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Abstract
Discretization methods are commonly used for solving standard semi-infinite opti-
mization (SIP) problems. The transfer of these methods to the case of general
semi-infinite optimization (GSIP) problems is difficult due to the x-dependence of
the infinite index set. On the other hand, under suitable conditions, a GSIP problem
can be transformed into a SIP problem. In this paper we assume that such a transfor-
mation exists globally. However, this approach may destroy convexity in the lower
level, which is very important for numerical methods. We present in this paper a solu-
tion approach for GSIP problems, which cleverly combines the above mentioned two
techniques. It is shown that the convergence results for discretization methods in the
case of SIP problems can be transferred to our transformation-based discretization
method under suitable assumptions on the transformation. Finally, we illustrate the
operation of our approach as well as its performance on several examples, including a
problem of volume-maximal inscription of multiple variable bodies into a larger fixed
body, which has never before been considered as a GSIP test problem.
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1 Introduction

In the present paper we consider general semi-infinite optimization problems of the
following form:

GSIP : min
x∈M f (x)

with M := {x ∈ X ⊆ R
m | gi (x, y) ≤ 0for all y ∈ Y (x), i ∈ I },

where Y : R
m ⇒ R

n is a set-valued mapping, |Y (x)| = ∞ for at least some
x ∈ X , I := {1, ..., p} is a finite index set and f , gi , i ∈ I , are real-valued and
at least continuous functions. By X we summarize the finite restrictions on the deci-
sion variables. Moreover, we assume that X is non-empty and closed and for every
x ∈ X the so-called infinite index set Y (x) is closed and compact.

The infinite index set can, e.g., be given as the solution set of finitely many inequal-
ities:

Y (x) := {y ∈ R
n | u j (x, y) ≤ 0, j ∈ J },

where J := {1, . . . , q} is a finite index set and u j , j ∈ J , are again real-valued and
at least continuous functions. For the special case, where Y (x) does not depend on x,
the problem above is called a standard or ordinary semi-infinite optimization problem
and is abbreviated by SIP.

One of the keys for both the theoretical and numerical treatment of semi-infinite
optimization problems lies in their bi-level structure. The parametric lower level prob-
lems of a semi-infinite problem are given by

Qi (x) : max
y∈Rn

gi (x, y) s.t. y ∈ Y (x). (1)

The decision variables x of the semi-infinite problem are the parameters of the lower
level problems and the index variables y of the semi-infinite problem are the decision
variables of these problems. By

ϕi (x) := max
y∈Y (x)

gi (x, y)

we denote the so-called optimal value functions of the semi-infinite optimization prob-
lem. Obviously,

M = {x ∈ X | ϕi (x) ≤ 0, i ∈ I },

but the functions ϕi , i ∈ I , are only given implicitly and may be non-differentiable
even if the functions gi , i ∈ I , and u j , j ∈ J , are linear.

A natural andwidespread solution technique for standard semi-infinite optimization
problems is discretizing the infinite index set Y , solving the induced finite optimization
problem, and refining the discretization (see e.g.Blankenship andFalk 1976;Reemtsen
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1991; Reemtsen and Goerner 1998; López and Still 2007). The direct transfer of this
approach to the case of a GSIP problem is possible in principle, but problematic:
One problem in this case is the x-dependency of the infinite index set. Thus, the
discretization has to depend on x, too. To ensure the closedness of the feasible set
of the discretization-induced optimization problems, the discretizations must even
depend at least continuously on x. How such a discretization can be constructed is
shown in Still (2001b). Due to additional conditions (see Still 2001b), which must be
met for convergence of these methods in the case of GSIP problems, they are difficult
to implement. And, to our knowledge, there are no numerical experiences with these
discretization methods so far.

On the other hand, under suitable assumptions, any general semi-infinite optimiza-
tion problem can be at least locally converted into a standard one (see Weber 1999;
Still 1999). Such a transformation is of practical value only in cases where it is defined
globally. We assume in the following that such a global transformation is given. For
problems which have a geometric background, i.e. the infinite index set is a geometri-
cally simple body or arises from geometrically simple bodies via intersection or union,
such globally defined transformations can often be specified (see Floudas and Stein
2007; Steuermann 2011). Furthermore, these examples often have convex lower level
problems. Unfortunately, the transfer to a SIP can destroy convexity of these problems.
Then, heavy-weighted methods of global optimization must be applied to solve the
resulting SIP (see Steuermann 2011).

We present in this paper a numerical method for solving general semi-infinite opti-
mization problems, which can maintain convex lower-level problems. It combines the
transformation into a standard semi-infinite problemwith discretization techniques for
such problems. In the algorithm we switch between two problems: the original GSIP
problem and the SIP problem induced by the transformation. Starting from a given
initial point, an initial discretization of the infinite index set of the GSIP problem is
calculated and transferred into a discretization of the infinite index set of the induced
SIP problem. Subsequently, a sequence of discretized SIP problems is solved, in which
the discretization is refined from step to step. However, the lower level problems of the
induced SIP problem are not solved for refinement, rather the lower level problems of
the GSIP problem are solved. Then, the global solutions of these lower level problems
are transferred into points of the index set of the induced SIP problem. It can be shown
that the latter ones are global solutions, too. This is necessary for the correctness of
the discretization method.

Numerical examples show that one only needs to add relatively fewpoints to achieve
feasibility within a given tolerance. Therefore this method is also suited for complex
problems like the inscription of multiple bodies into a fixed design.

Early convergence results for discretization methods solving SIP problems are for
example given by Reemtsen (1991) and Reemtsen and Goerner (1998). These results
focus on the convergence to feasible points and the convergence of global solutions.
Results regarding convergence rates of local solutions were presented by Still (2001a).
We will show in Sect. 3 how these results carry over to the transformation-based
discretization method. Moreover, we add an assumption to the main statement in Still
(2001a) and present a counterexample for the case that the assumption is not fulfilled.
This assumption is missing in Still (2001a).
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A different reformulation approach to a SIP problem and subsequent discretization
is followed by Mitsos and Tsoukalas (2015). There, a GSIP is reformulated using dis-
junctive semi-infinite constraints. The problem is then used to construct better upper
and lower bounds for the original problem iteratively. This is done by a discretiza-
tion strategy which adaptively adds discretization points. The disjunctive programs
resulting from the discretization are solved globally using a solver for mixed integer
nonlinear problems. In Djelassi et al. (2019) the strategy is extended to problems with
equality constraints in the lower level. Instead of using a reformulation to a mixed
integer program, in Kirst and Stein (2019) the authors develop tailored strategies to
solve the disjunctive problems. An early attempt to globally solve GSIP problems was
followed by Lemonidis (2008). In this work an inner and an outer approximation of
the variable index set is calculated which doesn’t depend on the optimization variables
anymore. Then, the same techniques as presented in Bhattacharjee et al. (2005) are
applied to the standard semi-infinite optimization problems. These techniques provide
lower and upper bounds, which can be used for global optimization. Furthermore, in
Lemonidis (2008) it is shown for the SIP application kinetic model reduction (KMR)
how GSIP problems with box-shaped infinite index sets can be transferred into an
equivalent SIP problem by a linear coordinate transformation (convex combination of
the lower and upper bounds).

Our focus is different from these approaches. We try to avoid a reformulation
using disjunctive constraints. Our approach allows to maintain helpful structure, e.g.
convexity of the lower level problems, which comes with the GSIP problem. And, we
try to avoid solving problems by global solvers.

The paper is organized as follows. In Sect. 2 we show how a GSIP problem can
be reformulated into a SIP one. We point out why it is beneficial to solve the lower
level problem of the given GSIP. Then, we introduce the algorithm. Section 3 contains
results about convergence to a feasible point or global solutions, along with rates of
convergence. Section 4 discusses the conditions necessary to retain convexity of the
induced SIP lower level problems and of the discretized SIP problems. In Sect. 5
we illustrate the application of our method and its performance on three classes of
examples: some native GSIP problems, a design centering problem, and a problem of
inscribing two (or more) variable bodies volume-maximal into a larger fixed container.
Section 6 concludes the paper and points out future directions of research.

2 The transformation-based discretizationmethod (TDM)

Transformation: In principle, under suitable assumptions, each GSIP problem can be
transformed, at least locally, into an equivalent SIP problem (see Still 1999; Weber
1999 for details). However, such a transformation is only of practical value in cases
where this transformation is defined globally. The ideal situation is the following:

Assumption 1 (Existence of transformation) There exist a nonempty, compact set
Z ⊆ R

ñ and a continuous function t : X × Z → R
n , such that t(x, Z) = Y (x) for all

x ∈ X .
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A transformation-based discretization method… 87

Given Assumption 1, for every i ∈ I , the feasibility condition

gi (x, y) ≤ 0 for all y ∈ Y (x),

can be equivalently written as

g̃i (x, z) := gi (x, t(x, z)) ≤ 0 for all z ∈ Z , (2)

which is of ordinary semi-infinite type. Thus, the feasible sets of the GSIP problem
and the induced SIP problem coincide. For the rest of the paper we assume that
Assumption 1 is fulfilled.

For an interval, or more general box-shaped, index set Y (x) = [a(x), b(x)] with
a(·) < b(·), such a transformation can be easily constructed by convex combination
of the interval ends resp. box vertices. In the case of higher dimensional index sets
such a transformation exists for example, if they are star-shaped (see Still 1999 for
details). But often the application itself already suggests such a transformation [see
for example the design centering problems in Steuermann (2011)].

Remark 1 In general, it won’t be possible to parametrize the set Y (x) by one function.
However, it is sufficient for the following considerations, that the set Y (x) can be
partitioned such that for every subset Yl(x), l ∈ {1, ..., s}, a set Zl and a function
tl according to Assumption 1 exist. The results and the algorithm presented in the
following carry over to this case directly.

We denote the transformation-induced standard semi-infinite optimization problem
by

˜SIP : min
x∈M̃

f (x)

with M̃ := {x ∈ X ⊆ R
m | g̃i (x, z) ≤ 0for all z ∈ Z , i ∈ I },

where the functions g̃i are defined as in (2).
By

Q̃i (x) : max
z∈Z g̃i (x, z), i ∈ I ,

and

ϕ̃i (x) := max
z∈Z g̃i (x, z), i ∈ I ,

we denote the lower level problems and the optimal value functions of the (trans-
formation-)induced SIP problem, respectively. We show in the following that the
optimal value functions ϕ̃i and ϕi coincide for every i ∈ I .
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Discretization: A widespread approach for solving SIPs is discretizing the infinite
index set. Therefore, for a subset Ż of Z , we introduce the optimization problem

˜SIP(Ż) : min
x∈M̃(Ż)

f (x)

with M̃(Ż) := {x ∈ X ⊆ R
m | g̃i (x, z) ≤ 0 for all z ∈ Ż , i ∈ I }.

If Ż ⊆ Z is a finite set, ˜SIP(Ż) is called discretized SIP problem.
Discretization methods which adaptively add points to the discretization are typ-

ically very successful. An algorithm for SIP problems using this methodology was
first introduced by Blankenship and Falk (1976). The points which are added are the
global solutions of the lower level problem. This is important for guaranteeing feasibil-
ity. Unfortunately, the transformation may destroy given convexity in the lower level
problem (see Kaplan and Tichatschke 1997; Still 2001b). More precisely, if gi (x, y) is
convex in y, g̃i (x, z) can be non-convex in z. We illustrate this effect by the following
example.

Example 1 We consider a so-called squircle as infinite index set, i.e.

Y (x) = {y ∈ R
2 | (y1 − x1)

4 + (y2 − x2)
4 ≤ x43 },

with x ∈ X := R
2 × R≥0. Furthermore, let g1(x, y) := y2 − y21 ≤ 0 be the semi-

infinite constraint. Obviously, Y (x) is a convex set for all x and g1(x, y) is concave in
y (for all x). Hence, for all x the (lower level) problem Q1(x) : maxy∈Y (x) g1(x, y) is
a convex one (see Fig. 1a for a graphical visualization). The representation of a circle
as image of the set [0, 1] × [0, π ] can be generalized to this case (see for example
Jaklic̆ et al. 2000):

tsq(x, z) =
(

x1 + z1x3sgn(sin(2z2))| sin(2z2)| 12
x2 + z1x3sgn(cos(2z2))| cos(2z2)| 12

)

.

While Z = [0, 1] × [0, π ] is also a convex set, the function

g̃1(x, z) := g1(x, t(x, z))

= x1 + z1x3sgn(sin(2z2))| sin(2z2)| 12
− (x2 + z1x3sgn(cos(2z2))| cos(2z2)| 12 )2

is not concave in z for all x, e.g. not in x = (0.8, 0.5, 1)T as one can see in Fig. 1b.
There are two different local solutions for the transformed lower level problem Q̃1(x) :
maxz∈Z g̃(x, z). Hence, the lower level problems of˜SIPmay be non-convex in general.

The loss of convexity can cause numerical difficulties in solving the lower level
problems. In the worst case time-consuming global optimization routines have to
be used to solve these problems. That’s why we consider the original convex lower
level problems in the algorithm. Then, we can map these solutions to solutions of the
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A transformation-based discretization method… 89

Fig. 1 Transformation destroys convexity in the lower level [dark gray - points with g1(x, y) ≤ 0 resp.
g̃1(x, y) ≤ 0, light gray—feasible set Y (x) resp. Z , circles - local solutions]: a original problem Q1(x)
with unique optimal solution. b Transformed problem Q̃1(x) with two local solutions

possible non-convex lower level problems of ˜SIP.
The following lemma states that this is a feasible approach. From it also follows that
the transformation does not change the feasible set defining functions ϕi , i ∈ I .

Lemma 1 Let x ∈ X and i ∈ I . The point z∗ ∈ Z is a global solution of Q̃i (x) if and
only if y∗ = t(x, z∗) is a global solution of Qi (x).

Proof Let y∗ be a global solution of Qi (x), i.e. gi (x, y∗) ≥ gi (x, y) for all y ∈ Y (x).
This relation is under y∗ = t(x, z∗) equivalent to

g̃i (x, z∗) = gi (x, t(x, z∗)) ≥ gi (x, t(x, z)) = g̃i (x, z)

for all z ∈ Z . Thus, z∗ is a global solution of Q̃i (x). The reverse applies under
analogous considerations and the surjectivity of t. 	


The above lemma states that one can calculate a global solution of the generally
non-convex problem Q̃i (x) by computing a global solution of the convex problem
Qi (x) and mapping this one via the transformation t(x, ·) into Z . Using an adaptive
discretization as in Blankenship and Falk (1976), these considerations lead to the
following algorithm:
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Algorithm 1 Transformation-based discretization method (TDM) for GSIP problems

1: Choose a starting point x0 ∈ X and a tolerance α ≥ 0.

2: Choose/Compute an initial discretization Ẏ0
(

x0
)

⊆ Y
(

x0
)

and determine Ż0 such that t
(

x0, Ż0
)

=
Ẏ0

(

x0
)

.

3: Set k = 0.
4: repeat
5: Compute a solution xk+1 of the discretized SIP problem ˜SIP

(

Żk
)

using xk as starting point.
6: Let Znew = ∅.
7: for i ∈ I do
8: Compute a global solution yk+1

i of Qi

(

xk+1
)

.

9: if gi
(

xk+1, yk+1
i

)

> α then

10: Determine zk+1
i such that t

(

xk+1, zk+1
i

)

= yk+1
i and set

Żnew = Żnew ∪
{

zk+1
i

}

.

11: end if
12: end for
13: Set Żk+1 = Żk ∪ Żnew and replace k by k + 1.

14: until maxi∈I
{

gi
(

xk , yki

)}

≤ α.

15: return x∗
α := xk .

If, in Step 2, an initial discretization Ẏ0
(

x0
)

of Y
(

x0
)

is not at hand, one can be
obtained by solving the lower level problems and transferring the solutions (see Steps 8
and 10 ). A feasible starting point for Step 8 can be calculated using the transformation
t(x, ·) from any feasible point of Z .

While we demand to calculate a global solution in Step 8, we can either calculate
a global or a local solution in Step 5. As we will see in the proof of Theorem 1, the
global solution of the lower level problem is important to guarantee feasibility. The
type of solution of the discretized problems determines the type of solution calculated
for the GSIP problem.

If the feasible set of ˜SIP
(

Żk
)

becomes empty, also the feasible set M of the GSIP
problem is empty and Algorithm 1 can be stopped.

With regard to one of the main applications of semi-infinite optimization, the
inscribing of one or multiple designs, the infinite index sets are often simple geo-
metric objects, such as (hyper)ellipsoids or (hyper)boxes, but also objects composed
of geometrically simple objects. For these, (re-)parameterization, e.g. in the form of
polar, cylindrical or spherical coordinates, are often well known. On the other hand,
infinite index sets, especially in this context, can often be written as a translation,
rotation, or scaling of fixed objects. Hence, the transformation is known, too. Finally,
under suitable conditions, there are “generic” transformations. For example, any star-
shaped set can be described by the star center and a radius (function) depending on
the distance to the center and the direction. In Still (1999) conditions are stated under
which such a constructive transformation exists for infinite index sets.
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3 Convergence results

There is a huge variety of convergence results for adaptive discretization methods
solving ordinary semi-infinite optimization problems. The goal of this section is to
show that the results can be carried over to the transformation-based discretization
method under suitable assumptions on the transformation.

We start by assuming that we can guarantee finding global solutions in Step 5
of Algorithm 1. Similar results regarding the convergence in the case of ordinary
semi-infinite optimization problems can be found for example in Blankenship and
Falk (1976), Reemtsen (1991) and Reemtsen and Goerner (1998). The next theorem
summarizes the convergence properties for GSIP problems.

Theorem 1 Let the (initial) feasible set M̃(Ż0) be compact and the feasible set M of
GSIP be non-empty. Let the tolerance α = 0. Then, either Algorithm 1 terminates
after a finite number of steps, or it holds:

(i) The problems GSIP and S̃IP(Żk), k ∈ N0, have global solutions x∗ ∈ M and
xk+1 ∈ M̃(Żk), k ∈ N0.

(ii) The sequence {xk}k∈N0 has at least one accumulation point and each such accu-
mulation point is a global solution of GSIP.

(iii) If x∗ ∈ M is a unique global solution of GSIP, then it holds

lim
k→∞ ‖xk − x∗‖2 = 0.

(iv) For a global solution x∗ of GSIP it holds f (xk) ≤ f (xk+1) ≤ f (x∗), k ∈ N0,

and limk→∞ f (xk) = f (x∗).

Proof For the discretizations Żk, k ∈ N0, of Z calculated by Algorithm 1, the follow-
ing relation is valid:

Ż0 ⊆ ... ⊆ Żk ⊆ Żk+1 ⊆ ... ⊆ Z .

Hence, it holds for the feasible sets of the discretized SIP-problems ˜SIP(Żk), k ∈ N0,

and the feasible set of ˜SIP:

M̃(Ż0) ⊇ ... ⊇ M̃(Żk) ⊇ M̃(Żk+1) ⊇ ... ⊇ M̃ = M . (3)

The functions g̃i , i ∈ I , are continuous as compositions of continuous functions and,
hence, the sets M̃(Żk), k ∈ N0, and M̃ are closed sets. Because of (3) they are bounded
and, thus, are compact. Because of its continuity the function f takes its minimum on
the sets M = M̃ and M̃(Żk), k ∈ N0. Hence, assertion (i) is shown.

For (ii) note that xk and zki , i ∈ I , are sequences in M̃(Ż0) and Z respectively.
Both sets are compact by assumption. Hence, there is at least one accumulation point.
For every converging subsequence {xkl }l∈N we can choose a subsequence such that
zkli , i ∈ I is convergent aswell. Using continuity of g̃i and optimality of zkli for Q̃i (xkl ),
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92 J. Schwientek et al.

we have for i ∈ I and z ∈ Z

g̃i

(

lim
l→∞ xkl , z

)

≤ lim
l→∞ g̃i

(

xkl , zkli
)

= g̃i

(

lim
l→∞ xkl+1 , lim

l→∞ zkli

)

≤ 0.

Thus, every accumulation point is feasible. Moreover, because x ∈ M ⇒ x ∈ M̃(Żkl )

by (3), we also have for x ∈ M ,

f

(

lim
l→∞ xkl

)

= lim
l→∞ f

(

xkl
)

≤ f (x),

which shows optimality.
The remaining assertions (iii) and (iv) follow easily by (ii) and relation (3). 	

If the ˜SIP-defining functions f and g̃i , i ∈ I , are non-convex in x, it can be costly

to guarantee the calculation of global solutions. In the literature there also exist results
regarding the case, that only local solutions can be calculated (see, e.g., Reemtsen
1994).The same techniques can be used here. Therefore, assume that for every k ∈ N0,
the current iterate xk is a local minimizer of ˜SIP(Żk) with radius rk > 0, i.e. for all x
in M̃(Żk) with ‖x − xk‖ < rk the following holds:

f (xk) ≤ f (x).

If the radii do not converge towards zero, i.e.

r := inf
k∈N0

rk > 0,

then every accumulation point x∗ of the sequence {xk}k∈N0 is a local minimizer of
GSIP. This can be proven by restricting the analysis to a ball of radius r/2 around x∗.
For large k, the current iterates are global solutions within this ball.

These results and the assertions of Theorem 1 hold only for a limit point. We have
introduced a parameter α as a finite termination criterion. The next Lemma shows that
this is a valid approach.

Lemma 2 Again let the (initial) feasible set M̃(Ż0) be compact. For a tolerance α > 0
Algorithm 1 terminates after finitely many steps.

Proof Assume that the contrary is the case. In this case in every iteration the algorithm
has to add at least one point to the discretization. This means that there is an i ∈ I and
sequences {xk}k∈N0 ⊆ M̃(Ż0), {zk}k∈N0 ⊆ Z with:

g̃i (xk, zk) ≥ α (4)

and for all k̂ > k:

g̃i (xk̂, zk) ≤ 0. (5)
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As Z and M̃(Ż0) are both compact there are convergent subsequences with:

lim
l→∞ xkl = x∗ ∈ M̃(Ż0).

lim
l→∞ zkl = z∗ ∈ Z .

Because t is continuous, also g̃i is continuous. Together with (4) and (5) we have

g̃i (x∗, z∗) = g̃i ( lim
l→∞ xkl , lim

l→∞ zkl )

= lim
l→∞ g̃i (xkl , zkl )

≥ α

> 0

≥ lim
l→∞ g̃i (xkl+1 , zkl )

= g̃i ( lim
l→∞ xkl+1 , lim

l→∞ zkl )

= g̃i (x∗, z∗),

which is a contradiction. Hence, no such sequences can exist and the algorithm termi-
nates after a finite number of steps. 	


The following question arises: After k steps, what is the distance between the
obtained solution and a local solution of theGSIP problem. In Still (2001a) the distance
is bounded for a sequence of solutions for finer discretizations. The transfer of these
results will be the topic of the remainder of this section.

To do so, we have to strengthen the initial assumptions. First, in Assumption 2 we
assume that the iterates converge towards a strict local minimizer. Second, in Assump-
tion 3 we assume some differentiability of the functions gi , i ∈ I , and t as well as an
extension of the Mangasarian-Fromovitz Constraint Qualification (MFCQ). Finally,
we assume in Theorem 2 that the objective function is locally Lipschitz continuous.

A point x∗ ∈ M is called a strict local minimizer of order ρ = 1 or ρ = 2, if there
is a q > 0 and a neighborhood U such that for every x ∈ M ∩U

q‖x∗ − x‖ρ
2 ≤ f (x) − f (x∗)

holds.
We now assume that the sequence generated by Algorithm 1 converges to a local

solution:

Assumption 2 Let x∗ be a strict local minimizer of order ρ = 1 or ρ = 2 of GSIP
in the neighborhood U and {xk}k∈N0 a sequence of local minimizers with radius rk
calculated by the transformation-based discretization method (TDM). Furthermore,
assume that ‖xk − x∗‖2 → 0 for k → ∞ and

inf
k∈N0

rk > 0. (6)
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The assumption presented here is very similar to the main assumption made in
Still (2001a). The difference is the assumption of non-vanishing radii (6) of the local
minimizers. As we will show in Sect. 3.1 this is a necessary assumption.

For the construction of a feasible point a MFCQ-like condition for ˜SIP is needed.
Therefore, we ask under which conditions, the functions D1g̃i , i ∈ I , are continuous
on Ux∗ × Z , where Ux∗ is a neighborhood of x∗.

Lemma 3 Let the functions gi (x, y), i ∈ I , be differentiable w.r.t. (x, y) and t(x, z)
be differentiable with respect to its first argument x. Let Ux∗ be a neighborhood of x∗.
We assume that

(i) the functions Dgi (x, y), i ∈ I , are continuous on Ux∗ × R
n and

(ii) the function D1t(x, z) is continuous on Ux∗ × Z.

Then, the functions g̃i , i ∈ I , are differentiable w.r.t. x around x∗ and this derivative
is given by:

D1g̃i (x, z) = D1gi (x, t(x, z)) + D2gi (x, t(x, z)) · D1t(x, z),

which is continuous on Ux∗ × Z.

Before introducing Theorem 2, we collect the required conditions in an assumption.

Assumption 3 Let the functions gi (x, y), i ∈ I , be differentiable w.r.t. (x, y) and
t(x, z) be differentiable in its first argumentx. Assume, that there exists a neighborhood
Ux∗ of x∗ such that:

(i) The functions Dgi (x, y), i ∈ I , are continuous on Ux∗ × R
n .

(ii) The function D1t(x, z) is continuous on Ux∗ × Z .
(iii There exists a vector ξ ∈ R

m such that for all i ∈ I :

D1g̃i (x∗, z) · ξ ≤ −1 for all z ∈ Zi
0(x

∗),

where Zi
0(x

∗) = {z ∈ Z | g̃i (x∗, z) = 0} denotes the set of active indices.
For a sequence {xk}k∈N0 calculated by Algorithm 1 we denote the current violation
for k ∈ N0 by:

αk = max
i∈I max

z∈Z g̃i (xk, z).

Now, we can bound the difference of the current iterate to the limit point.

Theorem 2 Let Assumptions 2 and 3 hold and the objective function f of GSIP be
Lipschitz-continuous near x∗.

(i) There is a constant c1 > 0 and a k′ ∈ N0 such that

0 ≤ f (x∗) − f (xk) ≤ c1αk for all k ≥ k′.
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(ii) There is a constant c2 > 0 and a k′′ ∈ N0 such that

‖x∗ − xk‖2 ≤ c2α
1/ρ
k for all k ≥ k′′.

Wehave addedEq. 6 to the assumptions. InSect. 3.1wewill show that this additional
assumption is needed and the statement is wrong without this assumption. That’s why
we give a complete proof and don’t reduce the statement to the statements in Still
(2001a)

Proof Construction of a feasible point: In a first step we construct a feasible point
x̄k . To do so, we move the current iterate towards feasibility: For k ∈ N0 and t ∈ [0, 1]
let

x̄k(t) = xk + t · 2αkξ ,

where ξ is chosen according to Assumption 3.iii. We show next that the point x̄k(1)
is feasible. Firstly, we consider indices z ∈ Z which are close to an active index.

For every i ∈ I the function D1g̃i (·, ·) is by Assumption 3 continuous and Z is
compact. Thus, there is some ε such that for every i ∈ I it holds

D1gi (x, z) · ξ ≤ −1

2
,

for z ∈ Zi,ε
0 (x∗) and ‖x − x∗‖2 < ε, where

Zi,ε
0 (x∗) := {z ∈ Z | ∃ z0 ∈ Zi

0(x
∗) with ‖z − z0‖2 < ε}.

Choose k1 large enough such that

‖xk − x∗‖2 + 2αk‖ξ‖2 ≤ ε

for k ≥ k1. By the mean value theorem there is for every i ∈ I , z ∈ Zi,ε
0 (x∗) and

k ≥ k1 an s ∈ [0, 1] such that

g̃i (x̄k(1), z) = g̃i (xk, z) + D1g̃i (x̄k(s), z) · 2αkξ ≤ αk − 1

2
· 2αk = 0.

It remains to consider the indices which have a given distance to the active indices.
As for i ∈ I , the set Z\Zi,ε

0 (x∗) is compact and the functions g̃i (·, ·) are continuous,
there is a ε2 such that

g̃i (x, z) < 0,

for z ∈ Z\Zi,ε
0 (x∗) and ‖x − x∗‖2 < ε2. Choose k2 large enough such that

‖xk − x∗‖2 + 2αk‖ξ‖2 < ε2
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for k ≥ k2. Thus for k ≥ max(k1, k2) the point x̄ k := x̄ k(1) is feasible.
Now the two claims follow easily:

Proof of i): By Assumption 2 the radii rk of the local minimizers xk don’t converge
to 0. Thus for large k the distance of the local solution x∗ to xk is smaller than rk and
we have

f (x∗) ≥ f (xk). (7)

Again, for large k, the feasible point x̄k is contained inU . By the Lipschitz-continuity
of f , there is a constant L such that for large k

0 ≤ f (x∗) − f (xk) ≤ f (x̄k) − f (xk) ≤ L · ‖x̄k − xk‖2 = L · 2αk‖ξ‖2, (8)

which shows the first assertion.
Proof of ii): By Assumption 2 the limit point x∗ is a local solution of order ρ. Thus
for large k:

‖x∗ − xk‖2 ≤ ‖x∗ − x̄k‖2 + ‖x̄k − xk‖2

≤
(

f (x̄k) − f (x∗)
q

)
1
ρ

+ 2 · αk · ‖ξ‖2

≤
(

f (x̄k) − f (xk)
q

)
1
ρ

+ 2 · αk · ‖ξ‖2

≤
(

L · 2αk‖ξ‖2
q

) 1
ρ + 2 · αk · ‖ξ‖2

≤
(

(

L2‖ξ‖2
q

) 1
ρ + 2‖ξ‖2

)

α
1
ρ

k ,

where we’ve used Eqs. (7) and (8) for the third and fourth inequality. 	


3.1 Counterexample for rate of convergence

We have added the assumptions of non-vanishing radii (6) for the above convergence
result. The following example shows that without this assumption the convergence
rate may be arbitrarily bad.

We construct the example within two steps. First, we present a Lipschitz continuous
function on X = [−1, 1]2 with an infinite number of local solutions.

Therefore, let {c(i)}i∈N with

c(i) =
(

1

10i
,
1

i

)�
.
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Around every c(i) we choose a circle Ui with radius ri := 1
10i+1 :

Ui := {x ∈ X | ‖x − c(i)‖2 < ri }.

Note that the circles Ui are disjoint. We introduce the objective function f : X → R

by:

f (x) =
{

‖x‖2 + 2‖c(i) − x‖2 − 2ri , for x ∈ Ui , i ∈ N,

‖x‖2, otherwise.

We summarize the properties of the objective function in the following lemma:

Lemma 4 For the above construction, the following is true:

(i) The function f is Lipschitz continuous.
(ii) For every i ∈ N the center point ci is a strict local minimum of f with radius ri .

Proof (i) It is easy to see that we can write f for every x ∈ X as

f (x) = min{‖x‖2,min
i∈N ‖x‖2 + 2‖c(i) − x‖2 − 2ri }.

As every single function is Lipschitz continuous with Lipschitz constant 3, the
minimum is again Lipschitz continuous.

(ii) Consider for i ∈ N a point x ∈ Ui with x �= c(i). The triangle inequality yields

f (x) = ‖x‖2 + 2‖c(i) − x‖2 − 2ri

≥ ‖c(i)‖2 + ‖c(i) − x‖2 − 2ri

> ‖c(i)‖2 − 2ri

= f (c(i)).

	

We consider the following standard semi-infinite problem:

SIPex : min
x∈Mex

f (x)

with Mex := {x ∈ R
2 | g(x, y) := −(x2 − y)2 + x1 ≤ 0 for all y ∈ Y }

and Y := [−1, 1]

As transformation we choose the identity. Then, we have Z = Y . We investigate the
structure of the problem in the next lemma.

Lemma 5 Problem SIPex fulfills the following properties:

(i) The feasible set is given by

M = {x ∈ X | x1 ≤ 0}.

123



98 J. Schwientek et al.

(ii) The origin x∗ = (0, 0) is a local minimizer of order 1.
(iii) There exists a vector ξ ∈ R

2 such that

D1g(x∗, y0) · ξ ≤ −1

for every y0 ∈ Y with g(x∗, y0) = 0.

Proof (i) Let x ∈ X . The solution of the lower level is given by y = x2. Thus,

max
y∈Y g(x, y) = x1.

(ii) On the feasible set M the objective function coincides with the norm, which
clearly has a local minimum of order 1 in x∗ = (0, 0).

(iii) As by part (i) the only solution of the lower level for x∗ is given by y0 = 0, we
have with ξ := (−1, 0)�

D1g(x∗, y0) · ξ = (

1,−2x2
) ·

(−1
0

)

= 1 · −1 = −1.

	

Ifwe take the strict local solution c(1) as initial point andnopoint as initial discretization
for Algorithm 1, the first point added to the discretization will be 1

1 . The next element
of the sequence of strict local minimizers is still in M(Ż1) thus we can choose c(2) as
next iterate. Proceeding this way yields in the k-th iteration the local minima c(k+1)

as iterate x(k+1) and the discretization Zk+1 = { 1i | 1 ≤ i ≤ k + 1}. The constraint
violation after the k-th step is

max
y∈Y g(x(k+1), y) = 1

10k+1 ,

but the distance to limiting solution is greater than 1
k+1 , which violates the convergence

rate given in Theorem 2.

Remark 2 (i) The second component of the local solutions 1
i can be replaced by an

arbitrarily slow converging sequence. For this reason, there can be an arbitrarily
bad rate of convergence.

(ii) We presented this example in the context of an adaptively chosen discretization.
The same example can also be used to construct a counterexample for uniformly
chosen discretization points. Thus, this example shows that the assumption of
non-vanishing radii (6) is missing in Still (2001a).

4 Convexity preserving transformations

Of course not all transformations destroy the convexity in the lower level problems.
The topic of this section outlines under which conditions convexity properties can be
maintained. We begin with the lower level problem.
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The lower level problems Q̃i (x), i ∈ I , of the transformation-induced SIP problem
are convex for all x ∈ X , if the transformation-induced functions g̃i (x, z), i ∈ I , are
concave in z for all x and the set Z is convex.

A class of mappings, which map convex sets onto convex sets and preserve con-
cavity, are the affine-linear ones. Therefore, it holds:

Lemma 6 For all x ∈ X let the functions gi (x, ·), i ∈ I , be concave and the set Z
convex. Furthermore, let the transformation t be affine-linear in its second argument,
i.e.

t(x, z) = A(x) · z + b(x),

where the mappings A : X → R
n×ñ and b : X → R

n are at least continuous for all
x ∈ X. Then, the problems Q̃i (x), i ∈ I , are convex for all x ∈ X.

Proof As the set Z is by definition convex, it only remains to prove the concavity of
the objective function of the lower level problem. We show the concavity by checking
the definition. Therefore fix x ∈ X and consider z1, z2 ∈ Z , λ ∈ [0, 1]. With the
concavity of gi (x, ·) it follows for i ∈ I :

g̃i (x, λz1 + (1 − λ)z2) = gi (x,A(x)(λz1 + (1 − λ)z2) + b(x))

= gi (x, λ(A(x)z1 + b(x)) + (1 − λ)(A(x)z2 + b(x)))

≥ λgi (x,A(x)z1 + b(x)) + (1 − λ)gi (x,A(x)z2 + b(x))

= λg̃i (x, z1) + (1 − λ)g̃i (x, z2).

	

After the lower level problems, we now consider the discretized problems solved

in Step 5. For the computation of global solutions, it is of great value to have convex
discretized problems, i. e., the functions g̃i (x, z), i ∈ I , (and the function f ) are
convex in x (for all z). The following example illustrates that the transformation can
destroy this property as well.

Example 2 Let the infinite index set be a semi-circle in arbitrary position with variable
radius, which can be modeled as follows:

Y (x) =
{

y ∈ R
2

∣

∣

∣

∣

∣

(y1 − x1)2 + (y2 − x2)2 ≤ x23
(y1 − x1)

x4
√

x24+x25
+ (y2 − x2)

x5
√

x24+x25
≤ 0

}

,

with x ∈ X := R
2 × R

3
>0 × R. The mapping, by which the semi-circle can be

represented as image of the set Z = [0, 1] × [−1/2, 1/2] is

t(x, z) :=
(

x1 + z1x3 cos(atan2(−x5,−x4) + π z2)
x2 + z1x3 sin(atan2(−x5,−x4) + π z2)

)

,
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with atan2 being the bivariate arctangent

atan2 : R
2\{0} → R,

(a, b) �→ 2 arctan

(

b√
a2 + b2 + a

)

.
(9)

Obviously, the sets Y (x), x ∈ X , as well as the set Z are convex. We consider the
function g(x, y) = x26 − y1 + y2, which is convex in x and y. However, the function

g̃(x, z) := g(x, t(x, z))

= x26 − x1 − z1x3 cos(atan2(−x5,−x4) + π z2)

+ x2 + z1x3 sin(atan2(−x5,−x4) + π z2)

is not convex in x for all z ∈ Z . For example with x1 = (0, 0, 1, 1,−1, 0)T , x2 =
(0, 0, 1, 1, 0, 0)T and z = (1, 0)T one gets:

1

2
g̃(x1, z) + 1

2
g̃(x2, z) = 1

2
(
√
2 + 0) < 1 = g̃

(

1

2
x1 + 1

2
x2, z

)

.

The next lemma states, under which conditions on the functions gi , i ∈ I , and the
transformation t, convexity in x is preserved. It follows by the fact that the composition
of a convex and a linear mapping is convex again.

Lemma 7 Let the functions gi (x, y), i ∈ I , be convex in (x, y). Furthermore, let the
transformation t be affine-linear in its first argument, i.e.

t(x, z) = A(z) · x + b(z), (10)

where A : R
ñ → R

n×m and b : R
ñ → R

n. Then the functions g̃i (x, z), i ∈ I , are
convex in x for any z ∈ Z.

Obviously, the rotation used in Example 2 does not satisfy condition (10). However,
for translation, scaling, and shearing condition (10) is satisfied.

5 Numerical examples

In this sectionwe applyAlgorithm1 to somenativeGSIPproblems and twoGSIPprob-
lems stemming from an important application of semi-infinite optimization, namely
design centering. We illustrate how the arising problems are performantly solved by
the proposed algorithm. A more detailed numerical analysis of the transformation-
based discretization method as well as its application to a real world problem, the
volume-maximal utilization of gemstones, can be found in Schwientek (2013). Note
that the following numerical examples shouldn’t be a full comparison to previously
developed algorithms. Instead the examples illustrate that even complicated problems
like the inscribing of two designs in a container can be solved in an easy way.

123



A transformation-based discretization method… 101

We implemented Algorithm 1 in Matlab R2016a. In Step 1 we chose α =
10−6 as the termination tolerance. For the solution of the discretized SIP problems
˜SIP(Żk), k ∈ N0, (Step 5) aswell as for the solution of the convex lower level problems
Qi (xk), i ∈ I , k ∈ N0, (Step 8) we used the SQP algorithm of the routine fmincon
of the Optimization Toolbox V7.4 (R2016a) with default settings and using
first derivatives. The computations have been performed on a 64-bitWindowsmachine
with a Intel® Core™i7 5600U processor and 8 GB RAM. The time needed for the
computation have been measured using the Matlab function timeit.

5.1 Some native examples

In the first numerical example we consider the general semi-infinite optimization prob-
lem outlined in Lemonidis (2008), Example 1 (see also Jongen et al. 1998, Example
4-2). We added the constraint x1 ≥ 0, otherwise the infinite index set Y (x) could be
empty.

GSIP1 : min
x∈[−1,1]2

(x1 − 1/4)2 + x22 s.t.

− y − x2 ≤ 0 for all y ∈ Y (x),

x1 ≥ 0,

with

Y (x) = {y ∈ [−1, 1] | y2 − x1 ≤ 0}.

The infinite index setY (x) can be explicitly calculated and is equal to [−√
x1,

√
x1].

The (only) lower level problem

Q(x) : max
y

−y − x2 s.t. y ∈ [−√
x1,

√
x1]

is convex (in y), but the corresponding optimal value function ϕ(x) = √
x1 − x2 isn’t

convex (in x). The feasible set of GSIP1 is

M = {x ∈ [−1, 1]2 | x1 ≥ 0,
√
x1 ≤ x2}

and its optimal solution x∗ = (0, 0). By the simple transformation

t : [0, 1]2 × [0, 1] → R with t(x, z) = −z · √x1 + (1 − z) · √
x1 = (1 − 2z)

√
x1

GSIP1 can be transferred into a standard semi-infinite optimization problem, whose
discretized problems are convex.

We chose x0 = (1, 1) as starting point ( f 0 = 25/16) and the point 0.5 as initial
discretization. After 2 iterations (0.12 s) Algorithm 1 stopped with x∗ = (0, 0) and
f ∗ = 0.0625. The number of finite constraints induced by discretization grew from 1
to 2.
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The global solution of the lower level problem is given by the lower bound of the
interval [−√

x1,
√
x1]. In the first iteration the discretization point z = 1 is added.

The chosen transformation maps this discretization point to the global solution of the
lower level. This means that after the first iteration the discretized problem ˜SIP(Żk)

and the GSIP problem have the same feasible set.
We tested our new algorithm on the other 15 examples collected by Lemonidis

(2008), too. This test set was also used in the recent publications (Mitsos andTsoukalas
2015; Kirst and Stein 2019). However, to apply Algorithm 1 we need to ensure that
the central Assumption 1 is satisfied. This means in particular that the infinite index
set Y (x) must be non-empty for every x ∈ X . Unfortunately, most of the examples
collected in Lemonidis (2008) do not satisfy this condition, namely Examples 1, 2, 4-9,
11, 13, and 16. However, in most of these examples (1, 2, 6-8, 11, and 13) it is possible
to meet this condition by adding a single constraint. For the remaining examples (4,
5, 9, and 16) it is as follows. As shown by Lemonidis (2008), the infinite index set
in Example 4 is either empty or the semi-infinite constraint can not be satisfied. For
the Examples 5, 9, and 16 we could not easily derive a transformation. That’s why we
excluded these four examples from our numerical evaluations. The considered original
and modified examples together with their transformation are listed in “Appendix 1”.

In most of the taken examples the infinite index set is given by an interval. Then, a
transformation can easily be constructed by convex combination of the interval ends.
In Example 3 the infinite index set can be obtained by scaling the unit ball by the
radius. A possible transformation for Example 6 is given by

y = t(x, z) :=
⎛

⎝

−4z1 + x1(1 − z1)
max{−4,−4 − y1}z2 + x1(1 − z2)

(y1 + y2)2z3 + 16(1 − z3)

⎞

⎠

In Example 14 the infinite index set is a two-dimensional box. Thus, the Cartesian
product of the convex combination of the lower and upper bounds is a suitable trans-
formation.

In the 12 examples for which the transformation-based discretization
method is applicable the algorithm stopped after two iterations. The time needed
to solve the problems ranges from 0.08 to 0.14 s. The reasons for the small number of
iterations are the same as described for the first example above.

In all examples, except Example 13, Algorithm 1 found the optimal solution
reported in the literature. In Example 13 the solution can not be attained, because
we removed it by adding the mentioned constraint to avoid an empty index set. The
transformation-based discretization method then finds the point x∗ = (0, 0.25, 0.25)
with an objective value f ∗ = 3.5681.

To further demonstrate our new method, we turn to more complex examples with
multiple semi-infinite constraints now.
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5.2 Design centering

One important application of (general) semi-infinite programming is design centering
(DC). There, the task is the following: given a set C ⊆ R

n - the so-called container
- and a second, parametrized set D(x) ⊆ R

n , x ∈ X ⊆ R
m - the so-called design -

inscribe D(x) into C such that some functional, commonly the volume, of D(x) is
maximized:

DC : max
x∈X⊆Rm

Vol(D(x)) s.t. D(x) ⊆ C .

Under the assumption that the sets C and D(x) are given as solutions sets of some
systems of inequalities

C = {y ∈ R
n | gi (y) ≤ 0, i ∈ I }, (11)

D(x) = {y ∈ R
n | u j (x, y) ≤ 0, j ∈ J }, (12)

Problem DC can be rewritten as a general semi-infinite optimization problem

GSIPDC : min
x∈X⊆Rm

−Vol(D(x))

s.t. gi (y) ≤ 0 for all y ∈ D(x), i ∈ I .

For a detailed discussion of the reformulation of design centering problems as semi-
infinite ones we refer to Stein (2006) and the references therein. Different solution
techniques are discussed in Harwood and Barton (2017).

One interesting application of design centering in the context of semi-infinite opti-
mization is the maximal material usage in gemstone cutting. There, the task is to
produce a set of precious gems from an irregularly shaped raw one in such a way that
their total value is as high as possible. In the case of producing only one precious gem,
the problem corresponds to a design centering, where the precious gem corresponds
to the design, the raw one to the container and the volume of the precious shall be
maximized. For a detailed introduction into the modeling and solution of this problem
we refer to Winterfeld (2008); Küfer et al. (2008, 2015).

In a concrete case we consider a two-dimensional design centering problem, i.e.
n = 2. Firstly, we introduce the container, called concavified unit square (see Fig. 3a
for a graphical illustration),

Ccus := {y ∈ R
2 | gi (y) ≤ 0, i = 1, ..., 6}, (13)

with

g1(y) := y1 − 1, g2(y) := −y2, g3(y) := −2(y1 − 0.5)2 + y2 − 0.5,

g4(y) := −16y21 − 4(y2 − 0.5)2 + 1, g5(y) := y2 − 1, g6(y) := −y1.
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Fig. 2 Functional description
and parametrization of the boat
design

The last two constraints aren’t visible in Fig. 3, but are necessary to avoid unbound-
edness of the container.

Now, we present the design. Remember that in addition to a functional description
of the design (12) and a calculation rule for their area, we need for the transformation-
based discretization method a representation of the design as an image of a compact
set Z under a continuously differentiable mapping t : X × Z → R

2.
As design we consider the intersection of two variable, but equally sized circles.

The center of each circle is a boundary point of the other one (see Fig. 2). We call this
design boat. Thus, X = R

2 × R≥0 × R
2\{0},

Dboat(x) =
{

y ∈ R
2
∣

∣

∣

∣

(y1 − x1)2 + (y2 − x2)2 − x23 ≤ 0,
(y1 − c1(x))2 + (y2 − c2(x))2 − x23 ≤ 0

}

, (14)

with c1(x) = x1 + x3x4
√

x24 + x25

and c2(x) = x2 + x3x5
√

x24 + x25

.

The intersection points connecting line divides the boat into two equally sized circle
segments of angle 2π/3 and radius x3 (see Fig. 2). Consequently,

Vol(D(x)) =
(

2π

3
−

√
3

2

)

x23 .

Moreover, we have,

Z = [0, 1] × [−1, 1],

and,

t(x, z) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

x1 + z1x3 cos
(

atan2(x5, x4) + π
3 + 2π

3 z2
)

x2 + z1x3 sin
(

atan2(x5, x4) + π
3 + 2π

3 z2
)

)

, z2 ≤ 0
(

c1(x) + z1x3 cos
(

atan2(x5, x4) − 4π
3 + 2π

3 z2
)

c2(x) + z1x3 sin
(

atan2(x5, x4) − 4π
3 + 2π

3 z2
)

)

, z2 > 0

,

where atan2 is the bivariate arctangent.
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Fig. 3 Area-maximal inscribing of the design Dboat in the container Ccus [dark gray—container, light
gray—design, circles—points of current discretization, which do not violate the container restrictions,
diamonds—points of current discretization, which violate container restrictions and will be added in the
next iteration]: a start solution with given discretization, b after solution of the first discretized SIP problem
˜SIP(Ż0), and c final solution (after 5 refinements) with final discretization

We chose x0 = (0.25, 0.5, 0.5, 1, 0) as starting point with f 0 = −0.3071 (see
Fig. 3a for a graphical illustration of this configuration). The initial discretization
of the design consists of the four points {(1,−0.5), (1, 0.5), (1, 0), (1, 1)} yielding
24 constraints (4 points for each of the 6 container constraints) in the initial dis-
cretized SIP problem. After 5 iterations/refinements (0.69 s) Algorithm 1 stopped with
x∗ = (0.5367, 0.0325, 0.4685, 0.4997, 1.2712) and f ∗ = −0.2696 (see Fig. 3c for a
visualization of the final solution). The final discretization consisted of 14 points and
thus 84 discretization-induced constraints. A extensive numerical study of the solution
of DC problems as semi-infinite ones with different design-container-combinations
can be found in Schwientek (2013).

The transformation-induced discretized SIP problems as well as the underlying
GSIP problem stemming from a design centering problem are non-convex in general.
For this reason, Algorithm 1 will terminate with either a local solution or a stationary
point.

5.3 Inscribingmultiple designs

A natural extension of the design centering task is to arrange two or more designs
in a container yielding maximal total (design) volume. In practice, such problems
arise as cutting or packing problems. In addition to the condition that the designs are
completely located in the container, the designs are not allowed to overlap. In the
following we will reformulate and evaluate such a problem as GSIP in the case of
two designs. While we only consider the case of two designs, the extension of the
approach to inscribe more than two designs is straightforward. For details we refer to
Schwientek (2013), Küfer et al. (2015).

Let the container C be as given in (11) and D1, D2 two (parametrized) designs as
given in (12) with common parameter vector x ∈ R

m . Then, the task in multi-body
design centering (in the case of two designs) is the following:
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MBDC2 : max
x∈X⊆Rm

Vol(D1(x)) + Vol(D2(x)) s.t.

Dk(x) ⊆ C, k = 1, 2, (15)

D1(x) ∩ int(D2(x)) = ∅. (16)

Under the assumption that the designs D1 and D2 are convex sets for each x, a separa-
tion theoremcanbe applied,whereη ∈ R

n\0 andβ are the parameters of the separating
hyperplane H(η, β) = {y ∈ R

n | ηT y = β}, x̃ = (x, η, β), and X̃ = {x̃ | η �= 0}.
Then, MBDC2 can be rewritten as a GSIP in the following way:

GSIPMBDC2 : max
x̃∈X̃⊆Rm+n+1

Vol(D1(x)) + Vol(D2(x)) s.t.

gi (y) ≤ 0 for all y ∈ Dk(x), i ∈ I , k = 1, 2,

ηT y ≤ β for all y ∈ D1(x),

ηT y ≥ β for all y ∈ D2(x). (17)

The condition η �= 0 can be assured e.g. by requiring ‖η‖22 = 1. Note that we have
two index sets here, but extending Algorithm 1 to this situation is straightforward.

Using this approach, it is also possible to consider forbidden areas in the container
when placing the designs and to avoid overlapping these with the designs. If one
models the forbidden areas similar to the designs (but independent of x), the separation
approach above carries directly over. For more detailed explanations in this regard and
further separation techniques we refer to Schwientek (2013).

For a numerical example of problem GSIPMBDC2 we consider the container from
(13) and take as the first design, D1, the boat from (14). As our second design, D2,
we consider an ellipse with variable semi-axis lengths in arbitrary position. For such
an ellipse, we have m2 = 5,

Dell(x) = {y ∈ R
2 | [y − c(x)]T [A(x)A(x)T ]−1[y − c(x)] − 1 ≤ 0}

with

c(x) :=
(

x (2)
1

x (2)
2

)

and A(x) :=
(

x (2)
3 x (2)

5
0 x (2)

4

)

,Vol(Dell(x)) = π |det(A(x))| ,

Z = [0, 1] × [−π, π ]

and

t(x, z) = A(x)
(

z1 cos(z2)
z1 sin(z2)

)

+ c(x).

This constellation results in 13 decision variables, 13 semi-infinite and 2 finite
constraints. As starting point we chose the (infeasible) point x̃0 = (x0boat, x

0
ellipse, η

0,
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Fig. 4 Area-maximal inscribing of the design Dboat and Dell in the container Ccus [dark gray—container,
light gray—designs, circles—points of current discretization, which do not violate the container and
separation restrictions, diamonds—points of current discretization, which violate container or separation
restrictions and will be added in the next iteration, black straight line—line that separates both designs]: a
start solution with given discretization, b after solution of the first discretized SIP problem ˜SIP(Ż0), and c
final solution (after 12 refinements) with final discretization

β0) with x0boat = (0.75, 0.25, 0.25, 1, 0), x0ellipse = (0.25, 0.25, 0.25, 0, 0.25), η0 =
(−

√
2
2 ,−

√
2
2 ), and β0 = −0.625 (see Fig. 4a). As initial discretizations we consider

Żboat
0 = {(1,−0.5), (1, 0.5), (1, 0), (1, 1)} and Ż ellipse

0 = {(1, 0), (1, 0.5), (1, 1),
(1,−0.5)}. These discretizations result in 56 finite constraints. After 12 iterations
(simultaneous refinements of both infinite index sets) which takes 3.75 s Algorithm 1
terminates with solution x̃∗ = (x∗

boat, x
∗
ellipse, η

∗, β∗) with

x∗
boat = (0.5596, 0.4404, 0.4404, 0.9069,−0.5837),

x∗
ellipse = (0.3574, 0.2589, 0.1358, 0.0365, 0.2589),

(η∗, β∗) = (−0.9910, 0.1340,−0.4540),

and f ∗ = −0.3487. The final discretization of the boat consists of 37 points and the
one of the ellipse of 30 points (see Fig. 4c).

Further numerical evaluations, also with respect to other separation approaches and
regarding aminimal distance between the designs, can be found in Schwientek (2013).
Concerning the modeling and solution of the gemstone utilization task as semi-infinite
optimization problem by means of the transformation-based discretization we refer to
Schwientek (2013) and Küfer et al. (2015).

6 Conclusions and future research

In the present paper we consider general semi-infinite optimization problems (GSIP),
which have convex lower level problems and can be globally transformed into a stan-
dard semi-infinite optimization problem (SIP). For the numerical solution of such
GSIPs we applied a discretization method to its SIP-reformulation. Because the con-
vexity structure in the lower level can be lost through the transformation, but is essential
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for refining the discretization, we solve in the refinement step the (convex) lower level
problems of the underlyingGSIP and transfer the global solutions into global solutions
of the lower level problems of the induced SIP via the transformation. The conver-
gence results for discretization methods for solving SIPs directly carry over in the case
of global and local solutions. An open issue for future research is the convergence of
stationary points. Finally, we have demonstrated the operation and performance of our
method using three numerical examples.
Two interesting aspects for future investigations are the following:

(1) As known from Still (2001a), the convergence rates can be improved for dis-
cretization methods for solving SIPs, when boundary points of the infinite index
set are added in a consistent manner for its discretization and the index set satis-
fies additional conditions. Since it is required for the transformation only to be
surjective, the boundary of the infinite index set Z of the induced SIP is gener-
ally not mapped to the boundary of the infinite index set Y (x) and vice versa.
This leads to the question whether it is sufficient to add boundary points of Y (x)
in the mentioned consistent manner to get improved convergence rates for the
transformation-based discretization method.

(2) To keep the dimensions of discretized SIP problems moderate, strategies have
been developed to retain only α-active points in the discretization and remove the
others during the process. Such algorithms are called exchange methods instead
of discretization methods. An exploration of these deletion strategies applied
to the transformation-based discretization method could prove interesting. Of
special interest would be the impact this may have on the convergence of the
method.
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Considered examples from Lemonidis’ collection

The following exampleswere collected byLemonidis (2008).Wemodified some of the
examples in such away that there exists a transformation as demanded inAssumption1.
We use the original numbering of the examples as in Lemonidis (2008).
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Example 1 (modified): min
x∈[−1,1]2

(x1 − 1/4)2 + x22 s.t.

−y − x2 ≤ 0 for all y ∈ Y (x),

x1 ≥ 0, (18)

with

Y (x) =
{

y ∈ [−1, 1] | y2 − x1 ≤ 0
}

.

The constraint (18) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : [0, 1]2 × [0, 1] → R with y = t(x, z) := √
x1(1 − 2z).

Note that in the collection in Lemonidis (2008) the semi-infinite constraint is different.
We use the version presented in the original source (Jongen et al. 1998).

Example 2 (modified): min
x∈[−1,1]2

x2 s.t.

−y3 + x2 ≤ 0 for all y ∈ Y (x),

2x2 − x21 ≤ 0, (19)

with

Y (x) =
{

y ∈ [−1, 0] | 2x2 − y3 − x21 ≤ 0
}

.

The constraint (19) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
2 × [0, 1] → R with y = t(x, z) := max

{

3
√

2x2 − x21 ,−1

}

z.

Example 3 (original): min
x∈[0,1]2

1/2 x41 + 2x1x2 − 2x21 s.t.

y21 + y22 − x1 + x21 − x2 ≤ 0 for all y ∈ Y (x),

with

Y (x) =
{

y ∈ [0, 1]3 | y21 + y22 + y23 − x1 ≤ 0
}

.

A transformation of a fixed index set Z to the variable index set Y (x) is

t : R
2 ×

{

z ∈ [0, 1]3 | z21 + z22 + z23 ≤ 1
}

→ R
3 with y = t(x, z) := x1z.
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Example 6 (modified): min
x∈[−3,2]2

4x21 − x2 − x22 s.t.

x2 − y3 ≤ 0 for all y ∈ Y (x),

x1 ≥ −2, (20)

with

Y (x) = {y ∈ [−4, 4]2 × [0, 16] | y1 − x1 ≤ 0,

y2 − x1 ≤ 0,

(y1 + y2)
2 − y3 ≤ 0}.

The constraint (20) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
2 × [0, 1]3 → R

3 with

y = t(x, z) :=
⎛

⎝

−4z1 + x1(1 − z1)
max{−4,−4 − y1}z2 + x1(1 − z2)

(y1 + y2)2z3 + 16(1 − z3)

⎞

⎠ .

Note that the semi-infinite constraint in the collection in Lemonidis (2008) contains
a typing error. We use the version presented in the original source (Rückmann and
Shapiro 2001).

Example 7 (modified): min
x∈[0,1]2

−x1 s.t.

3x22 − y5 ≤ 0 for all y ∈ Y (x),

−4x21 − x22 + 1 ≤ 0, (21)

with

Y (x) =
{

y ∈ [−2, 0] | −y5 − 4x21 − x22 + 1 ≤ 0
}

.

The constraint (21) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
2 × [0, 1] → R with y = t(x, z) := (−4x21 − x22 + 1)

1
5 z.

Example 8 (modified): min
x∈[−1,1]2

−x1 s.t.

−x2y ≤ 0 for all y ∈ Y (x),

x1 ≥ 0, (22)
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with

Y (x) =
{

y ∈ [−1, 1] | −y2 + x1 ≤ 0
}

.

The constraint (22) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
2 × [0, 1] → R with y = t(x, z) := √

x1(1 − 2z).

Note that the constraint describing the infinite index set is different in Lemonidis
(2008).Weuse the versiongiven in the original source (GuerraVázquez andRückmann
2005).

Example 10 (original): min
x∈[−1,1]2

x1 + x2 s.t.

−y ≤ 0 for all y ∈ Y (x),

with

Y (x) = {y ∈ [0, 1] | x1 − y ≤ 0

x2 − y ≤ 0}.

A transformation of a fixed index set Z to the variable index set Y (x) is

t : R
2 × [0,∞) → R with y = t(x, z) :=

{

x1 + z, if x1 ≥ x2,

x2 + z, otherwise.
.

Example 11 (modified): min
x∈[−5,5]3

x21 + x22 + x23 s.t.

x1 + x2 exp(x3y) + exp(2y) − 2 sin(4y) ≤ 0 for all y ∈ Y (x),

x2 ≥ −1, (23)

with

Y (x) = {y ∈ [0, 1] | 2y − x2 − 1 ≤ 0}.

The constraint (23) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
2 × [0, 1] → R with y = t(x, z) := x2 + 1

2
(1 − z).
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Example 12 (original): min
x∈[−1,1] x2 s.t.

1/2 y3 − x2 ≤ 0 for all y ∈ Y (x),

with

Y (x) =
{

y ∈ [0, 1] | x2 − y2 ≤ 0
}

.

A transformation of a fixed index set Z to the variable index set Y (x) is

t : R × [0, 1] → R with y = t(x, z) := |x |(1 − z) + z.

Example 13 (modified): min
x∈[−1,1]3

exp(x1) + exp(x2) + exp(x3) s.t.

1

1 + y2
− x1 − x2y − x3y

2 ≤ 0 for all y ∈ Y (x),

x2 + x3 ≤ 1/2, (24)

with

Y (x) = {y ∈ [0, 1] | −1/2 y + x2 + x3 ≤ 0} .

The constraint (24) is added to the original example. Then, a transformation of a fixed
index set Z to the variable index set Y (x) is

t : R
3 × [0, 1] → R with y = t(x, z) := max{0, 2(x2 + x3)}.

Example 14 (original): min
x∈[−1,0]3

x21 + x22 + x23 s.t.

x1
(

y1 + y22 + 1
)

+ x2
(

y1y2 − y22

)

+ x3
(

y1y2 + y22 + y2
)

+ 1 ≤ 0 for all y ∈ Y (x),

with

Y (x) =
{

y ∈ [0, 1]2 | x21 − y21 ≤ 0
}

.

A transformation of a fixed index set Z to the variable index set Y (x) is

t : R
3 × [0, 1]2 → R

2 with y = t(x, z) :=
(

z1 + |x1|(1 − z1)
z2

)

.

Example 15 (original): min
x∈[0,2]2

x22 − 4x2 s.t.

x1 cos(y) + x2 sin(y) − 1 ≤ 0 for all y ∈ Y (x),
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with

Y (x) =
{

y ∈ [0, π ] | −y2 − 7/4 x2 + 23/4 ≤ 0
}

.

A transformation of a fixed index set Z to the variable index set Y (x) is

t : R
2 × [0, 1] → R with y = t(x, z) := √

(23/4 − 7/4 x2)z + π(1 − z).
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