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Abstract

In rotational workforce planning, a schedule is constructed from a sequence of work and rest periods. Each employee starts at a
different part of the schedule, and after a certain amount of time, the schedule repeats. The length of the schedule increases with
a higher number of employees. At the same time, various constraints on work sequences and days off have to be considered.
For a large number of employees, it is difficult to construct a schedule that meets the requirements. It is important to ensure
low solution times independently of the problem instance characteristics. In this work, a novel decomposition approach for
rotational shift scheduling is proposed. The decomposition exploits the fact that most constraints in rotational workforce
scheduling are imposed on the work shift sequence. By considering a fixed set of blocks to cover the demand, the problem
complexity can be greatly reduced. Given a fixed set of blocks, we propose a network model that determines whether a feasible
sequence of shift blocks exists. The decomposition approach is applied to the problem structure of the Rotating Workforce
Scheduling Problem but may be extended to different problem structures. In a computational study, the decomposition
approach is compared to a mathematical formulation and previous exact and heuristic approaches. Computational results

show that the decomposition approach greatly outperforms previous heuristics on the standard benchmarks.

Keywords Staff scheduling - Integer programming - Decomposition - Rotating Workforce Scheduling Problem

1 Introduction

Human resources are typically one of the most expensive
resources of a company. Shift planning thus plays a vital role
for efficient operations. A sufficient staffing level must be
ensured while legal and practical constraints are respected for
each individual schedule. One of the most common require-
ments in shift scheduling is to work several consecutive days,
as this typically implies multiple consecutive days off.
Generally, it is possible to employ either a manual or rota-
tional schedule. With a rotational schedule, every employee
works the same schedule lagged in time. After a certain
number of days, the rotational schedule repeats. Rotating
schedules are especially well suited for organizations with
static workforce demand, a work load that exceeds the work-
ing time of a single employee (e.g., 3 shifts per day, seven
days a week) and homogeneous skill levels among employ-
ees. This structure is often found in manufacturing and
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organizations from the public sector such as emergency med-
ical services, fire, and police departments (Laporte 1999).
Once a suitable rotational schedule has been found, planning
is greatly simplified as the manager and employees repeat
the same schedule (Becker et al. 2019). An exemplary rota-
tional schedule and the resulting coverage are depicted in
Fig. 1. The schedule covers a demand pattern that repeats
after seven days. Staffing requirements for each shift type
are shown at the bottom. The schedule requires a number
of nine employees who start with an offset of seven days,
i.e., every employee could start at the beginning of a dif-
ferent row. After a number of 63 days, the schedule repeats
from the employee’s point of view. In each row of the sched-
ule, the last day is adjacent to the first day of the next row.
While rotational schedules reduce planning efforts, negative
health effects and employee dissatisfaction are often reported
(Akerstedt 2003).

For shift scheduling, there are different commercial soft-
ware packages available. Important aspects of computational
methods for workforce scheduling comprise the flexibility
and computational time required to facilitate an interactive
planning process. Standard software often cannot provide the
required flexibility for rotational workforce scheduling prob-
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Fig. 1T An exemplary weekly rotational workforce schedule (feasible
solution for a benchmark instance from Musliu et al. (2018), M =
morning, A = afternoon, N = night)

lems or requires a high amount of computational time (Burke
et al. 1999; Musliu 2006).

A standard problem structure for the Rotating Workforce
Scheduling Problem (RWS) is proposed by Musliu (2006).
In addition, a set of benchmark problems is presented that is
inspired by problems from practice to evaluate computational
methods for the RWS. Recently, the benchmark set has been
further extended (Musliu et al. 2018).

Several studies propose exact and heuristic methods for
the RWS (Triska and Musliu 2011; Mutingi and Mbohwa
2015a; Erkinger and Musliu 2017; Musliu et al. 2018). Given
the importance of rotational shift scheduling, efficient com-
putational methods are a continuing interest of research. We
propose a novel state-of-the-art decomposition heuristic that
is applicable for rotational shift scheduling problems and
other types of scheduling problems where a cyclic plan is
desired. The decomposition is applied to the RWS to illustrate
the benefits for computational performance. The decompo-
sition approach is very efficient for feasible instances from
the RWS benchmark set and greatly improves the results of
previous heuristics. The contribution of this study is three-
fold:

— Innovative decomposition approach for rotational
scheduling problems

— Novel state-of-the-art heuristic for the RWS

— Comparison of exact and heuristic solution approaches
for the RWS in a computational benchmark study

The remainder of this paper is structured as follows: Sect. 2
provides a literature review on solution approaches for shift
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scheduling with a focus on the RWS. A formal statement and
mathematical formulation of the RWS are given in Sect. 3.
The mathematical formulation serves as the basis for the
discussion of the decomposition approach. The decompo-
sition approach consists of a master and a subproblem and
is explained in detail in Sect. 4. A decomposition heuristic
using a heuristic solution method for the master problem and
an exact method for the subproblem is described in Sect. 5.
Section 6 compares the performance of the decomposition
heuristic with previous results and the mathematical formu-
lation from Sect. 3 using the standard benchmarks for RWS.
Finally, Sect. 7 gives a conclusion and provides some per-
spective for future research on the decomposition approach.

2 Literature review

A rich body of literature exists on the theory and practice of
shift scheduling. Surveys are provided by Ernst et al. (2004)
and Van Den Bergh et al. (2013). Computational methods
of shift scheduling have been applied to various problems
in practice. Many studies have focused on the problem of
nurse rostering. The nurse rostering problem is a complex
shift scheduling problem that considers many practical and
legal constraints, as well as employee preferences. Typically,
employee preferences and the violation of some constraints
are considered as objective. Owing to the heterogeneous
qualifications among nurses, schedules are mostly generated
for a limited amount of time. Due to the complexity and
variety of features found in nursing wards, the nurse ros-
tering problem remains one of the most studied problems
in shift scheduling literature (Burke et al. 2004). Therefore,
numerous papers on solution methodology and decompo-
sition approaches focus on nurse rostering problems. The
RWS is a more specialized problem. The objective is to find
a feasible schedule that provides the required staffing level
at all times with a homogeneous workforce. No violation of
hard constraints is allowed. We focus this literature review on
solution approaches for shift scheduling and the generation
of rotational workforce schedules.

2.1 Solution approaches for shift scheduling

Many variants of shift scheduling problems have been inves-
tigated by the literature. Solution approaches that have been
specifically applied to the RWS are discussed in Sect. 2.2.
Valouxis and Housos (2000) investigate solution methodol-
ogy for the monthly creation of nurse rosters. They formulate
an integer program that is difficult to solve with standard
commercial software. They find that preferences for specific
work sequences cannot be efficiently modeled by integer pro-
gramming. A hybrid solution method that combines local
and tabu search is used to obtain acceptable solutions from a
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practical perspective. Brucker et al. (2010) propose a decom-
position approach for non-cyclic nurse scheduling. In the
first stage, work sequences with a high quality regarding
the nurse preferences are selected. The second stage iter-
atively constructs a schedule by combining sequences that
meet constraints for the overall roster. Local search tech-
niques are applied to improve the initially constructed roster.
Rocha et al. (2014) discuss a constructive heuristic for rota-
tional staff scheduling in the glass industry. Their approach
finds a sequence of blocks that each comprise multiple work
shifts. They note that the number of breaks between blocks
is important to obtain a feasible solution. An approach to
assess the feasibility of the problem based on the param-
eters and the resulting number of shift breaks is presented.
Their study focuses the case of a constant workforce demand.
They assume a requirement of exactly one shift group per
day and shift. Brucker et al. (2011) analyze the complexity
of several classes of personnel scheduling problems. Several
mathematical models that cover different personnel schedul-
ing cases are presented. The models are differentiated by
polynomial solvable and NP-hard problems. Kiermaier et al.
(2016) present a stochastic optimization approach for rota-
tional rostering in the service industry. While the days and
shifts are fixed, the starting times may be adjusted in the short
term to react to changes in demand. A multi-stage stochastic
program is proposed, but it turns out to be intractable. Two
approximations are presented that reduce the program to a
two-stage problem. Various decomposition strategies have
been applied to shift scheduling problems. Furthermore, the
idea to aggregate sequential work shifts to shift blocks is
frequently used in solution approaches.

2.2 Rotational workforce schedules

An early survey of rotational workforce scheduling is pro-
vided by Baker (1976). They differentiate between shift
scheduling and days-off scheduling. Days-off scheduling
determines the work days only, while shift scheduling deter-
mines the shifts assigned for each work day. Tour scheduling
is the integrated assignment of both work days and shifts
(Ernst et al. 2004). Laporte et al. (1980) formalize some
conditions for rotational schedules and propose an integer
programming-based algorithm to create rotational schedules.
They note that an essential property of the structure of rota-
tional schedules is that there is an alternating sequence of
consecutive work shifts and days off. Bartholdi et al. (1980)
introduce the (k, m)-scheduling problem. It involves finding
a schedule of length m where every employee works a num-
ber of k successive days. Millar and Kiragu (1998) present a
mathematical model for cyclic and non-cyclic nurse schedul-
ing. They construct a network where each node resembles
either a sequence of work shifts or days off. The math-
ematical formulation finds a shortest path in the network

with side constraints to construct a schedule. Rocha et al.
(2013) propose a new mathematical formulation for cyclic
staff scheduling. A new approach for the formulation of
work sequence constraints is incorporated into the model.
The practical applicability is illustrated by two case studies.
Balakrishnan and Wong (1990) present a network model for
the Rotating Workforce Scheduling Problem (RWS).

Musliu et al. (2002) propose a four step decomposition
approach for the RWS. They begin by choosing a fixed set
of allowable lengths for work blocks. Then, a schedule that
assigns work days and days off is constructed by selecting
a particular sequence of work blocks and days off. The con-
struction of the schedule also takes into account weekend
preferences. Next, feasible shift sequences are enumerated
given the possible work block sequences and shift sequences
are assigned to work blocks so that the staffing requirements
are met. It is noted that different schedules can be constructed
by rearranging the order of work blocks. Moerz and Musliu
(2004) propose a genetic algorithm for the RWS. New muta-
tion and crossover operators are presented. Musliu (2006)
presents a unified problem structure and benchmark set of 20
testinstances, which are inspired by real rotational workforce
scheduling applications. Several problem instances from the
literature are included in the benchmark set. They propose
new heuristic methods for the automatic generation of rota-
tional workforce schedules. Experiments show that a tabu
search heuristic with a conflict minimization strategy (MC-T)
is well suited for solving the RWS. The MC-T greatly out-
performs standard software for shift scheduling. Although
many problem instances are solved quickly, there is still a
high solution time for several instances.

Various algorithms and methods have been applied to the
benchmark set provided by Musliu (2006). These include
integer programming, constraint programming, genetic algo-
rithms, iterated local search, and satisfiability modulo theo-
ries. In the following, several heuristic and exact approaches
for the RWS are discussed. Most of these approaches were
specifically developed for the problem structure of the RWS.

Musliu (2011) apply an iterated local search method to the
RWS. For some instances, their approach is faster than the
state of the art, while the overall performance is comparable.
Triska and Musliu (2011) propose a constraint programming
formulation for the RWS. As a constraint programming for-
mulation, it represents an exact method. For some small
problem instances, the solution times are lower than those
of the MC-T. Overall, it is not competitive with the solu-
tion times of the MC-T. Mutingi and Mbohwa (2015a) and
Mutingi and Mbohwa (2015b) apply variants of an evolu-
tionary algorithm to the RWS. The algorithms are inspired
by a biological metamorphosis process. In comparison with
the MC-T, the mean solution time of their best performing
algorithm is less than half as high.

@ Springer
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Rocha et al. (2013) demonstrate that their general math-
ematical formulation for cyclic staff scheduling is also
applicable to the RWS, although it was not specifically devel-
oped for the RWS. However, many problem instances cannot
be solved within the time limit. Erkinger and Musliu (2017)
investigate satisfiability modulo theories as an option for an
exact method to solve the RWS. A number of instances of
the test set can be solved quickly. Yet, for some instances no
feasible solution is found within the time limit.

Different mathematical and constraint programming for-
mulations for solving the RWS are evaluated by Musliu
et al. (2018). The mathematical formulations are solved with
Gurobi, and the best performance is obtained by the use of
a deterministic finite automaton constraint to ensure feasi-
ble shift sequences. While this type of constraint is typically
used in constraint programming, they note that Gurobi is
able to transform the mathematical formulation to a network
model which can be solved very efficiently. The best overall
performance is obtained by a constraint programming formu-
lation that is solved with Chuffed. In this formulation, a direct
modeling approach is pursued, where there is mostly a one-
to-one correspondence between the model constraints and
practical restrictions. To strengthen the formulation, valid
inequalities are added. Furthermore, the benchmark set pro-
posed by Musliu (2006) is extended by an additional 1980
randomly generated problem instances of realistic structure
so that an overall of 2000 instances are obtained. Extensive
computational experiments are conducted to compare the
mathematical and constraint programming formulations to
other exact and heuristic methods for the RWS. The compu-
tational experiments establish their constraint programming
formulation as the fastest state-of-the-art method to obtain
solutions for the RWS. Furthermore, the experiments show
that mathematical programming is most robust to detect
infeasibility.

Musliu (2013) note that the most efficient solution method
is dependent on the specific instance characteristics. Using a
larger test set, they apply different machine learning tech-
niques to select the solution method on the basis of the
instance characteristics.

2.3 Implications

Many solution approaches for shift scheduling have been
proposed. Decomposition approaches were often success-
fully used for nurse rostering problems. A number of
solution approaches have been applied for the RWS. Only
recently solution approaches were proposed that provide
lower solution times in comparison with the heuristic pro-
posed alongside the benchmark set (Musliu 2006; Mutingi
and Mbohwa 2015b; Musliu et al. 2018). The computational
time required to generate a feasible schedule is an important
preference of decision makers (Burke et al. 1999). Thus, it
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is important for solution methods to generate feasible sched-
ules quickly independent of the problem instance. Moreover,
there is further potential to reduce the computational times
of the state-of-the-art solution methods. This paper fills the
gap by proposing a novel decomposition approach which
is applied to the RWS. It differs from the existing decom-
position approach proposed by Musliu et al. (2002), since
different constraints are taken into account by the master
and subproblem. In particular, the decomposition approach
presented in this paper takes the staffing requirements into
account in the master problem. In that way, the master prob-
lem has to consider the complete set of feasible work shift
sequences. As a result, there is no necessity for an interme-
diate step which determines the feasible shift sequences for
the selected work days and the subproblem does not have to
account for the staffing requirements. In addition, an exact
approach based on a network model is used to efficiently
enumerate the solution space of the subproblem.

The novel decomposition approach proposed in this paper
is applied to the RWS, and computational results indicate
that it is very efficient for feasible instances in comparison
with the current state of the art using the recently proposed
benchmark set.

3 Problem description and mathematical
formulation

In the following, we give a formal statement of the Rotat-
ing Workforce Scheduling Problem (RWS) (Musliu 2006).
Table 1 gives an overview of the parameters used in the prob-
lem description and mathematical formulation.

3.1 Problem description

The RWS involves the construction of a schedule for a given
workforce and number of days that exactly covers all shift
demands on each day. Shift demands are specified for each
shift on every day separately. Different shift types may com-
prise morning, afternoon, and night shifts. In a problem
instance of the RWS, the workforce can be either split into
homogeneous groups or each employee can be considered
explicitly. More formally, given a set of employees E, a
schedule has to be derived over a number of days that can be
repeated to cover the demand 7y, for each day d and shift
type s. The length of the schedule is defined by the number
of employees and the offset between the start days of each
employee. For example, in Fig. 1 a schedule for 9 employees
is shown. The offset between the start days €2 is seven, so that
every employee starts with the first shift in her respective row.
Looking at Fig. 1 column-wise, all shifts in each column are
worked simultaneously so that the workforce demand is cov-
ered. The average weekly working time is implicitly defined
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Table 1 Declaration of used

sets, parameters, and variables Name Description
deD Days of the schedule
deG Days of the planning period
ses Shifts
ecE Employees
Q Offset between employee start days
Tys Staffing requirement on day d in shift s
min? Minimum number of consecutive days off required
max? Maximum number of consecutive days off allowed
min"ok Minimum number of consecutive work days required
max "ok Maximum number of consecutive work days allowed
min¥ork Minimum number of consecutive shifts of type s allowed
maxz"ork Maximum number of consecutive shifts of type s allowed
P Set of forbidden shift sequences of length 2
F3 Set of forbidden shift sequences of length 3
Xds 1, if shift s on day d is part of the schedule, 0 otherwise
Vd 1, if a sequence of min™°™* shifts starts on day d, 0 otherwise
Zds 1, if a sequence of min®°™ shifts of type s starts on day d, 0 otherwise

by the parameters, since the number of employees and days
included in the schedule is known, as well as the total number
of shifts to be covered. Formally, the schedule comprises a
number of | E| time periods with a length of €2 each. Typically,
a number of seven days is selected for the length of a single
time period €2. This ensures that the schedule rotates over the
same weekdays. After a number of | E|-Q2 days, the schedule
repeats. At this point, every employee has worked the com-
plete schedule so that an equal work distribution among the
workforce is ensured. The demand 7y is specified for every
day d € G, where G is defined as {1, ..., Q}. If there is
a repeating pattern in the demand that comprises more than
seven days, a longer time span has to be selected for the value
of Q.

The schedule has to adhere to various constraints with
regard to work shift sequence and days off. The minimum
and maximum number of days for each work shift sequence
is defined by min"°™* and max“°™* respectively. That is, each
shift sequence has to include at least min*"*™ and at most
max“°™ consecutive days. Between shift sequences, there
must be at least a number of min? days off and at maximum
a number of max? days off. A shift sequence may consist
of different shift types. Within a work sequence, the min-
imum and maximum number of consecutive shifts of type
s is defined by min**"* and max¥°*, respectively. Finally,
there are forbidden shift sequences of different length. F»
denotes the set of forbidden shift sequences of successive

shifts. These shift sequences may not occur in a shift block.
Shift sequences included in F3 relate to forbidden sequences
between two shift blocks with only one day off in between.
A forbidden shift sequence can be, e.g., a night shift that is
followed by a morning shift on the next day, or an afternoon
shift, that is followed by a day off and a morning shift.

3.2 Mathematical formulation

We propose the following mathematical formulation for the
RWS. The objective is to find a solution that satisfies all
constraints. Several mathematical formulations with similar
features are proposed by Rocha et al. (2013); Musliu et al.
(2018); Becker et al. (2019). It is a direct formulation in the
sense that most practical constraints can be directly mapped
to mathematical constraints. Thus, to apply this mathematical
formulation, a problem must have the characteristics detailed
in the previous section.

VdeG,seS (1)

Z Xars = Tus

d’'eD|((d’—1) mod Q)+1=d

Z Zxd’s >1

d’eld,....d+max"} €S

1= xas 2= (a—nys + X@41ys)

ses ses

Vd € D 2)

vYd € D 3)
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Xdsy = 1= X@+ns, V(s1,$)€F,deD (7

Xds; < 14 Zx(d+l)s — X(d42)5, Y (51, 82) € F3,d € D

ses
(8)
Y xas<1 VdeD ©)
seS
Z Xgrs < max}”ork YVdeD,seS (10)

d'eld,....d+max)ok}

Zd’e{d ..... d+min“§'°rk —1} Xd's

min}"Ork

Vde D,seS (11)

> zasVd € D,s € §
d'eld,...,d+min¥k —1}

x(d+min}"°'k —1)s =

12)

Xds» Yd»zds € {0,1}  VYd e D,s €S (13)

It follows from the previous discussion that the set of days
D in the rotational schedule is defined as {1, ..., Q-|E|} for
the set of employees E and an offset €2 between employee
start days. It is a cyclic set and repeats after 2 - | E| days.

When the schedule is implemented, the start day of each
employee is defined by &5 = Q-(¢e — 1)+1 Ve € E. Asa
consequence, every day d of the schedule provides coverage
forday (d—1mod Q)+ 1 Vd € D. Let variable x5 € {0, 1}
denote whether shift type s on day d is part of the schedule.
Then, constraints (1) ensure that each shift is covered on
every day by the required number of employees Ty;.

To ensure that no sequence of days off violates the max-
imum number of consecutive days off, Constraints (2) are
introduced. At least one shift needs to be scheduled in every
sequence of days of length max? +1. For the case min? = 2,
Constraints (3) are introduced. If no shift is scheduled on day
d, at least one of the days {d — 1,d + 1} must not contain
any shifts. Constraints (4) ensure no shift sequence exceeds
a length of max""* In combination, Constraints (3) and (4)
imply that shift sequences are separated by at least a single
day off.

Each shift sequence needs to include at least min
shifts. Let variable y; € {0, 1} denote whether a shift
sequence of a length of at least min®*’* starts on day d. Con-
straints (5) only allow a value y; = 1 if a number of min**" k
are scheduled on days {d, ..., d + min"or¥ —1}. Then, Con-
straints (6) ensure that every shift is part of a shift sequence
that respects the minimum length. Forbidden shift sequences
of length two are considered by Constraints (7). Constraints

work
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(8) are used to exclude forbidden sequences that span three
shifts, where the second day of the sequence is a day off.
Only one shift can be worked per day (Constraints (9)).

Further, the minimum and maximum length of shift blocks
miny " k and max " k of type s has to be respected. Con-
straints (10) ensure that no shift block exceeds the maximum
length per type. Let value z45 € {0, 1} denote whether a shift
sequence of type s with a length of at least min?*"* begins
on day d. Then, Constraints (11-12) enforce the minimum
shift block length per type s analogously to Constraints (5—
6). Finally, Constraints (13) limit the decision variables to
their domains.

4 Decomposition approach

In this section, a formal description of the decomposition
approach is given. The algorithmic framework is separately
described in the next section. Table 2 gives an overview of
the symbols used in this section.

A feasible solution to an instance of the RWS is charac-
terized by a sequence of shift blocks separated by sequences
of days off. This is explained by the fact that employees
and in turn decision makers value schedules, where employ-
ees work sequences of shifts and recover during sequential
days off. Owing to the various constraints regarding the min-
imum and maximum length of shift blocks and undesirable
shift sequences, the set of feasible shift blocks is highly con-
strained. Thus, the RWS is split into two subproblems:

— Master problem Find a combination of tuples with a
specified start day and shift block (g, ») such that the
staffing requirements 7y are covered.

— Subproblem Construct a schedule by finding a feasible
sequence of block tuples (g, b) based on the solution of
the master problem.

4.1 Master problem

The set of feasible shift blocks can typically be easily enu-
merated. Let b € B denote the set of shift blocks that respect
all constraints on shift sequences with regard to the specific
problem instance. The master problem is defined as finding
a set of shift blocks that meet the staffing requirements 7y
exactly on every day d and in every shift s. Note that coverage
for every day of the staffing requirements can be provided by
a shift block starting on day g € G.

For example, assume €2 = 7. Given a single shift type 1,
that is denoted by M in the following, a shift block could
comprise, e.g., the sequence MM M. If this shift block is
scheduled on day 1, coverage is provided for days {1, 2, 3}.
With start day 7, coverage would be provided on days
{7, 1, 2}. The problem represents an extension of the exact
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Table 2 Declaration of used

Description

Feasible shift blocks

Subtours

Set of nodes

Shift block start days

Set of tuples (g, b) that contain shift s on day d

Set of edges (i, j) that must not be used

Additional employees required if node j succeeds node i
Number of times shift block b starts on day g

1 if node j is visited after node i; O otherwise

Set of feasible shift blocks B

sets, parameters, and variables Name
beB
weW
nenN
geCG
Cas
K
dij
Agh
vij € {0, 1}
Demand Ty,
d ‘ 1 2 3 4 5 6 7
M| 2 2 2 3 3 3 : 52
ﬁ-__
41 M M M
(4,1) ' M M M
(4,1)
(4,2)
(7,4)
(7,4)
(7,3)
(7,5)

)

bt
-

b=3[M M M M|

-1 [N
b-s (M3 v N

Fig.2 Exemplary covering of staffing requirements by use of a set of shift blocks

covering problem, where each element has to be covered
a specified number of times and each set can be selected
multiple times. Coverage requirements are specified by Ty;.
The sets are defined by every combination of start day and
block (g, b). Figure 2 shows an example for the master prob-
lem. Workforce requirements 7, are shown on the upper left
side. An exemplary subset of feasible shift blocks B that is
defined by the constraints of the RWS is shown on the right
side. One possible solution to the master problem is shown
on the left side. In each row, a combination of start day g and
block b is shown. In terms of the mathematical formulation
from section 3.2, the master problem ensures that the staffing
requirements (1), constraints on the length of shift blocks (4—
6), constraints on forbidden shift sequences in shift blocks
(7), and constraints on the length of shift sequences of each
type (10-12) are satisfied. The master problem neglects only
constraints on consecutive days off and sequences of shift
blocks.

Formally, the master problem can be stated as follows: Let
Agb € No denote the number of times shift block b starts on
day g. Set Cy; contains the tuples of start day and shift block
(g, b) that provide coverage for shift s on day d. The set of
solutions of the master problem has to satisfy the following
equations:

Y dgp=Tiy VdeG.seS (14)

(8:b)€Cus

In case the master problem is infeasible, the overall RWS
instance is also infeasible.

Typically, there are many solutions to the master problem
for a feasible instance of the RWS. However, there may not
be a feasible sequence of shift blocks for a solution of the
master problem, as it may not be possible to find a sequence
that satisfies constraints on minimum and maximum number
of days off and conflicts between shift blocks.
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Solutions also may vary greatly in structure. Consider,
e.g., a solution for the master problem with shift block
AAANNN. The shift block could always be split into two
parts AAA and NN N, while maintaining feasibility for the
first problem if the work shift sequence constraints are sat-
isfied for the two parts. Generally, a single block with many
shifts will lead to a shorter schedule compared to two single
blocks, as there are no days off in between. Given conflicts
between shift blocks, a lower number of blocks reduce the
potential number of conflicts, but the number of breaks is
also reduced. Consequently, it is important to find solutions
of different structures to search the solution space effectively.

4.2 Subproblem

For a given solution of the master problem, the subproblem
determines whether a feasible sequence of shift blocks exists.
In terms of the mathematical formulation from Sect. 3.2, the
subproblem has to only consider constraints on consecutive
days off (2-3) and constraints on forbidden sequences of
shift blocks (8). Some examples for feasible and infeasible
sequences of start day and shift blocks are illustrated in Fig. 3.
In afeasible sequence of shift blocks (g, ) each combination
of start day and block (g, b) needs to be included A, times.
Furthermore, the number of days off has to satisfy the con-
straints on minimum and maximum number of consecutive
days off (2-3) and no forbidden sequences of shift blocks
must occur (8).

It is important to note that the number of employ-
ees required for the schedule may vary depending on the
sequence of shift blocks (g, b). A schedule that uses a
lower or higher number of employees implies a higher or
lower weekly workload, respectively, since the same staffing
demand is covered by a different number of employees. To
obtain a rotational schedule for a workforce with a number of
| E| employees, the length of the sequence has to be exactly
| E|-€2. If the subproblem is feasible for a given solution of
the master problem, a solution for the RWS is obtained.

The subproblem can be seen as the problem of finding a
Hamiltonian cycle ! with a sum of edge weights that is exactly
|E| in a graph with node precedence constraints. Let G be a
graph that contains a node n € N for every shift block (g, b)
in the solution of the master problem. If A, > 1, multiple
nodes are added for shift block (g, ) according to the value
of Agp in the solution of the master problem. The cardinality
of G is thus defined as Y, D _pep Agb i. €., the number of
blocks in the master problem solution. To ensure coverage
of the staffing requirements (Eq. 14), every shift block (g, b)
has to be included into the schedule. The subproblem can be

U A Hamiltonian cycle is a cycle that contains all nodes (Bollobas 2013).
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stated as follows:

szijvij = |E] (15)

ieN jeN

> owj=1 Vie N (16)
JENIi#]

> =1 VjeN (17)
ieN|i#j
YN vy < lwl—1 Vw e W (18)
icew jew
vij =0 Vi, j) e K (19)
v;j € {0, 1} VieN,jeN (20)

Constraints (15) enforce a length of Q-] E| for the sched-
ule, so that the schedule is feasible for the available number
of employees. In the following, an example is given to illus-
trate how the number of employees varies depending on the
block sequence and how edge weights d;; are defined. We
assume that the staffing demand is 7 = (% % % % % % %) The
first shift type is a morning shift, denoted as M, and the sec-
ond shift type is a night shift, denoted by N. For simplicity,
we assume that only a single shift block M M N N is allowed.
Figure 4 shows two rotational schedules that cover the work-
force requirements. In the first column, the number of the
employee starting at the beginning of each row is described.
It can be seen that €2 has a value of seven since each row
includes seven days. The last shift of each row is adjacent
to the first shift of the next row. In the last column, the set
of start days of blocks which begin in the respective row are
shown. Note that the example involves seven shift blocks
with start days {1, ..., 7}. Both schedules use exactly the
same set of shift block and start day tuples (g, b) and pro-
vide the same coverage. Figure 4 shows that the length of the
schedule varies depending on the sequence of shift block and
start day tuples (g, b). As the length of the schedule needs to
match the number of employees in the RWS, a sequence is a
feasible solution to the second subproblem only if % =|E|.

In the example, the shift block starts exactly once on each
g € {1,...,7}. Thus, the graph for the subproblem com-
prises seven nodes and we will refer to each node by the
number of the start day. Now, let d;; denote the number of
employees required additionally for the schedule if node i
succeeds node j. Then, ) ;cy >~ ey dijvij equals the num-
ber of employees required for the rotational schedule defined
by the block sequence. The graph associated with the exem-
plary schedules is shown in Fig. 5. The top graph corresponds
to the top schedule in Fig. 4, and the bottom graph corre-
sponds to the bottom schedule in Fig. 4. Edge weights show
the value of d; ;. For example, if edge (4, 5) is selected, i.e., the
shift block with start day 4 is succeeded by the shift block
with start day 5, a number of two employees are required
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Fig.4 Varying the block sequence changes the length of the rotational
schedule

additionally and d45 = 2. Looking at the top schedule in
Fig. 4, this sequence occurs between rows 4 to 6. The shift
block with start day 4 finishes on the last day of row 4. If
the shift block with start day 5 is scheduled in succession, it
must begin in row 5 to obtain a feasible schedule. The last
shift of the block ends on the first day of row 6. Since both
rows 5 and 6 are added to the schedule, an additional two
employees are required if edge (4,5) is selected. Further,
consider the case in the bottom schedule of Fig. 4 where the
block with start day 5 is succeeded by the block with start
day 3. Since the block with start day 5 ends in row 4 and the
block with start day 3 ends in the same row, no additional
employees are necessary and ds3 = 0. Figure 6 shows matrix
d;;j for the exemplary schedules in Fig. 4. Empty values indi-
cate that node i cannot succeed node j because the respective
blocks do not meet constraints regarding the minimum and
maximum number of days off in between.

T2 31415716

Fig.5 Graphs of block sequence for the exemplary rotational schedules

j=1 j=2 j=3 j=4 j=5 j=6 j=T7

i=1/ 1 1 1 1
=2 1 1 1 1
=3 1 1 1 1

dij = i=4 1 1 1 2
i=5 0 0 1 1
i=6 1 1 1 1
i=7\ 1 1 1 1

Fig. 6 Values of matrix d;; with shift block MM NN and min¢ = 1,
max? = 4 for start days {1, ..., 7}

As the number of shift blocks selected in the master prob-
lem corresponds to the nodes in G, every node has to be
visited exactly once. Constraints (16—17) of the subproblem
formulation ensure that there are exactly one predecessor and
successor for each node. In order to avoid subcycles, Con-
straints (18) forbid every cycle in G as part of the solution
that does not visit every node. Many nodes cannot succeed
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each other, owing to the number of days off in between the
underlying shift blocks, or forbidden shift sequences. These
edges are excluded from the solution by Constraints (19).
Figure 3 shows examples how block sequences may be fea-
sible depending on the number of days off in between.

The mathematical problem above cannot be solved directly
for a realistic problem size, as the number of subcycles
w € W is too large to explicitly add a constraint for each
one. As a result, a well-known branch-and-cut procedure is
applied (Sect. 5.2). The solution approaches for the master
and subproblem are discussed in more detail in the next sec-
tion.

5 Solution approach

In this section, an algorithmic framework using the decom-
position from the previous section to quickly obtain feasible
solutions for the RWS is presented. For the master prob-
lem, a greedy local search procedure is proposed (Sect. 5.1).
Standard solvers are not well suited to solve the master prob-
lem, as many solutions of different structures are required.
The subproblem is solved with a branch-and-cut procedure
(Sect. 5.2).

The decomposition heuristic for the Rotating Workforce
Scheduling Problem (DH-Rota) is shown in Algorithm 1. For
a specified number of iterations (Algorithm 1, 1. 2), a solu-
tion to the master problem (Sect. 4.1) is constructed using a
greedy local search heuristic with different block inclusion
criteria (Algorithm 1, 1. 2-6). If a feasible solution for the
master problem is found, the subproblem (Sect. 4.2) is solved
(Algorithm 1, 1. 7-8). Given a feasible solution to the sub-
problem, the algorithm terminates successfully (Algorithm 1,
1. 9-10). Every time a feasible solution for the master problem
is obtained, the search strategy « is changed. The symbols are
adopted from the previous section. For simplicity of presen-
tation, we assume that they are available to each function as
global parameters and do not state the input data separately.

Algorithm 1: Decomposition heuristic for the RWS

1a=1;
2 while iteration limit not reached do

3 | A = initialization(x);

4 | improvement = true;

5 | while improvement = true do

6 } improvement = two_opt(1);
7 | if coverage(r) = Ty; then

8 if solve_subproblem().) then
9 feasible solution found;
10 terminate;

11 o =1+ a mod 3;
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5.1 Master problem

In every iteration of the algorithm, a solution A for equations
(Sect. 4.1, 14) is constructed (Algorithm 1, 1. 3-7). First,
function initialization (Algorithm 2) greedily chooses shift
blocks to improve coverage according to the search strategy
o (Algorithm 1, 1. 2). Three search strategies are used to
improve search diversification:

%cov‘s, if i3 £#0

Objl (COV87 Y, b) = 5 ) (21)
YNo,COV®, otherwise
2,5 cov?
obj”(cov’, y, b) = round(yNo, ——) (22)
Noy
obj (cov®, y, b) = round( cov’ ) (23)
S A A TE

Each search strategy selects the next block to include in
the solution differently. Once no further improvement in cov-
erage is possible by including additional shift blocks, local
search is applied. Function two_opt (Algorithm 3) evaluates
whether the coverage can be improved by replacing a shift
block with a different one (Algorithm 3, 1. 5-7). After no
further improvement is possible by local search, the solution
is checked for feasibility (Algorithm 1, 1. 7). The combina-
tion of block tuples (g, b) has to exactly cover the staffing
requirements 7y, for feasibility. If the solution is feasible, it
is passed to the subproblem and the block inclusion criterion
« is changed.

5.1.1 Initialization

Algorithm initialization begins with picking arandom weight
y for each block length from the interval [Ib, ub] (Algo-
rithm 2, 1. 1). A higher spread of weights indicates more
blocks of homogeneous length in the solution. Next, a local
copy Tdcfpy of the staffing requirements is defined to capture
the missing coverage given the current solution A (Algo-
rithm 2, 1. 2). Every block tuple (g, b) is evaluated regarding
the impact on the coverage (Algorithm 2, 1. 4-8). The number
of shifts included in the block tuple that are not fully cov-
ered by the current solution A is denoted by coverage™. The
number of shifts included in the block tuple where additional
coverage leads to surplus coverage is denoted by coverage ™.
We now define the marginal coverage provided by a block
tuple as cov® = coverage™ — coverage™ (Algorithm 2, 1.
6-7).

To avoid surplus coverage in the initial solution, the num-
ber of surplus shifts covered is penalized if no additional
coverage is necessary. Let No, denote the number of shifts
included in block b. The value of §,;, denotes the score of
including block tuple (g, ). It is derived on the basis of covs
and the length of the shift block No,. If conflicts between
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Algorithm 2: initialization

1 y = Pick random weight from {/b, ..., ub} for each
block length;

2 Tdcsopy = Copy staffing requirements 7y;;
3 repeat
4 | forge Gdo
5 for b € B do
6 coverage™ = Useful coverage provided by
(g, b) according to Tdc;)py;
7 coverage~ = Surplus coverage by adding
block (g, b) according to TdCSOPy;
8 dgb = 0bj°‘(coverage+-coverage_, y, b);
9 | 8 = max({845 Vg € G, b € B));
10 | if 85t > O then
11 gPest, pbest — Pick random (g, b) where
8gb — Sbest;
12 )\gbestbbest+ = 1,
copy
13 Update T; "~ by coverage;
14 until 8Pt < 0;
15 return A;

Algorithm 3: two_opt

Data: A

1 for (g1, by) where Agp, > 0do

2 | for go € Gdo

3 for b, € B do

4 8 = Change in coverage if (g1, b1) is replaced
by (g2, b2);

5 if § > O then

6 )"glbl - = 1’

7 Agaby+ =1

8 return frue;

9 return false;

shift blocks exist, the number of conflicts of a shift block f b
is taken into account. An inclusion should only be carried
out for a value of §,, > 0. Depending on the block inclu-
sion strategy «, a different formula is used to derive 845. To
diversify the search, the marginal coverage cov® is multiplied
with yNo,. The search strategies obj! — obj? are shown by
Egs. (21-23). The first strategy favors the inclusion of long
shift blocks, since the marginal coverage is only multiplied
by y. If conflicts between shift blocks exist, the marginal
coverage is divided by the number of conflicts f} instead.
To ensure a score that is independent of block length, the
score is divided by block length for the second strategy. For
the third strategy, 85 is divided by the square of the block
length. This favors the inclusion of shorter blocks.

Once 8¢5 has been computed for every block tuple, let
8Pt denote the maximum score for a block inclusion. If
8pest > 0, a random block tuple (g, b) where 8y, = sbest
is selected (Algorithm 2, 1. 11). Rounding the score of Jgp
ensures a randomization of the inclusion process, since the

size of the set of block tuples (g, b) where 84, = goest jg
increased. The selected block tuple is included in the solution
A and the demand TdcsOpy isreduced by the additional coverage
of (g, b) (Algorithm 2, 1. 12-13). Negative values for Ty, ™
indicate a surplus coverage. Otherwise, §pes; < 0 and there is
no further improvement possible by including an additional
block tuple. The initial solution is returned (Algorithm 2, 1.
14-15). Typically, the solution that is returned will not be
feasible, as a feasible solution needs to exactly cover each
shift on every day according to the demand.

5.1.2 Local search

Starting with the initial solution A, a local search procedure
is applied to obtain a feasible solution (Algorithm 1, 1. 5—
7). Algorithm rwo_opt evaluates for all block tuples (g, b)
where Agp > 0 whether there is a replacement (g, b) such
that the number of shifts that are over- and undercovered, is
reduced (Algorithm 3, 1. 4). The value of § counts the reduc-
tion in over- and undercoverage. The first such replacement
is accepted (Algorithm 3, 1. 5-8). The procedure is called by
the main algorithm until no replacement can improve the cov-
erage. Next, it is evaluated if a feasible solution was found,
i.e., the solution A exactly covers the staffing requirements
T4 (Algorithm 1, 1. 7). If a feasible solution was found, the
subproblem is solved (Algorithm 1, 1. 8-10). Otherwise, the
iteration failed and a new iteration starts.

5.2 Subproblem

A subproblem is solved for every feasible solution of the
master problem (Algorithm 1, 1. 8-11). If the subproblem
is feasible, a solution for the problem instance of the RWS
has been found. The procedure solve_subproblem 1is illus-
trated in Fig. 7. A mathematical program is constructed with
Constraints (15-17) and (19-20) from Sec. 4.2. Constraints
(18) are relaxed, and the mathematical program is solved.
Once a feasible integer solution is found, Constraint (18) is
added for the longest subcycle of the solution and the mathe-
matical program is resolved. Infeasibility of the subproblem
indicates that no sequence of block tuples included in the
solution of the master problem exists, such that all constraints
of the complete problem are satisfied. If a solution with-
out subcycles is obtained, a feasible solution for the overall
problem is reached. The algorithm terminates successfully
(Algorithm 1, 1. 9-10). For search diversification, the block
inclusion criterion of the master problem is changed at the
end of each iteration of the subproblem (Algorithm 1, 1. 11).
In the next section, the algorithmic framework is applied to
the benchmark set of the RWS and evaluated in comparison
with other exact and heuristic approaches.
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Construct mathematical program from
Constraints (15-17), (19-20) and

solution A relaxing constraints (18)

Solve mathematical program

|

Feasible integer
solution found?

no

Solution contains
subcycles?

Add Constraint (18)
S | to eliminate longest subcycle

Save RWS solution

l

[ Return false } { Return true }

Fig.7 Flowchart for function solve_subproblem()

6 Computational experiments

This section compares the performance of the proposed
decomposition heuristic (DH-Rota) with selected previ-
ous approaches to the RWS. Results for our mathematical
formulation from Sect. 3.2 are provided as an additional
benchmark. Results are reported for the standard benchmarks
of the RWS and compared to the state-of-the-art solution
methods presented by Musliu et al. (2018). The test set is
publicly available online®. It comprises 2000 test instances
of various sizes. Most problem instances were randomly gen-
erated to obtain realistic shift scheduling test instances.

In all instances, there is an offset Q2 = 7 days between
employee start days, such that the schedule comprises a total
of | E|-7 days. This is a typical assumption in rotational work-
force scheduling, as it ensures that the rotational schedule
always rotates over the same weekdays. The test set includes
both instances with two and three daily shifts. These com-
prise a morning, afternoon, and night shift. For an exemplary
solution, see Fig. 1 in introduction. The schedule is a feasible
solution for a simple problem instance from the benchmark
set (instance 2). Table 3 provides some additional detail on
the characteristics of the test set.

2 https://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/.
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Table 3 Characteristics of the RWS benchmark instances proposed by
Musliu et al. (2018)

Parameter Min. Mean Max.
Employees 7 29.9 163
Shifts per week 3.6 4.8 5.6
Feasible shift blocks 3 17.5 56
min*°rk 2 35 4
max "ok 5 6 7
min®f 1 1.5 2
max°' 2 3 4
|F2| 1 2.7 3
|F3| 0 1.9 4

The table specifies the minimum, mean, and maximum
value for several parameters of the RWS. For a definition of
the notation, see Table 1. It can be seen that there is a large
differentiation of key parameter values across the benchmark
set. For instance, the number of employees varies between
7 and 163. This parameter has an important influence on
the instance size and difficulty. In a mathematical formula-
tion, the number of decision variables typically increases with
the number of employees. For DH-Rota, the number of shift
blocks that need to be considered also tends to increase with
the number of employees. The number of shifts per week was
computed by dividing the sum of all staffing requirements by
the number of employees. It is evident from the minimum and
maximum number of shifts per week that the employee work-
load is highly varied throughout the test set. The number of
feasible shift blocks is also specified. Although the bench-
mark instances do not specify the set of feasible shift blocks
B explicitly, it can be easily constructed from the problem
instance parameters. Furthermore, different sets of forbidden
shift sequences are considered. Note that the staffing require-
ments also vary for each instance, whereas many different
structures are included in the benchmark set.

The DH-Rota was implemented in C++ and compiled
with the Visual Studio 2017 compiler under Windows 10.
Formulation [(1)—(13), Sect. 3.2] was solved with Gurobi
8.0. The experiments were carried out with an intel i7-8550U
processor and 16 GB of RAM. In Musliu et al. (2018), exper-
iments were conducted on a different processor. However,
according to benchmarks? which have been previously used
for scaling run times to a comparable level, the processor
used in this paper has a lower performance (Carrabs et al.
2018). Experiments for the mathematical formulation pro-
posed by Musliu et al. (2018) were implemented and rerun

3 https://setiathome.berkeley.edu/cpu_list.php.
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also using Gurobi 8.0 for the computational experiments.
Since the specific implementation of the other solution meth-
ods is unknown, the results are directly compared. To be
conservative, no scaling to the advantage of this paper is con-
ducted. Finally, to maintain comparability with their results,
the run time is limited to 200s in all experiments.

6.1 Comparison with exact and heuristic methods

Table 4 presents a comparison of the run time of DH-Rota and
selected exact and heuristic approaches for the RWS bench-
mark instances. In the first column, the name of the solution
approach is provided. The second column specifies the type
of solution approach, while four exact and two heuristic
methods are compared. The third and fourth columns specify
the number of instances where a feasible schedule was iden-
tified and the average run time. The fifth and sixth columns
indicate the number of instances proven infeasible and the
average run time. In the last column, the number of instances
is stated where neither a feasible schedule nor a proof of
infeasibility was achieved within the time limit of 200s. The
results in the last column show that no approach could find a
feasible schedule or prove infeasibility for the complete test
set within the time limit. Furthermore, the results of the exact
mathematical programming approach proposed by Musliu
et al. (2018) show that a high number of instances are infea-
sible. Their exact mathematical programming approach has
solved the highest number of instances in the sense that either
a feasible schedule or a proof of infeasibility is obtained. It
was able to identify a feasible schedule for 1321 instances and
provided a proof of infeasibility for 667 instances, leaving
only 12 instances that were not solved within the time limit.
Their constraint programming formulation exhibits a lower
run time for feasible instances, but it could only proof infea-
sibility for 523 instances with a significantly higher average
run time.

Looking at the results, it turns out that the mathematical
formulation from Sect. 3.2 is not competitive. While the aver-
age run time for instances where a feasible schedule has been
obtained is lower than the run time of the MathSAT and MC-
T, both approaches have provided a feasible schedule for a
higher number of problem instances. Furthermore, all other
exact approaches have solved more infeasible instances. The
mathematical formulation from Musliu et al. (2018) detected
the highest number of infeasible instances within the time
limit and also has the lowest average run time for detecting
infeasibility.

As aheuristic approach, DH-Rota does not provide a proof
of infeasibility. It will either find a feasible schedule or termi-
nate when the time limit is reached. DH-Rota has obtained a
feasible schedule for 1322 instances, which is the same num-
ber as the constraint programming formulation from Musliu
et al. (2018). However, it is interesting to note that DH-

Rota is able to find a solution for many feasible instances
extremely quickly. For the constraint programming formula-
tion from Musliu et al. (2018), an average run time of 5.0's is
reported across the set of instances where a feasible schedule
has been obtained. The constraint programming formulation
has found a feasible solution for 1322 test instances, and it
is the fastest exact method for feasible instances of the RWS.
In comparison, the average run time of DH-Rota across the
set of feasible instances solved is 0.18s. For the 1322 fea-
sible instances solved by DH-Rota, a solution was found in
less than 0.1s for more than 90%. Further, 97.7% of these
problem instances were solved within a second.

Thus, while DH-Rota does not improve the state of the art
of the exact methods from Musliu et al. (2018), it improves
the results of heuristic methods and it is able to provide solu-
tions for feasible instances very efficiently. In the following,
we provide a more detailed analysis of DH-Rota run times
on feasible instances.

6.2 Analysis of run times of DH-Rota

This section provides a more detailed comparison of DH-
Rota with the other solution methods executed during our
experiments on a set of feasible instances, to further investi-
gate the efficiency of the proposed decomposition approach.
Figure 8 shows the distribution of run times on a set of feasi-
ble instances for DH-Rota and the mathematical formulation
from Musliu et al. (2018). In order to ensure comparabil-
ity, the figure only includes run times for feasible instances
solved by both solution approaches. The set of feasible
instances solved by each approach differs slightly, while the
intersection contains a number of 1317 instances. Thus, each
part of the figure shows run time results for the same set of
instances. The results were divided into multiple categories
according to the number of employees. Each category and
box plot include the results of more than 300 test instances.
A logarithmic scale is used to improve the readability of the
box plots at low run time values. Further, to visually distin-
guish multiple outliers with similar run time values, some
outliers were shifted horizontally.

Looking at Fig. 8, the number of employees clearly has
an impact on the run time of both solution methods, whereas
the run time increases with a higher number of employees.
It is evident from the box plot graphs that DH-Rota solves
many feasible instances very efficiently in comparison with
the mathematical formulation. The upper whiskers of the box
plots for DH-Rota are strictly below the lower whiskers of
the box plots for the mathematical formulation. However,
there are more outliers for DH-Rota in comparison with the
mathematical formulation. The feasible space of the mas-
ter problem changes with respect to the specific problem
instance characteristics. There might be a different number
of feasible solutions for the master problem, and further-
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Table 4 Comparison of selected exact and heuristic methods for the RWS

Solution method Type Feasible Avg.runtime Infeasible Avg.runtime Unknown
MP (This paper, Sect. 3.2) Exact 1109 12.85 237 27.07 654
MP (Musliu et al. 2018, Gurobi) Exact 1321 11.50s 667 8.35s 12
CP (Musliu et al. 2018, Chuffed)* Exact 1322 5.0s 523 47.8s 155
MathSat (Erkinger and Musliu 2017)*  Exact 1198 32.1s 272 126.7s 530
MC-T (Musliu 2006)* Heuristic 1212 23.3s - tl 788
DH-Rota (This paper) Heuristic 1322 0.18s - tl 678

The bold values indicate the best solution approach with respect to the criterion of the column
MP mathematical programming, CP constraint programming, #/ time limit

*Run times reported by Musliu et al. (2018)
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Fig.8 Comparison of run times for the set of instances where a feasible schedule has been identified by both solution methods (intervals for number

of employees include the lower bound and exclude the upper bound)

Table 5 Number of feasible

instances solved for each #Shifts 2 3
category by the respective #Employees* <20 20-30 30-40 >40 <20 20-30 3040 >40
solution method

DH-Rota
MP (Sect. 3.2)
MP (Musliu et al. 2018)

34

47 46 57 274 271 271 318
39 40 46 262 214 224 250
47 46 57 274 271 269 319

*Intervals include the lower bound and exclude the upper bound

more, the number of master problem solutions for which the
subproblem is feasible also varies. Since DH-Rota utilizes a
sampling-based heuristic, the unknown probability to sample
a block combination for which the subproblem is feasible is
different for each problem instance. The number of required
iterations and run time of DH-Rota increases with a lower
probability of sampling a feasible block combination. This

@ Springer

leads to a large range of run times for DH-Rota. However,
it is evident that most feasible instances included in the box
plots are solved very efficiently by DH-Rota. Furthermore,
in each category the maximum outlier of DH-Rota lies below
the upper whisker of the box plot for the mathematical for-
mulation.
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Table 6 Average run time and standard deviation (in s) across the set of feasible instances that were solved by the respective solution method for

each category

#Shifts 2 3
#Employees* <20 20-30 30-40 >40 <20 20-30 30-40 >40
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

DH-Rota 0.03 0.09 0.29 1.64 0.03 0.07 0.09 024 0.02 0.05 0.11
MP (Sect. 3.2)

MP (Musliu 1.33 0.64 2.47 123 4.04

et al. 2018)

0.85 0.15 09 044 245

222 479 227 498 7.53 18.18 10.31 28.73 5.38 13.85 11.15 23.95 20.41 36.72 19.79 28.36
1.89 553 233 375 224

9.4 5.68 14.84 9.51 21.82 14.01

*Intervals include the lower bound and exclude the upper bound.

In addition to the number of employees, the number of
shifts is an influencing factor of the run time. The num-
ber of decision variables considered by the exact approaches
directly depends on the number of shifts. In Table 5, the
number of feasible instances solved by the solution methods
executed during the computational experiments is shown, dif-
ferentiated by the number of shifts and employees. Table 6
shows the average run time and standard deviation for each
category of instances. The data for each solution approach
only include results for the run time on feasible instances
solved, as specified in Table 5. The data from Table 6 show
that the average run time of the mathematical formulation
proposed by Musliu et al. (2018) strictly increases with a
higher number of shifts or employees. A similar trend is
evident for the mathematical formulation (Sect. 3.2) and
DH-Rota. However, comparing the average run time of the
mathematical formulation (Sect. 3.2) for the case of 3 shifts
between the categories 20-30 and > 40 employees, the aver-
age run time slightly decreases from 20.41 to 19.79s. It is
important to note that there are a large number of instances
where the mathematical formulation (Sect. 3.2) did not obtain
afeasible solution in both categories. Additionally, the math-
ematical formulation (Sect. 3.2) exhibits the highest standard
deviation among all solution approaches in each category.
Furthermore, the influence of the number of shifts on the
run times of DH-Rota does not appear very consistent from
the data in Table 6. While the number of shifts increases the
decision variables considered by exact approaches, it does
not have such a direct influence on DH-Rota. Looking at the
standard deviation, DH-Rota exhibits the lowest values in
most categories. Relative to the average run time, the standard
deviation of DH-Rota is higher than that of the mathemati-
cal formulation of Musliu et al. (2018). This is also evident
from the higher number of outliers for DH-Rota and the large
range of run times shown by the box plots in Fig. 8.

Overall, the results indicate that the new decomposi-
tion approach efficiently exploits the problem structure and
provides a major reduction in run times for feasible RWS

problem instances. While DH-Rota does not improve the
results of the state-of-the-art exact approaches presented in
Musliu et al. (2018), it is able to solve feasible instances of
the RWS very efficiently and thus confirms the benefits of the
new decomposition approach.

7 Conclusion

Rotational workforce scheduling is an important tool for
organizations with homogeneous skills among employees
and staffing requirements. This study has presented a novel
decomposition approach (DH-Rota) for the Rotating Work-
force Scheduling Problem (RWS). The heuristic first con-
structs a fixed set of shift blocks that covers the staffing
requirements. Then, a network model is used to determine
whether a feasible sequence of shift blocks exists. By con-
sidering a fixed set of shift blocks to cover the demand, the
problem complexity can be greatly reduced. We have pro-
posed a new greedy heuristic to find combinations of blocks
that cover the staffing requirements and an exact branch-and-
cut algorithm that determines whether there exists a feasible
sequence such that the constraints on days off and forbidden
blocks sequences are satisfied.

Computational experiments confirm the efficiency of
the decomposition approach and heuristic. The heuris-
tic approach very quickly provides solutions for feasible
instances. Although it does not improve the state of the art
for exact methods, the average run time across the set of
feasible instances solved by DH-Rota is only 0.18s. This
greatly improves the results of previous heuristics for the
RWS. Thus, the proposed approach is able to quickly gen-
erate feasible schedules for real-world Rotating Workforce
Scheduling Problems.

The decomposition approach is not limited to the RWS.
Various future studies that build on the ideas of the decompo-
sition are apparent. It can be extended by additional practical
constraints. Further studies could thus investigate the applica-
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bility and performance for different application areas. These
include various scheduling problems where cyclic schedules
are desired, such as nurse rostering. Another possible area
of future research would be a more systematic approach to
finding combinations of blocks that cover the staffing require-
ments. If the set of solutions to this covering problem is
systematically enumerated, an exact approach is obtained.
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