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Abstract
An important aspect of optimization algorithms, for instance evolutionary algorithms, are ter-
mination criteria that measure the proximity of the found solution to the optimal solution set.
A frequently used approach is the numerical verification of necessary optimality conditions
such as the Karush–Kuhn–Tucker (KKT) conditions. In this paper, we present a proximity
measure which characterizes the violation of the KKT conditions. It can be computed easily
and is continuous in every efficient solution. Hence, it can be used as an indicator for the
proximity of a certain point to the set of efficient (Edgeworth-Pareto-minimal) solutions and
is well suited for algorithmic use due to its continuity properties. This is especially use-
ful within evolutionary algorithms for candidate selection and termination, which we also
illustrate numerically for some test problems.

Keywords Multiobjective optimization · KKT approximation · Proximity measure

Mathematics Subject Classification 90C26 · 90C29 · 90C46 · 90C59

1 Introduction

In applications, one often has to deal with not only one but multiple objectives at the same
time. This leads to multi-objective optimization problems. Then it is the aim to find globally
optimal solutions, called efficient solutions, for such optimization problems using optimiza-
tion algorithms, e.g., evolutionary algorithms as proposed in [6].

Especially evolutionary algorithms are often considered to be able to overcome regions
with only locally efficient solutions and to generate points close to the global Pareto front,
i.e., close to the image set of all globally efficient solutions. An important aspect in such
algorithms is then the questionwhen the algorithm can finally be stopped as one is sufficiently
close to the Pareto front. For that decision, for instance in [7] and [10], proximity measures
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for termination have been examined by Deb, Dutta and co-authors. We follow this line of
research for multi-objective problems, and we do this without the detour of scalarization.

A necessary condition for being efficient is to satisfy necessary optimality conditions, at
least under certain constraint qualifications. This can also be used, based on the results of
this paper, to evaluate the proximity of the generated points to the Pareto front: a necessary
condition for being close to the Pareto front is that certain necessary optimality conditions
are satisfied at least approximately.

In this paper we present two proximity measures which characterize the approximate
fulfillment of the so-called Karush–Kuhn–Tucker (KKT) conditions. They can be used for
candidate selection and, what is more, as a termination criterion for evolutionary algorithms,
similar as proposed in [7] and [10]. In particular, proximity measures can be used in addition
to already implemented techniques within evolutionary algorithms. We will show that the
presented proximity measures are continuous in every efficient solution. Thereby we only
assume the objective and constraint functions to be continuously differentiable and that some
constraint qualifications hold. The continuity implies that when the algorithmproduces points
which come closer and closer to the Pareto front then also the values of the measure decrease
continuously to zero.

Of course, proximity measures can also be used for deterministic algorithms. Within
iterative approaches, an abort has to be done after a finite number of iterations. Hence, an
approach to checkwhether the solution found by the algorithm is actually an efficient solution
or at least an approximately efficient solution is needed in this case as well.

Finding exactKKTpoints canbe ahard task, in particularwhenusing computer algorithms.
A common approach to handle this problem is to relax the KKT conditions and we will also
do this within this paper. Within the last decade, several concepts for such a relaxation have
been presented. An often followed approach is to provide a sequence of points that satisfy
some relaxed KKT conditions and to show convergence of this sequence towards a KKT
point.

Such a relaxation are the Approximate-KKT conditions, which were presented in 2011 in
[3] for single-objective optimization problems. Those are satisfied for a feasible point if there
exists a sequence of Lagrange multipliers and not necessarily feasible points such that the
KKT error decreases to 0 in the limit of this sequence, which is also called AKKT sequence.
This concept was extended to multi-objective optimization problems in [14] and [12].

The idea to use a relaxed version of KKT points to define proximity measures (also called
error measures) appears more recently in [10] for single-objective optimization problems.
There, the relaxation of KKT points are so-called ε-KKT and modified ε-KKT points. Their
definition does no longer rely on a sequence of points but only on a single feasible point. The
authors propose to use a proximitymeasurewhich is based on this relaxation and hence, based
on the KKT error. A possibility to use this approach also for multi-objective optimization is
to first scalarize the vector-valued optimization problem to a single-objective optimization
problem, which was discussed in [7], [2], and [1]. Within this paper, we avoid the detour of
a scalarization. The concept of (modified) ε-KKT points has also been extended to multi-
objective optimization problems without using scalarization in [9] and [18], but no proximity
measure was derived so far.

In all these papers the authors only show that anAKKT sequence or a convergent sequence
of modified ε-KKT points with ε → 0 indeed converges towards a KKT point. However, in
practice, for instance within an evolutionary algorithm, one generates a sequence for which
one does not know whether it consists of modified ε-KKT points with ε → 0 or is an AKKT
sequence. Still, one wants to know if the points of the sequence come close to a KKT point.
With the results of this paper we give a necessary condition for that. Thus, if the proximity
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measure is too large, the points of the generated sequence are for sure not close to an efficient
solution and the algorithm should not be stopped.

Thereby, it is important that the proximity measure is continuous in the efficient solutions.
Otherwise, the value of the measure could be large for points being arbitrarily close to an
efficient solution and could drop to zero only in the efficient solution itself.

So while in the literature for AKKT points and (modified) ε-KKT points it is shown that
a sequence with certain properties converges to a KKT point, we will show that a sequence
that converges to an efficient solution (which is a KKT point under constraint qualifications)
has certain properties. Thus, for our new proximity measures in this paper we will show that
they converge (and decrease to zero) for any such sequence.

As a consequence, the value of the presented proximity measures can be used as an indi-
cator for non-efficiency as a point with positive value for the proximity measure is definitely
not an efficient solution. Hence, for evolutionary algorithms, a small value of the proximity
measure could be added as a criterion within candidate selection or as an additional termi-
nation criterion. In other words, we will show that a small value of the proximity measure is
a necessary condition for being close to an efficient solution.

For the remainingpart of this paperwe start in Sect. 2with somenotations anddefinitions as
well as the problem formulation andwe recall basic results to necessary optimality conditions.
In Sect. 3, we briefly discuss the concept of modified ε-KKT points from [10] and [18]. Then,
we introduce our new proximitymeasures formulti-objective optimization problems. Finally,
in Sect. 4, some numerical results for the proposed proximity measure for candidate selection
are presented.

2 Notations and basic definitions

Within this paper, for a positive integer n ∈ N we use the notation [n] := {1, . . . , n}. For a
differentiable function f : Rn → R

m the Jacobian matrix of f at x ∈ R
n is Df (x). Now let

x, x̃ ∈ R
n . Then ≤ and < are meant component-wise, i.e.

x ≤ x̃ ⇔ xi ≤ x̃i for all i ∈ [n],
x < x̃ ⇔ xi < x̃i for all i ∈ [n].

We focus on multi-objective optimization problems with inequality constraints. We denote
by fi : Rn → R, i ∈ [m] the objective functions and by g j : Rn → R, j ∈ [p] the constraint
functions. We also write f = ( f1, . . . , fm) and g = (g1, . . . , gp). The multi-objective
optimization problem of this paper is then defined by

min
x∈Rn

f (x) s.t. g(x) ≤ 0. (CMOP)

We denote the feasible set by S = {
x ∈ R

n
∣∣ g(x) ≤ 0

}
and assume that it is a nonempty

set.Moreover, for x ∈ R
n the active index set is I (x) := {

j ∈ [p] ∣∣ g j (x) = 0
}
. All functions

fi , g j for i ∈ [m], j ∈ [p] are assumed to be continuously differentiable. Optimality for
(CMOP) is defined as follows.

Definition 2.1 A point x̄ ∈ S is called an efficient or an Edgeworth-Pareto-minimal solution
for (CMOP) if there exists no x ∈ S with

fi (x) ≤ fi (x̄) for all i ∈ [m],
f j (x) < f j (x̄) for at least one j ∈ [m].
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A point x̄ ∈ S is called a weakly efficient or a weakly Edgeworth-Pareto-minimal solution
for (CMOP) if there exists no x ∈ S with

fi (x) < fi (x̄) for all i ∈ [m].
Every efficient solution x̄ ∈ S is also weakly efficient. If all objective functions fi , i ∈ [m]
are strictly convex and the set S is convex, then every weakly efficient solution x̄ ∈ S is also
an efficient solution.

In unconstrained single-objective optimization, i.e., for S = R
n andm = 1, a well known

necessary optimality condition is ∇ f (x̄) = 0. For necessary optimality conditions in con-
strained optimization, i.e., for the KKT conditions, it is known that a constraint qualification
has to hold for an optimal solution x̄ to guarantee that the necessary optimality conditions are
satisfied. Several constraint qualifications are used in the literature. We use here the Abadie
Constraint Qualification (Abadie CQ) as it is quite general and as it is implied by other
well-known constraint qualifications as the LICQ or MFCQ as explained below.

Thus, we shortly recall the definition of the contingent cone as well as the linearized
contingent cone to the set S at some point x̄ ∈ cl(S). So let S ⊆ R

n be a nonempty set as
defined above and x̄ ∈ cl(S). Then the contingent cone at S in x̄ is given as

T (S, x̄) :=
⎧
⎨

⎩
d ∈ R

n
∣∣∣∣

∃(xi )N ⊆ S, (λi )N ⊆ int(R+) :
x̄ = lim

i→∞ xi , d = lim
i→∞ λi (x

i − x̄)

⎫
⎬

⎭
.

Moreover, the linearized (contingent) cone is given by

T lin(S, x̄) :=
{
d ∈ R

n
∣∣ ∇g j (x̄)


d ≤ 0 ∀ j ∈ I (x̄)
}

.

It always holds T (S, x̄) ⊆ T lin(S, x̄). We say that the Abadie CQ holds for some x̄ ∈ S if

T (S, x̄) = T lin(S, x̄).

In case of affine linear constraint functions g j , j ∈ [p] the Abadie CQ is satisfied for all
x ∈ S. Often stronger constraint qualifications than theAbadie CQ are used as those are easier
to verify. One of them is the Mangasarian-Fromovitz Constraint Qualification (MFCQ). We
say that the MFCQ is satisfied for some x̄ ∈ S if there exists a direction d ∈ R

n such that
∇g j (x̄)
d < 0 for all j ∈ I (x̄). Another well known constraint qualification is the Linear
Independence Constraint Qualification (LICQ) which is satisfied for some x̄ ∈ S if for all
j ∈ I (x̄) the gradients ∇g j (x̄) are linearly independent. For these constraint qualifications
it holds

LICQ ⇒ MFCQ ⇒ Abadie CQ.

Finally, if all constraint functions g j , j ∈ [p] are convex, another useful constraint quali-
fication is Slater’s Constraint Qualification (Slater’s CQ). It is satisfied if there exists some
x∗ ∈ S such that g(x∗) < 0. If Slater’s CQ is satisfied, then the Abadie CQ holds for all
feasible points x̄ ∈ S. In this paper, in general neither the objective functions fi , i ∈ [m] nor
the constraint functions g j , j ∈ [p] are assumed to be convex.

For x ∈ R
n, η ∈ R

m , and λ ∈ R
p the following conditions

m∑

i=1

ηi∇ fi (x) +
p∑

j=1

λ j∇g j (x) = 0, (KKT1)
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g(x) ≤ 0, (KKT2)

λ ≥ 0, (KKT3)

λ
g(x) = 0, (KKT4)

η ≥ 0, (KKT5)

m∑

i=1

ηi = 1 (KKT6)

are called Karush–Kuhn–Tucker (KKT) conditions. If a tuple (x, η, λ) satisfies those six
conditions, it is called a KKT point for (CMOP) and η and λ are called multipliers. Under
the Abadie CQ (or any other of the stronger constraint qualifications as given above) we get
the following necessary optimality condition for (CMOP), see [16, Satz 2.35].

Theorem 2.2 Let x̄ ∈ S be a weakly efficient solution for (CMOP) and let the Abadie CQ
hold at x̄ . Then there exist multipliers η̄ ∈ R

m+ and λ̄ ∈ R
p
+ such that (x̄, η̄, λ̄) is a KKT point.

This result can also be found in the literature by using the so-called Cottle Constraint
Qualification in [19,Corollary 3.2.10] andbyusing theKuhn–TuckerConstraintQualification
in [11, Theorem 3.21] and [21, Theorem 3.5.3].

Note that no convexity is required for the necessary optimality condition given in Theo-
rem 2.2. One obtains similar necessary optimality conditions by making use of a weighted
sum scalarization of (CMOP). However, then convexity is needed: in case of convex objective
and constraint functions, for any weakly efficient solution x̄ ∈ S there exist weights ηi ∈ R+,
i ∈ [m], which also satisfy (KKT6), such that x̄ also minimizes

min
x∈S

m∑

i=1

ηi fi (x). (2.1)

The necessary optimality conditions to (2.1) are similar to the KKT conditions for (CMOP)
above, but they only hold in case of convexity. We illustrate the difference with the next
example.

Example 2.3 The point x̄ := (1/
√
2, 1/

√
2)
 is an efficient solution for the non-convex

multi-objective optimization problem

min{(x1, x2)
 | 1 − (x21 + x22 ) ≤ 0, −x1 ≤ 0, −x2 ≤ 0}.
There exist no weights w1, w2 ≥ 0, w1 + w2 = 1, such that x̄ minimizes the weighted-sum
scalarization of this multi-objective optimization problem, i.e., the problem

min{w1x1 + w2x2 | 1 − (x21 + x22 ) ≤ 0, −x1 ≤ 0, −x2 ≤ 0}.
However, there exist multipliers η̄ ∈ R

2+ and λ̄ ∈ R
3+ such that (x̄, η̄, λ̄) is a KKT point: For

η̄1 = η̄2 = 1

2
, λ̄1 = 1

2
√
2
, λ̄2 = λ̄3 = 0

the KKT conditions for (CMOP) are satisfied. This illustrates that for the KKT conditions
for (CMOP) no convexity assumption is required.
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In the special case of unconstrained multi-objective optimization problems the KKT con-
ditions reduce to

m∑

i=1

ηi∇ fi (x) = 0, (KKT1′)

η ≥ 0, (KKT5)

m∑

i=1

ηi = 1. (KKT6)

In this particular setting, x ∈ R
n is also called Pareto critical if there exists η ∈ R

m such that
(x, η) satisfies (KKT1′), (KKT5), and (KKT6), see [13].

Only for giving a sufficient optimality condition for (CMOP) we need assumptions on the
convexity of the problem. Recall that a continuously differentiable function fi : Rn → R is
called pseudoconvex if it holds for all x, y ∈ R

n

∇ fi (x)

(y − x) ≥ 0 ⇒ fi (y) ≥ fi (x).

It is called quasiconvex if it holds for all x, y ∈ R
n and λ ∈ [0, 1]

fi (λx + (1 − λ)y) ≤ max{ fi (x), fi (y)}.
Every continuously differentiable convex function is also pseudoconvex and quasiconvex.
Using these convexity concepts, we obtain a sufficient optimality condition which can also
be found in [17, Corollary 7.24].

Lemma 2.4 Let x̄ ∈ S, fi be pseudoconvex for all i ∈ [m] and g j be quasiconvex for all
j ∈ I (x̄). If there exist multipliers η̄ ∈ R

m+ and λ̄ ∈ R
p
+ such that (x̄, η̄, λ̄) is a KKT point,

then x̄ is weakly efficient for (CMOP). In case the functions fi , i ∈ [m] are even strictly
convex, this is sufficient for x̄ to be efficient for (CMOP).

Again, we want to point out that for the remaining part of this paper there are no convexity
assumptions concerning the functions fi , i ∈ [m] and g j , j ∈ [p] unless otherwise stated.
Finally, we recall a basic result on the convergence of sequences which we need in the proof
of our main result later on.

Lemma 2.5 Let a sequence (xi )N ⊆ R
n and a point x̄ ∈ R

n be given. If for all subsequences
(xik )k∈N of (xi )N there exists a subsubsequence (xikl )l∈N such that

lim
l→∞ xikl = x̄,

then the original sequence (xi )N converges to x̄ as well, i.e. lim
i→∞ xi = x̄ .

Proof Assume that (xi )N does not converge to x̄ . Then there exists an ε > 0 such that for all
k ∈ N there exists an ik > k with

∥∥xik − x̄
∥∥ ≥ ε. This implies that the subsequence (xik )k∈N

of (xi )N cannot have any subsubsequence (xikl )l∈N with

lim
l→∞ xikl = x̄ .

Hence, the assumption does not hold and (xi )N converges to x̄ . ��
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3 Proximity measures

Asmotivated in the introduction,wewant to provide a proximitymeasurewhich characterizes
the fulfillment of a necessary optimality condition. Moreover, it should be easy to compute
and provide good numerical properties as we want to use it with optimization algorithms,
e.g., evolutionary algorithms. First, we present the desired properties of such a proximity
measure in the next definition.

Definition 3.1 A function ω : Rn → R is called a proximity measure if for every efficient
solution x̄ ∈ S of (CMOP) in which the Abadie CQ holds and every sequence (xi )N ⊆ R

n

with

lim
i→∞ xi = x̄

the following three properties are satisfied:

(PM1) ω(x) ≥ 0 for all x ∈ R
n ,

(PM2) ω(x̄) = 0,
(PM3) lim

i→∞ ω(xi ) = ω(x̄).

While properties (PM1) and (PM2) are quite easy to realize, property (PM3) is more
challenging. It ensures that a proximity measure ω is continuous at least in every efficient
solution x̄ ∈ S of (CMOP) in which the Abadie CQ holds. Hence, we can expect a proximity
measure to have small values locally around every efficient solution. This makes it suitable
for applications, e.g., for termination or candidate selection in evolutionary algorithms. Con-
vergence statements also appear in [10] and [18]. However, these statements only hold for
certain sequences (xi )N or rely on stronger assumptions, e.g., convexity of the objective and
constraint functions. Whenever a function ω is a proximity measure in the sense of Defini-
tion 3.1, then property (PM3) holds for any sequence (xi )N (converging towards an efficient
solution x̄ in which the Abadie CQ holds).

Next to the three properties from Definition 3.1, we also aim to provide a non-trivial
proximity measure, i.e., not to choose ω ≡ 0, as such a proximity measure would provide
no additional information for optimization algorithms. In the introduction of [7], the authors
presented an example for a naively defined candidate ω̂ for a proximity measure based on
the KKT conditions to motivate their further examinations. For all x ∈ S this is

ω̂(x) := min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∥∥∥∥∥∥

m∑

i=1

ηi∇ fi (x) +
∑

j∈I (x)
λ j∇g j (x)

∥∥∥∥∥∥
∈ R+

∣∣∣∣∣∣∣∣∣∣

η ∈ R
m+,

λ ∈ R
p
+,

m∑

i=1

ηi = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We shortly recall the numerical example from [7] which illustrates that this function does
not satisfy property (PM3) in general. This also shows that more effort is needed to find a
suitable proximity measure, i.e., a function that is not only based on KKT conditions but also
satisfies the properties from Definition 3.1.

Example 3.2 We consider the constrained multi-objective optimization problem

min
x∈R2

f (x) =
(
f1(x)
f2(x)

)
:=

⎛

⎝
x1

1 + x2
1 − (x1 − 0.5)2

⎞

⎠ s.t. 0 ≤ x1, x2 ≤ 1. (P1)
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Fig. 1 Function α �→ ω̂(xα)

The set of efficient solutions for this problem is

E := {
x ∈ R

2
∣∣ x1 ∈ [0, 0.5], x2 = 0

}
. (3.1)

A sequence of feasible points (xα) ⊆ S is given by

xα =
(
0.2
α

)
for α ∈ [0, 1].

Using (3.1), we derive that the only efficient solution in this sequence is x0 = (0.2, 0)
, in
which also the Abadie CQ is satisfied. With the Euclidean norm in the definition of ω̂ we
obtain

ω̂(xα) ≥ 0.2 for all α ∈ (0, 1). (3.2)

Hence, there exists a sequence (xα) ⊆ S and an efficient solution x0 such that lim
α→0

xα = x0.

But for the function ω̂ by (3.2) it holds

lim
α→0

ω̂(xα) �= 0 = ω̂(x0)

so that property (PM3) is not satisfied, and ω̃ is not a proximity measure.
In Fig. 1, it can be seen that ω̂ is not continuous at the efficient solution x0 ∈ S of (P1). This

is exactlywhat wewant to prevent andwhywe introduced property (PM3) inDefinition 3.1. It
is also important to notice that the function values ω̂(xα), α �= 0 aremonotonically increasing
for α decreasing to 0. Hence, the closer we get to the efficient solution x0, the higher the
function value gets, whereas a proximity measure should return values close to zero.

In [7] the authors used a scalarization approach to further investigate proximity measures
for (CMOP). Moreover, they did not check the properties (PM1), (PM2), and (PM3). In
the remaining part of this section, we first recall a proximity measure from the literature
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for single-objective optimization problems. After that, in Sect. 3.2, we introduce a new
proximity measure for the multi-objective problem (CMOP) based on the results from the
single-objective case. This new measure is not based on a scalarization approach. Finally,
another new proximity measure with simpler structure will be introduced in Sect. 3.3. That
proximity measure is especially useful for optimization algorithms as it can be computed by
solving a linear optimization problem only.

3.1 Single-objective case

For m = 1, the problem (CMOP) is a constrained single-objective optimization problem
which we denote by (CSOP). In the single-objective case, it is not common to use the term
efficient solution for an optimal solution, but to use the term minimal solution. For the
remaining part of Sect. 3.1 we follow this convention.

As already mentioned in the introduction, in general it is a hard task to compute exact
KKT points. Therefore, different relaxations have been presented in the literature. One of
these relaxations are the so-called modified ε-KKT points. This concept was introduced in
[10]. Those modified ε-KKT points can be seen as a relaxation of KKT points where a small
deviation concerning the KKT conditions is allowed. In [10] the objective and constraint
functions have not been assumed to be differentiable but only Lipschitz continuous, and the
definitions used Clarke’s subdifferential, see [4]. With the assumptions of our paper, this
leads to the following definition.

Definition 3.3 Let x ∈ S be a feasible point for (CSOP) and ε > 0. If there exist x̂ ∈ R
n and

λ ∈ R
p
+ with

(i)
∥∥x̂ − x

∥∥ ≤ √
ε,

(ii)

∥∥∥∥∥
∇ f (x̂) +

p∑

j=1
λ j∇g j (x̂)

∥∥∥∥∥
≤ √

ε,

(iii)
p∑

j=1
λ j g j (x) ≥ −ε,

then x is called a modified ε-KKT point for (CSOP).

Based on this concept, the authors from [10] introduced a candidate for a proximity
measure that we present in the following definition.

Definition 3.4 A function ω̃ : Rn → R based on modified ε-KKT points is given as

ω̃(x) := inf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∈ R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥∥x̂ − x
∥∥ ≤ √

ε,
∥∥∥∥∥∥
∇ f (x̂) +

p∑

j=1

λ j∇g j (x̂)

∥∥∥∥∥∥
≤ √

ε,

p∑

j=1

λ j g j (x) ≥ −ε,

g j (x) ≤ ε for all j ∈ [p],
λ ∈ R

p
+, x̂ ∈ R

n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for all x ∈ R
n .
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The proximity measure in its formulation in [10] is only defined on the feasible set S.
To match our Definition 3.1 of proximity measures, we added the constraints g j (x) ≤ ε,
j ∈ [p]. First, we show that properties (PM1) and (PM2) are satisfied for ω̃.

Lemma 3.5 The function ω̃ satisfies (PM1) and (PM2).

Proof By definition we have ω̃(x) ≥ 0 for all x ∈ R
n and hence, property (PM1) holds.

Now let x̄ ∈ S be a minimal solution for (CSOP) in which the Abadie CQ holds. Then
property (PM2) is satisfied by Theorem 2.2. ��

As already mentioned, our focus in this paper is on property (PM3). While it has not been
examined in [10], in the following theorem we show that this property does indeed hold for
ω̃.

Theorem 3.6 The function ω̃ satisfies property (PM3).

Proof Let x̄ ∈ S be a minimal solution for (CSOP) in which the Abadie CQ holds and
(xi )N ⊆ R

n a sequence of points with limi→∞ xi = x̄ . We are interested in the sequence
(ω̃(xi ))N and aim to apply Lemma 2.5. Let (xik )k∈N be a subsequence of (xi )N which will
be denoted by (x p)N, i.e., (ω̃(x p))N is a subsequence of (ω̃(xi ))N. We now construct a
subsequence of (x p)N, and hence of (ω̃(x p))N, and show that ω̃ converges to 0 on this
subsequence.

As x̄ is a minimal solution for (CSOP), by Theorem 2.2 there exists λ̄ ∈ R
p
+ such that

(x̄, 1, λ̄) is a KKT point. Hence, (KKT1),(KKT2), and (KKT4) hold which implies that

∇ f (x̄) +
p∑

j=1

λ̄ j∇g j (x̄) = 0,
p∑

j=1

λ̄ j g j (x̄) = 0, g(x̄) ≤ 0. (3.3)

Now let ε > 0. All functions g j , j ∈ [p] and the objective function f are continuously
differentiable. Hence, every composition of those continuous functions and their continuous
derivatives is continuous itself. So there exists δ1ε > 0 such that for all x ∈ R

n with ‖x − x̄‖ ≤
δ1ε it holds that

∥∥∥∥∥∥
∇ f (x) +

p∑

j=1

λ̄ j∇g j (x) −
⎛

⎝∇ f (x̄) +
p∑

j=1

λ̄ j∇g j (x̄)

⎞

⎠

∥∥∥∥∥∥
≤ √

ε. (3.4)

Moreover, there exists δ2ε > 0 such that for all x ∈ R
n with ‖x − x̄‖ ≤ δ2ε it holds that

∣∣∣∣∣∣

p∑

j=1

λ̄ j g j (x) −
p∑

j=1

λ̄ j g j (x̄)

∣∣∣∣∣∣
≤ ε. (3.5)

Finally, there exists δ3ε > 0 such that for all x ∈ R
n with ‖x − x̄‖ ≤ δ3ε it holds that

∣∣g j (x) − g j (x̄)
∣∣ ≤ ε for all j ∈ [p]. (3.6)
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Now define δε := min{δ1ε , δ2ε , δ3ε } > 0. Then for all x ∈ R
n with ‖x − x̄‖ ≤ δε by (3.4),

(3.5), (3.6), and (3.3) it holds that
∥∥∥∥∥∥
∇ f (x) +

p∑

j=1

λ̄ j∇g j (x)

∥∥∥∥∥∥
≤ √

ε,

p∑

j=1

λ̄ j g j (x) ≥ −ε,

g j (x) ≤ ε for all j ∈ [p].

(3.7)

As (x p)N converges to x̄ , there exists pε ∈ Nwith ‖x p − x̄‖ ≤ δε for all p ≥ pε . Hence, for
all p ≥ pε we obtain from (3.7) that ε, x̂ p = x p , and λ = λ̄ is feasible for the optimization
problem for ω̃(x p) as given in Definition 3.4. This implies that ω̃(x p) ≤ ε.

Now let (εn)N ⊆ int(R+) be a monotonically decreasing sequence with limn→∞ εn = 0.
Then for all n ∈ N there exists pn = pεn ∈ N such that

ω̃(x pn ) ≤ εn .

Moreover,without loss of generality,we can assume that for alln ∈ N it holds that pn+1 > pn .
This is just a result of what was discussed above. So there exists a subsequence (x pn )n∈N of
(x p)p∈N = (xik )k∈N with

0 ≤ ω̃(x pn ) ≤ εn for all n ∈ N.

As εn → 0 and using the squeeze theorem and (PM2) this leads to

lim
n→∞ ω̃(x pn ) = 0 = ω̃(x̄).

Overall, for every subsequence (ω̃(xik ))k∈N= (ω̃(x p))N of (ω̃(xi ))N there exists a subsub-
sequence (ω̃(xikl ))l∈N (described by (ω̃(x pn ))n∈N above) with

lim
l→∞ ω̃(xikl ) = 0 = ω̃(x̄). (3.8)

Finally, with Lemma 2.5

lim
i→∞ ω̃(xi ) = 0 = ω̃(x̄).

��
In the following, we give a brief comparison of our results to those in [10]. Then, in the

next section, we extend the results to the case with multiple objectives. The main difference
is that in [10] not the proximity measure ω̃ was examined but (modified) ε-KKT points and
sequences of (modified) ε-KKT points. One of their main results is [10, Theorem 3.6]. For
that let (εi )i∈N ⊆ R+ be a sequence which converges to 0 and let (xi )N ⊆ S be a sequence
of feasible points which converges to x̄ . The theorem states that if in x̄ ∈ R

n a certain CQ
holds and, most of all, if xi is a modified εi -KKT point for all i ∈ N, then x̄ is a KKT point.

This result says that a convergent sequence of modified ε-KKT points with ε decreasing to
0 converges to a KKT point. Instead, we have shown that for any sequence of (not necessarily
feasible) points that converges to a minimal solution (in which a CQ holds and which is thus
a KKT point) the value of ω̃ has to converge to 0. For the feasible points of that sequence,
this implies that they are a sequence of modified ε-KKT points with ε decreasing to 0.
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For evolutionary algorithms that are used to solve (CSOP), we usually expect them to
generate a sequence (xi )N ⊆ R

n that converges to a minimal solution x̄ ∈ S. For such
algorithms it is important to have a criterion to decide when to terminate. In other words one
needs a criterion to decide whether the current point xi , i ∈ N should be improved or not.
We have shown that a small value of ω̃ is at least a necessary condition for being close to
a minimal solution. Hence, if ω̃(xi ) is not small then xi should possibly be improved. As a
consequence, a small value of ω̃ can be used as termination criterion. This is not the case
regarding the result in [10] as it already assumes that (xi )N ⊆ R

n is a sequence of modified
ε-KKT points with ε decreasing to 0.

Another main result of [10] is their Theorem 3.5 which states that when all functions f ,
g j , j ∈ [p] are convex, Slater’s CQ holds, and x ∈ S is feasible and satisfies

f (x) ≤ inf
x ′∈S

f (x ′) + ε,

then x is a modified ε-KKT point.
This result can be used to show that for any minimal solution x̄ ∈ S of (CSOP) and any

sequence (xi )N ⊆ S of feasible points converging to x̄ , it holds

lim
i→∞ ω̃(xi ) = ω̃(x̄).

This is closely related to (PM3) from Definition 3.4. However, for our result no convexity
assumptions are needed.

3.2 A first approach for multi-objective problems

A possible approach to find proximity measures for the multi-objective optimization problem
(CMOP) (withm ≥ 2) is to generalize the results from the single-objective case fromSect. 3.1.
While no proximity measures were presented in [18], the authors there did generalize the
concept of modified ε-KKT points from Definition 3.3 as follows.

Definition 3.7 Let x ∈ S be a feasible point for (CMOP) and ε > 0. If there exist x̂ ∈
R
n, η ∈ R

m+, and λ ∈ R
p
+ with

(i)
∥∥x̂ − x

∥∥ ≤ √
ε,

(ii)

∥∥∥∥∥

m∑

i=1
ηi∇ fi (x̂) +

p∑

j=1
λ j∇g j (x̂)

∥∥∥∥∥
≤ √

ε,

(iii)
p∑

j=1
λ j g j (x) ≥ −ε,

(vi)
m∑

i=1
ηi = 1,

then x is called a modified ε-KKT point for (CMOP).

Again, we adapted the definition to fit our assumption of differentiability. In [18, Theorem
3.4] it was shown that for a sequence (xi )N of modified ε-KKT points with ε decreasing to
0 and limi→∞ xi = x̄ , the point x̄ is a KKT point. As for instance evolutionary algorithms
generate an arbitrary sequence of points, for which it is typically not guaranteed that the
points are modified ε-KKT points, this result is not necessarily usable for such applications.
A more applicable result when having evolutionary algorithms in mind is presented in [9].
There, a relation between so-called weakly ε-efficient solutions and modified ε-KKT points
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was given. For ε > 0, a feasible point x̄ ∈ S is called weakly ε-efficient solution for (CMOP)
with respect to d ∈ int(Rm+), ‖d‖ = 1 if there is no x ∈ S with

f (x) + εd < f (x̄).

The following theorem is an adaption of [9, Theorem 3.7], where the result was proven in a
more general setting.

Theorem 3.8 Consider (CMOP) with convex functions fi , i ∈ [m], g j , j ∈ [p] and let
Slater’s CQ be satisfied, i.e., there exists x∗ ∈ S with g(x∗) < 0. Then every weakly ε-
efficient solution for (CMOP) with respect to d ∈ int(Rm+) is also a modified ε-KKT point.

Weakly ε-efficient solutions x̄ ∈ S have images f (x̄) which are close to the image of the
set of all weakly efficient solutions for (CMOP). By Theorem 3.8, a necessary condition (in
case of Slater’s CQ and convexity) for this ‘ε-closeness’, i.e., for x̄ to be weakly ε-efficient,
is that x̄ is a modified ε-KKT point. This can be used as a selection or termination criterion
in evolutionary algorithms. Such a relation as in Theorem 3.8 was also shown for the single-
objective case in [10, Theorem 3.5], see the discussion on page 12. The downside of this
result is that it requires convexity of the functions.

We now introduce a new proximity measure for which we need no convexity assumption
to prove (PM1)–(PM3). Thereby we generalize the concept which was used in Definition 3.4
for the single-objective case.

Definition 3.9 A function ω : Rn → R based on modified ε-KKT points is given as

ω(x) := inf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∈ R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥∥x̂ − x
∥∥ ≤ √

ε,
∥∥∥∥∥∥

m∑

i=1

ηi∇ fi (x̂) +
p∑

j=1

λ j∇g j (x̂)

∥∥∥∥∥∥
≤ √

ε,

p∑

j=1

λ j g j (x) ≥ −ε,

m∑

i=1

ηi = 1,

g j (x) ≤ ε for all j ∈ [p],
η ∈ R

m+, λ ∈ R
p
+, x̂ ∈ R

n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for all x ∈ R
n .

We show that this function ω is indeed a proximity measure. We first state that proper-
ties (PM1) and (PM2) hold.

Lemma 3.10 The function ω satisfies (PM1) and (PM2).

Proof By definition we have ω(x) ≥ 0 for all x ∈ R
n and hence, property (PM1) holds.

Now let x̄ ∈ S be an efficient solution for (CMOP) in which the Abadie CQ holds. Then
property (PM2) is satisfied by Theorem 2.2. ��

In addition to property (PM2), we can also show a stronger relation between the zeros of
ω and (exact) KKT points of (CMOP).

Lemma 3.11 For any x ∈ R
n it holds that ω(x) = 0 if and only if there exist η ∈ R

m+ and
λ ∈ R

p
+ such that (x, η, λ) is a KKT point.
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Proof Let x ∈ R
n with ω(x) = 0. This is the case if and only if x ∈ S and there exist

η ∈ R
m+, λ ∈ R

p
+ with

m∑

i=1

ηi∇ fi (x) +
p∑

j=1

λ j∇g j (x) = 0,
p∑

j=1

λ j g j (x) = 0,
m∑

i=1

ηi = 1,

i.e., (x, η, λ) is a KKT point. ��

Finally, we show that property (PM3) is satisfied for ω as well. This implies that ω is
indeed a proximity measure.

Theorem 3.12 The function ω satisfies (PM3).

Proof Let x̄ ∈ S be an efficient solution for (CMOP) in which the Abadie CQ holds, (xi )N ⊆
R
n a sequence with limi→∞ xi = x̄ and (xik )k∈N a subsequence of (xi )N which will be

denoted by (x p)N. As in the proof of Theorem 3.6, we construct a subsequence of (x p)N and
show that ω converges to 0 on this subsequence.

As x̄ is efficient for (CMOP), there exist η̄ ∈ R
m+ and λ̄ ∈ R

p
+ such that (x̄, η̄, λ̄) is a KKT

point by Theorem 2.2. Hence, (KKT1), (KKT2), (KKT4), and (KKT6) hold which implies
that

m∑

i=1

η̄i∇ fi (x̄) +
p∑

j=1

λ̄ j∇g j (x̄) = 0,
p∑

j=1

λ̄ j g j (x̄) = 0,
m∑

i=1

η̄i = 1, g(x̄) ≤ 0. (3.9)

Now let ε > 0. All functions fi , i ∈ [m] and g j , j ∈ [p] are continuously differentiable.
Thus, every composition of these continuous functions and their continuous derivatives is
continuous itself. So there exists δ1ε > 0 such that for all x ∈ R

n with ‖x − x̄‖ ≤ δ1ε it holds
that

∥∥∥∥∥∥

m∑

i=1

η̄i∇ fi (x) +
p∑

j=1

λ̄ j∇g j (x) −
⎛

⎝
m∑

i=1

η̄i∇ fi (x̄) +
p∑

j=1

λ̄ j∇g j (x̄)

⎞

⎠

∥∥∥∥∥∥
≤ √

ε. (3.10)

Moreover, there exists δ2ε > 0 such that for all x ∈ R
n with ‖x − x̄‖ ≤ δ2ε it holds that

∣∣∣∣∣∣

p∑

j=1

λ̄ j g j (x) −
p∑

j=1

λ̄ j g j (x̄)

∣∣∣∣∣∣
≤ ε. (3.11)

Finally, there exists δ3ε > 0 such that for all x ∈ R
n with ‖x − x̄‖ ≤ δ3ε it holds that

∣∣g j (x) − g j (x̄)
∣∣ ≤ ε for all j ∈ [p]. (3.12)
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Now define δε := min{δ1ε , δ2ε , δ3ε } > 0. Then for all x ∈ R
n with ‖x − x̄‖ ≤ δε by (3.10),

(3.11), (3.12), and (3.9) it holds that
∥∥∥∥∥∥

m∑

i=1

η̄i∇ fi (x) +
p∑

j=1

λ̄ j∇g j (x)

∥∥∥∥∥∥
≤ √

ε,

p∑

j=1

λ̄ j g j (x) ≥ −ε,

m∑

i=1

η̄i = 1,

g j (x) ≤ ε for all j ∈ [p].

(3.13)

As (x p)N converges to x̄ , there exists pε ∈ N with ‖x p − x̄‖ ≤ δε for all p ≥ pε . Hence,
for all p ≥ pε we obtain from (3.13) that ε, x̂ p = x p , η = η̄, and λ = λ̄ define a feasible
point for the optimization problem for ω(x p) as given in Definition 3.9, which implies
ω(x p) ≤ ε. Now by taking a sequence (εn)N ⊆ int(R+)with limn→∞ εn = 0 as in the proof
of Theorem 3.6, we can construct a subsequence (x pn )n∈N of (x p)p∈N = (xik )k∈N with
0 ≤ ω(x pn ) ≤ εn for all n ∈ N. With the same arguments as in the proof of Theorem 3.6,
we obtain

lim
i→∞ ω(xi ) = 0 = ω(x̄)

and thus ω satisfies property (PM3). ��
At the beginning of this section, in Example 3.2, a naively definition of a candidate for a

proximity measure was presented. This candidate function ω̂ was not a proximity measure.
In particular, it was not continuous in every efficient solution in which the Abadie CQ holds.
We now reconsider the problem (P1) from Example 3.2 and illustrate the advantages of ω

compared to ω̂.

Example 3.13 We consider again the constrained multi-objective optimization problem (P1)
from Example 3.2 and the sequence of feasible points (xα) ⊆ S.

The values for ω(xα) are shown in Fig. 2. The function ω is continuous in x0, what
corresponds to α = 0. Moreover, for α < 0.6 the function values ω(xα) are monotonically
decreasing to zero.

3.3 An easy to compute proximity measure

Although ω is a proximity measure in the sense of Definition 3.1, it is not really suited for
computation. In general, the functions x̂ �→ Dg(x̂) and x̂ �→ Df (x̂) are nonlinear and even
nonconvex. This makes solving the optimization problem to computeω(x) for x ∈ R

n a hard
task.

The introduction of x̂ in the definition of ω is a result of the weaker assumptions used in
[18] and [9] (as well as in [10] for the single-objective case). All functions have not been
assumed to be necessarily continuously differentiable but only locally Lipschitz continuous.
Hence, the gradients of those functions do not necessarily exist in all feasible points. This
is why the authors used the generalized gradient as presented by Clarke in [4]. However,
the generalized gradient is not really suited for computation and a proximity measure should
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Fig. 2 Function α �→ ω(xα)

thus avoid using it. This is why x̂ was introduced. By Rademacher’s theorem every Lipschitz
continuous function is differentiable almost everywhere. As all functions fi , i ∈ [m] and
g j , j ∈ [p] are at least locally Lipschitz, this motivates that near to x ∈ S there should be
a x̂ ∈ R

n where those functions are differentiable and the generalized gradients could be
replaced by gradients as in Definition 3.7.

However, in our paper, the functions are assumed to be continuously differentiable. Thus,
it is possible to evaluate the gradients at every x̂ ∈ R

n and especially at x̂ = x . We will take
this idea of fixing x̂ = x as a starting point to define a new relaxation of KKT points. This
approach was already briefly mentioned in [7] for single-objective optimization but without
any further examination. The new relaxation of KKT points for (CMOP) which we introduce
next is called simplified ε-KKT points.

Definition 3.14 Let x ∈ S be a feasible point for (CMOP) and ε > 0. If there exist η ∈ R
m+

and λ ∈ R
p
+ with

(i)

∥∥∥∥∥

m∑

i=1
ηi∇ fi (x) +

p∑

j=1
λ j∇g j (x)

∥∥∥∥∥∞
≤ ε,

(ii)
p∑

j=1
λ j g j (x) ≥ −ε,

(iii)
m∑

i=1
ηi = 1,

then x is called a simplified ε-KKT point for (CMOP).

The term ‘simplified’ is chosen as it is a simplified version of Definition 3.7, and as the
corresponding proximity measure, which we will introduce shortly, can be computed easier.
Compared to Definition 3.7 we have not only removed x̂ from the definition but also replaced√

ε by ε and fixed the norm to the maximum norm in (i). As a consequence, in our new
proximity measure, the function value at x only relies on the evaluation of g, Df , and Dg
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at x itself and the optimization problem to compute the value of this proximity measure can
easily be formulated as a linear optimization problem.

Definition 3.15 Define a function ωs : Rn → R based on simplified ε-KKT points by

ωs(x) := min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∈ R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥

m∑

i=1

ηi∇ fi (x) +
p∑

j=1

λ j∇g j (x)

∥∥∥∥∥∥∞
≤ ε,

p∑

j=1

λ j g j (x) ≥ −ε,

m∑

i=1

ηi = 1,

g j (x) ≤ ε for all j ∈ [p],
η ∈ R

m+, λ ∈ R
p
+

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for all x ∈ R
n .

We can show that ωs is indeed a proximity measure. This can be done analogously to
the proofs of Lemma 3.10 and Theorem 3.12. In particular, fixing the norm to the maximum
norm and replacing

√
ε by ε has no effect concerning the proofs which rely on continuity

statements and which already used x̂ = x . Also the characterization of exact KKT points
from Lemma 3.11 holds for ωs . We summarize these results in the following theorem.

Theorem 3.16 The function ωs is a proximity measure. Moreover, for any x ∈ R
n it holds

that ωs(x) = 0 if and only if there exist η ∈ R
m+ and λ ∈ R

p
+ such that (x, η, λ) is a KKT

point.

Not all results for modified ε-KKT points can easily be transferred to simplified ε-KKT
points. For instance, the proof of Theorem 3.8 which can be found in [9] relies on Ekeland’s
variational principle. Hence, the relation cannot directly be extended as we would have to
ensure x = x̂ for that case. Whether such a statement can be found or not is an open question.

4 Numerical results

In [10] the authors investigated the behavior of their proximity measure (which we also
presented as ω̃ in Definition 3.4) for single-objective optimization problems for iterates of
the evolutionary algorithm RGA. They observed that the function value of their proxim-
ity measure decreased throughout the iterations for several test instances. As a result, the
authors proposed to use their proximity measure as a termination criterion for evolutionary
algorithms.

While this could also be done with the new proximity measures ω and ωs which we
introduced in this paper for multi-objective optimization problems (CMOP), we focus on
another illustration of the measures, in particular of ωs . In the previous section it was already
discussed why this proximity measure is more suited for numerical evaluation and use with
optimization algorithms: it can be calculated by solving a linear optimization problem only.

For the following examples we have generated k points equidistantly distributed in the
preimage space and then computed the value of the proximity measureωs in MATLAB using
linprog. If the computed value was below a specified limit of α > 0, those points were
selected as possible efficient solutions (also called solution candidates). The set of those
points will be denoted by C in this section. Moreover, the set of efficient solutions will be
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Fig. 3 Numerical results for (BK1). a Results for k = 4225, α = 0.001 in the image space, b Results for
k = 4225, α = 0.001 in the preimage space

denoted by E . For visualization the default parabula colormap of MATLAB was used.
Hence, dark blue corresponds to a value of ωs close to 0. Then, as the value rises up, the
color turns green and finally yellow for the highest value of ωs that was reached within the
generated discretization of the preimage space. The sets C and f (C) are illustrated by red
triangles. The generated data and the MATLAB files are available from the corresponding
author on reasonable request.

Test instance 1 The first example is convex and taken from [5].

min
x∈R2

f (x) :=
(

x21 + x22
(x1 − 5)2 + (x2 − 5)2

)

s.t. x1, x2 ∈ [−5, 10].
(BK1)

The set of efficient solutions for this multi-objective optimization problem is

E := {
x ∈ R

2
∣∣ x1 = x2 ∈ [0, 5]} .

For computation in MATLAB a total of k = (64 + 1)2 = 4225 points were generated
equidistantly distributed in S = [−5, 10]2. A number of |C| = 21 points lead to a value of
ωs lower or equal to α = 0.001. In particular, for the set C delivered by MATLAB it holds
C ⊆ E . The result is shown in Fig. 3a, b.

As (BK1) is a convex problem and the Abadie CQ holds for all x ∈ S due to the linear con-
straints, the KKT conditions are not only a necessary optimality condition (see Theorem 2.2)
but also sufficient by Lemma 2.4. Moreover, it was already discussed that ωs(x) = 0 if and
only if there exist η ∈ R

m+ and λ ∈ R
p
+ such that (x, η, λ) is a KKT point. This implies that

for (BK1) ωs(x) = 0 if and only if x ∈ S is a weakly efficient solution for this problem.
Thus, ωs is well suited for characterizing weakly efficient solutions for (BK1) and also as a
termination criterion for optimization algorithms.
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Test instance 2 In [22] Srinivas and Deb presented the following non-convex problem with
convex but nonlinear constraint functions.

min
x∈R2

f (x) :=
(
2 + (x1 − 2)2 + (x2 − 1)2

9x1 − (x2 − 1)2

)

s.t. g1(x) := x21 + x22 − 225 ≤ 0,

g2(x) := x1 − 3x2 + 10 ≤ 0,

x1, x2 ∈ [−20, 20]

(SRN)

The set of efficient solutions for this problem is presented in [8] as

E := {
x ∈ R

2
∣∣ x1 = −2.5, x2 ∈ [2.50, 14.79]} .

For the computation with MATLAB, a total of k = (64+ 1)2 = 4225 points were generated
equidistantly distributed in X = [−20, 20]2. The results can be seen in Fig. 4a, b.

In the figures, it may look as if the Pareto Front f (E) is larger than the representationwhich
is covered by the candidates f (C). This is not the case, as there are a lot of infeasible points
within the set X . For clarifying this, in Fig. 4c, d only feasible points and the corresponding
images are shown.

Most of the |C| = 25 candidates presented by the algorithm are efficient solutions for
(SRN). However, there are 5 candidates which are actually not belonging to E . An approach
to improve this could be to reduce the acceptance bound α, but the result remains unchanged
even for α = 1 · 10−8. In case one decreases α further, the set C gets smaller and some gaps
appear in the preimage space (and as a consequence in the image space as well). In terms of
quality, the result remains the same as the set C still contains some points that do not belong
to E . The effect is the same when choosing a finer discretization. This is shown in Fig. 4e, f
for k = (128 + 1)2 = 16641 equidistantly distributed points in X .

The reason why there are points in C that are not belonging to E is just that these points
(approximately) satisfy the KKT conditions without being efficient. Recall that the KKT
conditions are just a necessary optimality condition and that they are sufficient only in case
of convexity, see Lemma 2.4.

Due to the specific structure of E for this test instance, we examined the influence of not
discretizing equidistantly but randomly. The results using 16641 points are given in Fig. 5
for two different values of α. First, we chose α = 0.001 as this worked very well for (BK1)
and (SRN) with equidistantly distributed points in the preimage space, see Figs. 3 and 4b.
However, for (SRN) with randomly distributed points, only a single solution candidate is
found by MATLAB for α = 0.001 and this is xc = (−2.3746, 2.5611)
, see Fig. 5a. When
increasing α, the set C starts to get larger. For instance, Fig. 5b shows the results for α = 0.01.
Comparing the results to those seen in Fig. 4b, the structure of the sets of solution candidates
is quite similar. This is exactly what we could expect due to the continuity of ωs in every
efficient solution. This specific run shows that the tolerance α should be chosen carefully. If
it is too small like in this case for α = 0.001, only few solution candidates will be found. On
the other hand, choosing a large α can result in solution candidates that are not close to the
set of efficient solutions E at all.

Test instance 3 This test instance by Osyczka and Kundu is taken from [20]. It has a larger
number of n = 6 optimization variables and a larger number of constraints as well. The
objective function f : R6 → R

2 is given as

f (x) :=
(−(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2)

x21 + x22 + x23 + x24 + x25 + x26

)
∀x ∈ R

6
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Numerical results for (SRN). a Results for k = 4225, α = 0.001 in the image space, b Results for
k = 4225, α = 0.001 in the preimage space, c Images of feasible points for k = 4225, α = 0.001, d Feasible
points for k = 4225, α = 0.001, e Results for k = 16641, α = 1 · 10−9 in the preimage space, f Results for
k = 16641, α = 1 · 10−12 in the preimage space
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(a) (b)

Fig. 5 Numerical results for (SRN) with 16641 randomly distributed points. a Results for k = 16641, α =
0.001 in the preimage space, b Results for k = 16641, α = 0.01 in the preimage space

and the optimization problem is

minx∈R6 f (x) s.t. g1(x) := −x1 − x2 + 2 ≤ 0,
g2(x) := x1 + x2 − 6 ≤ 0,
g3(x) := −x1 + x2 − 2 ≤ 0,
g4(x) := x1 − 3x2 − 2 ≤ 0,
g5(x) := (x3 − 3)2 + x4 − 4 ≤ 0,
g6(x) := −(x5 − 3)2 − x6 + 4 ≤ 0,
x1, x2 , x6 ∈ [0, 10], x3, x5 ∈ [1, 5], x4 ∈ [0, 6].

(OSY)

A characterization of the set E for this problem can be found in [8]. As the set X :=
[0, 10]2 × [1, 5] × [0, 6] × [1, 5] × [0, 10] is quite huge compared to E , we decided to
consider X̂ := [0, 5] × [0, 2] × [1, 5] × {0} × [1, 5] × {0}. For this set we still have E ⊆ X̂ .
A total of k = (16+ 1)4 = 83521 points were generated equidistantly distributed in X̂ . The
MATLAB implementation found 70 candidates with a value ofωs less or equal to α = 0.001.
The result can be seen in Fig. 6a.

For a better characterization of the set E of all efficient solutions we set

E1 := {
(5, 1, β, 0, 5, 0) ∈ S

∣∣ β ∈ [1, 5]} ,

E2 := {
(5, 1, β, 0, 1, 0) ∈ S

∣∣ β ∈ [1, 5]} ,

E3 := {
(0, 2, β, 0, 1, 0) ∈ S

∣∣ β ∈ [1, 3.73]} .

For those sets it holds that E1 ∪ E2 ∪ E3 ⊆ E . Considering the (discretized) image f (S) in
Fig. 6b, E1 contains all efficient solutions belonging to the upper half of the left ‘stroke’
and E2 the efficient solutions belonging to its lower half. The set E3 contains all efficient
solutions belonging to the stroke at about f1 ≈ −120. In Fig. 6a, it might look as if actually
none of the elements within C is an efficient solution. However, the images of infeasible
points are also included in that figure. For this reason, in Fig. 6b only the images of feasible
points are shown, and it can be seen that C contains efficient and locally efficient solutions.
In particular, out of the 69 points in C there are 17 within E1, 17 within E2 and 11 within E3.
These are all of the 83521 generated points that belong to the sets E1, E2, and E3. Also the
point xc := (0.625, 1.375, 1, 0, 1, 0) ∈ C is part of the set of all efficient solutions E .
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(a) (b)

(c) (d)

Fig. 6 Numerical results for (OSY). a Results for k = 83521, α = 0.001 in the image space, b Images for
feasible points for k = 83521, α = 0.001, c Images for feasible points for k = 83521, α = 0.1, d Images for
feasible points for k = 1185921, α = 0.001

Nevertheless, there are 24 points which do not belong to E . There is one outlier which is
easy to spot in Fig. 6a. In addition, there are also some locally efficient solutions which can
be seen as an extension of E3. In particular, these are

C1 := {
(0, 2, β, 0, 1, 0) ∈ S

∣∣ β ∈ {3.75, 4.00, 4.25, 4.50, 4.75, 5.00}} and

C2 :=

⎧
⎪⎨

⎪⎩
(0, 2, β, 0, 5, 0) ∈ S

∣∣∣∣∣∣∣
β ∈

⎧
⎪⎨

⎪⎩

1.00, 1.25, 1.50, 1.75, 2.00, 2.25,

2.50, 2.75, 3.00, 3.25, 3.50, 3.75,

4.00, 4.25, 4.50, 4.75, 5.00

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
.

In the image space, f (E3) is the lower part of the line at about f1 ≈ −120 rising up to
f2 ≈ 18. The upper end of this line with f2 ≥ 30 is the image of C2. The points in between
belong to C1.

In a next step, we aimed to obtain those points at the bottom of the ‘strokes’ which are
indeed images of efficient solutions. As a first approach, α was increased to α = 0.1. The
result is shown in Fig. 6c. Another idea was to keep α = 0.001 and increase the fineness
of the discretization, in particular to choose k = (32 + 1)4 = 1185921 points equidistantly
distributed in the preimage space. This leads to the results which can be seen in Fig. 6d. In
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both cases some of the (efficient) bottom tips were found. However, we also included more
points which are not approximately efficient solutions within C.

5 Conclusions

We presented two new proximity measures ω and ωs for (CMOP) in the sense of Defini-
tion 3.1. The proximity measure ω is a generalization of the proximity measure presented in
[10] for the single-objective case by using the results from [9] and [18]. One drawback of
this approach is that ω can be hard to compute. Thus, it is not really suited for use within
optimization algorithms. This is why we introduced the proximity measure ωs . Compared to
ω, the computation of ωs(x) for some x ∈ R

n only relies on a single evaluation of g, Df ,
and Dg. Moreover, it only requires solving a linear optimization problem, which makes its
computation a lot faster.

In addition, the ability of ωs to characterize the proximity of a certain point x ∈ R
n to the

set of efficient solutions for (CMOP) was demonstrated in the previous section. As a result,
ωs is well suited for numerical applications. In particular, we have illustrated its capabilities
as an additional criterion for candidate selection or termination in evolutionary algorithms.

It could nowbeargued that the computationofωs relies on solving anoptimizationproblem
and hence, all the problems mentioned in the introduction as limited accuracy are critical
aspects as well. While such limitations should always be taken into account, the computation
ofωs relies on solving a linear optimization problem. For linear optimization problems, exact
solvers such as SoPlex (see [15]) are available and can handle even numerically troublesome
problems.

At nopointwehad to assumem ≥ 2 for the dimensionof the image space.Hence, all results
hold still for single-objective optimization problems. Moreover, the case of unconstrained
problems is also contained as a special case. As a consequence, our proximity measure ωs

can be used for a large class of optimization problems.
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