,q,i,p)∈Ã
xq,p
j,i,k, ∀ j ∈ V, q ∈ T , k ∈ W. (5)

Summing up, we solve the following optimization problem:

min{(2) | (3), (4), (5), x ∈ {0, 1}Ã×W }. (6)

The restrictions of the visibility time windows are embedded in the arcs, thus, arcs
violating an involved time window constraint have infinite length. Usually TSP have
to incorporate subtour elimination constraints. In fact, this point is included by the
inherent time dependency. Since time evolves, there is no cycle in the underlying time
expanded network and consequently subtour elimination constraints are not needed.
Furthermore, the presented model (6) is not restricted to special shapes of the target
trajectories. It can handle any trajectory, see for example Stieber and Fügenschuh
(2018). Likewise, there is no need to restrict the speed function of the targets, the
model is able to deal with varying target speeds. Obviously, an adverse effect of the
above formulation is the increased problem size in case of a higher number of time
steps (better accuracy), leading to a higher computational burden.

123

Dealing with time in the multiple traveling salespersons… 999

3.2 A time-continuousmodel

The salespersons may intercept the targets at any point of their trajectories, thus,
the time constraints have to be modelled by continuous variables. As opposed to the
discrete model, the decision whether a salesperson is able to reach the destination
target of a direct link with its maximum speed has to be integrated into the model
formulation. This is realized by applying the big-M method (similar to the Miller
et al. (1960) (MTZ) constraints for the TSP) containing continuous time variables and
time restrictions. An obvious consequence of this approach is the fact, that we obtain
an objective function value with best accuracy.

We introduce a family of binary decision variables xi, j,k ∈ {0, 1}, where xi, j,k = 1
represents the decision of sending salesperson k from i to j (independently of the
time). Additionally, continuous time variables ti,k ∈ R are defined to describe the
arrival time of salesperson k in node i . Here, the set of arcs is A with the arc length
defined by (1). Now, we are able to formulate the continuous model.

The objective function is tominimize the total traveled distances of all salespersons:

∑

k∈W

∑

(i, j)∈A
ci, j,k(ti,k, t j,k) xi, j,k → min . (7)

Each node j must be visited once by exactly one salesperson:

∑

k∈W

∑

i :(i, j)∈A
xi, j,k = 1, ∀ j ∈ V. (8)

Each salesperson k can only start once from the depot:

∑

j∈V
xo, j,k ≤ 1, ∀ k ∈ W. (9)

Flow conservation is ensured at each node of the salesperson tour except for the last
one (sink):

∑

i :(i, j)∈A
xi, j,k ≥

∑

i :(j,i)∈A
x j,i,k, ∀ j ∈ V, k ∈ W. (10)

The following MTZ-type constraints guarantee time-feasibility, that means, if sales-
person k moves from i to j and arrives at ti,k in i , he cannot be earlier in j than ti,k
plus the time he needs to travel from the position of i at ti,k to the position of j at t j,k
using maximum speed v. The time horizon T is the so called big-M constant in the
big-M constraints

ti,k + ci, j,k(ti,k, t j,k)

v
≤ t j,k + T · (

1 − xi, j,k
)

, ∀ (i, j) ∈ A, k ∈ W. (11)

123

1000 A. Stieber, A. Fügenschuh

For the visibility timewindows, the timevariables have to satisfy the followingbounds:

t j ≤ t j,k ≤ t j , ∀ j ∈ Vo, k ∈ W. (12)

Summarized, we aim to solve the following optimization problem:

min{(7) | (8), (9), (10), (11), (12), x ∈ {0, 1}A×W , t ∈ R
Vo×W }. (13)

Basically, this model is the same as the time continuous model in Stieber et al.
(2014). The only changes made are some modeling refinements, e.g., departure and
arrival time variables are replaced by arrival variables because possible waiting is
included, constraints (9) are only considered for depot node o and bounds for the
visibility time windows are added.

The presented time-continuous formulation of theMTSPMT is based on an arbitrary
nonlinear continuous function ci, j,k for the distance between two distinct moving
nodes. In order to apply a standardMILP solver such as CPLEX,we have to restrict the
movement of the targets. To this end, we assume the trajectories to be straight lines and
the speed of each target to be constant. To simplify matters, we use the same constant
speed for all targets. Then ci, j,k represents the Euclidean distance between two points
on two straight lines. With this, the above presented optimization problem (13) can be
handled as a second order cone program (SOCP), see Boyd and Vandenberghe (2004)
for an overview. The constraints (11) define the cones and make the set of feasible
solutions to be convex. In the sequel we present the adjusted SOCP formulation that
we use for CPLEX.

We introduce the real auxiliary variables cxi, j,k and cyi, j,k for the x- and y-
components of the Euclidean distance ci, j,k(ti,k, t j,k); ai, j,k for the sum

ai, j,k =
∫

ti,k∈[0,T]

∫

t j,k∈[0,T]
ci, j,k(ti,k, t j,k) xi, j,k

and finally ai, j,k for the right hand side of the cone definition. Hence, we can formulate
the following SOCP. The objective function is

∑

k∈W

∑

(i, j)∈A
ai, j,k → min . (14)

The constraints (8), (9), (10) and (12) remain unchanged. The constraints (11), that
contain quadratic terms, are transformed into the following family of auxiliary con-
ditions, where the trajectory of a target is represented by the convex combination of
its start (xi , yi) and end point (xi , yi), see Eqs. (15)–(18). We define Δxi = xi − xi ,
Δyi = yi − y

i
and Δti = t i − t i .

cxi, j,k −
((

x j + t j,k
Δx j
Δt j

− t j
Δx j
Δt j

)

−
(

xi + ti,k
Δxi
Δti

− t i
Δxi
Δti

))

= 0,

∀ (i, j) ∈ A, i
= o, k ∈ W. (15)

123

Dealing with time in the multiple traveling salespersons… 1001

cxo, j,k −
((

x j + t j,k
Δx j
Δt j

− t j
Δx j
Δt j

)

− ox
)

= 0, ∀ j ∈ V, k ∈ W. (16)

cyi, j,k −
((

y
j
+ t j,k

Δy j
Δt j

− t j
Δy j
Δt j

)

−
(

y
i
+ ti,k

Δyi
Δti

− t i
Δyi
Δti

))

= 0,

∀ (i, j) ∈ A, i
= o, k ∈ W. (17)

cyo, j,k −
((

y
j
+ t j,k

Δy j
Δt j

− t j
Δy j
Δt j

)

− oy
)

= 0, ∀ j ∈ V, k ∈ W. (18)

The following constraints describe the condition of the uniform movement of the
targets:

ai, j,k ≤ v
(

t j,k − ti,k + T (1 − xi, j,k)
)

, ∀ (i, j) ∈ A, k ∈ W. (19)

The next conditions are needed to formulate the cone constraints:

ai, j,k = ai, j,k + R (1 − xi, j,k), ∀ (i, j) ∈ A, k ∈ W, (20)

where R := �√2S
 (√2S is the diagonal of the square).
Finally, the cone constraints are given as:

(cxi, j,k)
2 + (cyi, j,k)

2 ≤ (ai, j,k)
2, ∀ (i, j) ∈ A, k ∈ W. (21)

Summarized, the transformed SOCP reads the following:

min{(14) | (8), (9), (10), (12), (15), (16), (17), (18), (19), (20), (21)

x ∈ {0, 1}A×W , t ∈ R
Vo×W , cx , cy, a, a ∈ R

A×W }. (22)

Having this model formulation, a salesperson is able to intercept a moving target
at any possible point on its trajectory. In general, the objective function value of (22)
is less than or equal to the objective function value of (6) for the same instance.
However, the assumptions we had to make are severe, the model is only applicable
to linear trajectories with constant speeds. In contrast to this, the time-discrete model
can handle trajectories of any shape and speed. Moreover, model formulations based
on big-M constraints usually have a weak linear programming relaxation and thus,
more nodes have to be examined in the branch and bound tree, which slows down the
solution process Codato and Fischetti (2004). Additionally, due to the big-M constants
numerical instabilities can occur in the solution procedure if the constants are not
tight enough. In (22) there are two of such constants, see (19) and (20). Obviously, a
comparison of bothmodeling approaches (discrete and continuous) is difficult, because
of the different characteristics.

123

1002 A. Stieber, A. Fügenschuh

4 Time relaxations

For the next model formulations we concentrate on the time aspect in a different
way namely on a time-free model. This means relaxing the time completely and later
reintegrating parts of the time restrictions. The technique was first introduced by
Fügenschuh et al. (2013). They successfully applied the method to the scheduling and
routing of planes and tourist travel requests during fly-in safaris, which essentially is
a VRPTW with pickup and delivery.

First of all, we perform a projection of (6) from the time-discrete variable space
Ã×W toA×W (i.e., from (Vo ×T)× (V ×T)×W to V0 ×V ×W). The time-free
counterpart of variables x p,q

i, j,k is simply xi, j,k . While reducing all time-discrete arcs
between two different targets to only one arc, we have to find a suitable length for this
new arc to preserve the optimal solution. Thus, theminimum length of all time-discrete
arcs between two targets is used as the length for the new arc. That means, for any
salesperson k and any two nodes i and j the distance coefficient ci, j,k is taken as

ci, j,k = min{cp,qi, j,k | p, q ∈ T }. (23)

With this, we have the following model in the time-free space:

∑

k∈W

∑

(i, j)∈A
ci, j,k xi, j,k → min

s.t.
∑

k∈W

∑

i :(i, j)∈A
xi, j,k = 1, ∀ j ∈ V

∑

j :(o, j)∈A
xo, j,k ≤ 1, ∀ k ∈ W

∑

i :(i, j)∈A
xi, j,k −

∑

i :(j,i)∈A
x j,i,k ≥ 0, ∀ j ∈ V, k ∈ W

x ∈ {0, 1}A×W . (24)

This is a classical multi-commodity flow problem, which is easy to solve by standard
MILP solvers. The optimal solution of the time-freemodel (24) is a lower bound to (6),
because the distance coefficients are computed by minimization. However, the recon-
struction of a time-feasible solution from a time-free solution is not straightforward
and not every time-free solution yields a time-feasible solution. For this purpose we
have to examine every time-free solution, thatwe encounter during the solution process
for time-feasibility. The examination is embedded in a branch-and-bound framework
in order to prune nodes whose lower bounds exceed the current best solution value.

Given an optimal solution of (24), feasible times at which salespersons reach the
targets have to be constructed from it. Assuming the objective function value of the
constructed time-feasible solution is equal to the objective function value of the time-
free solution, then the constructed solution is proven global optimal for (6). However,
this rarely happens. It is more likely, that a time-free solution is infeasible with respect
to the time constraints. Thus, apart from an optimal time-free solution, we have to

123

Dealing with time in the multiple traveling salespersons… 1003

investigate also further feasible time-free solutions in the branch-and-bound process.
That means (24) serves as the master problem in the branch-and-bound framework.
For any solution of the master problem, we try to construct a feasible counterpart with
respect to the given time constraints. If the objective function value of this solution
is better than previously found ones, it is stored. Then, the current time-free solution
is treated as infeasible and cut off in the branch-and-bound process. Obviously, the
generated cuts should take into account all possible salespersons permutations in order
to prevent a repetition of the same time-free solution due to salesperson symmetries.
In case that there is no time-feasible counterpart for a time-free solution, we also have
to cut off the time-free solution as well. In this way we are able to check all time
free solutions. Additionally, the branch-and-bound tree can be pruned by exploiting
lower bounds. This solution method is realized using the callback functionality of
CPLEX. Analyzing the time-free solution before the construction phase also leads to
an advantage in processing. For this we refer to Sect. 5. For now, we concentrate on
the construction of a time-feasible solution from a time-free solution.

Given a time-free solution, according to the variables set to one, we obtain a set of
arcs for each salesperson and call it a pretour. Note, a pretour may be disconnected
and the pretour of some salespersons can be empty. A salesperson is called active, if
its pretour is not empty. The pretours of all active salespersons are extracted from the
solution. A pretour is called feasible if it is aHamiltonian path in the induced sub-graph
starting at the depot o. For each feasible pretour a time-feasible tour is required.

4.1 A time relaxation with discrete time feasibility checking

Assuming we have a non-empty pretour. The construction of a time-feasible tour is
done by setting up a checking sub-MILP. For the sub-MILP we consider all the time
restrictions of the salesperson, who belongs to the pretour. In more detail, we include
only those time-dependent arcs, that have a time-free counterpart in the given pretour
meaning the corresponding solution variable is nonzero. In the case that the checking
sub-MILP for each active salesperson results in a time-feasible tour an overall time-
feasible tour is found. The best overall time-feasible tour solves (6).

The time-feasibility checkingMILP is set up as aminimum-cost flow problem from
a source to a sink for each active salesperson separately. For an active salesperson k its
pretour defines the sequence of targets, k has to visit. Let us assume nk is the number of
targets k has to visit and (v1, v2, . . . , vnk) is the sequence. Additionally depot position
o is considered as the source of the flow and we extend the sequence by a node d,
which serves as the sink. Thus, Vk = {o = v0, v1, v2, . . . , vnk , vnk+1 = d} denotes
the sequence of nodes considered for the minimum-cost flow problem of salesperson
k.

Since we have to consider only those time-expanded arcs, that correspond to an arc
of the pretour, the checking MILP consists of all arcs, that go from depot position o
to distinct positions of v1 and from distinct positions of v1 to distinct positions of v2
and so on. Additionally, we have to introduce artificial time-discrete arcs from distinct
positions of vnk to the sink d. That means, for each arc, that ends in vnk at time step
p an arc is introduced from (vnk , p) to (d, p + 1). The distance of all arcs between

123

1004 A. Stieber, A. Fügenschuh

vnk and d is zero. We denote this set of arcs for salesperson k by Ak . According to
the time-discrete model, we introduce binary decision variables x p,q

vi ,vi+1 describing the
decision of sending salesperson k from target vi to its successor vi+1 starting at time
step p and arriving at time step q. Then, the time-feasibility checking MILP for an
active salesperson k is formulated as follows:

∑

(vi ,p,vi+1,q)∈Ak

cp,qvi ,vi+1
x p,q
vi ,vi+1

→ min

s.t.
∑

(p,q):(o,p,v1,q)∈Ak

x p,q
o,v1 = 1

∑

(p,q):(vnk ,p,d,q)∈Ak

x p,q
vnk ,d = 1

∑

p:(v j−1,p,v j ,q)∈Ak

x p,q
v j−1,v j

−
∑

p:(v j ,q,v j+1,p)∈Ak

xq,p
v j ,v j+1

= 0, ∀ j ∈ {1, . . . , nk}, q ∈ T

x ∈ {0, 1}Ak
. (25)

The optimization problem (25) aims to find the shortest path from o to d. This kind of
optimization problem can be solved in polynomial time by, e.g., Dijkstra’s algorithm
Dijkstra (1959). In case the checking MILP (25) results in a time-feasible tour for
each active salesperson, we are able to construct a total time-feasible solution for (6)
by combining all salesperson tours. If the checking MILP results in an infeasible
solution for any of the active salespersons the construction process is aborted for the
corresponding time-free solution.

4.2 A time relaxation with continuous time feasibility checking

According to our time-continuous model (13), there is also a time-relaxed variant with
a continuous time-feasibility checking sub-MILP. For this variant we cannot use (24)
directly, since its distance coefficients ci, j,k in the objective function are dependent on
a discretization and on the time-discrete arcs, see (23). In a continuous model, these
coefficients are not valid. Here, we have to replace the minimum time-expanded arc
length by the real minimum length between any two trajectories. Thus, the distance
coefficients ci, j,k are computed as follows: For an endpoint p j

e of trajectory j we seek
for the time interval [t i1, t i2] for i , such that

t i1 = inf {t ∈ [t i , t i] | k can travel from pi (t) to p j
e with speed v}

and

t i2 = sup {t ∈ [t i , t i] | k can travel from pi (t) to p j
e with speed v},

where pi (t) is the position of i at time t . Let I be the union of the intervals for both
endpoints of j and J = [t j , t j]. Then we compute the overall minimum distance

123

Dealing with time in the multiple traveling salespersons… 1005

between the trajectory of i reduced to the interval I and trajectory of j :

ci, j,k = min {ci, j,k(s, t) | s ∈ I , t ∈ J }. (26)

Then the continuous time-relaxed model is (24) with (26). Having this, we can formu-
late the feasibility checking sub-MILP for the continuous case. As for the continuous
model (22) with the assumption of linear trajectories and constant target speed, the
checking sub-MILP for an active salesperson k can be modeled as a quadratic pro-
gram. Here, we again use continuous time variables tvi to define the arrival time in vi .
With the target sequence {o = v0, v1, . . . , vnk } and the corresponding set of arcs Ak ,
we obtain the checking MILP for k as follows:

nk−1
∑

i=0

cvi ,vi+1(tvi , tvi+1) xvi ,vi+1 → min

s.t. cvi ,vi+1(tvi , tvi+1) ≤ v (tvi+1 − tvi), ∀ i = 0, 1, . . . , nk − 1,

tvi ∈ [t i , t i], ∀ i = 1, . . . , nk

x ∈ {0, 1}Ak
. (27)

Here, the function cvi ,vi+1(tvi , tvi+1) again denotes the Euclidean distance between the
position of target vi at time step tvi and the position of target vi+1 at time step tvi+1 . In
the objective function all traveled distances are summed up, while in the restrictions
time-feasibility is checked. That means, the travel speed, that k needs to traverse an arc
with length cvi ,vi+1(tvi , tvi+1) in a time difference of (tvi+1 − tvi), has to be at most v,
the maximum speed. In contrast to the proposed TC model (13), the time-free model
with the continuous checking MILP (TFTC) does not contain any big-M constant.

5 Implementational details

In this section we address the time-free problem (24). In case of a discretization of
time, (23) is needed for the calculation of the arc lengths. In the continuous case we
use (26) instead. The model (24) (with either (23) or (26)) is called master problem
and the solution procedure is embedded in a branch-and-bound framework. To check
the solutions of the master problem and to produce the best time-feasible solution we
use the callback utilities of CPLEX.We implement an instance of the BranchCallback
and the LazyConstraintCallback. The latter one is a user-written callback to solve
mixed-integer linear programs. Each time a candidate feasible solution of the master
problem is found at a node in the branch-and-bound tree the LazyConstraintCallback
is invoked and violated constraints are applied. Those constraints are applied in a
“lazy” fashion, i.e., only if they are violated.

In theLazyConstraintCallbackwe include a validation check of the feasible solution
of themaster problem and the construction of feasible times according to (25) and (27).
Our callback algorithm is presented in Algorithm 1. A more detailed description of
individual steps is given in the sequel.

123

1006 A. Stieber, A. Fügenschuh

Algorithm 1: LazyConstraintCallback: Pretour validation check and time-
feasibility construction.

Data: Time-relaxed x variables, best objective function value found so far best_obj_val
Result: If exists time-feasible tours for all salespersons

1 #Bounds exploitation
2 if current objective function value curr_obj_val ≥ best_obj_val then
3 return;

4 #Cycle detection
5 if the pretour of an active salesperson s contains a cycle then
6 for all salespersons add a global cut;
7 return;

8 #Validation check by interval propagation
9 if the pretour of an active salesperson s is identified as time-infeasible then

10 for all salespersons add a global cut;
11 return;

12 #Time-Feasibility Check
13 initialize current solution curr_tour ← ∅; all_salespersons_ f easible ← true;
14 initialize objective function value for time-feasible solution tour_val ← 0;

15 for each active salesperson s ∈ W do
16 if all_salespersons_feasible
= true then
17 break;

18 if pretour of s is already in solution pool then
19 get time-feasible tour r for s from solution pool;
20 if r is infeasible then
21 all_salespersons_ f easible ← false;

22 else
23 set up MILP to compute time-feasible tour r for s;
24 solve MILP;
25 #r is a time-feasible tour of s;
26 tour_val ← objective function value of MILP;
27 curr_tour = curr_tour ∪ r ;
28 add pretour of s and time-feasible tour r to solution pool;

29 if all_salespersons_ f easible = true then
30 add global cut to prevent solution to be repeated by another salespersons permutation;
31 if tour_val < best_obj_val then
32 best_obj_val = tour_val;
33 save curr_tour;
34 return;

35 return;

In line 2–3 the objective function value of the master problem is compared to the
best objective function value found so far. This value serves as a lower bound. If the
current value cannot beat the best time-feasible objective function value found so far,
the callback will quit. Afterwards, the current node is pruned in the BranchCallback,
which is subsequently invoked. The task of the BranchCallback is pruning. Branching
decisions are left to the default way of CPLEX.

123

Dealing with time in the multiple traveling salespersons… 1007

Fig. 1 Interval propagation. This figure presents the depot position o and a given salesperson tour consisting
of the sequence o, v1, v2. Each target is visualized by its trajectory and the corresponding discrete time
steps, which are given by numbers. The grey area describes the discrete arrival and departure interval
between consecutive nodes

Since the master problem is a multi-commodity flow problem, each solution rep-
resents a feasible flow but not necessarily a feasible tour, due to the lack of subtour
elimination constraints. This leads to line 5–7 in order to check each active pretour
against cycles. In case a cycle C ⊂ A is found, it will be cut off by the following
constraints:

∑

(i, j)∈C
xi, j,k ≤ |C| − 1, ∀ k ∈ W. (28)

The last validation check performed is to exploit the visibility time windows along the
pretour and test if there are any feasible times to arrive at the last node of the pretour,
see line 9–11. This interval propagation is visualized in Fig. 1. Let us consider any
target v of the pretour. Then we investigate if there are time steps in the visibility
window of v, which can be used to arrive from its predecessor (starting in its time
window) and to leave for its successor (arriving in its time window). The resulting
time interval serves as the new visibility window for v and it is propagated to the
succeeding target the same way. Since for the depot node o the whole time horizon is
considered as visibility window, the whole visibility window for v1 can be used as its
arrival interval. Regarding the visibility window of v2 we obtain a possible departure
interval for v1 with feasible time steps to depart for v2. The next step is to generate a
cut set from both intervals of v1. This procedure is continued to the last node of the
pretour. If at the last node or any node before the intersection interval is empty, this
indicates that the pretour we started with is not time-feasible.

In the given example the arrival interval of node v1 is the discrete interval [2, 5].
The departure interval to leave for v2 with a speed of at most v is [2, 3]with a possible
arrival in v2 in [3, 4]. A departure after 3 in v1 cannot reach v2 within its visibility
window of [0, 4]. An earlier departure is not possible due to the visibility window
of v1. Thus, the intersection of [2, 5] and [2, 3] leads to [2, 3], which is considered

123

1008 A. Stieber, A. Fügenschuh

Fig. 2 Interval propagation. This figure presents the depot position o and a given salesperson tour consisting
of the sequence o, v1, v2. Each target is visualized by its trajectory and the corresponding discrete time steps,
which are given by black numbers. The grey area describes the discrete departure and arrival interval between
consecutive nodes. The light grey area is the extended departure and arrival interval when considering
continuous times

as the new visibility window for v1. The procedure of time interval propagation has
to be continued to the following targets, but it is important to use the updated time
window for the predecessor node. In case there is an empty cut set at any target of
the pretour, we have an infeasible interval. This means, there is no time-feasible tour
for the current pretour and we can reject the current time-free solution. This is done
by adding the following global cut to the master problem. For an infeasible pretour
o = v0 to vns , let P ⊂ A be the corresponding sequence of arcs, then, we formulate
the following constraint for each salesperson to cut off this pretour:

∑

(i, j)∈P
xi, j,k ≤ |P| − 1, ∀ k ∈ W. (29)

Note, that for any pair of anti-parallel arcs (i, j) and (j, i) we have

xi, j,k + x j,i,k ≤ 1, ∀ k ∈ W. (30)

This means, for a variable in (29), which is bounded by 1, we can add the variable of
the anti-parallel arc at no cost (30). Thus, lifting |P| − 1 anti-parallel arcs to the cut
(29), leads to:

∑

(i, j)∈P
xi, j,k +

∑

(i, j)∈P\(vns−1,vns)

x j,i,k ≤ |P| − 1, ∀k ∈ W. (31)

Interval propagation for the continuous case is done in a similar way. In general,
the resulting arrival and departure intervals are slightly larger, see Fig. 2.

The travel time is not rounded to the next time step, its exact value is computed using
maximum salesperson speed and the Euclidean distance between the corresponding
positions of the targets.With this a salesperson is able to arrive earlier and to depart later
compared to the casewith discrete time steps. The computation of the new timewindow

123

Dealing with time in the multiple traveling salespersons… 1009

of a target is again an intersection of arrival and the departure interval. The exact arrival
interval depends on the previously updated time interval of the predecessor node and
the departure interval depends on the visibility window of the successor. In Fig. 2 the
arrival interval of v1 is the whole visibility window, since the predecessor node is
the depot. For the departure interval of v1 the values tdepmin , t

dep
max , tarrmin and tarrmax have

to be identified. Obviously, we have tdepmin = tv1 and tarrmax = tv2 . Assuming a constant

maximum speed we take the equation of uniform movement to compute tdepmax , which
is the latest possible departure in v1:

v (tv2 − tdepmax) = ∥
∥parr − pdep

∥
∥
2 , (32)

where parr and pdep are the positions of the targets at the times tv2 and tdepmax respec-

tively. Since the right hand side of the motion equation is depended on tdepmax we have
to square both sides and replace parr and pdep by their trajectory parameterization.

This leads to a quadratic equation, from which tdepmax can be obtained. An intersection
of both intervals of v1, which are [2, 5] and [tdepmin, t

dep
max]) gives us the new time interval

of feasible time steps. The next step is to calculate the arrival interval [tarrmin, t
arr
max]

of v2 from the recently computed time interval of v1. Here, the missing tarrmin is again
calculated by the equation of uniform movement, see (32). This interval is the arrival
interval of v2 when we move to the next nodes for interval propagation. The intervals
[tdepmin, t

dep
max] and [tarrmin, t

arr
max] have to be computed accordingly for v2 and v3. This pro-

cedure is continued to the last node of the pretour. If at the last node or any node before
an empty intersection interval has been detected, there is no time-feasible salesperson
tour and the corresponding pretour is cut off for any salespersons permutation. In the
feasible case the MILP (25) or (27) is set up to compute the corresponding times.

Each computed pretour and its counterpart with time are stored in a solution pool
in order to prevent setting up and solving the same sub-MILP again and again for
pretours occurring more than once. This is realized in Algorithm 1 in the lines 18–19
and 32. The existence of a solution pool forces us to use a single-threaded optimization
instead of a multi-threaded one. The reason is, that in parallel mode it is not allowed to
access data, which is not local. Another reason against parallel mode is, that CPLEX
is not deterministic due to a different order of callback invocations for multiple runs of
the same instance with the same parameter setting on the same platform. This would
lead to an undesired, non-deterministic variability in the runtimes.

Finally, a time-feasible solution is found, when there is a time-feasible tour for
each active salesperson. This solution is returned to the master problem and the best
objective function value found so far is saved. Then a global cut is added to the
master problem in order to prevent a repetition of the current solution by other sales-
person permutations. Summing up, we have the time-discrete model (6) (TD), the
time-continuous model (13) (TC), the time-free model (24) with time-discrete feasi-
bility checking (25) according to Algorithm 1 (TFTD) and the time-free model (24)
with time-continuous feasibility checking (27) according to Algorithm 1 (TFTC).

123

1010 A. Stieber, A. Fügenschuh

6 Computational experiments

The presented models have either a discrete or a continuous handling of time. Gener-
ally, it depends on the application or on the computational complexity which approach
to choose. Due to the specific characteristics of discrete and continuous models a
mutual comparison is not easy. Consider for example the shape of the trajectories.
The time-continuous models are restricted to straight lines to be solvable, while the
time-discrete models are not. Another point is the difference in objective function
values between discrete and continuous approaches. Obviously the objective function
value of the continuous approaches is always less or equal than the objective func-
tion value of the discrete models, but with this the computational burden will also be
higher. Thus, we perform a runtime comparison of the discrete approaches and one of
the continuous approaches. As a basis we concentrate on randomly generated linear
target trajectories with constant speed for all our modeling variants.

6.1 Instance generation

We use a set of randomly generated test instances. A test instance is specified by
number of salespersons, number of moving targets and distance of time steps. The
operating space is a square of size 500 length units and the trajectories are created
with random lengths between 100 and 400 length units. If two hostile RAMmeet in the
air by chance, they would be deflected or destroy each other before their destinations
are reached. Since such a szenario is very unlikely and due to visualization clarity
we do not support such a situation in the trajectory generation by prohibiting any
pairwise intersections. This is not an assumption to the models, all four variants can
cope with trajectory intersections. The targets are assigned a constant speed value
of 32 length units per time unit, while the salespersons can travel at most 200 length
units in one time unit. In Stieber et al. (2014) we observed, that instances have a higher
complexity, if the difference between target speed and salespersons speed is high. In
this case the number of possible tours of the salespersons rises with an increased speed
difference. Obviously, a power of two for the target speed is required to be able to
create finer time-discretizations of the trajectories by introducing new time steps right
in the middle of two existing ones. Following this, we create 3 different levels of time
discretization. In particular, for the first discretization level called D32 a time step
is introduced to the trajectories every 32 length units (target speed). Then, the same
instances are generated with a two times finer discretization (D16). Here, the step
size between two consecutive time steps is 16 length units and for the 4 times finer
discretization (D8) time steps are included every 8 length units. Obviously, the size
of the instances in terms of number of variables and constraints is increased with a
higher number of time steps.

The current research deals with solvable test instances, that means no target will
reach its upper time limit before being visited by a salesperson. This is achieved by
assigning the visibility time windows to the targets in such a way that one salesperson
is able to intercept all targets one after another. In all instances salespersons start
their tours at the depot position o, an initial position located in the center of the

123

Dealing with time in the multiple traveling salespersons… 1011

Fig. 3 An instance of the
MTSPMT with 12 targets 2
salespersons and medium
discretization level (D16)

operating space. Of course all models can easily be adapted to the case of multiple
depot positions. In total, instances with number of targets of 6, 8, 10, 12, 14, 16, 18
and 20, with number of salespersons of 1, 2, 3, 4, 5 and 6 and with discretization
levels D32, D16 and D8 are created. An instance as an example with 12 targets, 2
salespersons starting from the depot in the middle and medium discretization level
D16 is visualized in Fig. 3. The visibility time window is given by the numbers at the
end points of the trajectories.

6.2 Computational results

The generated instances are embedded in the 2-d space, nevertheless the proposed
models and methods are not restricted to the 2-d space. Furthermore our time-discrete
models TD and TFTD are not restricted to linear trajectories, it is also possible to
handle non-linear trajectories. The TD model and nonlinear trajectories are addressed
in Stieber and Fügenschuh (2018).

All generated instances are solved with CPLEX. While the solution procedure of
the time-free models TFTD and TFTC is customized by LazyConstraintCallbacks
and BranchCallbacks of CPLEX, the instances modeled with TD and TC are solved
without callbacks and directly by CPLEX’MILP and Barrier algorithms. The CPLEX
parameters used for the optimization of the generated instances are listed in Table 1.
For the time-free models, the node heuristic (HeurFreq) is turned off in order to save
runtime, otherwise CPLEX would permanently check time-free solutions that are
usually infeasible. Furthermore, we set the MIPEmphasis parameter to moving best
bounds for the time-free models. For TD this setting would extremely slow down
the computation, thus, to be fair we leave the MIPEmphasis parameter at its default
value. Moreover, for the time-free master models, the cuts created by CPLEX are
also turned off, since our LazyConstraintCallback is producing cuts, when checking

123

1012 A. Stieber, A. Fügenschuh

Table 1 CPLEX parameter
settings

Model CPLEX parameter Parameter value

TD, TC, EpGap 0.0

TFTD and TFTC WorkMem 12288.0

master Param::Threads 1

Param::TimeLimit 3600

TFTD and TFTC HeurFreq − 1

master MIPEmphasis 3

CutsFactor 1.0

TFTD subMILP EpGap 0.0

TFTC subMILP EpGap 0.0

the pretours. Since CPLEX’ callbacks are not compatible with dynamic search, it is
turned off for all branch-and-boundmodels. For several reasons we cannot use parallel
optimization. It is not compatible with the solution pool, since it makes our callbacks
non-deterministic. Another reason is, that CPLEXstarts several callbacks concurrently
and even if the solution is already found, optimization terminates after finishing all
callbacks and their synchronization. Furthermore, CPLEX cannot guarantee the same
order of callback invocation for multiple runs, in this sense parallel optimization may
lead to different runtimes. We use sequential optimization mode instead. A time limit
of one hour is enforced to our experiments. All other CPLEX parameters are left at
their default values.

The computational experiments were carried out on an Apple Mac Pro computer
running the MacOS 10.12.6 operating system with an Intel Xeon E5 running at 3.5
GHz on 6 cores, 12 MB L3 cache, and 128 GB 1066 MHz DDR3 RAM. The version
of CPLEX we used was 12.10 [7]. Our aim is to evaluate the presented models with
respect to their computational times for solving the generated instances. The runtime
of an instance is defined by the time, CPLEX requires to compute the global proven
optimal solution, including the time needed for the callbacks. In order to compare
runtimes with a time limit, we compute a comparable score sc. It takes into account
the runtime, which is at most 3600s and the remaining gap, which is at most 1. It is

computed as sc = runtime

3600
+gap. The score takes values between 0 and 2. In case the

score is less than 1, the optimization has finished within an hour and the gap is 0. In
case the score is above 1, the optimization has aborted with a gap equal to (sc−1) ·100
percent.

In the first experimental set we fix the number of salesperson (3) and the discretiza-
tion level (D16) and only vary the number of targets between 6 and 20. For each
number of targets 21 instances are randomly generated. The scores of all 21 instances
and the related arithmetic mean for model TD and TFTD is reported in Fig. 4. In
case an instance is solved to proven optimality the score only consists of the runtime
part of the score (gap = 0) and is located in the lower half of the figure. In the other
case the gap is positive and the score value is in the upper half of the figure at the
right gap value. Note, that for reasons of better comparability the TD score values are

123

Dealing with time in the multiple traveling salespersons… 1013

6 8 10 12 14 16 18 20

number of targets

0

900

1800

2700

3600

25

50

75

100
tim

e
[in

 s
] |

 g
ap

 [i
n

%
]

TD - TFTD
TD
TD: mean
TFTD
TFTD: mean

6 8 10 12 14 16 18 20

number of targets

0

900

1800

2700

3600

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]

TC - TFTC

TC
TC: mean
TFTC
TFTC: mean

Fig. 4 Visualization of the scores (runtime and gap) depending on the number of targets

shifted to the left (by 0.2) and the TFTD score values are shifted to the right (by 0.2)
of the respective target number. Technically, the scores of TD and TFTD belong to
one single number of targets and would overlap in this case, which would lead to a
worse readability and comparability. The same is done for TC and TFTC and in the
following visualizations.

For the TD model most of the instances can be solved within 900s, there is one
instance, that needs 1980s. The TFTD model is only fast for small instances with 6
and 8 targets. The score values of TD and TFTD are close to each other in this target
range. Here are even 6 instances, that can be solved faster with TFTD than with TD.
From an amount of 10 targets onward the runtimes of TFTD increases significantly,
from 14 targets and above no instance can be solved within the time limit of 3600s.
Regarding the continuous cases, TC and TFTC are very similar up to 10 targets, but
above 10 targets, where most of the instances cannot be solved within the time limit
TFTC has got much better gaps than TC (only half of it).

The next experimental set fixes the number of targets (10) and the discretization level
(D16). We vary the number of salespersons from 1 to 6. The respective score values
of all four models are reported in Fig. 5. The scores of TD are low and close to each
other regardless of the number of salespersons. The runtime of TFTD is sensitive to
the number of salespersons, the higher the number of salespersons, the more instances
cannot be solved within the time limit. A similar behavior can be observed for TC and
TFTC, while the arithmetic mean is again smaller for TFTC than for TC regarding 4
salespersons and more.

In the third experimental set the number of targets (10) and the number of sales-
persons (3) is fixed, while the discretization level varies from D32 (coarse) via D16
(medium) to D8 (fine). Here, only discrete models are considered, because the other
ones are based on continuous time variables. The scores for TD and TFTD are reported
in the left graphic of Fig. 6, the right graphic is a zoomed visualization of the runtimes
for TD. One can see, that the runtimes for TD increases with a higher number of time
steps. Unlike TFTC, where the mean is nearly the same for all three discretization
levels. For D8 there are three out of 21 instances, that can be solved faster with TFTD
than with TD.

As the last experiments we want to investigate the runtime of the proposed models
for a time limit of 3 s. This is important, since from the mathematical point of view

123

1014 A. Stieber, A. Fügenschuh

0 1 2 3 4 5 6
number of salesmen

0

900

1800

2700

3600

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]
TD - TFTD

TD
TD: mean
TFTD
TFTD: mean

0 1 2 3 4 5 6
number of salesmen

0

900

1800

2700

3600

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]

TC - TFTC

TC
TC: mean
TFTC
TFTC: mean

Fig. 5 Visualization of the scores (runtime and gap) depending on the number of salespersons

D32 D16 D8

Discretization level

0

900

1800

2700

3600

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]

TD - TFTD
TD
TD: mean
TFTD
TFTD: mean

D32 D16 D8

Discretization level

0

24

48

72

tim
e

[in
 s

]

TD
TD
TD: mean

Fig. 6 Visualization of the scores (runtime and gap) depending on the discretization level

0 1 2 3 4 5 6

number of salesmen

0

0.75

1.5

2.25

3

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]

TD - TFTD
TD
TD: mean
TFTD
TFTD: mean

0 1 2 3 4 5 6

number of salesmen

0

0.75

1.5

2.25

3

25

50

75

100

tim
e

[in
 s

] |
 g

ap
 [i

n
%

]

TC - TFTC

TC
TC: mean
TFTC
TFTC: mean

Fig. 7 Visualization of the scores (runtime and gap) depending on the number of salespersons with a time
limit of 3 s

the application is an online problem. Here, we set the number of targets to 8 and
the discretization level to D8 and vary the number of salespersons from 1 to 6. The
results are reported in Fig. 7. For the discrete models we observe, that for one and
two salespersons the mean of TFTD is better (runtime is lower) than the mean of
TD. This behavior changes when the number of targets is three and greater, there the
mean of TD is better. In the continuous case TC is only better (lower runtime) for one
salesperson, for two and more salesperson the mean of TFTC is better than the mean

123

Dealing with time in the multiple traveling salespersons… 1015

of TC. With the number of salespersons of three and more TC is not able to solve any
of the generated instances to optimality within 3 s, where TFTC is able to solve some
instances to optimality for three and four salespersons.

7 Conclusion

We addressed the MTSPMT, a dynamic variant of the TSP, where multiple salesper-
sons are searching for their tours in a system with continuously moving targets. We
presented four different model formulations, which can be separated by discrete and
continuous time handling on one hand and on the other hand by the solution approach
(direct or by time-free master plus subproblems). For the time-free variants we pre-
sented an exact branch-and-cut algorithm. Due to the different ways of modeling the
variants have different characteristics. For instance, TD is sensitive to the level of
discretization. Our assumption was, that TFTD might be faster than TD when the
discretization is fine enough. It turned out, that the instance size also plays an impor-
tant role. Thus, the assumption only holds for small instances. Best performance for
larger instances is reached by TD. The continuous times variants are much more diffi-
cult, but gaps are smaller for TFTC than for TC when larger instances are concerned.
Obviously, the time-free modeling variant (TFTC) has an advantage over the direct
modeling (TC) so that it produces better bounds and thus better gaps. This is especially
visible with a time limit of 3 s.

According to the defense application, TD would be the best choice to use in a
moving horizon approach with an adequate discretization level. Since TFTD has the
fastest runtimes for small instances with one or two salespersons, it might be suitable
for the Moving-Target TSP, where a possible application is a supply ship, that resup-
plies patrolling boats. For future research we want to have a closer look on online
optimization. We want to test our models and solution methods as subroutines in a
moving horizon approach. Another point for future work will be to investigate non-
solvable instances, that are instances, where it is not possible to reach all targets within
their visibility time windows.

Acknowledgements We want to thank Johannes Schmidt for providing the matlab code, that we used to
generate our graphics in Figs. 4, 5, 6 and 7.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

1016 A. Stieber, A. Fügenschuh

References

Abeledo HG, Fukasawa R, Pessoa AA, Uchoa E (2013) The time dependent traveling salesman problem:
polyhedra and algorithm. Math Program Comput 5:27–55

Ahrens B (2015) The tour construction framework for the dynamic travelling salesman problem. South-
eastCon 2015:1–8. https://doi.org/10.1109/SECON.2015.7132999

Albiach J, Sanchis JM, SolerD (2008)An asymmetric tspwith timewindows andwith time-dependent travel
times and costs: an exact solution through a graph transformation. Eur J Oper Res 189(3):789–802

Asahiro Y, Horiyama T, Makino K, Ono H, Sakuma T, Yamashita M (2006) How to collect balls moving in
the euclidean plane. Discrete Appl Math 154(16) 2247–2262. https://doi.org/10.1016/j.dam.2006.04.
020. Discrete Algorithms andOptimization, in Honor of Professor Toshihide Ibaraki at His Retirement
from Kyoto University

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Codato G, Fischetti M (2004) Combinatorial benders’ cuts. In: Bienstock D, Nemhauser G (eds) Integer

programming and combinatorial optimization, vol 3064. Lecture notes in computer science. Springer,
Berlin, pp 178–195. https://doi.org/10.1007/978-3-540-25960-2_14

IBM ILOG CPLEX 12.10 Documentation available at https://www.ibm.com/support/knowledgecenter/
SSSA5P_12.10.0/ilog.odms.cplex.help/cplex_KC_home.html (08/2020)

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271. https://
doi.org/10.1007/bf01386390

Englot BJ, Sahai T, Cohen I (2013) Efficient tracking and pursuit of moving targets by heuristic solution of
the traveling salesman problem. In: CDC, pp. 3433–3438. IEEE

Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle routing. Transp Sci
38(2):160–173

Ford LR, Fulkerson DR (1958) Constructing maximal dynamic flows from static flows. Oper Res 6(3):419–
433

Fügenschuh A, Nemhauser G, Zeng Y (2013) Scheduling and routing of fly-in safari planes using a flow-
over-flowmodel. In: JüngerM, Reinelt G (eds) Facets of combinatorial optimization. Springer, Berlin,
pp 419–447

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.
H. Freeman and Company, New York

Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent routing problems. Comput Oper Res
64(C):189–197. https://doi.org/10.1016/j.cor.2015.06.001

Ghiani G, Improta G (2000) An efficient transformation of the generalized vehicle routing problem. Eur J
Oper Res 122:11–17

Haghani A, Jung S (2005) A dynamic vehicle routing problem with time-dependent travel times. Comput
Oper Res 32(11):2959–2986

Helvig C, Robins G, Zelikovsky A (1998)Moving-target tsp and related problems. In: Bilardi APG, Italiano
GF, Pucci G (eds.) Proceedings of the European symposium on algorithms, Lecture notes in computer
science, vol. 1461, pp. 453–464. Springer, Berlin

Helvig C, Robins G, Zelikovsky A (2003) The moving-target traveling salesman problem. J Algorithms
49(1):153–174

Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper
Res 144(2):379–396

Jiang Q, Sarker R, Abbass H (2005) Tracking moving targets and the non-stationary traveling salesman
problem. Complex Int 11:171–179

Jindal P, Kumar A, Kumar S (2011) Multiple target intercepting traveling salesman problem. Int J Comput
Sci Technol 2(2):327–331

Jung S, Haghani A (2001) Genetic algorithm for the time-dependent vehicle routing problem. Transp Res
Record: J Transp Res Board 1771:164–171

Laporte G, Mercure H, Nobert Y (1987) Generalized travelling salesman problem through n sets of nodes:
the asymmetrical case. Discrete Appl Math 18(2):185–197

Lawler E, Lenstra J, Rinnooy A, Shmoys D (1985) The traveling salesman problem: a guided tour of
combinatorial optimization. Wiley, Chichester, New York

Malandraki C, Daskin MS (1992) Time dependent vehicle routing problems: Formulations, properties and
heuristic algorithms. Transp Sci 26(3):185–200

123

https://doi.org/10.1109/SECON.2015.7132999
https://doi.org/10.1016/j.dam.2006.04.020
https://doi.org/10.1016/j.dam.2006.04.020
https://doi.org/10.1007/978-3-540-25960-2_14
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/cplex_KC_home.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/cplex_KC_home.html
https://doi.org/10.1007/bf01386390
https://doi.org/10.1007/bf01386390
https://doi.org/10.1016/j.cor.2015.06.001

Dealing with time in the multiple traveling salespersons… 1017

Mancini S (2014) Time dependent travel speed vehicle routing and scheduling on a real road network: the
case of torino. Transp Res Procedia 3:433–441

MillerCE,TuckerAW,ZemlinRA(1960) Integer programming formulation of traveling salesmanproblems.
J ACM (JACM) 7(4):326–329

Noon CE, Bean JC (1993) An efficient transformation of the generalized traveling salesman problem. Inf
Syst Oper Res 31(1):39–44

Picard JC, Queyranne M (1978) The time-dependent traveling salesman problem and its application to the
tardiness problem in one-machine scheduling. Oper Res 26(1):86–110

Reinelt G (1994) The traveling salesman: computational solutions for TSP applications. Springer, Berlin
Reyes D, Savelsbergh M, Toriello A (2017) Vehicle routing with roaming delivery locations. Transp Res

Part C: Emerg Technol 80(C):71–91. https://doi.org/10.1016/j.trc.2017.04.003
Soler D, Albiach J, Martínez E (2009) A way to optimally solve a time-dependent vehicle routing problem

with time windows. Oper Res Lett 37(1):37–42
StieberA, FügenschuhA (2018) Themultiple traveling salesmen problemwithmoving targets and nonlinear

trajectories. In: Kliewer N, Ehmke JF, Borndörfer R (eds) Operations research proceedings 2017.
Springer International Publishing, Cham, pp 489–494

Stieber A, Fügenschuh A, EppM, KnappM, Rothe H (2014) The multiple traveling salesmen problem with
moving targets. Optim Lett 9(8):1569–1583

Sundar K, Rathinam S (2016) Generalized multiple depot traveling salesmen problem— polyhedral study
and exact algorithm. Comput Oper Res 70:39–55

Woensel TV, Kerbache L, Peremans H, Vandaele N (2007) A queueing framework for routing problems
with time-dependent travel times. J Math Model Algorithms 6(1):151–173

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.trc.2017.04.003

	Dealing with time in the multiple traveling salespersons problem with moving targets
	Abstract
	1 Introduction
	2 Related work
	3 Mathematical models with time
	3.1 A time-discrete model
	3.2 A time-continuous model

	4 Time relaxations
	4.1 A time relaxation with discrete time feasibility checking
	4.2 A time relaxation with continuous time feasibility checking

	5 Implementational details
	6 Computational experiments
	6.1 Instance generation
	6.2 Computational results

	7 Conclusion
	Acknowledgements
	References

