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Abstract
The bivariate Fay–Herriot model is an area-level linear mixed model that can be

used for estimating the domain means of two correlated target variables. Under this

model, the dependent variables are direct estimators calculated from survey data and

the auxiliary variables are true domain means obtained from external data sources.

Administrative registers do not always give good auxiliary variables, so that

statisticians sometimes take them from alternative surveys and therefore they are

measured with error. We introduce a variant of the bivariate Fay–Herriot model that

takes into account the measurement error of the auxiliary variables and we give

fitting algorithms to estimate the model parameters. Based on the new model, we

introduce empirical best predictors of domain means and we propose a parametric

bootstrap procedure for estimating the mean squared error. We finally give an

application to estimate poverty proportions and gaps in the Spanish Living Con-

dition Survey, with auxiliary information from the Spanish Labour Force Survey.

Keywords Multivariate models � Fay–Herriot model � small area estimation �
measurement error � Monte Carlo simulation � poverty proportion � poverty

gap
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1 Introduction

Survey sample sizes are generally calculated to obtain precise direct estimates of

target parameters in planned territories, but they might be not large enough for

obtaining reliable estimates in unplanned smaller regions or small areas. Small area

estimation (SAE) theory introduces indirect model-based or model-assisted

estimators for treating these situations. SAE is an important part of statistical

inference in finite populations with applications to social and economic statistics.

The monograph of Rao and Molina (2015) contains a general description of SAE.

When auxiliary variables related to the target variable are available at the small

area level, the most widely used area-level model in SAE is the Fay–Herriot (FH)

model. This model was first proposed by Fay and Herriot (1979) to obtain estimates

of mean per capita income in U.S. small areas using survey data. Esteban et al.

(2012a, b), Marhuenda et al. (2013) and Morales et al. (2015) apply variants of the

basic FH model to the small area estimation of poverty indicators in the Spanish

Living Condition Survey (SLCS), with auxiliary information from the Spanish

Labour Force Survey (SLFS).

If there is more than one target variables, multivariate area-level mixed models

can take into account their correlations. These correlations can be an important

additional information for the estimation. Fay (1987) and Datta et al. (1991) showed

that small area estimators obtained from multivariate models have, in general, better

precision than the ones obtained from univariate models for each response variable.

Molina et al. (2007) and López-Vizcaı́no et al. (2013), López-Vizcaı́no et al. (2015)

made use of this idea and applied it to estimate labour force indicators. Several other

authors have investigated and applied multivariate Fay–Herriot (MFH) models in

the SAE setup, e.g. Datta et al. (1996), González-Manteiga et al. (2008), Porter

et al. (2015) or Benavent and Morales (2016).

Under the MFH model, the values of the dependent variable are direct estimates

calculated from survey data and the auxiliary variables are ‘‘true’’ domain means

obtained from administrative registers. However, it is not always possible to find

good auxiliary variables in administrative registers and MFH models are sometimes

applied with auxiliary variables measured with errors. Oftentimes, direct estimates

obtained from a sample of a different survey are used. The aforementioned

applications do not take into account the measurement error of the auxiliary

variables. This manuscript addresses this practical issue.

Concerning the contributions to area-level linear mixed models with covariates

measured with error, Ybarra and Lohr (2008) introduced a functional measurement

error model where the underlying true values of the covariates are fixed but

unknown quantities. Their model can be viewed as a generalization of the Fay–

Herriot model. They also introduced a new small area estimator that accounts for

sampling variability in the auxiliary information, and derive its properties, in

particular showing that it is approximately unbiased. They applied their estimator to

predict quantities measured in the U.S. National Health and Nutrition Examination

Survey, with auxiliary information from the U.S. National Health Interview Survey.

Marchetti et al. (2015) presented an application where measures derived from Big
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Data are used as covariates in a Fay–Herriot model to estimate poverty indicators,

accounting for the presence of measurement error in the covariates. Polettini and

Arima (2015) introduced predictors of small area means based on area-level linear

mixed models with covariates perturbed for disclosure limitation.

Adopting a Bayesian approach, Arima et al. (2015) rewrote the Ybarra-Lohr

measurement error model as a hierarchical model and introduced Bayes predictors.

This last work was later extended by Arima et al. (2017) proposing multivariate

Fay–Herriot Bayesian predictors of small area means under functional measurement

error. On the other hand, Burgard et al. (2019) followed a likelihood-based

approach for extending the Ybarra-Lohr model. They proposed residual maximum

likelihood (REML) estimators of the model parameters and introduced empirical

best predictors and a mean squared error analytical approximation.

Concerning unit-level models, further contributions to the Bayesian SAE

literature on measurement error models are Ghosh et al. (2006), Ghosh and Sinha

(2007), Torabi et al. (2009), Datta et al. (2010) and Arima et al. (2012). More

recently, Torabi (2013) presented an application of data cloning conducting a

frequentist analysis of GLMM with covariates subject to the measurement error

model.

This paper introduces a three-step bivariate Fay–Herriot model by assuming that

the vector of true domain means of auxiliary variables differ from the corresponding

vector of direct estimators in a zero-mean multivariate normally distributed random

error. The introduced functional measurement error model can be considered as a

multivariate adaptation of the Ybarra-Lohr univariate model to a parametric

inference setup with multivariate normal measurement errors. The proposed

approach can also be considered as the non Bayesian counterpart of the statistical

methodology introduced by Arima et al. (2017).

Ybarra and Lohr (2008) did not assume the normality of the measurement errors

and they proposed a weighted least squared approach to estimate the model

parameters. Arima et al. (2017) assumed the multivariate normality of the

measurement errors and they considered a Bayesian approach. They simulated the

posterior distributions of the model parameters and calculated the hierarchical

Bayes predictors of domain means by applying Markov Chain Monte Carlo

algorithms. This paper preserves the likelihood modelling of Arima et al., but

applies a non Bayesian approach. The main target is to calculate empirical best

predictors of domain means and to estimate the corresponding mean squared errors

(MSE).

Assuming that measurement errors have a multivariate normal distribution is a

natural choice in practice, as due to the central limit theorem, the distribution of the

auxiliary variable estimators has an asymptotic multivariate normal distribution.

This adaption, besides giving another motivation of the empirical best predictor

provided by Ybarra and Lohr (2008), has two mayor advantages. First, we derive

Fisher-scoring algorithms for calculating maximum likelihood (ML) and pseudo-

residual maximum likelihood (pseudo-REML) estimators of model parameters.

Second, we provide a parametric bootstrap procedure for estimating the mean

squared errors.
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The rest of the paper is organized as follows. Section 2 introduces the

measurement error bivariate Fay–Herriot model. Section 3 derives the best

predictors of random effects and target domain parameters. It also calculates the

MSEs of the best predictors. Section 4 presents the relative efficiency matrix of the

best predictors that takes into account that variables are measured with error

compared to the corresponding ones that ignores this information. Section 5

proposes a parametric bootstrap procedure for estimating the mean squared error of

the empirical best predictors. Section 6 describes the pseudo-REML method for

estimating the model parameters. Section 7 carries out simulation experiments to

investigate the behavior of the pseudo-REML fitting algorithm, the empirical best

predictors and the bootstrap estimator of the mean squared error of the empirical

best predictors. Section 8 gives an application to real data where the target is the

small area estimation of poverty proportions and gaps in the SLCS, with auxiliary

information from the SLFS. Sections 9 summarizes some conclusions. The paper

contains three appendixes that are provided as supplementary file. Appendix A gives

some auxiliary results for the calculation of the best predictors and their MSEs.

Appendix B shows some tables with results of the application to SLCS data.

Appendix C presents the Fisher scoring algorithm for calculating the ML estimators

of the model parameters.

2 The measurement error bivariate Fay–Herriot model

Let U be a finite population partitioned into D domains U1; . . .;UD. Let ld ¼
ld1; ld2ð Þ0 be a vector of characteristics of interest in the domain d and let yd ¼
yd1; yd2ð Þ0 be a vector of direct estimators of ld calculated by using the data of the

target survey sample. The measurement error bivariate Fay–Herriot (MEBFH)

model is defined in three steps. The first step indicates that direct estimators are

unbiased and follow the sampling model

yd ¼ ld þ ed; d ¼ 1; . . .;D; ð1Þ

where the vectors ed ¼ ðed1; ed2Þ0 �N2 0;Vedð Þ are independent and the 2 � 2

covariance matrices Ved are known. In most cases, Ved is taken to be the design-

based covariance matrix of the direct estimator yd , d ¼ 1; . . .;D.

In the second step the true area characteristic ldk is assumed to be linearly related

to pk þ qk explanatory variables, k ¼ 1; 2, d ¼ 1; . . .;D. Let ~x0dk ¼ ð~xdk1; . . .; ~xdkpkÞ
be a row vector containing the true aggregated (population) values of pk explanatory

variables for ldk and let ~Xd ¼ diag ð~x0d1; ~x
0
d2Þ be a 2 � p block-diagonal matrix with

p ¼ p1 þ p2. Let kk ¼ ðkk1; . . .; kkpkÞ
0

be a column vector of size pk containing

regression parameters for ldk and let k ¼ k01; k
0
2

� �0
p�1

. Let z0dk ¼ ðzdk1; . . .; zdkqkÞ be a

row vector containing the true aggregated (population) values of qk explanatory

variables for ldk and let Zd ¼ diag ðz0d1; z
0
d2Þ be a 2 � q block-diagonal matrix with

q ¼ q1 þ q2. Let gk ¼ ðgk1; . . .; gkqkÞ
0

be a column vector of size qk containing

regression parameters for ldk and let g ¼ g01; g
0
2

� �0
q�1

.
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The linking model is

ld ¼ Zdgþ ~Xdkþ ud; ud ¼ ðud1; ud2Þ0 �N2ð0;VudÞ; d ¼ 1; . . .;D; ð2Þ

where the vectors ud’s are independent of the vectors ed’s. The 2 � 2 covariance

matrices Vud depend on 3 unknown parameters, h1 ¼ r2
u1, h2 ¼ r2

u2 and h3 ¼ q, i.e.

Vud ¼
r2
u1 qru1ru2

qru1ru2 r2
u2

 !

:

This manuscript assumes that the ~xdk’s are unknown random vectors that are pre-

dicted from independent data sources. These data sources could be administrative

registers or other surveys with larger sample sizes than the target survey. For

k ¼ 1; 2, let us define the random measurement error vectors v0dk ¼ ðvdk1; . . .; vdkpkÞ.
We assume that the vectors vd ¼ ðv0d1; v

0
d2Þ

0
are independent with distributions

vd �Npð0;RdÞ and known p� p covariance matrices

Rd ¼
�Rd11 Rd12

Rd21 Rd22

�
; Rdk1k2

¼ cov ðvdk1
; vdk2

Þ; k1; k2 ¼ 1; 2; d ¼ 1; . . .;D:

The third step considers the functional measurement error model

~xdk ¼ xdk þ vdk; d ¼ 1; . . .;D; k ¼ 1; 2; ð3Þ

where x0dk is a row vector containing the unbiased predictors of the components of

~x0dk and the vectors vd and xd ¼ ðx0d1; x
0
d2Þ

0
, d ¼ 1; . . .;D, are independent. In most

cases, xdk is a vector of direct estimators calculated from data of a different survey

and Rdk1k2
is taken to be the design-based covariance matrix of vectors xdk1

and xdk2
,

k1; k2 ¼ 1; 2.

Let us also define the 2 � p block diagonal matrices Bd ¼ diag ðk01; k
0
2Þ and

Xd ¼ diag ðx0d1; x
0
d2Þ.

The measurement error bivariate Fay–Herriot (MEBFH) model can be expressed

as a single model in the form

yd ¼ Zdgþ Xdkþ Bdvd þ ud þ ed; d ¼ 1; . . .;D; ð4Þ

or in the matrix form

y ¼ Zgþ Xkþ Bvþ uþ e;

where B ¼ diag
1� d�D

ðBdÞ, X ¼ col
1� d�D

ðXdÞ, Z ¼ col
1� d�D

ðZdÞ and

y ¼ col
1� d�D

ðydÞ; u ¼ col
1� d�D

ðudÞ; v ¼ col
1� d�D

ðvdÞ; e ¼ col
1� d�D

ðedÞ:

We finally assume that matrices Vud, Rd and Ved are invertible and that xd, vd, ud, ed,

d ¼ 1; . . .;D, are independent, but we only introduce inference procedures condi-

tionally on X. If there are no measurement errors, then the vd’s are null vectors and

the bivariate Fay–Herriot (BFH) model is obtained as a special case of (4). The
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MEBFH model can be considered as a multivariate generalization of the Fay–

Herriot model with measurement error studied by Ybarra and Lohr (2008) or by

Burgard et al. (2019). This approach was also considered by Arima et al. (2017) in a

Bayesian context. Note that the MEBFH model is not a linear mixed model as the

matrix B depends on the vector k of model parameters. Therefore, the MEBFH

model cannot be expressed in the standard form Y ¼ Xbþ Zuþ e.

It holds that

Vkd ¼ var ðBdvdÞ ¼ Bd var ðvdÞB0
d ¼ diag ðk01; k

0
2ÞRd diag ðk1; k2Þ

¼
k01Rd11k1 k01Rd12k2

k02Rd21k1 k02Rd22k2

 !

:

Therefore, Vu ¼ var ðuÞ ¼ diag
1� d�D

ðVudÞ, Ve ¼ var ðeÞ ¼ diag
1� d�D

ðVedÞ and

var ðBvÞ ¼ diag
1� d�D

ðVkdÞ. Conditioned to xd, d ¼ 1; . . .;D, the covariance matrix of

y is

V ¼ Vðh; kÞ ¼ var ðyjXÞ ¼ diag
1� d�D

ðVdÞ ¼ diag
1� d�D

ðVkd þ Vud þ VedÞ: ð5Þ

Further, it holds that ydjxd �N2

�
Zdgþ Xdk;Vkd þ Vud þ Ved

�
,

ydjxd ;vd �N2

�
Zdgþ Xdkþ Bdvd;Vud þ Ved

�
; and

ydjxd ;ud �N2

�
Zdgþ Xdkþ ud;Vkd þ Ved

�
:

3 Best predictors under the MEBFH model

This section derives the best predictors (BP) of the random effects vd and ud and of

the target parameter ld. It also calculates variances and expectations of cross

products. The proofs of the following propositions are based on the properties of the

multivariate normal distribution. We recall that the kernel of the n-variate normal

distribution is

f ðyjl;RÞ ¼ 1

ð2pÞn=2jRj1=2
exp

�
� 1

2
ðy� lÞ0R�1ðy� lÞ

�

/ exp
�
� 1

2
y0R�1yþ l0R�1y

�
:

The first two propositions deal with the BP of vd and its basic properties.

Proposition 1 Under model (4), the best predictor of vd is

v̂bpd ¼ E½vdjxd; yd� ¼ Wd B
0
d

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ; ð6Þ

where
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Wd ¼ B0
d

�
Vud þ Ved

��1
Bd þ R�1

d

� ��1

¼ Rd � Rd B
0
dðVkd þ Vud þ VedÞ�1BdRd:

Proof The conditional distribution of vd, given the estimators xd and yd, is

fvd ¼ f ðvdjxd; ydÞ / f ðydjxd; vdÞf ðvdÞ ¼
�
2pjVud þ Vedj1=2

��1

� exp
n
� 1

2
ðyd � Zdg� Xdk� BdvdÞ0ðVud þ VedÞ�1ðyd � Zdg� Xdk� BdvdÞ

o

�
�
ð2pÞp=2jRdj1=2

��1
exp

n
� 1

2
v0dR

�1
d vd

o

/ exp
n
� 1

2
ðv0d1k1; v

0
d2k2ÞðVud þ VedÞ�1

� k01vd1

k02vd2

�

þ ðvd1k
0
1; v

0
d2k2ÞðVud þ VedÞ�1ðyd � Zdg� XdkÞ

o
exp

n
� 1

2
v0dR

�1
d vd

o
:

Therefore, we have

fvd ¼ exp
n
� 1

2
ðv0d1; v

0
d2Þ B0

d

�
Vud þ Ved

��1
Bd þ R�1

d

� �� vd1

vd2

�

þ ðv0d1; v
0
d2ÞW�1

d

h
Wd B

0
d

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ
io

:

We have proved that f ðvdjxd; ydÞ is a multivariate normal distribution with

parameters

var ðvdjxd; ydÞ ¼ B0
d

�
Vud þ Ved

��1
Bd þ R�1

d

� ��1

¼ Wd;

E½vdjxd; yd� ¼ WdB
0
d

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ:

By applying Lemma A.1 of Appendix A in the supplementary file, the results

follows. h

Proposition 2 Under model (4), it holds that E½v̂bpd jxd� ¼ 0 and

var ðv̂bpd jxdÞ ¼ E
�
v̂bpd v̂bp 0d jxd

	
¼ WdB

0
dðVud þ VedÞ�1ðVkd þ Vud þ VedÞðVud þ VedÞ�1BdWd:

Proof We recall that yd � Zdg� Xdk ¼ Bdvd þ ud þ ed. Therefore, we have

var ðv̂bpd jxdÞ ¼ WdB
0
dðVud þ VedÞ�1E

�
ðBdvd þ ud þ edÞðBdvd þ ud þ edÞ0jxd

	

� ðVud þ VedÞ�1BdWd

¼ WdB
0
dðVud þ VedÞ�1ðVkd þ Vud þ VedÞðVud þ VedÞ�1BdWd:

h
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The following two propositions derive the BP of ud, show that it is predictively

unbiased and calculate its variance.

Proposition 3 Under model (4), the best predictor of ud is

ûbpd ¼ E½udjxd; yd� ¼ Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ;

Ud ¼
�
Vkd þ Ved

��1 þ V�1
ud

� ��1

:
ð7Þ

Proof The conditional distribution of ud , given xd and yd, is

fud ¼ f ðudjxd; ydÞ_f ðydjxd; udÞf ðudÞ ¼

¼ 1

2pjVkd þ Vedj1=2

� exp
n
� 1

2
ðyd � Zdg� Xdk� udÞ0ðVkd þ VedÞ�1ðyd � Zdg� Xdk� udÞ

o

� 1

2pjVudj1=2
exp

n
� 1

2
u0dV

�1
ud ud

o

/ exp
n
� 1

2
u0dðVkd þ VedÞ�1ud þ u0dðVkd þ VedÞ�1ðyd � Zdg� XdkÞ

o

� exp
n
� 1

2
u0dV

�1
ud ud

o

¼ exp
n
� 1

2
u0d

��
Vkd þ Ved

��1 þ V�1
ud

�
ud

þ u0dU
�1
d

h
Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ
io

:

Therefore f ðudjxd; ydÞ is a multivariate normal distribution with parameters

var ðudjxd; ydÞ ¼
�
Vkd þ Ved

��1 þ V�1
ud

� ��1

¼ Ud;

E½udjxd; yd� ¼ Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ:

h

Proposition 4 Under model (4), it holds that E½ûbpd jxd� ¼ 0 and

var ðûbpd jxdÞ ¼ E
�
ûbpd ûbp 0d jxd

	
¼ UdðVkd þ VedÞ�1ðVkd þ Vud þ VedÞðVkd þ VedÞ�1Ud:

Proof As yd � Zdg� Xdk ¼ Bdvd þ ud þ ed, we have
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var ðûbpd jxdÞ ¼ UdðVkd þ VedÞ�1E
�
ðBdvd þ ud þ edÞðBdvd þ ud þ edÞ0jxd

	

� ðVkd þ VedÞ�1Ud

¼ UdðVkd þ VedÞ�1ðVkd þ Vud þ VedÞðVkd þ VedÞ�1Ud:

hThe following two propositions give the best predictor of ld and its MSE. This

section ends by defining the empirical best predictor of ld:

Proposition 5 Under model (4), the best predictor (MEBFH-BP) of ld is

l̂bpd ¼ Zdgþ Xdkþ Vkd
�
Vud þ Ved

��1ðyd � Zdg� XdkÞ

� VkdðVkd þ Vud þ VedÞ�1Vkd

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ

þ Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ

ð8Þ

Proof As ld ¼ Zdgþ Xdkþ Bdvd þ ud, Wd ¼ Rd � Rd B
0
dðVkd þ Vud þ

VedÞ�1BdRd and Vkd ¼ BdRdB
0
d, we have

l̂bpd ¼ E½ldjxd; yd� ¼ Zdgþ Xdkþ Bdv̂
bp
d þ ûbpd

¼ Zdgþ Xdkþ BdWd B
0
d

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ

þ Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ
¼ Zdgþ Xdkþ Vkd

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ

� VkdðVkd þ Vud þ VedÞ�1Vkd

�
Vud þ Ved

��1ðyd � Zdg� XdkÞ

þ Ud

�
Vkd þ Ved

��1ðyd � Zdg� XdkÞ:

h

Proposition 6 Under the model (4), the MSE of l̂bpd is

MSEðl̂bpd jxdÞ ¼
n
BdWdB

0
dðVud þ VedÞ�1ðVkd þ Vud þ VedÞðVud þ VedÞ�1BdWdB

0
d

þ UdðVkd þ VedÞ�1ðVkd þ Vud þ VedÞðVkd þ VedÞ�1Ud

þ BdWdB
0
dðVud þ VedÞ�1ðVkd þ Vud þ VedÞðVkd þ VedÞ�1Ud

þ UdðVkd þ VedÞ�1ðVkd þ Vud þ VedÞðVud þ VedÞ�1BdWdB
0
d

o

þ
�
Vkd þ Vud

�

�
n
VkdðVud þ VedÞ�1BdWdB

0
d þ VudðVkd þ VedÞ�1Ud

þ VkdðVkd þ VedÞ�1Ud þ VudðVud þ VedÞ�1BdWdB
0
d

o

�
n
BdWdB

0
dðVud þ VedÞ�1BdRdB

0
d þ UdðVkd þ VedÞ�1Vud

þ UdðVkd þ VedÞ�1BdRdB
0
d þ BdWdB

0
dðVud þ VedÞ�1Vud

o
:
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Proof It hold that

MSEðl̂bpd jxdÞ ¼ E
�
ðl̂bpd � ldÞðl̂bpd � ldÞ0jxd

	

¼ E
�
l̂bpd l̂bp 0d jxd

	
þ E

�
ldl

0
djxd
	
� E

�
ldl̂

bp 0
d jxd

	
� E

�
l̂bpd l0djxd

	
:

where E
�
ldl

0
djxd

	
¼ Vkd þ Vud.

The remaining expectations are calculated in Propositions A.2 and A.3 from

Appendix A in the supplementary file. By doing the corresponding substitutions, the

result follows. h

In practice, the BPs are not calculable because the model parameters are not

known.

Under model (4), the empirical best predictors (MEBFH-EBP) of vd, ud and ld
are obtained from formulas (6), (7) and (8) by plugging estimators b̂, r̂2

u1, r̂2
u2 and q̂

in the place of b, r2
u1, r2

u2 and q respectively. The MEBFH-EBP of ld is

l̂ebpd ¼ E½ldjxd; yd� ¼ Zdĝþ Xdk̂þ diag ðk̂01; k̂
0
2Þv̂

ebp
d þ ûebpd : ð9Þ

Section 6 introduces the maximum likelihood and the pseudo-REML of estimators

of model parameters. In the application to real data, the MEBFH-EBP of ld is

calculated by plugging pseudo-REML estimators.

4 Relative efficiency matrix of best predictors

An important question is, when using estimated auxiliary variables, how much

efficiency can be gained by using the MEBFH-BP instead of the BFH-BLUP. We

recall that MEBFH-BP denotes the BP of ld calculated by assuming that the

MEBFH model is the true model. Similarly, BFH-BLUP denotes the best linear

unbiased predictor of ld calculated by assuming that the BFH model (with no

measurement errors) is the true model. The gain in efficiency is measured as the

relative reduction of the MSE when using the MEBFH-BP instead of the BFH-

BLUP, under the assumption that all model parameters are known and the true

model is MEBFH.

We first derive the BFH-BLUP of ld and its MSE under the true MEBFH model.

If we equate Vk to the null matrix in (8), we obtain the BFH-BLUP, i.e.

l̂bp0

d ¼ Zdgþ Xdkþ ðV�1
ud þ V�1

ed Þ
�1V�1

ed nd ¼ Zdgþ Xdkþ VudðVud þ VedÞ�1nd;

ð10Þ

where nd ¼ yd � Zdg� Xdk ¼ Bdvd þ ud þ ed: The prediction error of the BFH-

BLUP is

l̂bp0

d � ld ¼ Zdgþ Xdkþ VudðVud þ VedÞ�1nd �
�
Zdgþ Xdkþ Bdvd þ ud

�

¼ VudðVud þ VedÞ�1nd � Bdvd � ud:

Under the MEBFH model, the BFH-BLUP is predictively unbiased. It holds that
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E
�
ndjxd

	
¼ E

�
Bdvd þ ud þ ed

	
¼ 0; E

�
l̂bp0

d � ldjxd
	
¼ 0:

Under the MEBFH model, we have

E
�
ndn

0
djxd

	
¼ BdE

�
vdv

0
djxd

	
B0
d þ E

�
udu

0
djxd

	
þ E

�
ede

0
djxd

	

¼ Vkd þ Vud þ Ved ¼ Vd;

E
�
ndv

0
djxd
	
B0
d ¼ E

�
ðBdvd þ ud þ edÞv0djxd

	
B0
d ¼ BdE

�
vdv

0
djxd

	
B0
d ¼ Vkd ;

E
�
ndu

0
djxd

	
¼ E

�
ðBdvd þ ud þ edÞu0djxd

	
¼ E

�
udu

0
djxd
	
¼ Vud :

Under the MEBFH model, with all model parameters known, the MSE of the BFH-

BLUP is

MSEðl̂bp0

d jxdÞ ¼ E
�
ðl̂bp0

d � ldÞðl̂
bp0

d � ldÞ0jxd
	

¼ VudðVud þ VedÞ�1E
�
ndn

0
djxd

	
ðVud þ VedÞ�1Vud

þ BdE
�
vdv

0
djxd

	
B0
d þ E

�
udu

0
djxd

	

� VudðVud þ VedÞ�1E
�
ndv

0
djxd
	
B0
d

� VudðVud þ VedÞ�1E
�
ndu

0
djxd

	
� BdE

�
vdu

0
djxd

	

� BdE
�
vdn

0
djxd
	
ðVud þ VedÞ�1Vud

� E
�
udn

0
djxd
	
ðVud þ VedÞ�1Vud � E

�
udv

0
djxd

	
B0
d

¼ VudðVud þ VedÞ�1VdðVud þ VedÞ�1Vud þ Vkd þ Vud

� 2VudðVud þ VedÞ�1Vud

� VudðVud þ VedÞ�1Vkd � VkdðVud þ VedÞ�1Vud:

If all MEBFH model parameters are known, the relative efficiency matrix of the

MEBFH-BP compared to the BFH-BLUP is

REd ¼
REd11 REd12

REd21 REd22


 �
¼ MSEðl̂bpd jxdÞ

MSEðl̂bp0

d jxdÞ
; d ¼ 1; . . .;D; ð11Þ

where the division of the 2 � 2 matrices MSEðl̂bpd jxdÞ and MSEðl̂bp0

d jxdÞ is done

component by component. We are mainly interested in the diagonal components

REd11 and REd11; this is to say, in the relative efficiencies when predicting ld1 and

ld2 respectively. We further remark that REd does not depend on xd, g or D.

In what follows, we presents some numerical calculations of the relative

efficiencies of the MEBFH model with respect to the BFH model. Let us consider a

MEBFH model (4) with q1 ¼ q2 ¼ p1 ¼ p2 ¼ 1, so that the model elements are

Zd ¼ diag ðzd1; zd2Þ, g ¼ ðg1; g2Þ0, Xd ¼ diag ðxd1; xd2Þ, k ¼ ðk1; k2Þ0,
B ¼ diag ðk1; k2Þ, vd ¼ ðvd1; vd2Þ0, ud ¼ ðud1; ud2Þ0, ed ¼ ðed1; ed2Þ0. For

d ¼ 1; . . .;D, define sd11 ¼ Rd11, sd21 ¼ sd12 ¼ Rd12, sd22 ¼ Rd22 and
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Rd ¼
sd11 sd12

sd12 sd22


 �
; Vud ¼

h1 h3

ffiffiffiffiffi
h1

p ffiffiffiffiffi
h2

p

h3

ffiffiffiffiffi
h1

p ffiffiffiffiffi
h2

p
h2

 !

; Ved ¼
1 c

c 1


 �
;

where sd12 ¼ qss
1=2
d11s

1=2
d22. Take k1 ¼ k2 ¼ 1, s ¼ sd11 ¼ sd22, h1 ¼ 1 and h2 ¼ 3=2.

Table 1 presents the relative efficiencies REd11 (top) and REd22 (bottom) for the

45 scenarios 1A,...,9E. All the scenarios take h1 ¼ 1, h2 ¼ 3=2. The row cases A, B,

C, D, E take s ¼ 1:81; 1:41; 1:01; 0; 61; 0:21 respectively. Scenarios 1–9 take the

parameters qs, c and h3 given by the rows 2, 3 and 4 of Table 1. We observe that the

relative efficiencies decrease as s increases from case E to case A. This is to say, the

greater the measurement error variance of the auxiliary variables is, the greater gain

of efficiency is obtained by using the best predictor based on the MEBFH model. On

the other hand, if the measurement errors are negligible (s � 0), then the gain of

efficiency almost null.

The greater values of REd11 and REd22 are in the column case 5. Therefore, the

efficiency gain when using the MEBFH model is smaller when the correlations qs,
c and h3 of the components of the measurement errors vd, the sampling errors ed and

the random effects ud respectively, are close to zero. In the limit qs ¼ c ¼ h3 ¼ 0,

we get two independent measurement error univariate Fay–Herriot models and it is

not possible to transport information from one component to other.

Figure 1 plots the relative efficiencies REd11 and REd22 for h3 2 f�0:75; 0:85g
and any qs and c. The case h3 ¼ �0:75 covers the Scenarios 2A and 3A and any

other scenario with h3 ¼ �0:75, �0:5� qs � 0:5 and �0:5� c� 0:5. The case h3 ¼
0:85 contains the scenarios 8A and 9A as individual points in the right-hand printed

surfaces.

Table 1 REd11 (top) and REd22 (bottom) for h1 ¼ 1, h2 ¼ 3=2 and scenarios 1A,..., 9E.

Scenario 1 2 3 4 5 6 7 8 9

qs 0.85 0.85 0.65 0.45 0.05 - 0.35 - 0.55 - 0.75 - 0.95

c 0.85 0.85 0.65 0.45 0.05 - 0.35 - 0.55 - 0.75 - 0.95

h3 - 0.95 - 0.75 - 0.75 - 0.55 0.05 0.45 0.65 0.65 0.85

A 0.3961 0.4701 0.5069 0.6182 0.7743 0.6687 0.5635 0.5242 0.4170

B 0.4604 0.5399 0.5784 0.6885 0.8290 0.7356 0.6354 0.5960 0.4827

C 0.5494 0.6330 0.6719 0.7735 0.8874 0.8136 0.7260 0.6887 0.5728

D 0.6802 0.6919 0.7959 0.8738 0.9454 0.9007 0.8391 0.8095 0.7029

E 0.8848 0.9329 0.9486 0.9743 0.9910 0.9812 0.9640 0.9536 0.8991

A 0.4076 0.4831 0.5383 0.6733 0.8633 0.7352 0.6065 0.5473 0.4210

B 0.4733 0.5537 0.6106 0.6885 0.9014 0.7949 0.6774 0.6195 0.4872

C 0.5639 0.6474 0.7032 0.8170 0.9389 0.8610 0.7640 0.7114 0.5778

D 0.6959 0.7060 0.8220 0.9028 0.9726 0.9299 0.8673 0.8281 0.7083

E 0.8971 0.9395 0.9585 0.9817 0.9959 0.9877 0.9726 0.9604 0.9030
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In summary, Table 1 and Figure 1 show some scenarios where the MSE of the

MEBFH-BP is around a half of the MSE of the BFH-EBLUP. They also show some

other scenarios where the gain of efficiency is rather small. This information is

useful to decide in what situations it is more profitable to use the more complex EBP

based on the MEBFH model.

5 Mean squared error estimation

Obtaining an approximation to the MSE of the EBP of ld under the MEBFH model

requires tedious calculations. Unlike the case of no measurement errors, the

obtained approximation will be quite awkward and not very useful to introduce

analytic MSE estimators. This is why we propose applying a parametric bootstrap

procedure, like the one introduced by González-Manteiga et al. (2008) and later

extended by González-Manteiga et al. (2010) to semi-parametric Fay–Herriot

models.

Let w ¼ ðg0; k0; h0Þ0 be the vector of model parameters, where h ¼ ðr2
u1; r

2
u2; qÞ

0
.

The following parametric bootstrap procedure estimates MSEðl̂ebpd Þ.
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Fig. 1 Relative efficiencies for s ¼ 1:81, h1 ¼ 1, h2 ¼ 3=2
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1. Calculate the estimates ŵ and V̂ud ¼ VudðŵÞ by using the data ðyd; Zd;XdÞ,
d ¼ 1; . . .;D.

2. Repeat B times

2:1. For d ¼ 1; . . .;D, generate u
	ðbÞ
d �N2ð0; V̂udÞ, e

	ðbÞ
d �N2ð0;VedÞ

v
	ðbÞ
d �N2ð0;RdÞ, y

	ðbÞ
d ¼ l	ðbÞd þ e

	ðbÞ
d

andl	ðbÞd ¼ ZdĝðiÞ þ Xdk
ðiÞ þ diag ðk̂ðiÞ1 ; k̂ðiÞ2 Þv	ðbÞd þ u

	ðbÞ
d .

2:2. Calculate the estimator ŵ	ðbÞ by using the data ðy	ðbÞd ; Zd;XdÞ, d ¼ 1; . . .;D.

2:3 Calculate the EBPs l̂	ðbÞdk , d ¼ 1; . . .;D, k ¼ 1; 2, under the model of Step

2.1.

3 For d ¼ 1; . . .;D, k ¼ 1; 2, calculate the MSE estimator of the EBP; i.e.

mse	dk ¼
1

B

XB

b¼1

�
l̂	ðbÞdk � l	ðbÞdk

�2
:

6 Estimation of model parameters

We consider two methods for estimating g, k, r2
u1, r2

u2 and q under model (4): (1)

pseudo-residual maximum likelihood, and (2) maximum likelihood. Both method

are based on the distribution of y|X. Appendix C in the supplementary file gives the

Fisher-scoring algorithm to calculate the maximum likelihood estimators of the

model parameters. However, we we do not implement this last algorithm because it

has a greater computational complexity. This section describes the pseudo-residual

maximum likelihood method.

ML estimators of model parameters have well known asymptotic properties.

Under regularity conditions on the auxiliary variables, they are consistent and

asymptotically normal. The Fisher-scoring algorithm maximizes the log-likelihood

of y|X by solving the corresponding system of nonlinear equation, i.e. first partial

derivatives equated to zero. It is a system with pþ qþ 3 equations and the Fisher-

scoring algorithm inverts matrices of that dimension. If p or q are big, then the

algorithm speed decreases and it might have convergence problems when the

number of domains D is not big enough.

The REML estimators of the parameters of a linear mixed model are quite

attractive. They have similar good asymptotic properties as ML estimators, but their

calculation has a lower computational cost because the REML log-likelihood

involves only the variance component parameters. Nevertheless, the MEBFH model

is not a linear mixed model and the REML method is thus not applicable. This is

why, we introduce pseudo-REML approach by treating the components of matrix Bd

in (4) as known constants. In that case, the MEBFH model becomes a linear mixed

model and the REML method can be applied yielding to the maximization of the

derived REML log-likelihood. However, the components of Bd depends on the
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unknown vector of parameters k and, therefore, we are not applying the REML

method but a pseudo-REML approach. The small sample properties of the pseudo-

REML are empirically investigated in Simulation 1.

Let us define T ¼ ½Z;X� ¼ col
1� d�D

ðTdÞ, Td ¼ ½Zd;Xd� and b ¼ ðg0; k0Þ0, so that

model (4) can be written in the form

yd ¼ Tbþ Bvd þ ud þ ed; d ¼ 1; . . .;D; ð12Þ

The pseudo-REML log-likelihood of model (12) is

lremlðhÞ ¼ � 2D� p� q

2
log 2pþ 1

2
log jT 0Tj � 1

2
log jVj � 1

2
log jT 0V�1Tj � 1

2
y0Py;

where h ¼ ðh1; h2; h3Þ, h1 ¼ r2
u1, h2 ¼ r2

u2, h3 ¼ q, PVP ¼ P, PT ¼ 0,

P ¼ V�1 � V�1TðT 0V�1TÞ�1T 0V�1, and V is defined in (5). By applying the

formulas

o log jV j
oh

¼ tr
�
V�1 oV

oh

�
;

oV�1

oh
¼ �V�1 oV

oh
V�1;

we calculate the first partial derivatives of lreml with respect to h‘, i.e.

olremlðhÞ
oh‘

¼ � 1

2
tr
�
V�1 oV

oh‘

�
þ 1

2
tr
�
ðT 0V�1TÞ�1T 0V�1 oV

oh‘
V�1T

�
� 1

2
y0
oP

oh‘
y

¼ � 1

2
tr
�
V�1 oV

oh‘

�
þ 1

2
tr
�
V�1TðT 0V�1TÞ�1T 0V�1 oV

oh‘

�
� 1

2
y0
oP

oh‘
y

¼ � 1

2
tr
��
V�1 � V�1TðT 0V�1TÞ�1T 0V�1

	 oV
oh‘

�
� 1

2
y0
oP

oh‘
y

¼ � 1

2
tr
�
P
oV

oh‘

�
� 1

2
y0
oP

oh‘
y; ‘ ¼ 1; 2; 3:

Let us define G ¼ V�1TðT 0V�1TÞ�1
, so that P ¼ ðI � GT 0ÞV�1 ¼ V�1ðI � TG0Þ.

The first partial derivatives of P ¼ V�1 � V�1TðT 0V�1TÞ�1T 0V�1 with respect to h‘
are

oP

oh‘
¼ �V�1 oV

oh‘
V�1 þ V�1 oV

oh‘
V�1TðT 0V�1TÞ�1T 0V�1

þ V�1TðT 0V�1TÞ�1T 0V�1 oV

oh‘
V�1

� V�1TðT 0V�1TÞ�1T 0V�1 oV

oh‘
V�1TðT 0V�1TÞ�1T 0V�1

¼ �V�1 oV

oh‘
V�1 þ V�1 oV

oh‘
V�1TG0 þ GT 0V�1 oV

oh‘
V�1

� GT 0V�1 oV

oh‘
V�1TG0

¼ �ðI � GT 0ÞV�1 oV

oh‘
V�1ðI � GT 0Þ0 ¼ �P

oV

oh‘
P; ‘ ¼ 1; 2; 3:

Therefore, the score vector for ‘ ¼ 1; 2; 3 is
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Sðh;bÞ ¼ ðS1; S2; S3Þ0; S‘ ¼ S‘ðh; bÞ ¼
olreml
oh‘

¼ � 1

2
trðPV ‘Þ þ

1

2
y0PV ‘Py;

where P ¼ Pðh; bÞ ¼
�
Pd1d2

�
d1;d2¼1;...;D

, V‘ ¼ V‘ðhÞ ¼ oV
oh‘

¼ diag
1� d�D

ðVud‘Þ and

Pdd ¼ V�1
d � V�1

d TdQT
0
dV

�1
d ; Pd1d2

¼ �V�1
d1

Td1
QT 0

d2
V�1
d2

; Q ¼
�
T 0V�1T

��1
;

Vud1 ¼ oVud

or2
u1

¼
1

q12ru2

2ru1

q12ru2

2ru1

0

0

B@

1

CA; Vud2 ¼ oVud

or2
u2

¼
0

q12ru1

2ru2

q12ru1

2ru2

1

0

B@

1

CA;

Vud3 ¼ oVud

oq12

¼
0 ru1ru2

ru1ru2 0


 �
:

For ‘ ¼ 1; 2; 3, we have

PV ‘ ¼
h

diag
1� d�D

ðV�1
d Þ � col

1� d�D
ðV�1

d TdÞQ col0
1� d�D

ðT 0
dV

�1
d Þ
i

diag
1� d�D

ðVud‘Þ

¼ diag
1� d�D

ðV�1
d Vud‘Þ � col

1� d�D
ðV�1

d TdÞQ col0
1� d�D

ðT 0
dV

�1
d Vud‘Þ:

For a; b ¼ 1; 2; 3, we have

PVaPVb ¼
h

diag
1� d�D

ðV�1
d VudaÞ � col

1� d�D
ðV�1

d TdÞQ col0
1� d�D

ðT 0
dV

�1
d VudaÞ

i

�
h

diag
1� d�D

ðV�1
d VudbÞ � col

1� d�D
ðV�1

d TdÞQ col0
1� d�D

ðT 0
dV

�1
d VudbÞ

i

¼ diag
1� d�D

ðV�1
d VudaV

�1
d VudbÞ

� col
1� d�D

ðV�1
d VudaV

�1
d TdÞQ col0

1� d�D
ðT 0

dV
�1
d VudbÞ

� col
1� d�D

ðV�1
d TdÞQ col0

1� d�D
ðT 0

dV
�1
d VudaV

�1
d VudbÞ

þ col
1� d�D

ðV�1
d TdÞQ

�XD

d¼1

T 0
dV

�1
d VudaV

�1
d Td

�
Q col0

1� d�D
ðT 0

dV
�1
d VudbÞ:

For ‘ ¼ 1; 2; 3, we have

tr ðPV ‘Þ ¼
XD

d¼1

tr ðV�1
d Vud‘Þ �

XD

d¼1

tr ðV�1
d TdQT

0
dV

�1
d Vud‘Þ ¼

XD

d¼1

tr ðPddVud‘Þ;

y0PV‘Py ¼
XD

d¼1

y0dV
�1
d Vud‘V

�1
d yd � 2

XD

d1¼1

XD

d2¼1

y0d1
V�1
d1

Vud1‘V
�1
d1

Td1
QT 0

d2
V�1
d2

yd2

þ
XD

d1¼1

XD

d2¼1

y0d1
V�1
d1

Td1
Q
�XD

d1¼1

T 0
dV

�1
d Vud‘V

�1
d Td

�
QT 0

d2
V�1
d2

yd2
:

For a; b ¼ 1; 2; 3, the second partial derivatives of the REML log-likelihood func-

tion are
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ol2remlðhÞ
ohaohb

¼ 1

2
tr
�
PVbPVa

�
� 1

2
y0ðPVbPVaPþ PVaPVbPÞy

¼ 1

2
tr
�
PVaPVb

�
� y0PVaPVbPy;

where the last equality follows from the fact that V‘ is symmetric, ‘ ¼ 1; 2; 3. By

changing the sign, taking expectations and applying PT ¼ 0, PV ¼ I � V�1TQT 0

and the formula

E
�
y0Ay

	
¼ tr

�
A var ðyÞ

�
þ E½y�0AE½y�;

we get the components of the Fisher information matrix, i.e.

Fab ¼ FabðhÞ ¼ � 1

2
tr
�
PVaPVb

�
þ tr

�
PVaPVbPV

�
þ b0T 0VaPVbPTb

¼ � 1

2
tr
�
PVaPVb

�
þ tr

�
PVaPVb½I � V�1TQT 0�

�

¼ 1

2
tr
�
PVaPVb

�
þ tr

�
PVaPVbV

�1TQT 0� ¼ 1

2
tr
�
PVaPVb

�
; a; b ¼ 1; 2; 3:

Therefore, the Fisher information matrix is

Fðh;bÞ ¼
�
Fa;b

�
a;b¼1;2;3

; Fab ¼ Fabðh; bÞ ¼
1

2
tr ðPVaPVbÞ; a; b ¼ 1; 2; 3:

The trace of PVaPVb can be calculated as

tr ðPVaPVbÞ ¼
XD

d¼1

tr
�
V�1
d VudaV

�1
d Vudb

�
�
XD

d¼1

tr
�
VudbV

�1
d VudaV

�1
d TdQT

0
dV

�1
d

�

�
XD

d¼1

tr
�
VudaV

�1
d VudbV

�1
d TdQT

0
dV

�1
d

�

þ tr
�nXD

d¼1

T 0
dV

�1
d VudbV

�1
d Td

o
Q
nXD

d¼1

T 0
dV

�1
d VudaV

�1
d Td

o
Q
�
:

The pseudo-REML Fisher-scoring algorithm is

1. Set the initial values bð0Þ, hð0Þ, and ej [ 0, j ¼ 1; . . .; pþ qþ 3.

2. Repeat the following steps until the tolerance or the boundary conditions are

fulfilled.

(a) Updating equation for h: Do hðiþ1Þ ¼ hðiÞ þ F�1ðhðiÞ; bðiÞÞSðhðiÞ; bðiÞÞ.
(b) Boundary condition: If hðiþ1Þ

1 [ 0, hðiþ1Þ
2 [ 0 and

hðiþ1Þ
3

\1, continue.

Otherwise, do ĥ ¼ hðiÞ and stop.

(c) Updating equation for b:Do bðiþ1Þ ¼
�
T 0V�1ðhðiþ1Þ; bðiÞÞT

��1
T 0V�1

ðhðiþ1Þ; bðiÞÞy.
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(d) Tolerance condition: If
hðiþ1Þ

‘ � hðiÞ‘
\epþqþ‘,

bðiþ1Þ
j � bðiÞj

\ej,

j ¼ 1; . . .; pþ q, ‘ ¼ 1; 2; 3, do ĥ‘ ¼ hðiþ1Þ
‘ , b̂ ¼ bðiþ1Þ and stop. Other-

wise, continue.

3. Output: ĥ, b̂, F�1ðĥ; b̂Þ.

The asymptotic distributions of the REML estimators ĥ and b̂,

ĥ�N2

�
h;F�1ðh; bÞ

�
; b̂�Npþq

�
b; ðT 0V�1ðh; bÞTÞ�1

�
;

can be used to construct ð1 � aÞ-level confidence intervals for the components h‘ of

h and bj of b, i.e.

ĥ‘ 
 za=2 m
1=2
‘‘ ; ‘ ¼ 1; 2; 3; b̂j 
 za=2 g

1=2
jj ; j ¼ 1; . . .; pþ q; ð13Þ

where F�1ðĥ; b̂Þ ¼ ðmabÞa;b¼1;2;3, ðT 0V�1ðĥ; b̂ÞTÞ�1 ¼ ðgabÞa;b¼1;...;pþq and za is the

a-quantile of the N(0, 1) distribution. For b̂j ¼ b0, the p-value for testing the

hypothesis H0 : bj ¼ 0 is

p-value ¼ 2PH0
ðb̂j [ jb0jÞ ¼ 2PðNð0; 1Þ[ jb0j=

ffiffiffiffiffi
gjj

p Þ: ð14Þ

We remark that we have changed the notation in (13) and (14), where bj denotes the

j-th component of the vector b and not the vector of regression parameters of the j-th
category.

7 Simulations

This section presents simulation experiments for assessing the performance of the

fitting method, the EBP estimator, and the MSE estimator. The objective is to show

how the new methodology works in realistic (not extreme) scenarios. In practice,

some explanatory variables can be taken from an auxiliary survey that is different

from the target survey and that has bigger sample sizes. This is the case of the SLCS

(target survey) and the SLFS (auxiliary survey). The second one has bigger sample

sizes than the first. Therefore, it is natural to choose scenarios where the variances of

the measurement errors are lower than the variances of the sampling errors and

lower than the variances of the random effects.

In the calculation of Sect. 4, the variances of the sampling errors are r2
e1 ¼

r2
e2 ¼ 1 and the variances of the random effects are r2

u1 ¼ h1 ¼ 1 and

r2
u2 ¼ h2 ¼ 3=2 ¼ 0:66. Therefore, it is quite natural to choose scenario E, where

the measurement error variances are sd11 ¼ sd22 ¼ 0:21 Concerning the random

effect correlations, we are mainly interested in the case h3 ¼ corr ðud1; ud2Þ ¼ 0:45

because h3 is positive in the application to real data. This is why, we consider that

the scenario 6E is the most close to the application to real data presented in Sect. 8.
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For the sake of completeness, we also run simulations under the scenarios 5E and

4E with correlations h3 ¼ 0:05 and h3 ¼ �0:55.

The data for the simulation experiments is generated as follows. We take

q1 ¼ q2 ¼ p1 ¼ p2 ¼ 1, so that the elements of the MEBFH model (4) are

Zd ¼ diag ðzd1; zd2Þ, g ¼ ðg1; g2Þ
0
, Xd ¼ diag ðxd1; xd2Þ, k ¼ ðk1; k2Þ0,

B ¼ diag ðk1; k2Þ, vd ¼ ðvd1; vd2Þ0, ud ¼ ðud1; ud2Þ0, ed ¼ ðed1; ed2Þ0. Take

zd1 ¼ zd2 ¼ 1, g1 ¼ g2 ¼ k1 ¼ k2 ¼ 1 and

xd1 ¼ lx1 þ r1=2
x1 Sd1; xd2 ¼ lx2 þ r1=2

x2 Sd2; Sdk �ind
Uð0; 1Þ; k ¼ 1; 2; d ¼ 1; . . .;D;

with lx1 ¼ lx2 ¼ 1, rx1 ¼ 1:2 and rx2 ¼ 2:4. Note that

var Uð0;1Þðxd12Þ ¼
rx1

12
¼ 0:1; var Uð0;1Þðxd22Þ ¼

rx2

12
¼ 0:2:

For d ¼ 1; . . .;D, generate vd �N2ð0;RdÞ, ud �N2ð0;VudÞ and ed �N2ð0;VedÞ,
where

Rd ¼
sd11 sd12

sd21 sd22


 �
; Vud ¼

h1 h3

ffiffiffiffiffi
h1

p ffiffiffiffiffi
h2

p

h3

ffiffiffiffiffi
h1

p ffiffiffiffiffi
h2

p
h2

 !

; Ved ¼
1 c

c 1


 �

sd12 ¼ qss
1=2
d11s

1=2
d22, sd11 ¼ sd22 ¼ s ¼ 0:21, qs ¼ c ¼ �0:35, h1 ¼ 1 and h2 ¼ 1:5.

Concerning the random effect correlation, we consider h3 ¼ 0:45, h3 ¼ 0:05 and

h3 ¼ �0:55. This is to say, we take the same model parameters as in Scenarios 6E,

5E and 4E of Sect. 4.

7.1 Simulation 1

The target of Simulation 1 is to check the behavior of the pseudo-REML Fisher-

scoring algorithm for fitting the MEBFH model. The steps of Simulation 1 are

1. Generate zdk, xdk, d ¼ 1; . . .;D, k ¼ 1; 2.

2. Repeat I ¼ 1000 times (i ¼ 1; . . .; 1000)

2:1. Generate v
ðiÞ
d �N2ð0;RdÞ, uðiÞd �N2ð0;VudÞ, eðiÞd �N2ð0;VedÞ and

y
ðiÞ
d ¼ Zdgþ Xdkþ Bv

ðiÞ
d þ u

ðiÞ
d þ e

ðiÞ
d ; d ¼ 1; . . .;D: ð15Þ

2:2. For every model parameter c 2 fg1; k1; g2; k2; h1; h2; h3g, calculate the

corresponding REML estimator ĉðiÞ 2 fĝðiÞ1 ; k̂ðiÞ1 ; ĝðiÞ2 ; k̂ðiÞ2 ; ĥðiÞ1 ; ĥðiÞ2 ; ĥðiÞ3 g.

3. Output (empirical biases and root-MSEs):
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BIASðĉÞ ¼ 1

I

XI

i¼1

ðĉðiÞ � cÞ; RMSEðĉÞ ¼ 1

I

XI

i¼1

ðĉðiÞ � cÞ2

 !1=2

:

For the sake of brevity, Table 2 presents only the results of Simulation 1 under

Scenario 6E. The column labeled by c contains the values of the true model

parameters. Simulation 1 shows that the REML Fisher scoring algorithm works

properly because BIAS and RMSE decrease as D increases. Similar results are

obtained under Scenarios 4E and 5E.

7.2 Simulation 2

Simulation 2 investigates the performance of the EBPs of the mean parameters ldk.
The steps of Simulation 2 are

1. Generate zdk, xdk, d ¼ 1; . . .;D, k ¼ 1; 2. Take D 2 D ¼ f50; 100; 200g.

2. Repeat I ¼ 104 times (i ¼ 1; . . .; I)

2:1. Generate fðeðiÞd ; u
ðiÞ
d ; v

ðiÞ
d ; y

ðiÞ
d Þ : d ¼ 1; . . .;Dg from the MEBFH model (15).

2:2. Calculate the true means lðiÞd ¼ Zdgþ Xdkþ Bv
ðiÞ
d þ u

ðiÞ
d , d ¼ 1; . . .;D.

2:3. Fit the MEBFH model to the simulated data ðyðiÞd ; Zd;XdÞ, d ¼ 1; . . .;D.

Calculate the EBP l̂ðiÞd under the MEBFH model.

3. For d ¼ 1; . . .;D, k ¼ 1; 2, calculate the relative performance measures

3:1 Edk ¼
�

1
I

PI
i¼1ðl̂

ðiÞ
dk � lðiÞdk Þ

2
�1=2

, Bdk ¼ 1
I

PI
i¼1ðl̂

ðiÞ
dk � lðiÞdk Þ,

ldk ¼ 1
I

PI
i¼1 l

ðiÞ
dk .

3:2. REdk ¼ 100 Edk

ldk
, RBdk ¼ 100 Bdk

ldk
, REk ¼ 1

D

PD
d¼1 REdk,

RBk ¼ 1
D

PD
d¼1 jRBdkj.

Table 3 presents the relative performance measures RBk (left) and REk (right) of

EBPs under Scenarios 4E, 5E and 6E. As expected, the EBPs have almost no bias in

all cases. We also note that root-MSEs decrease slowly as the number of domains

increases. This is somewhat reasonable, since increasing D also increases the

number of quantities ld to be predicted.

7.3 Simulation 3

Simulation 3 investigates the performance of the parametric bootstrap estimator of

the MSE of the EBPs. For D ¼ 100, the steps of Simulation 3 are
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1. Take msedk ¼ E2
dk, k ¼ 0; 1, d ¼ 1; . . .;D, from the output of Simulation 2.

2. Generate zdk, xdk, d ¼ 1; . . .;D, k ¼ 1; 2.

3. Repeat I ¼ 102 times (i ¼ 1; . . .; I)

3:1. Generate fðeðiÞd ; u
ðiÞ
d ; v

ðiÞ
d ; y

ðiÞ
d Þ : d ¼ 1; . . .;Dg from the MEBFH model

(15).

3:2. Calculate the REML estimators ĉðiÞ 2 fĝðiÞ1 ; k̂ðiÞ1 ; ĝðiÞ2 ; k̂ðiÞ2 ; ĥðiÞ1 ; ĥðiÞ2 ; ĥðiÞ3 g by

using the sample data ðyðiÞd ; Zd;XdÞ, d ¼ 1; . . .;D.

3:3. Repeat B times

(a) Generate u
	ðibÞ
d �N2ð0; V̂ ðiÞ

ud Þ, e
	ðibÞ
d �N2ð0;VedÞ, v

	ðibÞ
d �N2ð0;RdÞ

and

y
	ðibÞ
d ¼ l	ðibÞd þ e

	ðibÞ
d ;

l	ðibÞd ¼ Zdĝ
ðiÞ þ Xdk

ðiÞ þ diag ðk̂ðiÞ1 ; k̂ðiÞ2 Þv	ðibÞd þ u
	ðibÞ
d ; d ¼ 1; . . .;D:

ð16Þ

(b) Calculate the REML estimators

ĝ	ðibÞ1 ; k̂	ðibÞ1 ; ĝ	ðibÞ2 ; k̂	ðibÞ2 ; ĥ	ðibÞ1 ; ĥ	ðibÞ2 ; ĥ	ðibÞ3 by using the sample data

ðy	ðibÞd ; Zd;XdÞ, d ¼ 1; . . .;D.

(c) Calculate the EBP l̂	ðibÞdk under the MEBFH model (16).

3:4. For d ¼ 1; . . .;D, k ¼ 1; 2, calculate the bootstrap MSE estimator of the

EBP, i.e.

mse
	ðiÞ
dk ¼ 1

B

XB

b¼1

�
l̂	ðibÞdk � l	ðibÞdk

�2
:

Table 2 Empirical biases (left) and root-MSEs (right) for scenario 6E

BIASðĉÞ RMSEðĉÞ

c D ¼ 50 D ¼ 100 D ¼ 200 D ¼ 50 D ¼ 100 D ¼ 200

g1 1 0.0474 0.0243 0.0163 0.9989 0.6843 0.5105

k1 1 - 0.0278 - 0.0137 - 0.0072 0.6228 0.4365 0.3208

g2 1 0.0082 - 0.0248 0.0320 1.0128 0.6510 0.4635

k2 1 - 0.0012 0.0154 - 0.0189 0.5294 0.3567 0.2546

h1 1 - 0.0253 - 0.0296 - 0.0130 0.4658 0.3465 0.2497

h2 1.5 - 0.0315 - 0.0229 0.0058 0.5732 0.4213 0.2833

h3 0.45 0.0319 0.0339 0.0177 0.2973 0.2322 0.1691
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4. For d ¼ 1; . . .;D, k ¼ 1; 2, calculate the relative performance measures

RE	
dk ¼ 100E	

dk=msedk and RB	
dk ¼ 100B	

dk=msedk, where

E	
dk ¼

� 1

I

XI

i¼1

ðmse	ðiÞdk � msedkÞ2
�1=2

; B	
dk ¼

1

I

XI

i¼1

ðmse	ðiÞdk � msedkÞ:

5. For k ¼ 1; 2, calculate the averages across domains of the relative performance

measures, i.e. RB	
k ¼ 1

D

PD
d¼1 jRB	

dkj, RE	
k ¼ 1

D

PD
d¼1 RE

	
dk.

Table 4 presents the relative performance measures RB	
k and EB	

k (in %) under

Scenarios 4E, 5E and 6E, for D ¼ 100. Figures 2 and 3 presents the boxplots of the

absolute performance measures B	
dk’s and E	

dk’s respectively under scenario 6E.

Similar boxplots are constructed for Scenarios 4E and 5E, but they are not presented

here. They show that the parametric bootstrap estimators of the MSEs of the EBPs

have a negative bias in the simulated scenarios. Nevertheless, the observed biases

are rather small in comparison with the calculated empirical root-MSEs. Simulation

3 suggests that running a parametric bootstrap algorithm with a number of replicates

B between 200 and 400 give a considerably good approximation to estimate the

MSE of the EBP.

8 Estimation of poverty proportions and gaps in Spanish provinces

This manuscript presents an application of the MEBFH model to the estimation of

poverty proportions and gaps in Spanish provinces by sex. Spain is divided in 52

provinces (including the autonomous cities of Ceuta and Melilla) leading to D ¼
104 target domains (provinces crossed by sex) of known sizes Nd, d ¼ 1; . . .;D.

Let zdj be the normalized net annual income of the household where the

individual j of domain d lives. Let z0 be the poverty line, so that individuals with

zdj\z0 are considered as poor. The main goal of this section is to jointly estimate

poverty proportions and gaps

Table 3 Relative measures RBk (left) and REk (right) of EBPs (in %)

Scenario k D ¼ 50 D ¼ 100 D ¼ 200 D ¼ 50 D ¼ 100 D ¼ 200

4E 1 0.2220 0.1936 0.2123 28.1546 27.5489 27.0206

2 0.2295 0.2290 0.2192 27.1848 27.1914 27.1846

5E 1 0.2293 0.2013 0.2369 30.5311 30.0734 29.6244

2 0.2566 0.2435 0.2308 29.5998 29.7698 29.8576

6E 1 0.2113 0.1908 0.2271 29.0125 28.4583 27.9936

2 0.2439 0.2175 0.2100 28.0417 28.1359 28.1733
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�Yd1 ¼ 1

Nd

XNd

j¼1

yd1j; �Yd2 ¼ 1

Nd

XNd

j¼1

yd2j; d ¼ 1; . . .;D; ð17Þ

where yd1j ¼ Iðzdj\z0Þ, Iðzdj\z0Þ ¼ 1 if zdj\z0, Iðzdj\z0Þ ¼ 0 otherwise and

yd2j ¼ z�1
0 ðz0 � zdjÞIðzdj\z0Þ.

The Spanish Statistical Office calculates zdj by summing up the net annual

incomes of the household members and by dividing by its normalized size. Later,

the same value of the normalized net annual income of the household is assigned to

all the individuals j of the household. Therefore zdj is constant within the household.

The aim of normalizing the household income is to adjust for the varying size and

composition of households. The definition of the total number of normalized

household members is the modified OECD scale used by EUROSTAT. This scale

gives a weight of 1.0 to the first adult, 0.5 to the second and each subsequent person

aged 14 and over and 0.3 to each child aged under 14 in the household h. The

normalized size of a household is the sum of the weights assigned to each person. So

the total number of normalized household members is

Hdh ¼ 1 þ 0:5ðHdh� 14 � 1Þ þ 0:3Hdh\14;

where Hdh� 14 is the number of people aged 14 and over and Hdh\14 is the number

of children aged under 14. Following the standards of the Spanish Statistical Office,

the poverty threshold is fixed as the 60% of the median of the normalized net annual

incomes in Spanish households. The Spanish poverty threshold (in euros) in 2008 is

z2008 ¼ 7488:65. We deal with data from the SLCS of 2008 with sample size 35967.

This is an annual survey where the planned domains are the regions (autonomous

communities), so that sample sizes are selected to obtain precise direct estimates at

the region level. As Spain is hierarchically partitioned in regions, provinces,

counties (comarcas) and municipalities, estimating province-sex poverty propor-

tions is a small area estimation problem.

Table 4 Relative measures of

MSE estimators for D ¼ 100 (in

%)

Scenario Measure k B ¼ 50 B ¼ 100 B ¼ 200 B ¼ 400

4E RB	
k 1 4.7738 3.3389 2.0169 2.8475

2 3.6455 2.8645 1.4327 2.0248

RE	
k 1 17.7969 16.5755 14.3046 14.0318

2 18.0551 15.7436 13.4592 10.4429

5E RB	
k 1 1.8112 0.9627 1.3113 2.9361

2 0.9266 1.7964 1.7394 1.0371

RE	
k 1 17.2544 13.8403 11.5956 10.9446

2 17.4716 13.3175 10.5300 8.1644

6E RB	
k 1 2.7367 4.2101 2.8832 0.0457

2 1.6416 3.4513 3.0222 0.0168

RE	
k 1 17.4342 15.1222 12.5930 13.1017

2 16.9305 14.9749 12.1429 9.8613
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The direct estimators of the size Nd, the total Ydk ¼
PNd

j¼1 ydkj and the mean

�Ydk ¼ Ydk=Nd are

N̂dir
d ¼

X

j2sd
wdj; Ŷdir

dk ¼
X

j2sd
wdj ydkj; �̂Y

dir
dk ¼ Ŷdir

dk =N̂
dir
d ; k ¼ 1; 2;

where sd is the domain sample of size nd and the wdj’s are the official calibrated

sampling weights which take non response into account. The direct estimates of the

domain means are used as responses in the area-level Fay–Herriot model. The

design-based covariance between �̂Y
dir
dk1

and �̂Y
dir
dk2

, k1; k2 ¼ 1; 2, can be estimated by
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Fig. 2 Boxplots of biases fB	
dk : d ¼ 1; . . .;Dg, k ¼ 1; 2
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Fig. 3 Boxplots of root-MSEs fE	
dk : d ¼ 1; . . .;Dg, k ¼ 1; 2

123

102 J. Ban



^cov pð �̂Ydir
dk1

; �̂Y
dir
dk2

Þ ¼ 1
�
N̂dir
d

�2

X

j2sd
wdjðwdj � 1Þðydk1j � �̂Y

dir
dk1

Þðydk2j � �̂Y
dir
dk2

Þ; ð18Þ

where the case k1 ¼ k2 ¼ k denotes estimated variance, i.e. ^var pð �̂Ydir
dk Þ ¼

^cov pð �̂Ydir
dk ;

�̂Y
dir
dk Þ. The last formulas are obtained from Särndal et al. (1992), pp. 43,

185 and 391, with the simplifications wdj ¼ 1=pdj, pdj;dj ¼ pdj and pdi;dj ¼ pdipdj,
i 6¼ j in the second order inclusion probabilities.

We take data from the SLFS of 2008 to construct the data file of aggregated

auxiliary variables. The SLFS is a quarterly survey with provinces as planned

domains. Within each quarter, the SLFS sample sizes at the province level are fixed

a priori. They are selected high enough to have precise direct estimates. By putting

together the data files of the 4 quarters, the SLFS direct estimators of means at

domain (province crossed by sex) level are even more precise for 2008 than using

only the data of one quarter. Additionally, by doing this aggregation all the

calculated SLFS direct estimators of domain means have non zero estimated

variances.

The file of auxiliary variables is constructed from the SLFS data of 2008

(SLFS2008). It contains the direct estimates of the domain means by the categories

of the considered auxiliary variables. It also contains the variance and covariance

estimates of the calculated direct estimators. The auxiliary variables are:

Nationality, with categories Spanish and Foreigner.

Education, with categories LowEdu (less than secondary level completed),

HighEdu (secondary or superior level completed)

Age, with categories age1 (� 15), age2 (16-24), age3 (25-49), age4 (50-64), age5

([ 64).

Labour situation, with categories � 15, Employed, Unemployed, Inactive.

Table 5 presents the pseudo-REML estimates of the regression parameters of the

selected MEBFH model. It also contains the corresponding p-values. We note that

domains with higher proportions of Spanish or unemployed people tends to have

higher poverty proportions. On the other hand, the level of education is negatively

related with the poverty proportion. We note that foreigners tend to live and work in

rich provinces. Therefore, the obtained results are in agreement with the Spanish

socioeconomic situation of 2008.

Table 6 contains the estimates of the variance component parameters and the

corresponding asymptotic 95% confidence intervals.

Figure 4 (left) plots the MEBFH model residuals of poverty proportions versus

the corresponding EBPs. Figure 4 (right) plots the MEBFH model residuals of

poverty gaps versus their EBPs.

We observe that the residuals present greater variability on the right hand side of

the OX axis. This is a natural phenomenon, as the EBPs have to smooth the behavior

of the direct estimators. The plots show that EBPs tend to be smaller than direct

estimates when direct estimates are large. This is due to two main reasons. First, it is

part of the smoothing work that EBPs have to do. Second, the variance of the

directly estimated proportion is approximately ð1 � nd=NdÞ=ðnd � 1Þ �̂Ydir
dk ð1 � �̂Y

dir
dk Þ,
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which takes its maximum at �̂Y
dir
dk ¼ 0:5, for nd;Nd fixed. Allowing in this context

area specific Vud is an interesting future research task, that possibly could further

reduce the MSE of the EBP.

Figure 5 plots the EBPs and direct estimates of poverty proportions (left) and

gaps (right) for men and women. We observe that both estimators tend to coincide

as the sample size increases.

Figure 6 plots the estimated model-based root-MSEs of the EBPs and the

estimated design-based root-MSEs of the direct estimators of poverty proportions

(left) and gaps (right) for men and women. The first root-MSE is estimated by

Table 5 Regression parameters
Parameter Estimate Std.error z-value p-value

Intercept.prop - 0.0100 0.0984 0.1021 0.9187

Spanish.prop 0.3576 0.0837 4.2747 0.0000

HighEdu.prop - 0.6540 0.0933 7.0080 0.0000

Unemployed.prop 1.7440 0.2939 5.9348 0.0000

Intercept.gap - 0.0115 0.0421 0.2738 0.7842

Spanish.gap 0.0822 0.0363 2.2605 0.0238

HighEdu.gap - 0.1509 0.0380 3.9690 0.0001

Unemployed.gap 0.8373 0.1181 7.0874 0.0000

Table 6 Variance component

parameters
h Lower.lim Upper.lim

r2
u1

0.00171 0.00102 0.00241

r2
u2

0.00028 0.00017 0.00040

q 0.79750 0.68389 0.91110
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Fig. 4 Model residuals versus EBPs of poverty proportions (left) and gaps (right)
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parametric bootstrap under the fitted MEBFH model. The second one is calculated

by applying the estimator (18) for design-based variances. The EBPs have lower

root-MSEs than the direct estimators. When the sample size increases the root-

MSEs of all the estimators become almost equal.

Figures 7 and 8 plot the Spanish provinces in 4 colors depending on the values of

the EBPs of the poverty proportions and poverty gaps in %. We observe that the

Spanish provinces where the proportion of the population under the poverty line is

direct
EBP
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14 126 193 304 527 1391 123 194 305 571 1520 14 126 193 304 527 1391 123 194 305 571 1520
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Fig. 5 EBPs and direct estimates of men (left) and women (right) poverty proportions
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Fig. 6 Root-MSEs of EBPs and direct estimators for men (left) and women (right)
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smallest are those situated in the north and east. On the other hand, the Spanish

provinces with higher poverty proportions are those situated in the center and south.

Appendix B in the supplementary file contains 2 tables with basic numerical

results. To give a brief summary of the obtained numerical results, we order the

Spanish provinces (including the cities of Ceuta and Melilla) by sample size and we

select one in five. Table B.1 presents the EBPs and direct (dir) estimates of poverty

proportions for men and women respectively. Table B.2 presents the EBPs and

direct (dir) estimates of poverty gaps for men and women respectively. These

tables also give the estimated root-MSEs (rmse.eblup and rmse.dir), for both types

of estimators. The column Nd presents the estimates of the domain sizes calculated

by using the data of the 4 quarters of the SLFS in 2008. The columns province and

nd contain the province name and the sample size respectively.
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10<pd<20
20<pd<30
pd>30

Poverty Proportion − Men

pd<10
10<pd<20
20<pd<30
pd>30

Poverty Proportion − Women

Fig. 7 Estimated poverty proportions for men (left) and women (right) in 2008
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Fig. 8 Estimated poverty gaps for men (left) and women (right) in 2008
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9 Conclusions

In many applications the auxiliary information used in bivariate Fay–Herriot models

is not measured exactly. Under this setting, the EBLUP based on the bivariate Fay–

Herriot model is not the EBP anymore, as this model assumes the exact

measurement of the auxiliary variables.

By calculating relative efficiencies, we showed that not taking into account the

measurement errors may lead to predictions of target parameters with greater mean

squared errors. Therefore, we extended the bivariate Fay–Herriot model by allowing

for multivariate normal distributed random error on the auxiliary variables. This

reflects the typical situation of estimated auxiliary information. Both, the mean

squared error and the bias of the new EBP are reduced with respect to the classical

EBLUP.

For fitting the new model, the pseudo-REML estimation procedure showed to be

stable. Further a second fitting algorithm was introduced but not implemented. In

the case of exactly measured auxiliary variables, the measurement error bivariate

Fay–Herriot model reduces to the classical bivariate Fay–Herriot model and,

therefore, they basically give the same predictions. Finally, we recommend to use

the proposed measurement error Fay–Herriot model when the auxiliary variables are

estimated.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

References

Arima S, Datta GS, Liseo B et al (2012) Objective bayesian analysis of a measurement error small area

model. Bayesian Anal 7(2):363–384

Arima S, Datta GS, Liseo B (2015) Bayesian estimators for small area models when auxiliary information

is measured with error. Scand J Stat 42(2):518–529

Arima S, Bell WR, Datta GS, Franco C, Liseo B (2017) Multivariate Fay–Herriot bayesian estimation of

small area means under functional measurement error. J R Stat Soc: Ser A (Stat Soc)

180(4):1191–1209

Benavent R, Morales D (2016) Multivariate Fay–Herriot models for small area estimation. Comput Stat

Data Anal 94:372–390
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