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Abstract
The paper considers a nonparametric approach to determine portfolio efficiency using
specific directions toward the portfolio frontier function. This approach allows for a
straightforward incorporation of higher moments of the returns distribution beyond
mean and variance. The nonparametric approach is extended by the computation of
optimal directions endogenously by maximizing the distance toward the portfolio
frontier as a novel methodological feature. An empirical application to Fama–French
portfolios demonstrates the applicability of the nonparametric approach. The results
show that the optimal directions to the frontier depend on the portfolio considered as
well as on the period for which the moments are estimated. Skewness in particular
plays a role in determining the optimal direction, whereas kurtosis seems to be less
crucial.

Keywords Finance · Portfolio choice · Directional distance functions · Skewness and
kurtosis

JEL Classification G11 · C14

1 Introduction

Portfolio selection in the legacy of Markowitz (1952, 1959) is traditionally concerned
with finding a compromise between a high return and low risk. This setting can be
criticized, however, and in particular, it neglects the influence of highermoments of the
returns distribution beyond mean and variance on the utility of an investor.1 The con-
sideration of those higher moments also has a long tradition in finance with Samuelson

1 See, e.g., Hens and Rieger (2010, p. 48ff.) for a discussion of the limitations of mean–variance utility.
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1436 J. J. Krüger

(1970) being one of the first contributions. There is a steady stream of articles fol-
lowing with a special focus on the third moment, skewness, but also considering the
fourth moment, kurtosis (see, e.g., Kraus and Litzenberger 1976; Scott and Horvath
1980; Harvey and Siddique 2000; Jondeau and Rockinger 2006; Harvey et al. 2010
and the numerous references cited therein).

Assuming a specific utility function is restrictive and an approachwhich isworkable
without such an assumption would be valuable. One such approach applies methods
originating from nonparametric productivity analysis, mostly based on variants of data
envelopment analysis (DEA). DEA is usually applied to determine productive effi-
ciency in general input–output relationships. In finance applications, the mean return
is usually taken as the output variable, whereas measures of risk or transaction cost
components are treated as inputs. This follows from the simple logic that the output
should be maximized, whereas the inputs are to be minimized. There are numerous
published articles reporting empirical analyses along these lines. See Murthi et al.
(1997), Morey and Morey (1999) and Edirisinghe and Zhang (2007) as representa-
tive examples and Glawischnig and Sommersguter-Reichmann (2010) for a succinct
summary.

Lamb and Tee (2012) point to various problems with applications of DEA for
portfolio performance evaluation. One of these problems is the inability of most DEA
analyses to take account of the effects of diversification. Better adapted to the task of
portfolio performance evaluation is the nonparametric methodological approach put
forward by Briec and Kerstens with their various co-authors based on the concept of
the shortage function (Luenberger 1992, 1995) which is also known as the directional
distance function (DDF) of Chambers et al. (1996). In contrast to DEA analyses which
rely on linear programming solvers for their computation, theBriec–Kerstens approach
leads to nonlinear constraints and requires the application of numerical methods for
nonlinear optimization.

As mentioned above, higher moments of returns such as skewness and kurtosis also
play a role for portfolio choice beyondmean and variance as additional sources of risk.
Conventional parametric andBayesian approaches to the analysis of portfolio selection
under highermoments are explained in Jondeau andRockinger (2006) andHarvey et al.
(2010), respectively. The Briec–Kerstens approach also allows for a straightforward
extension to incorporate higher moments (skewness, kurtosis) in addition to mean and
variance into the nonparametric approach. This is developed by Briec et al. (2004) for
the mean–variance analysis and extended by Briec et al. (2004) to a mean–variance–
skewness analysis. Briec and Kerstens (2010) provide a generalization of the previous
papers to moments of arbitrary order including partial moments. By this development,
the mean–variance–skewness–kurtosis case is also covered. This case is also covered
in the related analysis of Boudt et al. (2020a) who also apply shrinkage methods for
the estimation of higher moments as we do subsequently.

In this paper, we follow the Briec–Kerstens approach to analyze portfolios con-
structed by Fama and French for various selected periods. The primary advantage
of this approach is that there is no need to assume specific functional forms, neither
for the frontier function nor for the distribution of the returns. We are able to deter-
mine appropriate benchmarks for evaluating the portfolios without having to rely on a
specific theoretical model. In addition, the approach permits a straightforward incor-
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Nonparametric portfolio efficiency measurement with higher… 1437

poration of higher moments (of course at the expense of increasing computational
complexity). We introduce the novel methodological feature of an endogenous deter-
mination of the direction toward the frontier function in the moment space for this
type of methodological approach.

The results obtained with this approach show that the more efficient portfolios tend
to be composed of small (rather than large) stocks, of high (rather than low) book-
to-market value stocks, of stocks with high (rather than low) operating profitability
and of stocks with low (rather than high) investment. There are major differences
of the distance to the frontier and the optimal direction along which this distance
is measured across the subperiods considered. In addition to the roles of mean and
variance, skewness tends to play a larger role compared to kurtosis.

The paper proceeds with a discussion of the influence of higher moments on the
utility derived from the final wealth of an investment in Sect. 2. This is followed
by an outline of the nonparametric approach to compute portfolio efficiency with
its extensions in Sect. 3. The results obtained with this approach for a selection of
univariate sorts of portfolios and various subperiods are presented and discussed in
Sect. 5. Beforehand, in Sect. 4 the data are explained in detail and statistical description
is provided. The results are summarized, and conclusions are drawn in the final Sect. 6.

2 Higher moments and utility

This section relates the higher moments of the returns distribution to the utility of the
investor holding a particular portfolio of assets (which may be stocks, bonds, funds
or portfolios). The exposition is mainly linked to Jondeau and Rockinger (2006), but
here, it is more strongly focused on the central utility motives of non-satiation, risk
aversion, prudence and temperance corresponding to the first four moments of the
returns distribution. For expositional convenience, we consider an investor holding a
portfolio of n risky assets with returns collected in the vector R = (R1, . . . , Rn)

′. The
returns are characterized by a joint distribution F(R). At the end of a particular period,
wealth is generated by W = 1 + x′R where x = (x1, . . . , xn)′ denotes a vector of
nonnegative portfolio weights summing to unity.

The utility derived from this wealth is given by the utility function u(W ). By a
Taylor approximation up to fourth order around the expected wealth E(W ), we get

u(W ) ≈ u(E(W )) + (W − E(W )) · u′(E(W )) + (W − E(W ))2

2! · u′′(E(W ))

+ (W − E(W ))3

3! · u′′′(E(W )) + (W − E(W ))4

4! · u′′′′(E(W )) (1)

for the utility function. The appropriate order of the Taylor approximation is not clear,
and adding more terms may even be harmful for the approximation quality under
certain circumstances (see Hlawitschka 1994). Dittmar (2002) provides evidence in
favor of a cubic pricing kernel which implies preferences over the first four moments
of the returns distribution.
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1438 J. J. Krüger

According toArrow (1971), investors generally have utility functionswith a positive
marginal utility of wealth (u′(·) > 0, implying non-satiation) decreasing marginal
utility of wealth (u′′(·) < 0, representing risk aversion) and non-increasing absolute
risk aversion. The latter property is associated with u′′′(·) > 0 and implies prudence as
a necessary condition. A prudent investor values precautionary savings as a protection
against loss. A further characteristic of the utility function is so-called temperance
associated with its fourth derivative u′′′′(·) < 0 (Gollier and Pratt 1996).

Taking expectations, we get

E(u(W )) ≈ u(E(W )) + 1

2
Var(W ) · u′′(E(W )) + 1

6
Skew(W ) · u′′′(E(W ))

+ 1

24
Kurt(W ) · u′′′′(E(W )) (2)

for expected utility. We see that expected utility is driven by the variance Var(W ) =
E((W − E(W ))2) representing risk and reducing expected utility for a risk-averse
investor. Skewness Skew(W ) = E((W−E(W ))3) is larger than zero if the probability
of large positive returns is larger than the probability of negative returns of the same
size (right-skewed distribution) and smaller than zero if the distribution of W is left-
skewed with a higher probability of below-mean returns. Stock returns are frequently
negatively skewed since very large losses are more likely than very large gains. The
importance of skewness has already been discussed byKraus and Litzenberger (1976).
They point out that expected utility increases with skewness for an investor with non-
increasing absolute risk aversion. Investors thus tend to have preference for positive
skewness. A larger value for kurtosis Kurt(W ) = E((W −E(W ))4) indicates a higher
probability for extreme market events associated with large gains or losses, therefore
representing tail heaviness.2 In the subsequent analysis, we will consider the three
relevant cases with a second, third and fourth order separately.

3 Computing portfolio efficiency

Starting point of this nonparametric approach to portfolio analysis was Morey and
Morey (1999) who were the first to integrate the optimization of the portfolio weights
into a nonparametric efficiency analysis framework. Their quadratic optimization pro-
grams are specified either to maximize mean return for the actual variance of an asset
or to minimize the variance for a given return. This mean–variance (MV) analysis
has been extended to a simultaneous enhancement of mean return and reduction in
variance by Briec et al. (2004). They use the device of the Luenberger (1992, 1995)
shortage function, also used as directional distance function (DDF) by Chambers et al.
(1996) for the formulation of the respective optimization problems. This framework

2 Usually, this is negatively valued by investors and is associated with the temperance motive discussed
above. As a general rule derived by Scott and Horvath (1980), investors with consistent preferences have a
preference for large oddmoments (mean, skewness) and small evenmoments (variance, kurtosis). Concern-
ing the weight of the moments, Scott and Horvath argue that kurtosis is of less importance since reducing
variance should also be instrumental for reducing kurtosis.
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Nonparametric portfolio efficiency measurement with higher… 1439

has been extended by Briec et al. (2004) to a mean–variance–skewness (MVS) analy-
sis and to a general moment space (including partial moments) by Briec and Kerstens
(2010). This also covers the mean–variance–skewness–kurtosis (MVSK) analysis.3

3.1 Portfolio moments

The treatment of portfolio choice is based on a vector of returns for a cross section
of n assets Ri , i = 1, . . . , n, stacked to a vector R = (R1, . . . , Rn)

′ with expectation
μ = E(R) and a covariance matrix V = Var(R) = E(r r ′) with r = R − μ.4

In addition to these first two moments, skewness and kurtosis may also be relevant
for portfolio selection, as explained above. For a scalar random variable Y , skewness
is defined as s = E((Y − μY )3) with μY = E(Y ). Positive (negative) skewness
s > 0 (s < 0) indicates a right-skewed (left-skewed) distribution with a higher
probability of large positive (negative) returns. In the case of a symmetric (about
the mean) distribution, we have s = 0. Scalar skewness can be estimated by ŝ =
T−1�T

t=1(yt − ȳ)3 for a time-series sample of observations yt , t = 1, . . . , T , and
ȳ = T−1�T

t=1yt . Scalar kurtosis is likewise defined as k = E((Y − μY )4) and can be
estimated by k̂ = T−1�T

t=1(yt − ȳ)4. It measures the extent of fat tails of a distribution
with k > 3σ 4 for fat-tailed distributions relative to the benchmark case of a normal
distribution. Fat tails are associated with a larger probability of extreme returns.

To deal with portfolio skewness, we need the n × n2 co-skewness matrix S =
E(r r ′⊗r ′)with elements of the type E(ri r j rh).5 This comprises not only the skewness
of asset i , i.e., E(r3i ), but also co-skewness elements of the sort E(r1r23 ) or E(r1r2r3),
for example. Likewise, we define the n×n3 co-kurtosis matrix K = E

(
r r ′ ⊗ r ′ ⊗ r ′)

with typical element E(rir j rhrl). An example for the specific arrangement of the co-
skewness and co-kurtosis terms in the matrices S and K can be found in Jondeau and
Rockinger (2006, p. 36) and is defined by the form of indexing used in (3).

These moments can be estimated by using a data sample for a vector of returns
Rt = (R1t , . . . , Rnt )

′, t = 1, . . . , T . Defining r t = (r1t , . . . , rnt )′ correspondingly
with rit = Rit − m̂i , t = 1, . . . , T , we estimate the mean vector and the moment
matrices (listed jointly with their typical elements) by

m̂ = T−1
T∑

t=1

Rt with m̂i = T−1
T∑

t=1

Rit

V̂ = T−1
T∑

t=1

r t r ′
t with v̂i, j = T−1

T∑

t=1

rit r j t

Ŝ = T−1
T∑

t=1

r t r ′
t ⊗ r ′

t with ŝi,n( j−1)+h = T−1
T∑

t=1

rit r j t rht

3 See Gourieroux and Monfort (2005) and Sentana (2009) for alternative econometric approaches and Lai
(1991) for a mathematical programming approach also taking account of skewness.
4 Alternatively, Ri may be interpreted as excess returns as in Joro and Na (2006).
5 As usual, ‘⊗’ denotes the Kronecker product. See Harville (2008, p. 337ff.) for the definition and rules.
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1440 J. J. Krüger

K̂ = T−1
T∑

t=1

r t r ′
t ⊗ r ′

t ⊗ r ′
t with k̂i,n2( j−1)+n(h−1)+l = T−1

T∑

t=1

rit r j t rhtrlt ,

(3)

respectively. We find the scalar moments of asset i at m̂i = m̂i , v̂i = V̂ i i , ŝi =
Ŝi,n(i−1)+i and k̂i = K̂ i,n(n+1)(i−1)+i .

There are many parameters to be estimated in higher moment matrices leading
to noisy estimates, and their number is growing with dimensionality. Shrinkage esti-
mation intends to improve estimation precision in terms of mean square error at the
expense of some bias. We perform a shrinkage estimation of the covariance matrix
and the higher moment matrices with shrinkage toward independence. Given inde-
pendence the co-skewness and co-kurtosis matrices in particular would have many
zeros and the estimator is shrunk towards this target. Shrinkage methods for covari-
ance matrix estimation are outlined by Ledoit and Wolf (2003, 2004) as well as by
Boudt et al. (2020a) and Martellini and Ziemann (2010) for higher moment matri-
ces (co-skewness and co-kurtosis). Computations are performed using the R-package
‘PerformanceAnalytics’ (Peterson and Carl 2020).

For an investor holding a portfolio of assets with shares 0 ≤ xi ≤ 1 (collected in
a vector x = (x1, . . . , xn)′ with

∑n
i=1xi = 1), we have a portfolio return of R(x) =∑n

i=1 xi Ri = x′R with expectationmp(x) = E (R(x)) = x′μ and variance vp(x) =
Var (R(x)) = x′Vx. Portfolio skewness is computed by sp(x) = Skew (R(x)) =
x′S(x ⊗ x) and portfolio kurtosis by kp(x) = Kurt (R(x)) = x′K (x ⊗ x ⊗ x).

For the portfolios defined by x, we estimate the portfolio moments by

m̂ p(x) = x′m̂ =
n∑

i=1

xi m̂i

v̂p(x) = x′V̂ x =
n∑

i=1

n∑

j=1

xi x j v̂i, j

ŝ p(x) = x′ Ŝ(x ⊗ x) =
n∑

i=1

n∑

j=1

n∑

h=1

xi x j xh ŝi,n( j−1)+h

k̂ p(x) = x′ K̂ (x ⊗ x ⊗ x) =
n∑

i=1

n∑

j=1

n∑

h=1

n∑

l=1

xi x j xhxl k̂i,n2( j−1)+n(h−1)+l (4)

with the notation clarifying the dependence on x.

3.2 Directional distance functions

The cornerstone of the nonparametric approach to portfolio efficiency measurement is
the so-called shortage function introduced by Luenberger (1992, 1995) in a production
context. Chambers et al. (1996) propose the same concept as a directional distance
function (DDF) for measuring the distance of an input–output point to the production
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frontier function along a particular direction. They have pointed out the interpretation
of the distance measure as an efficiency measure.

The methodological extension pursued in this work is to treat the direction vector
involved in computing the directional distances as a part of the optimization problem
for calculating the optimal distances to the portfolio frontier function which is inter-
preted as portfolio efficiency. The following exposition directly turns to the MVSK
case, while the MVS and MV cases can be easily obtained by deleting the respective
constraints for skewness and kurtosis.

The formal definition of the DDF is based on the admissible set of all nonnegative
vectors x summing up to unity,

P = {x ∈ R
n : x ≥ 0, 1′x = 1}, (5)

with 0 and 1 as conformable vectors of zeros and ones, respectively. Considering a
vector of portfolio moments z p(x), e.g., z p(x) = (mp(x),−vp(x))′ for the mean–
variance case (where the negative sign of the variance indicates that this moment is
to be minimized), the so-called disposal representation set is the admissible moment
space

D = {z ∈ R
|z| : x ∈ P, z ≤ z p(x)}, (6)

where |z| denotes the length of the vector z (i.e., 2 in the MV case, 3 in the MVS case
and 4 in the MVSK case).

The shortage function or DDF as our measure of portfolio efficiency is defined as

Sg(x) = sup{δ ≥ 0 : z p(x) + δg ∈ D} (7)

with the vector g controlling the direction in which moments are to be expanded or
contracted. In the mean–variance case, we would specify g1 > 0 and g2 < 0 to get
an expansion of the mean jointly with a contraction of the variance. The portfolio
efficiency measure δ (which actually is a measure of inefficiency) is to be maximized
simultaneously with x to find a point on the portfolio frontier function along the
direction g. In other words, the value of δ is chosen jointly with x to maximize the
moments along the direction g so that the vector z p(x)+δg remains inD and therefore
hits the frontier. For points on the frontier, we obtain δ = 0.

For computing the value of the shortage function, we use the basic DDF portfolio
optimization problem which can be stated as

max
δ,x

δ

s.t. m̂i + δgm ≤ m̂ p(x)

v̂i − δgv ≥ v̂p(x)

ŝi + δgs ≤ ŝ p(x)

k̂i − δgk ≥ k̂ p(x)

1′x = 1
x ≥ 0

(8)
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1442 J. J. Krüger

with the restriction x ≥ 0 excluding the possibility of short sales.6 In addition, the
vector of portfolio weights is required to sum to unity 1′x = 1. If specific institu-
tional restrictions on trading in a market exist, these could be introduced by additional
restrictions of the general form Ax ≤ b. Program (8) has to be computed for each
asset i ∈ {1, . . . , n} under consideration.7

The directions gm , gv , gs , gk (now assuming all ≥ 0) collected in the vector
g = (gm, gv, gs, gk)′ are to be supplied by the analyst. A frequent choice in the
literature is to base the directions on the moments of the asset i under evaluation,
i.e., g = (|m̂i |, v̂i , |ŝi |, k̂i )′. In the subsequent empirical application, we compute (8)
for the single fixed direction with maximizing only the mean (g = (|m̂i |, 0, 0, 0)′)
minimizing only the variance (g = (0, v̂i , 0, 0)′) maximizing only the skewness
(g = (0, 0, |ŝi |, 0)′) or minimizing only the kurtosis (g = (0, 0, 0, k̂i )′) as derived
from the effect of the moments on expected utility (2). All these choices share the
particular advantage of making the efficiency measure δ invariant to units of measure-
ment. This measure can then be interpreted as a percentage improvement of a single
moment or of a mixture of all moments.8

We also treat a case named as fixed where the direction vector is specified as
g = (|m̂i |, v̂i , |ŝi |, k̂i )′ and allows computing the distance to the portfolio frontier
function in the direction of simultaneously increasingmean and skewnesswhile reduc-
ing variance and kurtosis. The label ‘fix’ is here to be understood in the sense of being
fixed for the specific values of the moments of asset i under evaluation but not in
the sense of being fixed across the different assets in the sample. In particular, this
direction vector is not the result of an optimal choice of the directions. This optimal
choice is considered next.

3.3 Endogenous direction choice

The choice of the direction vector exerts an influence on the measured portfolio
efficiency. In this respect, Kerstens et al. (2012) discuss several ways to choose
the direction vector for mean–variance problems. They conclude that the choice of
direction vector affects the relative ranking of the portfolios. However, they are not
determining an optimal choice of the direction vector. In the following, we pursue this
methodological extension. It is inspired by the work on direction choice for directional
distance functions outside of portfolio efficiency analysis by Färe et al. (2013) and
Hampf and Krüger (2015) in particular.

6 In general, restrictions on x could be: (a) x ≥ 0 if lending and borrowing at a risk-free rate are possible,
(b) x ≥ 0 and 1′x ≤ 1 if only lending is possible, (c) x ≥ 0 and 1′x = 1 if neither lending nor borrowing
is possible. Cases (a) and (b) require the presence of a riskless asset which could be achieved by basing
the analysis on excess returns, see Joro and Na (2006). The exclusion of short sales is sensible since short
sales are often legally restricted or prohibited at all. In addition, allowing short sales leads to a much
greater dispersion of the portfolio weights and to an exaggeration of measurement error as demonstrated
by Jagannathan and Ma (2003).
7 This program can be viewed as an extension of the quadratic optimization programs to compute pure
mean–variance portfolio frontiers á la (Markowitz 1959).
8 As an example, we would obtain δi = (m̂ p(xi ) − m̂i )/|m̂i | for the pure mean maximizing case with xi
denoting the solution value for x in the case of asset i .
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To endogenize the direction choice, we introduce weights α = (αm, αv, αs, αk)
′ for

the directions into the optimization problem (8) and treat these weights as additional
parameters to be optimized. This leads to the modified program

max
δ,α,x

δ

s.t. m̂i + δαm |m̂i | ≤ m̂ p(x)

v̂i − δαvv̂i ≥ v̂p(x)

ŝi + δαs |ŝi | ≤ ŝ p(x)

k̂i − δαk k̂i ≥ k̂ p(x)

1′x = 1
x ≥ 0
1′α = 1
α ≥ 0

(9)

where the direction weights α are restricted to be nonnegative and to sum to unity.
This restriction is necessary to identify δ.

Program (9) is a nonlinear program anyway because of the nonlinear dependence of
the portfolio moments on x, see (4). In addition, the products of δ with the α weights
can lead to instability of the numerical optimization procedure. Therefore, we actually
solve an equivalent and presumably numerically more stable nonlinear program

max
γ ,x

1′γ
s.t. m̂i + γm |m̂i | ≤ m̂ p(x)

v̂i − γvv̂i ≥ v̂p(x)

ŝi + γs |ŝi | ≤ ŝ p(x)

k̂i − γk k̂i ≥ k̂ p(x)

1′x = 1
x ≥ 0
γ ≥ 0

(10)

with the endogenous direction weights now contained in the parameter vector γ =
(γm, γv, γs, γk)

′. Comparing (9) and (10), we immediately see the relation 1′γ =
δ ·1′α = δ (since 1′α = 1 in (9)) which allows computing δ and retrieving α j = γ j/δ,
j ∈ {m, v, s, k}.9 Hence, the target function value represents the same efficiency
measure.

The computations are done using a sequential quadratic programming (SQP)
algorithm for nonlinearly constrained gradient-based optimization by Kraft (1994).
This algorithm solves a sequence of quadratic programming approximations and is
able to deal with both equality and inequality constraints. For the procedure, we
need the derivatives ∂mp/∂x = μ, ∂sp/∂x = 2Vx, ∂sp/∂x = 3S(x ⊗ x) and
∂kp/∂x = 4K (x ⊗ x ⊗ x). Details of the derivation can be found in the Appendix.
We use the implementation in the R-package ‘nloptr.’10 The programs prove to be

9 A similar idea related to the so-called directional Färe–Lovell efficiency measure is discussed in a pro-
duction context by Briec (2000) and in a portfolio setting by Kerstens et al. (2011a).
10 See http://ab-initio.mit.edu/wiki for further details on the package and the algorithms.
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computationally very well behaved. Briec and Kerstens (2010) discuss conditions for
the existence of a global optimum and the possibility of local optima. Starting several
times from randomly drawn starting configurations leads only to minor changes of the
solutions.

4 Fama–French portfolios

For the empirical application, we use the data which provide the basis for the influ-
ential work of Fama and French (e.g., 1993, 1995, 1996, 2015) on market efficiency.
These data are generously provided by Kenneth French on his homepage, where the
full details of the definitions can be found.11 To keep the presentation of the results
manageable, we stick to the univariate sorts of stocks into portfolios by their market
equity, book-to-market ratio, operating profitability and investment. These portfolios
are used to form the four factors in addition to market excess returns in the five-factor
model of Fama and French (2015). We use the value-weighted returns for these sorts
formed on quintiles and add the returns of the market portfolio as a further asset.

In particular, we use the following portfolios as assets (with their self-explanatory
abbreviations):

• MKT: Returns of a broad value-weighted index as the market portfolio, formed on
the universe of all CRSP firms incorporated in the USA and listed on the NYSE,
AMEX or NASDAQ.

• ME1, ME2, ME3, ME4, ME5: Portfolios formed on size as measured by market
equity quintiles at the end of June each year, including all NYSE, AMEX and
NASDAQ stocks for which we have market equity data for June.12

• BM1, BM2, BM3, BM4, BM5: Portfolios formed on quintiles of the book-to-
market equity ratio at the end of June each year.

• OP1,OP2,OP3,OP4,OP5: Portfolios formedonquintiles of operating profitability
(annual revenues minus cost of goods sold, interest expense, and selling, general,
and administrative expenses divided by book equity for the last fiscal year) at the
end of June each year.

• INV1, INV2, INV3, INV4, INV5: Portfolios formed on quintiles of investment
(defined as the change in total assets from the fiscal year ending in year t − 2 to
the fiscal year ending in t − 1, divided by total assets in t − 2) at the end of June
each year.

Used are the monthly returns data over the period July 1963 until February 2020 for
these 21 portfolios. Data from this archive is also used in other work on nonpara-
metric portfolio efficiency analysis, e.g., Brandouy et al. (2010) and Branda (2015).
Measurement errors and outliers may have detrimental effects on the estimation of
the moments of the returns distribution. Chopra and Ziemba (1993) demonstrate the
effects ofmeasurement errors on the selection of optimal portfolios in amean–variance
framework. For dealing with this potential problem, we rely on the method of Boudt

11 To be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
12 The quintiles are indicated by 1 to 5 corresponding to the labels Lo20, Qnt2, Qnt3, Qnt4, Hi20 in the
original data files.
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et al. (2008) who propose an algorithm usingmethods from robust statistics tomitigate
the influence of outliers. This method is preferred to using so-called L-moments as in
Kerstens et al. (2011b). In addition and as outlined above, shrinkage estimation is used
as a further device to reduce the effects of estimation error on the moment estimates.

Table 1 reports descriptive statistics for the monthly returns series over the entire
sample period which are used for the subsequent computations. Note that the Boudt
et al. (2008) method for cleansing the data is used here for the entire time series,
whereas it is applied to the observations of each of the subperiods in the subsequent
analysis. Reported are the minimum, median, maximum, mean, standard deviation,
skewness coefficient, kurtosis coefficient, Jarque–Bera normality test (Jarque and
Bera 1980) first-order autocorrelation coefficient, and the ERS unit-root test outcome
(Elliott et al. 1996) for each of the 21 portfolio returns.

We find positive mean and median returns for all portfolios, while the dispersion
is quite large. Skewness is negative, and the kurtosis coefficient is larger than three
throughout. Analogous descriptive statistics without cleansing (results not shown)
reveal that means and standard deviations are about the same, but the returns are more
negatively skewed, and kurtosis is larger for all portfolios (i.e., median kurtosis is
about 5). Both skewness and kurtosis lead to strong rejections of normality for all
portfolios by the Jarque–Bera test. Regarding temporal dependence, we recognize a
rather low degree of first-order autocorrelation, except maybe for the portfolio ME1
where autocorrelation is nearly 0.2. This finding corresponds to the strong rejections
of the unit-root hypothesis by the ERS test.

5 Results

We consider the frontier functions for four subperiods. These subperiods are defined
by relying on the stock market history of the USA as discussed in chapter 1 of Shiller
(2015) and by Engle (2009, p. 94ff.). To support this discussion, Fig. 1 shows the
time series of the Standard and Poors 500 performance index. The data at monthly
frequency are retrieved from Yahoo Finance.13 The time-series length is restricted to
the period since July 1963 when the portfolio data are also available.

The figure shows the index time series together with the NBER recession bars14

indicated by gray shades and major stock market events marked by vertical solid lines.
These are (from left to right) the first oil price shock (January 1973), the BlackMonday
stock market crash (October 1987), the burst of the dot-com bubble (March 2000),
the bankruptcy of Lehman Brothers (September 2008), the stock market selloff just
before the Greece stock market crash (September 2015) and the global stock market
downturn after September 2018.

The dashed vertical lines define the four periods for which we perform the non-
parametric portfolio analysis and discuss the results subsequently. These periods are
characterized as follows:

13 Used is the series ‘GSPC Historical Prices | S&P 500 Stock–Yahoo! Finance’ at monthly frequency.
14 Based on information from the NBER to be found at www.nber.org/cycles.
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Fig. 1 S&P 500 time series

• Period 1 (1963:7–1982:7): This is the period before the start of the Millennium
Boom phase, including the 1974/5 recession.

• Period 2 (1982:8–2000:8): This period is associated with a rapidly rising index
disturbed by several crises such as the so-called Millennium Boom (or Bubble)
including the October 1987 crash, the Tequila crisis of 1994, the Asian currency
crisis of 1996/97, the October 1997 anniversary crash and the LTCM/Russian
default crisis of 1998.

• Period 3 (2000:9–2009:2): This period is a period of stagnation and decline. It
includes 9/11, the ownership society boom 2003-7 and the world financial crisis
2008/9 leading into the Great Recession.

• Period 4 (2009:3–2020:2): This is the boom period since March 2009, fueled
by expansive monetary policy and low interest rates, only interrupted by two
temporary downturns.

We see that the four periods are rather different regarding the specific events and the
factors driving the stockmarket development. In particular, periods 2 and 4 aremarked
boom phases of stock market development.

Table 2 reports the means, standard deviations, skewness and kurtosis coefficients
for the returns across all portfolios (jointly with their standard deviations) for the
four periods. The first period is characterized by a small mean, a comparably large
standard deviation, skewness near zero and excess kurtosis. By contrast, the second
period with the Millennium Boom is characterized by a much larger mean return, a
slightly smaller standard deviation, more negative skewness and about the same degree
of excess kurtosis. The third period is more similar to the first but has a negative mean
return, the largest standard deviation, the smallest (in the sense of most negative)
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Table 2 Moments in the subperiods

Period: Mean Standard deviation Skewness Kurtosis
Mean Sdev Mean Sdev Mean Sdev Mean Sdev

1963:7–1982:7 0.77 0.21 4.74 0.71 − 0.06 0.09 3.78 0.15

1982:8–2000:8 1.58 0.11 4.37 0.53 −0.22 0.08 3.81 0.31

2000:9–2009:2 − 0.20 0.34 4.99 0.84 −0.69 0.16 3.68 0.38

2009:3–2020:2 1.38 0.08 4.27 0.68 −0.21 0.12 3.42 0.19

skewness and also some excess kurtosis. Finally, the fourth period after the decay
of the Great Recession is a pronounced stock market boom phase with a large mean
return, a standard deviation comparable to the second period, small skewness and mild
excess kurtosis.

The presentation of the results of the portfolio efficiency analysis is structured in
the following three subsections. First, we show the MV frontiers for the four periods.
Then, we analyze the results for the nonparametric portfolio efficiency measures for
the MV, MVS and MVSK cases with fixing single directions towards the frontier at
either mean or variance or skewness or kurtosis. Finally, we turn to the results with the
efficiency determined in all relevant directions, either fixed or endogenously chosen
by optimization.

5.1 Mean–variance frontiers

Figure 2 shows themean–variance frontier functions for the four periods defined above
jointly in a single plot. The efficient portfolio frontiers are computed by quadratic pro-
gramming using the Rmetrics suite [Würtz et al. (2009) in the R-package ‘fPortfolio’]
and relying on the method of Goldfarb and Idnani (1983). The efficient part of the
frontier is depicted as a solid line, whereas the inefficient part is plotted in dashes.
The positions of the individual portfolios are indicated by dots and their abbrevia-
tions defined above. We find the four frontier functions to be separated with the best
performance during periods 2 (red) and 4 (green) with the highest means and the low-
est dispersion of variances. The worst performance is found in period 3 (blue) with
very small and even negative returns and the largest dispersion of variances. Period 1
(black) is located between these extremes.

We find quite large heterogeneity of the portfolio positions relative to the efficient
frontier. Consistently on the frontier or close to the frontier during periods 1 and 3
are mainly the portfolios formed by stocks with small equity and high book-to-market
ratios. During the boom periods 2 and 4, these portfolios are farther away from the
frontier. Instead, the portfolios consisting of firms with lower investment and higher
operating profitability are either on the frontier or close to the frontier.

Concerning the individual portfolios,we alwaysfind themarket portfolio in between
the others, although, admittedly, this is not always easy to spot visually. This is quite
natural since the market portfolio is constructed from a value-weighted average of all
returns, whereas the other portfolios are formed from systematically selected subsets.
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Fig. 2 Mean–variance frontier functions

The portfolios formed on size (i.e., market equity) ME1 to ME5 are quite dispersed
with the lowest variances for the largest stocks (ME5) and the largest variances for
the smallest stocks (ME1). We observe a weakly positive association of mean and
variance for these portfolios in periods 1 and 3, while the association appears to be
weakly negative in periods 2 and 4.

For the portfolios formed on book-to-market equity ratio, BM1 to BM5, we find
BM1 among the portfolios with the lowest mean returns in periods 1 and 3, and in-
between in the other periods. BM5, with the highest book-to-market ratio, is among
the portfolios with the largest mean returns and a medium variance (with the most
recent period being somewhat exceptional).

In the case of the portfolios formed on operating profitability, OP1 to OP5, we
observe lower variances, with the separation of the low profitability stocks in OP1
in period 3. The association of mean and variance across these portfolios is clearly
negative in periods 3 and 4. In contrast, the association is rather unclear in periods
1 and 2. The lowest profitability stocks in OP1 are consistently far away from the
efficient frontier.
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Finally, concerning the portfolios formed on investment, INV1 to INV5, the stocks
in the fifth quintile with the highest investment (INV5) perform considerably worse in
terms of their mean–variance relation compared to the stocks with smaller investment
for all periods. This is different for the portfolios with lower investment, such as INV2
and INV3, which are quite close to the efficient frontier in all periods. An explanation
may be that investments are frequently associated with adjustment costs caused by the
reorganization within the firms and need time for becoming productive and leading to
profits.

5.2 Single fixed directions

Figure 3 shows profile lines for the δ-values resulting from the efficiencymeasurement
in a single fixed direction. The directions are tuned to the pure cases of mean maxi-
mization only (δm only), variance minimization only (δv only), skewness maximization
only (δs only) and kurtosis minimization only (δk only). The direction vectors for these
four cases used in the computation of program (8) are specified as g = (|m̂i |, 0, 0, 0)′,
g = (0, v̂i , 0, 0)′, g = (0, 0, |ŝi |, 0)′, g = (0, 0, 0, k̂i )′ for portfolio i . The rows of
the figure pertain to the four periods, and the columns pertain to the configuration
of moments considered in the portfolio efficiency measurement (MV, MVS, MVSK).
The abscissa lists the portfolios proceeding from the market portfolio to the portfo-
lios sorted on market equity, book-to-market value, operating profitability and finally
investment. On the ordinate, the respective δ-values are connected by the profile lines.

For the profile lines resulting from the MV analysis in the first column, we observe
a larger portfolio inefficiency in the mean direction (solid line) during periods 1 and
3. These are the more stagnant phases of stock market development characterized
by several crises leading to the Great Recession as seen from Fig. 1. The variance
direction (dashed line) is more relevant during periods 2 and 4 which are the boom
phases. Here, the portfolios tend to be farther away from the frontier in the variance
direction, while they are closer to the frontier in the mean direction.

This corresponds to the configurations analyzed in Fig. 2, where we also observe
relatively larger distances to the frontier in the vertical direction for periods 1 and 3
and relatively larger horizontal distances for periods 2 and 4. We also find zero or very
low δ-values more frequently occurring for particular portfolios, revealing that these
portfolios are on or close to the frontier. These tend to be portfolios consisting of small
stocks (e.g., ME1 or ME2) of stocks with high book-to-market ratios (e.g., BM4 or
BM5) of stocks with high operating profitability (e.g., OP5) and low investment (e.g.,
INV1 or INV2).

When the skewness dimension is added to compute the distances toward the MVS
frontier which are shown in the second column, some major changes are visible. The
profile lines of the δ-values in the skewness-only direction, shown by the dash-dotted
lines, appear to be dominating in all except the third period where the distances are
larger in the mean-only direction. During that particularly turbulent period, the large
firm portfolios are much farther away from the frontier in the mean direction even
when skewness is taken into account. The portfolios on or close to the frontier are
similar to those of the MV case, i.e., the small rather than large stocks, high rather
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Fig. 3 δ-Values for single fixed directions

than low book to market, high rather than low profitability and low rather than high
investment portfolios.

Introducing kurtosis to reach a full MVSK analysis for which the results reported
in the third column does not lead to major changes of that pattern. The dotted profile
line for the kurtosis-only variant either rests on a low level or does not exert a large
impact on the other profile lines when compared to the MVS analysis. In the boom
periods 2 and 4, the dotted lines are somewhere between the dashed and the dash-
dotted lines for the variance-only and skewness-only cases, respectively. Hence, there
is a certain distance to the frontier recognizable in the kurtosis direction, but this has
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only a minor effect on the distances in the other directions. This resembles the finding
that adding skewness to a mean–variance analysis has a much larger impact on the
analysis than adding kurtosis (see Briec and Kerstens 2010). From the findings here,
one may conjecture that the addition of kurtosis does open a distinct dimension in
which some portfolios are closer to the frontier than others but does not alter the space
spanned by the other three moments substantially.

5.3 Multiple and optimized directions

We now turn from the consideration of directions pertaining to a single moment to
the analysis with multiple directions combining increasing mean and skewness with
decreasing variance and kurtosis toward the frontier function. The direction vector
is either fixed at g = (|m̂i |, v̂i , |ŝi |, k̂i )′ for portfolio i in program (8) in the MVSK
case or endogenously determined by the optimization in program (10). The direction
vectors for the MV and MVS cases are g = (|m̂i |, v̂i )′ and g = (|m̂i |, v̂i , |ŝi |)′,
respectively. These variants with fixed multiple and optimized directions lead to the
efficiency measures indicated by δfix and δopt, respectively.

In Fig. 4, these measures are plotted in the same way as previously with the four
periods in the rows and the three moment configurations in the columns. We immedi-
ately see that the profile lines for the fixed directions lead to the smaller δ-values as
compared to the profile lines with the direction determined to maximize δ (with the
exception of the efficient portfolios where the optimal direction vector is indetermi-
nate).

The profile lines are now overall closer to the zero line, and correspondingly, the
portfolios are overall closer to being efficient in periods 2 and 4 compared to periods
1 and 3. The more efficient portfolios tend to be again those identified previously,
i.e., the small, high book to market, high profitability and low investment portfolios.
We again find larger changes of the profile lines when moving from MV to MVS
compared to moving from MVS to MVSK. Thus, the impact of adding skewness is
considerable, while the impact of adding kurtosis is minor. Overall, the level of the
profile lines increases as more moments are considered.

Correspondingly, Fig. 5 depicts the optimal direction weights γ from solving pro-
gram (10). When compared to the solutions for the δ-values from the single directions
in Fig. 3, we find a close resemblance of the dominating profile lines.

In this respect, we find a larger distance in the direction of an increasing mean for
period 1 in the MV case as well as in period 3 for all three configurations of moments.
The distance is larger in the direction of reducing variance for most portfolios in the
boom periods 2 and 4 in the MV case. Adding skewness shows that the distance to the
frontier is considerable in the direction of increasing skewness in all periods except the
third. Again, it appears that adding kurtosis seems to add a really distinct dimension.
We observe considerable magnitudes of the direction weights in the kurtosis direction,
while theweights for the other directions remain largely unaffected. This is particularly
evident for the boom phases in the second and the fourth period.

Portfolio management can retrieve substantial information from the results. The δ-
value indicates the extent of the overall possible improvement of portfolio efficiency.
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Fig. 4 δ-values for multiple and optimized directions

It represents the distance of theMVSK position of the portfolio under consideration to
an efficient point on the frontier function. The γ -values give a dissection of the overall
portfolio efficiency in the directions of the moments under consideration. This can
be analyzed for single directions (i.e., the distance to the frontier if just one moment
is maximized or minimized) or in all directions with an optimally chosen mix. In
addition, the x-weights show to which extent other portfolios or assets are used to
construct the efficient point on the portfolio frontier function.

To illustrate this further, we look at the results for portfolio ME1 in the final
period in greater detail. The actual moment estimates (m̂i , v̂i , ŝi , k̂i ) for i = ME1
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Fig. 5 γ -values for optimized directions

are (1.29, 30.44,−33.64, 2733.19). From the solution of the nonlinear program (10)
with endogenous direction choice, we obtain an inefficiency measure of δi = 2.389
which is the sum of the γ -values (0.092, 0.575, 0.920, 0.802). These values show that
ME1 is quite close to the frontier regarding themean return, farther away regarding risk
(variance) and even more distant regarding the higher moments. An improvement of
the utility from an investment in these directionswould be possible by increasing return
slightly, reducing variance substantially as well as increasing skewness and reducing
kurtosis by larger margins. The point on the frontier function reached bymoving along
the direction given by the γ -values has the coordinates (1.41, 12.93,−2.69, 541.84)
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stated in the order of the moments. This point can be replicated by a convex combina-
tion of 6 portfolios ME5 (0.10) BM1 (0.20) BM2 (0.27) OP4 (0.18) OP5 (0.17) and
INV3 (0.08), where the x-weights are stated in parentheses and all other weights are
equal to zero.

6 Conclusion

In this work, we pursue a nonparametric approach adapted from the literature on
the measurement of productive efficiency using directional distance functions to the
problem of determining optimal distances to portfolio frontier functions in multi-
ple dimensions. This approach permits the straightforward incorporation of higher
moments beyond mean and variance. We find that this nonparametric approach leads
to several interesting findings.

First, we find that the efficient (or close to efficient) portfolios are those composed
of small stocks, those with a high book-to-market ratio, those with a high operating
profitability as well as those with low investment. This pattern is quite consistent
across all moment configurations. Second, in the mean–variance setting we find larger
distances to the frontier in a dominatingmean direction for themore stagnating periods.
In contrast, the distances to the frontier are much larger in the variance direction for
the booming periods. Third, adding the skewness dimension reveals a large role for
skewness in the sense of many portfolios being far away from the frontier in this
direction (except for one subperiod where the distances in the mean and variance
directions remain considerable). Fourth, adding the kurtosis dimension appears not to
be as important as adding skewness. The results not change much compared to the
mean–variance–skewness setting.

One deficiency of the above analysis is that the portfolio optimization programs
are purely deterministic and prone to be sensitive to outliers. Such outliers are surely
present in the form of stock market crashes. In the analysis of this paper, the possible
effect of those outliers is mitigated by cleansing the returns series before computing
the moments as well as by using shrinkage estimators for the second, third and fourth
moments. Future research could deal with this issue in another way by attempting to
adapt stochastic methods for estimating directional distance functions as proposed by
Simar and Vanhems (2012) and Simar et al. (2012) to the portfolio setting. Another
promising line of research would be the exploration of the predictive content in the
distances to the portfolio frontier, and the specific directions in which these distances
are established. Those investigations could proceed along the lines of the research
surveyed by Rapach and Zhou (2013).
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Appendix

In this appendix, we provide the details of the calculation of the derivatives of portfolio
mean, variance and in particular skewness and kurtosis with respect to the portfolio
weights. In the literature, this is usually claimed to be straightforward [see, e.g., Jon-
deau andRockinger (2006, p. 37)] and nowhere spelled out in detail. The present author
only found this to be straightforward after recognizing the specific problem structure
here. To beware others from spending much time on replicating these results, we spell
out the calculations in full detail here.

For the portfolio mean mp = x′μ, we immediately obtain ∂mp/∂x = μ. Likewise
for the portfolio variance vp = x′Vx, we easily get ∂vp/∂x = 2Vx since V is a
symmetric square matrix (see Harville (2008) or Magnus and Neudecker (1999)).

The derivative of the portfolio skewness sp = x′S(x ⊗ x) is less straightforward
and requires paying attention to the specific structure of S = E

(
r r ′ ⊗ r ′). Since

x′S(x ⊗ x) = E
(
x′(r r ′ ⊗ r ′)(x ⊗ x)

) = E
(
x′r r ′x ⊗ r ′x

) = E (y · y · y)

with y = r ′x being scalar, we can apply the product rule of differentiation and the
Kronecker product rules (A ⊗ B ⊗ C)(x ⊗ x ⊗ x) = Ax ⊗ (B ⊗ C)(x ⊗ x) =
Ax ⊗ Bx ⊗ Cx forwards and backwards [assuming conformable matrices A, B
and C, see Harville (2008, p. 341)]. Acknowledging the equivalence of ordinary
multiplication and the Kronecker product for scalar factors we obtain

∂sp
∂x

= E

(
∂

∂x
y · y · y

)

= E

(
∂ y

∂x
· y · y + y · ∂ y

∂x
· y + y · y · ∂ y

∂x

)

= 3E

(
∂ y

∂x
· y · y

)

= 3E
(
r · r ′x · r ′x

)
using

∂ y

∂x
= ∂ r ′x

∂x
= r

= 3E
(
r r ′x ⊗ r ′x

)

= 3E
(
(r r ′ ⊗ r ′)(x ⊗ x)

)

= 3E
(
r r ′ ⊗ r ′) (x ⊗ x)

= 3S(x ⊗ x).

The same reasoning can be applied to calculate the derivative for portfolio kurtosis
kp = x′K (x ⊗ x ⊗ x). Here, we have K = E

(
r r ′ ⊗ r ′ ⊗ r ′), and thus,

x′K (x ⊗ x ⊗ x) = E
(
x′(r r ′ ⊗ r ′ ⊗ r ′)(x ⊗ x ⊗ x)

)
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= E
(
x′r r ′x ⊗ r ′x ⊗ r ′x

) = E (y · y · y · y)

with y = r ′x being scalar as above. Using the same approach as above for skewness,
we get:

∂kp
∂x

= E

(
∂

∂x
y · y · y · y

)

= E

(
∂ y

∂x
· y · y · y + y · ∂ y

∂x
· y · y + y · y · ∂ y

∂x
· y + y · y · y · ∂ y

∂x

)

= 4E

(
∂ y

∂x
· y · y · y

)

= 4E
(
r · r ′x · r ′x · r ′x

)
again using

∂ y

∂x
= ∂ r ′x

∂x
= r

= 4E
(
r r ′x ⊗ r ′x ⊗ r ′x

)

= 4E
(
(r r ′ ⊗ r ′ ⊗ r ′)(x ⊗ x ⊗ x)

)

= 4E
(
r r ′ ⊗ r ′ ⊗ r ′) (x ⊗ x ⊗ x)

= 4K (x ⊗ x ⊗ x).
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