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Abstract
In this paper,we analyze the capacity of supremumaugmentedDickey–Fuller (SADF),
generalized SADF (GSADF), and of several heteroscedasticity-adjusted sup-ADF-
style tests for detecting and date-stamping financial bubbles. Our Monte Carlo
simulations find that the majority of the sup-ADF-style tests exhibit substantial size
distortions, when the data-generating process is subject to leverage effects. Moreover,
the sup-ADF-style tests often have low empirical power in identifying a (flexible and
empirically relevant) rational stock-price bubble, recently proposed in the literature.
In a simulation study, we compare the effectiveness of two real-time bubble date-
stamping procedures (Procedures 1 and 2), both based on variants of the backward
SADF (BSADF) test. While Procedure 1 (predominantly) provides better estimates
of the bubbles’ origination and termination dates than Procedure 2, the first procedure
frequently stamps non-existing bubbles. In an empirical application, we use NASDAQ
data covering a time-span of 45 years and find that the bubble date-stamping outcomes
of both procedures are sensitive to the data frequency chosen by the econometrician.

Keywords Stock markets · Present-value model · Rational bubble · Explosiveness ·
SADF and GSADF tests · Bubble detection · Date-stamping

JEL Classification C15 · C32 · C58 · G15

1 Introduction

In a series of influential articles, Phillips, Wu, and Yu (2011; PWY hereafter) and
Phillips et al. (2014, 2015a, b) have established a sound theoretical foundation of right-
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146 V. Monschang, B. Wilfling

tailed unit-root testing for explosiveness in time-series data. In the wake of this work,
the most prominent testing procedures—the sup augmented Dickey–Fuller (SADF)
test and its generalized version (the GSADF test)—have been applied in a plethora of
empirical studies, inwhich data explosiveness is interpreted as indicating an asset-price
bubble. Along this line of argument, the studies aim at detecting speculative bubbles
in alternative types of financial markets, for example in stock markets (Homm and
Breitung 2012), commodity markets (Long et al. 2016), as well as in housing (Pan
2019; Hu and Oxley 2018a) and currency markets (Bettendorf and Chen 2013; Hu
and Oxley 2017). In the meantime, the popularity of the SADF and GSADF tests has
been enhanced further by the fact that both testing procedures have become standard
routines in such econometric software packages as EViews and R (Caspi 2017).

In simulation experiments, Phillips, Shi, and Yu (2015a; PSY hereafter) demon-
strate that SADF and GSADF tests have high discriminatory power when artificial
stock-price data are generated under periodically collapsing Evans bubbles (Evans
1991). While the rational Evans bubble has become a benchmark specification in the
theoretical and empirical literature, Rotermann and Wilfling (2014, 2018) elaborate
two theoretical properties of the Evans bubble that appear irreconcilable with real-
world stock-price dynamics. (i) The Evans bubble always collapses completely within
one trading unit, implying that stock-price volatility also collapses abruptly within one
period. (ii) After a crash, the Evans bubble necessarily reverts to the same expected
value, a phenomenon for which there is no justification. By contrast, Rotermann and
Wilfling (2018) propose an alternative rational bubble specification—in the form of
a lognormal-mixture process—which is able to generate more realistic, stochastically
deflating bubble trajectories. In the subsequent sections, we will make extensive use
of this bubble specification.

In this article, we investigate the capacity of various sup-ADF-style testing
procedures for detecting and date-stamping financial bubbles. Besides the orig-
inal SADF and GSADF tests introduced by PWY and PSY, we consider the
heteroscedasticity-adjusted variants (bootstrapped and sign-based SADF and GSADF
tests), as established in Harvey, Leybourne, Sollis, and Taylor (2016; HLST) and Har-
vey, Leybourne, and Zu (2020; HLZ). In various ways, we extend and modify the size,
power, and date-stamping analyses from the above-mentioned articles. Our investi-
gation has the following major findings. (i) As a prominent equity-market volatility
asymmetry, we consider the leverage effect, according to which negative shocks often
have a relatively larger impact on volatility than positive shocks. To capture such
heteroscedasticity, we study the effects of a threshold GARCH (TGARCH) volatility
structure on the empirical size of the sup-ADF-style tests and find that several of them
reveal considerable size distortions. (ii) We generate artificial stock-price data under
the above-mentioned rational Rotermann-Wilfling bubble specification. Our simula-
tions show that the sup-ADF-style tests often have low empirical power under this
realistic bubble model.

(iii) In a simulation study, we contrast two real-time bubble date-stamping strate-
gies—both based on variants of the backward SADF (BSADF) test—namely (1) the
procedure established in PSY, and (2) a methodology using the sign-based test statistic
of HLZ. For our simulated bubble settings, we find that the first strategy (predomi-
nantly) outperforms the second by yielding more accurate estimates of the bubbles’
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Sup-ADF-style bubble-detection methods under test 147

origination and termination dates. However, the first procedure shows a pronounced
tendency to date-stamp non-existing bubbles. (iv) In an empirical application, we
apply the two bubble date-stamping strategies to NASDAQ data and compare the
date-stamping results when using monthly versus daily observations. Our findings
reveal that the dating strategies are sensitive to the practitioner’s choice of data fre-
quency. We explain this phenomenon by the structural changes in the data-generating
process that come along with the frequency shift.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
essentials of the present-value stock-price model and the rational Rotermann–Wilfling
bubble specification. Section 3 recapitulates the sup-ADF-style tests and analyzes
their properties via Monte Carlo simulation. Section 4 investigates the date-stamping
procedures, and Sect. 5 concludes.

2 Present-valuemodel, rational bubbles, and explosiveness

PWY and PSY motivate their SADF and GSADF testing procedures on the basis
of the well-known present-value stock-price model with constant expected returns
(Campbell et al. 1997). Within this framework, the date-t stock-price Pt is given by
the Euler equation

Pt = 1

1 + r

[
Et (Pt+1) + Et (Dt+1)

]
, (1)

where Et (·) denotes the conditional expectation operator and Dt+1 the dividend pay-
ment between t and t + 1. The constant r > 0 is the discount factor, often referred to
as the required rate of return, which is just sufficient to compensate investors for the
riskiness of the stock.1

The first-order expectational difference Eq. (1) can be solved routinely, by repeat-
edly substituting future prices forward. The entire class of solutions to Eq. (1) is given
by

Pt = P f
t + Bt =

∞∑

i=1

(
1

1 + r

)i

· Et (Dt+i ) + Bt , (2)

where Bt is any stochastic process satisfying the submartingale property

Et (Bt+1) = (1 + r) · Bt . (3)

The quantities P f
t = Pt − Bt , and Bt in Eqs. (2) and (3) are called ‘fundamental

stock-price’ and ‘rational bubble’, respectively.
Besides the constituting submartingale property (3), any rational (stock-price) bub-

ble should satisfy two additional theoretical properties, as pointed out by Diba and
Grossman (1988a, b). (i) Rational bubbles cannot start from zero, and (ii) negative
bubbles are ruled out, as t → ∞. The most frequently applied rational, parametric
specification satisfying all these properties is the Evans (1991) bubble. However, this

1 PSY enrich the model with the process {Ut }, representing unobservable fundamentals. Since the authors
assume {Ut } to be either I (0) or an I (1) process, we ignore {Ut } without loss of generality.
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148 V. Monschang, B. Wilfling

bubble reveals a major empirical shortcoming in that it always bursts entirely, from
one trading unit to the next. These abrupt bursts not only entail unrealistic stock-price
trajectories, but also incompatible volatility dynamics (Rotermann andWilfling 2014).
In Sect. 3, we consider the bubble specification suggested by Rotermann and Wilfling
(2018). This bubble model—a mixture of two lognormal processes—(i) generates
realistic trajectories and stock-price volatility paths and (ii) satisfies the rationality
condition (3) plus the two Diba–Grossman conditions mentioned above.

Specifically, the rational bubble has the form

Bt =
{

α
ψπ

Bt−1ut , with probability π
1−α

ψ(1−π)
Bt−1ut , with probability 1 − π

, (4)

whereψ ≡ (1+r)−1, α ∈ (0, 1) andπ ∈ (0, 1] such that α
π

> 1 and 1−α
ψ(1−π)

< 1. The

process {ut }∞t=1 is assumed to be i.i.d. with lognormally distributed ut ∼ LN(−ι2

2 , ι2).2

The constraint α ∈ (0, 1) ensures that the bubble never collapses to zero and can thus
reflate. The constraints α

π
> 1 and 1−α

1−π
< ψ allow us to interpret the two states of the

bubble as follows. In State 1, (occurring with probability π ), the bubble grows at the
(mean) growth rate α

ψπ
− 1 = α

π
− 1+ α

π
· r > r , i.e., at a faster rate than the required

rate of return. In State 2 (occurring with probability 1− π ), the bubble deflates at the
negative (mean) growth rate 1−α

ψ(1−π)
− 1 < 0.

Depending on the specific parameter constellation, the bubble specification (4) dis-
plays periodically recurring behavior with (stochastically evolving) deflation periods
that can range between a ‘small/moderate correction’ and a ‘big crash’ within one
or arbitrarily many periods. As an example, Fig. 1 displays four simulated bubble
trajectories, with each trajectory (of length T = 250) having the common values
B0 = 0.5, ψ = 0.9840, and the trajectory-specific parameters ι2, π, α as shown in
Fig. 1.

For our stock-price simulations in Sect. 3, we need to specify the fundamental stock-
price process {P f

t }. To this end, we adopt the frequently encountered assumption that
dividends follow a random walk with drift,

Dt = μ + Dt−1 + et , (5)

where {et }∞t=1 is an i.i.d. Gaussian white-noise process with mean 0 and variance
σ 2
e (see, inter alia, Homm and Breitung 2012). Taking conditional expectations, and

adding them as in Eq. (2), we obtain the fundamental stock price as

P f
t = 1 + r

r2
· μ + 1

r
· Dt , (6)

which, after inserting Eq. (5) into (6) and rearranging the terms, yields

P f
t = μ

r
+ P f

t−1 + et
r

= μ′ + P f
t−1 + e′

t , (7)

2 The lognormal distribution is parameterized in terms of the single parameter ι, so that ut > 0 and
Et−1(ut ) = 1 for all t .
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ιι2 = 0.005, ππ = 0.85, αα = 0.88 ιι2 = 0.005, ππ = 0.96, αα = 0.99

Fig. 1 Bubble trajectories of length T = 250 simulated according to Eq. (4) with common parameters
B0 = 0.5, ψ = 0.9840

showing that the fundamental stock price P f
t also follows a random walk with drift.

At this stage, some comments are in order on the interrelation between the concepts
‘explosiveness in asset prices’ and ‘existence of a bubble’. In our framework—
consisting of Eqs. (1)–(7)—the fundamental stock price P f

t constitutes a (nonex-
plosive) I (1) process. Therefore, in view of Eqs. (2) and (3), if we find empirical
evidence of explosive behavior in the stock-price process (2), we can attribute this
explosiveness to the rational bubble. This profound conclusion, however, hinges cru-
cially on the specific assumptions of our framework, and is far from being generally
valid. To illustrate, let us consider two alternative model setups. (i) A situation, in
which the fundamental stock price (for whatever economic reason) follows an explo-
sive process. (ii) An extended rational valuation framework with stochastic discount
factors (instead of our constant required rate of return r ).3 It is straightforward to
verify that, under both scenarios, explosiveness in stock prices neither constitutes a
necessary nor a sufficient condition for deducing the existence of a bubble.

3 Cochrane (2011) presents overwhelming empirical evidence of time-varying discount rates. PWY indi-
cate how time-varying discount factors may affect bubble detection at various spots in their quantitative
considerations. Pertaining to the present-value framework, the authors argue that ‘[...] making the discount
rate stationary and time-varying does not change the implication of submartingale (explosive) behavior [...],
but complicates the analysis of the rational bubble solution.’ (PWY 2011, p. 204).
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150 V. Monschang, B. Wilfling

3 Sup-ADF-style tests

3.1 SADF and GSADF tests

The SADF and GSADF tests for explosiveness (applied to the time series {yt }Tt=0) rest
on well-defined sequences of t-statistics (ADF statistics) of the parameter θ , estimated
from the empirical specification

yt = c + θ yt−1 +
k∑

i=1

λi	yt−i + εt , (8)

where k is the transient lag-order, 	 denotes the first-difference operator, and εt
i.i.d.∼

(0, σ 2). The objective is to test the unit-root null hypothesis H0 : θ = 1 versus the
right-tailed alternative of explosiveness, H1 : θ > 1. For characterizing the respective
sequences ofADF statistics,which are needed to formally represent the ultimate SADF
andGSADF test statistics, we consider subsamples over the time domain {0, 1, . . . , T }
as fractions of the original sample. For this purpose, let the fractions (i) r0, (ii) r1, and
(iii) r2, respectively, denote (i) the (fractional) width of the smallest subsample (used
to initialize the computation of the test statistic), (ii) the (fractional) starting point of
a subsample, and (iii) the (fractional) endpoint of a subsample.

Using this notation, PWY define the SADF test statistic as the sup-ADF-statistic
fromrepeated estimationof the empirical regression (8) on a forward expanding sample
sequence. Specifically, the authors consider as given, the minimal sample window
width r0, set the subsample starting point r1 = 0, and let the subsample endpoint r2
range between r0 and 1. Denoting the ADF-statistic for a subsample running from r1
to r2 by ADFr2r1 , they define the SADF test statistic as

SADF(r0) ≡ sup
r2∈[r0,1]

{
ADFr2r1=0

}
. (9)

The GSADF test—suggested by PSY with the goal of improving the detection
capacity under multiple stock-price bubbles—essentially pursues the same idea as the
SADF test, but processes more subsamples to estimate the ADF-regression (8). In
contrast to the SADF variant, the GSADF test allows the fractional starting point r1
to range between 0 and r2 − r0, implying a double recursive subsample structure. The
corresponding test statistic is defined as

GSADF(r0) ≡ sup
r2∈[r0,1]

r1∈[0,r2−r0]

{
ADFr2r1

}
. (10)

PSY derive the asymptotic null distributions of the SADF andGSADF test statistics
on the basis of the prototypical model with weak (local to zero) intercept form,

yt = a · T−η + θ yt−1 + εt , εt
i.i.d.∼ (0, σ 2), (11)
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Sup-ADF-style bubble-detection methods under test 151

with constants a and η > 1/2. Under the null hypothesis of a unit root (θ = 1), the
limiting distributions of the test statistics are given by

SADF(r0)
d→ sup

r2∈[r0,1]

⎧
⎪⎪⎨

⎪⎪⎩

1
2r2

[
W (r2)2 − r2

] − ∫ r2
0 W (s)ds W (r2)

r2
1
2

{
r2

∫ r2
0 W (s)2ds − [∫ r2

0 W (s)ds
]2} 1

2

⎫
⎪⎪⎬

⎪⎪⎭
, (12)

and

GSADF(r0)
d→

sup
r2∈[r0,1]

r1∈[0,r2−r0]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (r2 − r1)

[
W (r2)2 − W (r1)2 − (r2 − r1)

] − ∫ r2
r1

W (s)ds [W (r2) − W (r1)]

(r2 − r1)
1
2

[
(r2 − r1)

∫ r2
r1

W (s)2ds −
(∫ r2

r1
W (s)ds

)2]
1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(13)

where W (·) denotes the standard Wiener process.

3.2 Heteroscedasticity adjustments

Recently, HLST and HLZ have addressed the issue of bubble detection under het-
eroscedasticity. We briefly review their testing procedures, which both refer to
non-stochastic unconditional heteroscedastic patterns.

3.2.1 Wild-bootstrap SADF and GSADF tests

HLST suggest using a wild-bootstrap re-sampling scheme in order to obtain a size-
controlled SADF testing procedure, in the presence of non-stationary (unconditional)
volatility. Their wild-bootstrap algorithm consists of the following five steps.

Step 1. Generate a sequence {wt }Tt=2 of independent N(0, 1) random variables and
construct the following series of bootstrap innovations {ε∗

t }Tt=1:

ε∗
t =

{
0, t = 1

wt	yt , t = 2, . . . , T
.

Step 2. Construct the bootstrap sample as the partial sums

y∗
t ≡

t∑

s=1

ε∗
s , t = 1, . . . , T .
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152 V. Monschang, B. Wilfling

Step 3. For a subsample running from r1 = 0 to r2, consider the t-value for θ̂∗ in the
fitted OLS regression,

y∗
t = ĉ∗ + θ̂∗y∗

t−1 + ε̂∗
t ,

and denote this bootstrap ADF-statistic by
[
ADFr2r1=0

]∗
. Compute the boot-

strap SADF test statistic (denoted by SADF∗) in the usual way:

SADF∗(r0) ≡ sup
r2∈[r0,1]

{[
ADFr2r1=0

]∗}
.

Step 4. Repeat Steps 1 to 3 B times to generate a sample of bootstrapped SADF statis-
tics,

{
SADF∗

b

}B
b=1. Use this sample to approximate the cumulative distribution

function of SADF∗, denoted by G∗
T (·).

Step 5. To conduct the wild-bootstrap SADF test at the significance level α, compute
the SADF test statistic from Eq. (9), using the original sample {yt }Tt=1, and
reject the unit-root null hypothesis, if the SADF statistic exceeds the 1 − α

quantile G∗
T

−1(1 − α).

We denote the wild-bootstrap SADF testing procedure by SADFbootstrap, in order
to distinguish it from the original SADF test described in Sect. 3.1. In our subsequent
analysis, we also apply the bootstrap algorithm to the original GSADF test and denote
this variant by GSADFbootstrap. We emphasize that—due to the re-sampling scheme—
the critical values of the SADFbootstrap and GSADFbootstrap tests are always adapted
to the specific trajectory {yt }Tt=1, which is to be tested for explosiveness. Therefore,
the critical values of the bootstrapped tests, obtained from {yt }Tt=1, are not universally
applicable to other trajectories.

3.2.2 Sign-based SADF and GSADF tests

As a further heteroscedasticity adjustment, HLZ propose the sign-based GSADF test
under deterministically time-varying (unconditional) volatility. The idea is to compute
the GSADF statistic from Eq. (10) not from the directly observed series {yt }Tt=1, but
rather from the transformed series

Ct =
t∑

s=2

sign(	ys), (14)

where sign(x) ∈ {− 1, 1} for x ≤ 0 and x > 0, respectively, is the sign function. Per
definition, {Ct }Tt=2 is the series of cumulated signs of the first differences.

For a subsample running from r1 to r2, we consider the t-value for ϑ̂ in the fitted
OLS regression,

Ct = ϑ̂ · Ct−1 + ε̂t , (15)
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Sup-ADF-style bubble-detection methods under test 153

which we denote by
[
ADFr2r1

]sign-based. (We note that Eq. (15) is estimated without
intercept.) Then, HLZ define their sign-based GSADF test statistic as

GSADFsign-based(r0) ≡ sup
r2∈[r0,1]

r1∈[0,r2−r0]

{[
ADFr2r1

]sign-based}
. (16)

In our analysis below, we also consider sign-based SADF tests (denoted by
SADFsign-based) by setting r1 = 0 in Eq. (16).

3.3 Monte Carlo study

Wefirst approximate asymptotic critical values of the SADF,SADFsign-based,GSADF
and GSADFsign-based tests.4 In a second step, we analyze the empirical size and power
of the tests.

3.3.1 Critical values and size distortions

Given Eqs. (9), (10), (12), (13), and (16), the SADF,SADFsign-based,GSADF, and
GSADFsign-based test statistics, as well as their asymptotic distributions depend on the
minimal window size r0. In line with PSY, we adopt the rule r0 = 0.01 + 1.8/

√
T ,

and—whenever considering finite samples—focus on the specific sample sizes T ∈
{100, 200, 400, 800, 1600}.

We approximate the asymptotic critical values of the four test statistics via Monte
Carlo simulation. In contrast to PSY, we do not make use of the asymptotic null dis-
tributions from Eqs. (12) and (13), the simulation of which requires an approximation
of the Wiener process. Instead, we simulate the critical values by restricting the data-
generating process to the prototypical specification in Eq. (11) with parameters θ = 1
and a = η = 1, and use the sample size T = 5000. (The parameter values for a and
η are taken from PSY.) With these settings, we approximate the asymptotic critical
values by simulating 100,000 and 12,500 replications of the SADF,SADFsign-based

and GSADF,GSADFsign-based statistics, respectively.
The upper block of Table 1 reports our asymptotic critical values of the SADF

and GSADF tests. The values share two features with their analogs from the PSY
simulations via the asymptotic null distributions from Eqs. (12) and (13). (i) The
critical values of both test statistics increase with a decrease in minimal window
size r0. (ii) The GSADF critical values always exceed their SADF counterparts. In
most cases, our asymptotic critical values are slightly larger than those reported by
PSY, yielding more conservative rejections of the null hypothesis. In our analysis
below, we prefer our critical values from Table 1 to those provided by PSY. The lower
block of Table 1 displays our asymptotic critical values of the SADFsign-based and
GSADFsign-based tests, which exhibit the same qualitative features as those from the
upper block.

4 We do not provide critical values of the bootstrap variants, since these are trajectory-specific (see
Sect. 3.2.1).
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154 V. Monschang, B. Wilfling

Table 1 Asymptotic critical values of SADF, SADFsign-based,GSADF,GSADFsign-based tests

SADF GSADF

90% 95% 99% 90% 95% 99%

r0 = 0.190 1.1136 1.4107 1.9754 1.7329 1.9920 2.4838

r0 = 0.137 1.1848 1.4738 2.0339 1.8734 2.1017 2.5771

r0 = 0.100 1.2222 1.5195 2.0936 1.9945 2.2046 2.6551

r0 = 0.074 1.2887 1.5613 2.1081 2.0993 2.3121 2.7254

r0 = 0.055 1.3272 1.5963 2.1330 2.2009 2.3995 2.8002

SADFsign-based GSADFsign-based

90% 95% 99% 90% 95% 99%

r0 = 0.190 2.2923 2.6306 3.2613 2.7665 3.0584 3.6267

r0 = 0.137 2.3696 2.6970 3.3206 2.9413 3.2310 3.7556

r0 = 0.100 2.4304 2.7502 3.3635 3.0963 3.3675 3.8710

r0 = 0.074 2.4844 2.7987 3.4024 3.2372 3.5175 4.0018

r0 = 0.055 2.5261 2.8402 3.4331 3.3771 3.6236 4.1449

Large-sample critical values are approximated by simulating the data-generating process from Eq. (11) with
θ = 1 and a = η = 1, and using Eq. (14). The sample size is T = 5000. The numbers of replications are
100,000 for the SADF, SADFsign-based, and 12,500 for the GSADF,GSADFsign-based tests, respectively

Table 2 Sizes of SADF, SADFsign-based,GSADF,GSADFsign-based tests in finite samples when using
asymptotic critical values

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.0390 0.0444 0.0385 0.0431 0.0457

GSADF 0.0519 0.0566 0.0496 0.0484 0.0499

SADFsign-based 0.0472 0.0489 0.0467 0.0466 0.0455

GSADFsign-based 0.0911 0.0905 0.0782 0.0637 0.0601

Sizes are obtained by simulating data (under the null hypothesis) from the specification in Eq. (11) with
parameters a = η = θ = 1, and Eq. (14). Using 10,000 replications, the sizes are computed via the
(asymptotic) 95% critical values from Table 1

In order to check the validity of our asymptotic critical values, when applied to
finite samples, we simulate sizes for the four tests. For this purpose, we generate data
from the prototypical process in Eq. (11) under the null hypothesis (with parame-
ters a = η = θ = 1) for the finite-sample sizes T ∈ {100, 200, 400, 800, 1600}.
On the basis of 10,000 replications, we compute simulated sizes as the fractions of
replications, for which the tests erroneously reject the null of a unit root in favor
of the alternative, thus indicating explosiveness. We report the results in Table 2
for a nominal size of 5% (i.e., we use the 95% critical values from Table 1).
For the SADF,SADFsign-based, and the GSADF tests, we do not find substantial
size distortions. By contrast, the GSADFsign-based test appears to be slightly over-
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Table 3 Finite-sample critical values of SADFsign-based and GSADFsign-based tests

SADFsign-based GSADFsign-based

90% 95% 99% 90% 95% 99%

T = 100, r0 = 0.190 2.2621 2.6467 3.4033 3.0236 3.4634 4.5808

T = 200, r0 = 0.137 2.3425 2.6935 3.3623 3.1485 3.5083 4.3896

T = 400, r0 = 0.100 2.4027 2.7383 3.3719 3.2211 3.5397 4.2054

T = 800, r0 = 0.074 2.4631 2.7796 3.4014 3.3287 3.6257 4.2266

T = 1600, r0 = 0.055 2.5080 2.8130 3.4118 3.4167 3.6794 4.2255

Finite-sample critical values are approximated by simulating the data-generating process from Eq. (11)
with parameters a = η = θ = 1, and Eq. (14). The numbers of replications are 100,000 and 12,500 for the
SADFsign-based and GSADFsign-based tests, respectively

sized, when applying asymptotic critical values in finite samples (in particular, for
T ∈ {100, 200, 400}).

The latter finding is in line with HLZ, who demonstrate that the convergence of
finite-sample critical values to their asymptotic counterparts is rather slow for the
GSADFsign-based test. To be on the safe side, we compute finite-sample critical values
for both sign-based tests (SADFsign-based,GSADFsign-based), using the sample sizes
T ∈ {100, 200, 400, 800, 1600}. Table 3 displays the finite-sample critical values,
which we use in our analysis below, to ensure correctly sized sign-based tests.

The process specification in Eq. (11) assumes homoscedastic errors and ignores
conditional heteroscedasticity, awell-documentedphenomenon in all types of financial
markets. To assess the impact on the SADF and GSADF testing procedures, PSY
address the sizes of both tests under unit-root processes with GARCH errors. Using
standard GARCH(1, 1) errors as in Bollerslev (1986), they do not find critical size
distortions. However, the standard GARCH(1, 1) specification does not account for
volatility asymmetries, such as the highly relevant leverage effect, according to which
negative stock-market shocks tend to exert a larger impact on volatility than positive
shocks (e.g., Black 1976; Christie 1982; Schwert 1989). Therefore, we modify the
PSY size analysis and consider the unit-root DGP from Eq. (11) with a = η = θ = 1
under (threshold) TGARCH(1, 1) errors,

εt = st
√
ht , st

i.i.d.∼ N(0, 1), (17)

ht = ω + γ · ε2t−1 + β · ht−1 + φ · ε2t−1 · I(εt−1 < 0), (18)

where I(·) denotes the indicator function, which takes on the value 1 if the market is
shocked by bad news (εt−1 < 0), and is 0 in the case of good news (Zakoïan 1994).

The first two rows of Table 4 display the simulated sizes of the SADF and GSADF
tests under TGARCH(1, 1) errors for the nominal size of 5% and the sample sizes
T ∈ {100, 200, 400, 800, 1600} on the basis of 10,000 replications. We set the
TGARCH(1, 1) parameters from Eq. (18) to ω = 0.4387, γ = 0, β = 0.9319,
φ = 0.1306, so as to coincide with the maximum likelihood estimates obtained from
monthly observations of the NASDAQ price-dividend ratio, covering the (relatively)
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Table 4 Sizes of six sup-ADF-style tests in finite samples under TGARCH(1, 1) errors

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.2221 0.1999 0.1488 0.1020 0.0620

GSADF 0.1528 0.1537 0.1613 0.2018 0.2936

SADFsign-based 0.0435 0.0428 0.0417 0.0464 0.0505

GSADFsign-based 0.0443 0.0429 0.0439 0.0478 0.0480

SADFbootstrap 0.0412 0.0277 0.0181 0.0107 0.0032

GSADFbootstrap 0.0279 0.0231 0.0292 0.0316 0.0440

Sizes are obtained by simulating data (under the null hypothesis) from the specification in Eq. (11) with
parameters a = η = θ = 1 under TGARCH errors, as described in Eqs. (17) and (18). The TGARCH
parameters are ω = 0.4387, γ = 0, β = 0.9319, φ = 0.1306. Using 10,000 replications, (i) the sizes
of the SADF, GSADF tests are computed with the (asymptotic) 95% critical values from Table 1, (ii) the
sizes of the SADFsign-based,GSADFsign-based tests are computed with the finite-sample critical values
from Table 3. (iii) For the SADFbootstrap,GSADFbootstrap tests, we set B = 499 in Step 4 of the HLST
wild-bootstrap algorithm. For the size of the GSADFbootstrap test, we only use 2,000 replications in the
case of T = 1, 600 (due to computational burden)

tranquil period between January 1988 and December 1994.5 Apparently, the SADF
and GSADF tests exhibit substantial size distortions under volatility asymmetry in the
form of TGARCH(1, 1) errors.

Rows 3–6 of Table 4 display the sizes of the four heteroscedasticity-adjusted tests
under TGARCH(1, 1) errors.We first recall that the four tests—on the grounds of their
construction in the HLST and HLZ articles—adjust for unconditional (but not for con-
ditional) heteroscedasticity patterns in the data-generating processes. However, Rows
3, 4 of Table 4 indicate that the SADFsign-based and GSADFsign-based tests operate well
in controlling the actual sizes under TGARCH errors. By contrast, the SADFbootstrap

and GSADFbootstrap tests (Rows 5, 6 in Table 4) exhibit substantial undersizing. These
tests—for which, in line with HLST, we use B = 499 bootstrap replications—reject
the null hypothesis of a unit-root too rarely (as opposed to the SADF and GSADF
tests from Rows 1–2, which reject the null too often).

3.3.2 Empirical power

Wenow address the empirical power properties of the SADF,SADFsign-based,GSADF
andGSADFsign-based tests.Wedistinguishbetweenhomoscedastic andTGARCH(1, 1)
stock-price trajectories.

Homoscedastic trajectories

We simulate 10,000 stock-price series from the present-value equation Pt = P f
t + Bt ,

with the fundamental stock price P f
t evolving according to Eqs. (5) and (6), and the

5 We fitted TGARCH(1, 1) volatility specifications to several subsamples of the NASDAQ data. In line
with the leverage-effect literature, we find significant φ-estimates (at conventional levels) for the majority
of the subsamples. We describe the data set in Sect. 4.
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Table 5 Empirical power of SADF, SADFsign-based, SADFbootstrap,GSADF,GSADFsign-based,
GSADFbootstrap tests under a rational bubble

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

(a) Homoscedastic trajectories

SADF 0.0373 0.0857 0.5579 0.9758 1.0000

GSADF 0.0448 0.1075 0.5806 0.9782 1.0000

SADFsign-based 0.0727 0.0982 0.3025 0.8195 0.9986

GSADFsign-based 0.0683 0.0971 0.2925 0.7523 0.9936

SADFbootstrap 0.0308 0.0579 0.2834 0.6348 0.8298

GSADFbootstrap 0.0130 0.0399 0.2780 0.6305 0.8203

(b) TGARCH(1, 1) trajectories

SADFadjusted 0.0109 0.0115 0.1538 0.8714 0.9997

GSADFadjusted 0.0114 0.0120 0.1321 0.9607 0.9993

SADFsign-based 0.1323 0.1435 0.2055 0.6557 0.9931

GSADFsign-based 0.1051 0.1038 0.1637 0.6007 0.9825

SADFbootstrap 0.0107 0.0108 0.0745 0.5129 0.8182

GSADFbootstrap 0.0086 0.0075 0.0790 0.5120 0.8114

The stock-price series are generated as Pt = P f
t + Bt , with P f

t from Eqs. (5) and (6), where Eq. (5)
includes either homoscedastic errors with σ 2

e = 0.4476 [Block (a)], or TGARCH(1, 1) errors [Block (b)]
with TGARCH parameters as in Table 4. Bt is generated as in Eq. (4). The remaining parameters are set
to μ = 0, D0 = 1.6942, B0 = 10.1925, ψ = 0.9840, ι2 = 0.0061, π = 0.9595 and α = 0.9675. For
the power calculation, we use 10,000 replications, the 95% critical values from Table 1 for the SADF and
GSADF tests, and the finite-sample critical values from Table 3 for the SADFsign-based,GSADFsign-based

tests. For the SADFadjusted,GSADFadjusted tests in Block (b), we simulated critical values (not reported).
For the SADFbootstrap,GSADFbootstrap tests, we set B = 499 in Step 4 of the HLST wild-bootstrap
algorithm

rational bubble Bt following the lognormal mixture from Eq. (4). The involved param-
eters are set equal to the estimates obtained in Rotermann andWilfling (2018), who fit
the bubble specification (4) to monthly NASDAQ observations between January 1990
and October 2013, applying a particle-filter technique. Specifically, we use the param-
eter values μ = 0, σ 2

e = 0.4476, D0 = 1.6942, B0 = 10.1925, ψ = 0.9840, ι2 =
0.0061, π = 0.9595 and α = 0.9675.

Block (a) of Table 5 (‘Homoscedastic trajectories’) reports the results of our power
analysis for the sample sizes T ∈ {100, 200, 400, 800, 1600}. We use the 95% crit-
ical values from Table 1 for the SADF, GSADF tests, the 95% finite-sample critical
values from Table 3 for the SADFsign-based,GSADFsign-based tests, B = 499 boot-
strap replications for the SADFbootstrap,GSADFbootstrap tests, and 10, 000MonteCarlo
replications. Our analysis yields six major findings.

(i) The power of the GSADF test exceeds the power of the SADF test—except for
T = 1600, where both tests have power equal to 1. (ii) By contrast, the power of
the SADFsign-based test always (slightly) exceeds the power of the GSADFsign-based

test. (iii) The SADFsign-based and GSADFsign-based tests have higher power than
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the original SADF, GSADF tests for T = 100, and in the SADF-case also for
T = 200. In all other cases, the sign-based tests exhibit lower power. (iv) The
power of all six tests increases with increase in sample size. (v) The power of the
first four tests (SADF,GSADF,SADFsign-based,GSADFsign-based) is extremely low
for T = 100, 200 and improves only moderately for T = 400. The tests perform
satisfactorily for T = 800. For T = 1600, the four tests identify the bubble in
(almost) each of the 10,000 simulated stock-price series. (vi) The power values of the
SADFbootstrap,GSADFbootstrap tests unambiguously fall below the power values of all
other tests in the five scenarios. In anticipation of our subsequent analysis, we empha-
size that this clear-cut result also holds under TGARCH(1, 1) trajectories, as shown
in Block (b) of Table 5. Again, in each scenario, the SADFbootstrap,GSADFbootstrap

tests exhibit the (by far) lowest power values among all 6 tests analyzed. We note
that the computation of the 20 SADFbootstrap,GSADFbootstrap power values in Table 5
is extremely time-consuming.6 Thus, owing to (1) sizing problems, (2) low power
values, and (3) computational burdens, we exclude the SADFbootstrap,GSADFbootstrap

tests from our further analysis.
The Blocks (a) of Table 6 (‘Homoscedastic trajectories’) report the power of the

remaining four sup-ADF-style tests, when some model parameters are singly (or, as
π and α, jointly) varied, while all other parameters are held constant at their base-
levels given in the Note of Table 6 (ceteris-paribus analysis). Explicitly, we let (i) the
dividend drift μ range between 0 and 0.003 (Settings 1–4), (ii) the discount factor ψ

range between0.975 and0.990 (Settings 5–8), and (iii) the probabilityπ range between
0.35 and 0.95 (Settings 9–12). In the case of the π -variation, we simultaneously adjust
the parameter α, so that the mean bubble growth factor from Eq. (4), α/(ψπ), remains
constant at 1.06. We conduct our analysis with 10,000 Monte Carlo replications for
each parameter setting, and the sample size T = 400.7

The Blocks (a) in Table 6 (‘Homoscedastic trajectories’) yield the following four
findings. (i) The SADF and GSADF tests have higher power than their sign-based
counterparts in 10 of 12 settings (the two exceptions are the Settings 8 and 12). (ii)
A variation in the dividend drift μ (ceteris paribus) does not substantially affect the
power of either test. This result is not surprising for two reasons. First, the SADF and
GSADF tests are based on Eq. (8), which captures the effects of the dividend drift.
Second, the computation of the sign-based test statistics rests on the series {Ct } from
Eq. (14), which—by construction—is independent of μ. (iii) The power of the four
tests decreases dramatically with an increase in discount factor ψ . For instance, for
ψ = 0.99 (Setting 8), the tests only detect 9.73%, 12.35%, 11.00%, and 9.67% of
the simulated bubbles, respectively. An explanation may be that—with an increasing
discount factor ψ—the bubble’s positive (mean) growth factor from Eq. (4), α/(ψπ),
decreases, rendering the detection of explosiveness more difficult.

6 The computation needed 13 days, using parallelized MATLAB algorithms in a computer environment
with more than 100 kernels. Technical details are available upon request.
7 We emphasize that our 12 parameter settings in Table 6 are all empirically relevant. Each set of parameters
is able to produce bubble trajectories that are qualitatively similar to those in Fig. 1. The chosen sample
size T = 400 covers time spans of (i) more than 33 years under monthly observations, and (ii) less than 2
years in the case of daily data. We choose T = 400 in order to be comparable with the settings in PSY.
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Table 6 Power of SADF,GSADF, SADFsign-based,GSADFsign-based tests under varying bubble parame-
ters

μ = 0.000 μ = 0.001 μ = 0.002 μ = 0.003
(Setting 1) (Setting 2) (Setting 3) (Setting 4)

(a) Homoscedastic trajectories

SADF 0.5579 0.5603 0.5543 0.5527

GSADF 0.5806 0.5814 0.5774 0.5751

SADFsign-based 0.3025 0.3021 0.2935 0.2983

GSADFsign-based 0.2925 0.2883 0.2846 0.2905

(b) TGARCH(1, 1) trajectories

SADFadjusted 0.1538 0.1551 0.1552 0.1600

GSADFadjusted 0.1321 0.1347 0.1343 0.1372

SADFsign-based 0.2055 0.1932 0.2066 0.2083

GSADFsign-based 0.1637 0.1582 0.1698 0.1685

ψ = 0.975 ψ = 0.98 ψ = 0.985 ψ = 0.990
(Setting 5) (Setting 6) (Setting 7) (Setting 8)

(a) Homoscedastic trajectories

SADF 0.9891 0.8646 0.4531 0.0973

GSADF 0.9890 0.8755 0.4852 0.1235

SADFsign-based 0.8749 0.5724 0.2412 0.1100

GSADFsign-based 0.8338 0.5448 0.2343 0.0967

(b) TGARCH(1, 1) trajectories

SADFadjusted 0.8790 0.4986 0.1029 0.0166

GSADFadjusted 0.8540 0.4566 0.0903 0.0171

SADFsign-based 0.6795 0.3613 0.1837 0.1612

GSADFsign-based 0.6584 0.3377 0.1435 0.1103

(iv) Increasing π -probabilities (Settings 9–12) entail substantial decreases in the
power of the SADF and GSADF tests, while the impact on the power of the
SADFsign-based,GSADFsign-based tests appears ambiguous. A plausible explanation
of the SADF and GSADF power reduction could be as follows. Recall that π rep-
resents the likelihood of ongoing bubble growth at the constant rate of 6% (which
we achieve by an appropriate adjustment of α). For π = 0.95, α = 0.9975 (Setting
12), both tests only detect 8.04% and 9.72% of the bubbles. Prima facie, this finding
seems counter-intuitive, since we would expect the tests to exhibit higher power when
the probability of bubble inflation (bubble growth) increases. Our explanation of this
phenomenon rests on the fact that the joint variation of the parameters π and α keeps
the bubble inflation rate, given by α/(ψπ) − 1, stable at the 6% level. However, at
the same time, this variation increases the mean bubble deflation rate in Eq. (4), given
by (1 − α)/[ψ(1 − π)] − 1, in absolute value, namely from −0.0111 to −0.9492.
Evidently, neither of the SADF, GSADF tests is capable of coping with these opposing
effects on bubble dynamics.
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Table 6 continued

π = 0.35 π = 0.55 π = 0.75 π = 0.95
α = 0.3675 α = 0.5775 α = 0.7875 α = 0.9975
(Setting 9) (Setting 10) (Setting 11) (Setting 12)

(a) Homoscedastic trajectories

SADF 0.5626 0.5108 0.4250 0.0804

GSADF 0.5813 0.5355 0.4555 0.0972

SADFsign-based 0.2065 0.1844 0.2970 0.1416

GSADFsign-based 0.1914 0.1723 0.2843 0.1149

(b) TGARCH(1, 1) trajectories

SADFadjusted 0.1492 0.1530 0.1363 0.0345

GSADFadjusted 0.1277 0.1339 0.1231 0.0315

SADFsign-based 0.1859 0.1779 0.2051 0.1694

GSADFsign-based 0.1460 0.1412 0.1622 0.1163

The stock-price series are generated as Pt = P f
t + Bt , with P f

t as in Eqs. (5) and (6), where Eq. (5)
includes either homoscedastic errors with σ 2

e = 0.4476 [Block (a)], or TGARCH(1, 1) errors [Block
(b)] with TGARCH parameters as in Table 4. Bt is generated as in Eq. (4). The basic set of parameters
is μ = 0, D0 = 1.6942, B0 = 10.1925, ψ = 0.9840, ι2 = 0.0061, π = 0.9595, α = 0.9675. The
parametersμ, ψ, π, α are then singly (or, as π and α, jointly) varied as indicated. The remaining parameters
are held constant at their basic values. For the power calculations, we set T = 400, r0 = 0.1, use 10,000
replications for each parameter setting, the 95% critical values from Table 1 for the SADF, GSADF tests,
and the finite-sample critical values from Table 3 for the SADFsign-based,GSADFsign-based tests. For the
SADFadjusted,GSADFadjusted tests under TGARCH trajectories, we simulated critical values (not reported)
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Fig. 2 Numbers of bubbles detected by SADF, GSADF, SADFsign-based,GSADFsign-based tests under (a)
homoscedastic trajectories, (b) TGARCH(1,1) trajectories

Panel (a) of Fig. 2 (‘Homoscedastic trajectories’) illustrates the overall results of
our power analysis. For this bar graph, we multiplied all power values in Table 6 by
10,000, so that the values now represent the number of bubbles correctly detected
by the tests in each parameter setting.8 Four findings are striking. (i) The bubble-
detection capacity of the GSADF test only slightly outperforms that of the SADF
test. For the sign-based tests, the reverse is true, with the SADFsign-based tests slightly
outperforming the GSADFsign-based tests. (ii) In 10 of 12 parameter settings, all four
tests detect less than 6,000 (of 10,000) bubbles per setting, that is, more than 40%

8 Recall that we use 10,000 replications in each setting, where each replication contains a bubble.
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of the existing bubbles remain undetected. (iii) Pertaining to the sign-based tests, the
bubble-detection capacity is even poorer. The SADFsign-based,GSADFsign-based tests
detect less than 6,000 bubbles in 11 of 12 settings (and in 10 of 12 settings, even less
than 3,100 bubbles). (iv) Only in 2 of 12 settings, the SADF and GSADF tests identify
more than 8,000 bubbles, while the sign-based tests detect more than 8,000 bubbles
only in 1 of 12 settings.

TGARCH(1,1) trajectories

Finally, we include TGARCH-heteroscedasticity in the stock-price trajectories. We
consider identical parameter settings as under homoscedastic trajectories in Block
(a) of Tables 5 and 6, but specify TGARCH(1,1) errors (instead of Gaussian white-
noise) in the fundamental stock-price P f

t from Eqs. (5) and (6). We choose the same
TGARCH parameters as in Sect. 3.3.1 (ω = 0.4387, γ = 0, β = 0.9319, φ =
0.1306).

Block (b) of Table 5 reports the power of the SADF, GSADF tests and their
sign-based counterparts for the sample sizes T ∈ {100, 200, 400, 800, 1600} under
TGARCH trajectories. Since the conventional SADF and GSADF tests exhibit sub-
stantial size distortions under TGARCHheteroscedasticity (see Sect. 3.3.1), we follow
the lines of HLZ (p. 11) and size-correct both tests infeasibly. To this end, we sim-
ulate finite-sample critical values using the data-generating process from Eq. (11)
with a = η = θ = 1 and TGARCH(1, 1) errors. We do not report the critical val-
ues here (they are available upon request), but denote the infeasibly size-corrected
tests by SADFadjusted and GSADFadjusted. Comparing the power values from Block
(b) in Table 5 with those from Block (a), we find qualitatively similar features
under TGARCH as under homoscedastic trajectories. However, for the sample sizes
T ∈ {400, 800, 1600} the tests under TGARCH have lower power than their counter-
parts under homoscedasticity.

The latter finding is further strengthened by Table 6, in which Block (b) displays the
power values under TGARCH(1, 1) stock-price trajectories for T = 400, r0 = 0.1,
when some of the model parameters are varied. Panel (b) of Fig. 2 (‘TGARCH(1,1)
trajectories’) shows the numbers of bubbles detected by the respective tests. Visual
inspection of both panels in Fig. 2 reveals that the bubble-detection rates are often sub-
stantially lower under TGARCH than under homoscedastic stock-price trajectories.
However, Panel (b) shows that the SADFsign-based and GSADFsign-based tests outper-
form their (size-adjusted) counterparts in 10 of 12 parameter settings (exceptions are
the settings 5 and 6).

4 Bubble date-stamping

The aim of this section is threefold. In Sect. 4.1, we review bubble date-stamping
procedures, which are based on the sup-ADF-style tests from Sect. 3. In Sect. 4.2, we
investigate the performance of these date-stamping procedures in a simulation study,
using a completely specified data-generating process with known TGARCH(1, 1)-
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heteroscedasticity. In Sect. 4.3, we apply the procedures to NASDAQ data, for which
the DGP—and in particular the heteroscedasticity pattern—is completely unknown.

4.1 Date-stamping procedures

In addition to mere bubble detection, PSY propose a date-stamping procedure for
estimating the (fractional) origination and termination dates (denoted by re and r f ) of
bubbles in real time.9 The underlying idea rests on a recursive test procedure called
the backward SADF (BSADF) test. The BSADF test follows the same principle as the
SADF test, but processes the sample in the reverse direction. The test proceeds in two
steps. (i) It computes a sequence of ADF statistics using a series of samples, in which
each individual sample has the same fixed endpoint r2, while the starting point ranges
between 0 and r2 − r0. (ii) The BSADF test statistic is then defined as the sup-value
of the ADF statistics computed in Step (i):

BSADFr2(r0) ≡ sup
r1∈[0,r2−r0]

{
ADFr2r1

}
. (19)

In order to test for explosiveness in the time-series process at date t = �Tr2 (�· is
the floor function), the BSADFr2(r0) statistic is compared to a critical value obtained
from Monte Carlo simulation. Letting r2 range between r0 and 1, PSY (i) define the
origination date �Tre of a bubble as that point in time with the first chronological
observation, at which the BSADF statistic exceeds the critical value, and (ii) suggest
estimating the origination date �Tre via

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2(r0) > scvβT

r2

}
, (20)

where βT denotes the significance level and scvβT
r2 is the 100(1− βT )% critical value

of the SADF test statistic based on �Tr2 observations.10
In a similar vein, the termination date �Tr f  of the bubble is defined as the point in

time with the first chronological observation, at which the BSADF statistic falls below
the critical value. Additionally, assuming a minimal time lag of δ log(T ) observations
to exist between the origination and the termination date of the bubble, PSY propose
estimating the termination date �Tr f  via

r̂ f = inf
r2∈[̂re+δ log(T )/T ,1]{r2 : BSADFr2(r0) < scvβT

r2 }. (21)

We note that the parameter δ in Eq. (21) controls for the minimal duration of the
bubble.

Equations (19)–(21) illustrate that PSY date-stamping ultimately rests on Dickey–
Fuller test statistics, which may lead to unreliable conclusions under heteroscedastic

9 PWY establish a predecessor date-stamping methodology, similar to the PSY procedure. However, the
PWY procedure may be inconsistent in the presence of multiple bubbles (see PSY, pp. 1044–1045).
10 PSY point out that the significance level βT may depend on the sample size T and shrink to zero as
T → ∞.
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data. In view of this, we additionally consider a modified PSY dating strategy that
uses the HLZ sign-based test statistic from Sect. 3.2.2, and which we denote by
PSYsign-based. To this end, we first define the sign-based BSADF test statistic

[
BSADFr2(r0)

]sign-based ≡ sup
r1∈[0,r2−r0]

{[
ADFr2r1

]sign-based}
. (22)

We then estimate the origination date �Tre of a bubble via

r̂ sign-based
e = inf

r2∈[r0,1]

{
r2 : [

BSADFr2(r0)
]sign-based

> sbcvβT
r2

}
, (23)

where βT is the significance level and sbcvβT
r2 the 100(1 − βT )% critical value of the

SADFsign-based test statistic based on �Tr2 observations. Similarly, we estimate the
associated termination date �Tr f  via

r̂ sign-based
f = inf

r2∈[̂r sign-based
e +δ log(T )/T ,1]

{
r2 : [

BSADFr2(r0)
]sign-based

< sbcvβT
r2

}
.

(24)
We note that HLZ discuss the PSYsign-based dating strategy from Eqs. (22)–(24) and

find that the procedure may be unable to estimate the termination date consistently. To
overcome this drawback, they propose an alternative procedure that provides consistent
estimates of the bubble’s origination and termination dates. However, this refined
methodology (i) is only able to date-stamp one bubble, and (ii) constitutes an ex-post
rather than a real-time strategy. We therefore do not consider it in our analysis.

A third obvious date-stamping strategy may consist of embedding the bootstrap
ADF-statistic from Sect. 3.2.1 into Eqs. (19)–(21) (PSYbootstrap). However, besides
the low power values reported in Table 5, the computational burden, associated with
the bootstrap tests, renders the PSYbootstrap date-stamping procedure hard to apply in
practice (cf. Footnote 6). We therefore do not present computational results for the
PSYbootstrap procedure.11

4.2 Simulation study

We analyze the impact of conditional heteroscedasticity on the performance of PSY
date-stamping from Eqs. (19)–(21) and compare the results with the PSYsign-based

strategy from Eqs. (22)–(24). We consider the data-generating process suggested in
Phillips and Shi (2018), but modify it by imposing TGARCH(1, 1) errors. Formally,

11 Recently, Phillips and Shi (2020) propose a new, computationally less demanding (than PSYbootstrap

based on HLST) bootstrap date-stamping procedure, which is implemented in the (psymonitor) R package.
This new procedure is, however, practically not amenable to our simulation study in Sect. 4.2. As shown
in Figs. 2 and 3 of Phillips and Shi (2020), this date-stamping procedure typically requires subjective
judgmental decisions (via eyeballing) on the estimated bubble termination and origination dates, which is
impossible to execute in an investigation with 10,000 trajectories. We readdress this issue in Sect. 4.3.
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Fig. 3 Bubble trajectories according to Eq. (25) with alternative collapse patterns

the DGP is given by

yt =

⎧
⎪⎨

⎪⎩

a · T−η + yt−1 + εt , t ∈ N0 ∪ N1

δT yt−1 + εt , t ∈ B

γT yt−1 + εt , t ∈ C

, (25)

where εt ∼ TGARCH(1, 1) as in Eqs. (17) and (18), δT = 1 + c1T−α̃ , γT = 1 −
c2T−β̃ . Besides the parameters, Phillips and Shi (2018) define the following time-
periods. (i) The set B = [�Tre, �Tr f ], during which the bubble inflates. This
period has duration dB = �T (r f − re). (ii) The set C = (�Tr f , �Trr], during
which the bubble deflates/collapses. Here, �Trr is the date of market recovery, and
this period has duration dC = �T (rr − r f ). (iii) The set N0 ∪ N1 = [1, �Tre) ∪
(�Trr, T ] represents the two ‘normal market periods’ at the beginning and the end
of the sample.12

In our simulation, we use the TGARCH(1, 1) parameters from Sect. 3 and choose
the bubbly trajectory parameters in Eq. (25) equal to those suggested in Phillips
and Shi (2018): y0 = 100, T = 100, a = η = c1 = c2 = 1, α̃ = 0.6, re =
0.4, r f = 0.6, dB = �0.20T . We consider three alternative collapse patterns: (i)
sudden collapse (β̃ = 0.1, rr = 0.61, dC = �0.01T ), (ii) disturbing collapse
(β̃ = 0.5, rr = 0.7, dC = �0.10T ), and (iii) smooth collapse (β̃ = 0.9, rr =
0.8, dC = �0.20T ). Figure 3 displays bubbly trajectories (one for each collapse pat-
12 The (fractional) recovery date rr is not estimated in the date-stamping analysis, but used as a mere
parameter in the simulation of the bubbly trajectories.
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tern), simulated with these parameters. We generate 10,000 bubbly trajectories per
collapse pattern, each with the sample size T = 100. For PSY date-stamping, we
use the 95% critical-value sequence {scv0.05r2 }r2∈[19,100], obtained from 10,000 Monte
Carlo replications. For PSYsign-based date-stamping, we use the 95% critical-value
sequence {sbcv0.05r2 }r2∈[19,100], also obtained from 10,000 Monte Carlo replications.
As the minimal bubbly period duration, we impose 3 points in time.

Table 7 displays our date-stamping results under the alternative collapse patterns. In
the upper block, we report three bubble-detection rates (‘No bubble,’ ‘One bubble,’ ‘>
1 bubble’). The lower block displays the mean deviations of the estimated origination
(termination) dates from their actual simulation values (along with standard errors).
We recall that each of the 30,000 trajectories is simulated with exactly one bubbly
period.

Our date-stamping simulation provides the following main findings. (i) Only on
rare occasions the PSY date-stamping procedure does not stamp any bubble (Row
‘No bubble’ in Table 7), while—irrespective of the collapse pattern—this occurs more
frequently under the PSYsign-based procedure. (ii) Both procedures routinely stamp
more than one bubble (Row ‘> 1 bubble’). For the PSY procedure, this rate of erro-
neous stamping increases from 20.33% to 39.18% with increasing β̃ values (i.e., with
less abrupt collapse patterns). By contrast, this rate decreases from 24.57% to 5.88%
with increasing β̃ values for the PSYsign-based procedure.

(iii) In 2 of 3 settings (β̃ = 0.5, 0.9), the PSYsign-based procedure outperforms the
PSY procedure in detecting the correct number of exactly one bubble (Row ‘One
bubble’). (iv) On average, both procedures overestimate the origination date (Row
‘Mean (̂re − re)’).13 This result is stable across the distinct collapse patterns. (v) The
PSY procedure exhibits an increasing bias in estimating the termination date, when
it comes to less abrupt collapse patterns (Row ‘Mean (̂r f − r f )’). By contrast, the
PSYsign-based strategy exhibits a large bias in estimating the termination date in case
of a sudden bubble collapse (β̃ = 0.1).

Overall, the PSY procedure outperforms the PSYsign-based procedure in estimating
the origination and termination dates of a bubble (in terms of smaller biases) in 5 of 6
settings. However, the PSY procedure often erroneously stampsmore than one bubble,
especially under the realistic scenarios of disturbing and smooth bubble collapses.14

4.3 Empirical analysis

In this section, we bubble date-stamp the NASDAQ stock market. We use Thomson
Reuters Datastream, which provides daily and monthly observations of the NASDAQ
composite dividend yields. The data cover the time-span 2 January 1973–29December
2017 (T = 540monthly, T = 11739 daily observations).We obtain the price-dividend
ratio as the inverse of the dividend yield. In order to estimate the termination dates,

13 In computing the ‘Mean deviations’ of the estimated origination and termination dates from their true
values, we only used those trajectories, for which the procedures stamped exactly one bubble.
14 We also analyzed the PSY date-stamping procedure using infeasibly size-adjusted critical values. Com-
pared to the original (non-adjusted) PSY strategy, we do not find substantial differences in bubble-date
estimation accuracy. However, under the infeasibly size-adjusted PSY procedure the rate of erroneously
stamping more than a single bubble is considerably lower, irrespective of the collapse pattern.
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according to Eqs. (21) and (24), the date-stamping procedures require an assumption
regarding the minimal (fractional) bubble duration δ log(T )/T . We impose a minimal
duration of 6 months (180 days), implying the (approximate) values δ = 2.2 (monthly
observations) and δ = 44.2 (daily observations).

In contrast to Sect. 4.2, the data-generating process, underlying the NASDAQ,
is completely unknown. In particular, we neither know (i) the true number of
bubbles (0, 1, 2, . . .), nor (ii) the DGP’s true heteroscedasticity pattern. A well-
documented stylized empirical fact is that financial time series are typically subject
to time-varying (and, most likely, overlapping) unconditional and conditional het-
eroscedasticity patterns of unknown form (e.g., Schwert 1989; HLST, Reher and
Wilfling 2016). For example, for the NASDAQ data we may find—among other forms
of heteroscedasticity—significant TGARCHeffects over certain sampling periods, but
not over others (see Footnote 5). In this context,we recall that the bootstrap (HLST) and
sign-based (HLZ) bubble-detection tests from Sect. 3 only adjust for specific patterns
of unconditional heteroscedasticity. Under (conditional) TGARCHheteroscedasticity,
however, both tests may exhibit substantial power problems.

This latter issue becomes important,when it comes to the econometrician’s selection
of the appropriate bubble date-stamping procedure (PSY, PSYsign-based, and con-
ceivably, PSYbootstrap). Since the NASDAQ-DGP is subject to heteroscedasticity of
unknown form, there is, a priori, no econometric justification for why to prefer one
of the three date-stamping procedures to any of the other. In our subsequent date-
stamping analysis, we again discard the PSYbootstrap procedure due to computational
infeasibility and apply PSY and PSYsign-based. A further methodological issue per-
tains to the econometrician’s choice of the data frequency. We therefore contrast the
NASDAQ date-stamping results for monthly with daily observations.

4.3.1 Monthly data

Westart our date-stamping analysiswith themonthlyNASDAQsample (Fig. 4). As the
training period, we use the first 47 (out of 540) observations. As described in Sect. 4.1,
we investigate explosive behavior in the price-dividend ratio via the intersections of
the BSADF and BSADFsign-based test statistics with their corresponding 95% critical
values (obtained from 2,000 Monte Carlo replications). The upper panel in Fig. 4,
analyzing the PSY date-stamping procedure, stamps (i) three short-lived periods of
explosiveness (shorter than 6 months), indicated by vertical dashed lines, and (ii) four
potential bubble periods, indicated by gray shaded areas. These four periods last from
(i) June 1983–March 1984 (10 months), (ii) April 1986–November 1987 (20 months),
(iii) October 1996–January 2001 (52 months), and (iv) November 2008–April 2009
(6 months).

The final three of these periods can be ascribed to (i) the bull market prior to Black
Monday inOctober 1987, (ii) the dotcom bubblewith its crash starting at the beginning
of 2000, and (iii) the short-term stock-market recovery after the Lehman Brothers
insolvency in September 2008.15 Especially the latest period, stamped during the

15 In describing the historical events, we use the terminology ‘bubbly periods’ and ‘dotcom bubble’ in
line with the empirical financial-market literature. The question of whether these episodes in fact represent
‘theoretical’ stock-market bubbles (such as those described in Sect. 2) is subject to controversial debate.
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Fig. 4 PSY (upper panel) and PSYsign-based (lower panel) bubble date-stamping of monthly NASDAQ
price-dividend ratios

subprime mortgage crisis, reflects a feature of the PSY procedure that is also reported
by other authors. Sometimes the PSY procedure identifies collapse periods rather than
bubble periods (see, inter alia, Hu and Oxley 2018b).

The lower panel of Fig. 4 displays the monthly date-stamping results for the
PSYsign-based procedure. The procedure only detects one bubbly period (gray shaded
area), lasting from July 1997–December 1997. Additionally, the procedure marks two
short-lived periods of explosiveness (vertical, dashed lines) around (i) May 1987, and
(ii) May 1998, the lengths of which fall below our imposed minimal bubble duration
of six months. Obviously, the PSYsign-based procedure only slightly signals the bull
market prior to the Black Monday crash in 1987, and completely fails to stamp (i)
the principal part of the dotcom bubble during the years 1999 and 2000, and (ii) the
market recovery after the Lehman Brothers insolvency in autumn 2008.
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4.3.2 Daily data

In Fig. 5, we analyze the performance of the two date-stamping procedures for the
daily NASDAQ observations, where our training period consists of the first 312 (out
of 11739) observations. The PSY date-stamping procedure in the upper panel again
identifies a number of short-lived periods of explosiveness. However, since we impose
a minimal bubble duration of 180 days (δ = 44.2), the PSY procedure now only
identifies three bubbly periods under the daily data. In contrast to monthly data, the
collapse period during the subprime mortgage crises now remains unstamped.

Evidently, the PSY-stamped bubbles under daily observations can differ consider-
ably in the origination and/or termination dates from their analogs under monthly data.
Concretely, the first bubble in the upper panel of Fig. 5 already starts on 24 March
1983 under daily data, but not before June 1983 under monthly data in the upper panel
of Fig. 4 (i.e., nearly 2.5 months later). Similarly, the second bubble under daily data
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starts on 24 January 1986, but—under monthly data—not before April 1986. On the
other hand, the dotcom bubble ends in January 2001 under monthly observations, but
already on 6 October 2000, when using daily data. Thus, for the dotcom bubble, the
different estimates of the termination and origination dates imply a 5-month-longer-
lasting bubble under monthly observations.

The daily PSYsign-based NASDAQ date-stamping is displayed in the lower panel of
Fig. 5. Obviously, the BSADFsign-based test statistics exceed the critical values over
the entire sample, signaling a permanent NASDAQ bubble over 44 years. This clear-
cut result for the PSYsign-based procedure again documents an apparent sensitivity of
the date-stamping procedures to data frequency shifts. A frequency shift is typically
associated with differing econometric properties of the underlying DGP, for example
in terms of altering (i) degrees-of-explosiveness (over certain subsamples), and/or (ii)
(local) heteroscedasticity patterns. The differing DGP properties can then have the
potential to induce divergent date-stamping results.

We end by noting that the econometrician’s imposition of aminimal bubble duration
(6 months/180 days in our analysis) at the outset of the date-stamping procedure
turns out to be crucial. In Figs. 4 and 5, we mark a number of short-lived periods
of explosiveness not recognized as bubbles, due to our arbitrary setting of δ = 2.2
and δ = 44.2 for monthly/daily observations. The practitioner will frequently be
confronted with the judgmental and subjective question of whether a (relatively) short-
lived sequence of BSADF statistics exceeding the critical values either (i) is to be
interpreted as a bubbly period, or (ii) is to be viewed as a statistical artifact.16

5 Conclusion

This paper investigates the performance of SADF,GSADF, and several heteroscedasti-
city-adjusted sup-ADF-style tests in detecting financial bubbles. We address (i) the
empirical size of the tests under typical financial-market volatility asymmetries (like
the leverage effect), and (ii) the empirical power of the tests in detecting a class of
rational bubbles, as proposed by Rotermann and Wilfling (2018). Our Monte Carlo
simulations find that the majority of the tests exhibit substantial size distortions when
the data-generating process is subject to leverage effects.17 Moreover, the sup-ADF-
style tests often have low empirical power in identifying the (flexible) Rotermann–
Wilfling (2018) bubble. As shown in the Panels (a) and (b) of Fig. 2, in 21 of our
24 scenarios (= 87.5%), more than 40% of the existing bubbles remain undetected
by the sup-ADF-style tests. In addition, we investigate the performance of two real-
time bubble date-stamping procedures (PSY and PSYsign-based) in a Monte Carlo
simulation. While the PSY procedure outperforms the PSYsign-based strategy in terms
of bubble-date estimation accuracy, it frequently stamps non-existing bubbles. Finally,
we apply both date-stamping procedures to monthly and daily NASDAQ data over a

16 This phenomenon particularly applies to the bootstrap date-stamping procedure suggested by Phillips
and Shi (2020). See Footnote 11 above.
17 Fulop and Yu (2017) propose a (Bayesian) two-regime Markov-switching bubble framework, which
appears to exhibit some robustness in bubble detection in the presence of leverage effects.
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period of 44 years. We find that the date-stamping results can be highly sensitive to
the chosen data frequency.

We emphasize that it is by no means our intention to discredit any of the sup-ADF-
style testing procedures. The probabilistic background of the methodologies, designed
to test for (statistical) explosiveness, is mathematically rigorous and constitutes an
interesting, rapidly evolving strand of the econometric literature (Harvey et al. 2019;
Kurozumi 2020). However, when it comes to financial bubble detection, our advice
is to apply the routines with caution.18 At the end of Sect. 2, we ascertain that in
many realistic financial-market settings, (statistical) explosiveness neither constitutes
a necessary nor a sufficient condition to deduce the existence of a bubble. Therefore,
we cannot expect statistical tests for explosiveness to constitute a generally valid tool
for bubble detection.

A further aspect concerns the theoretical setting (the present-valuemodel), in which
bubbles are often discussed. Within this framework, rational bubbles cannot start from
zero (Diba and Grossman 1988a, b), implying that, at the present date t , either (i)
a rational bubble exists (i.e., Bt > 0, although Bt may take on very small positive
values), or (ii) there is currently no (rational) bubble (i.e., Bt = 0), but then there never
will be one. Viewed from this angle, an appealing alternative to detecting bubbles via
statistical tests for explosiveness could be to assume a parametric bubble specification
(such as the one we use in this paper), and to estimate the parameters via appropriate
techniques.
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