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Abstract
Increasing energy efficiency is a key global policy goal for climate protection. An
important step toward an optimal reduction of energy consumption is the identification
of energy saving potentials in different sectors and the best strategies for increasing
efficiency. This paper analyzes these potentials in the household sector by estimating
the degree of inefficiency in the use of electricity and its determinants. Using stochastic
frontier analysis and disaggregated household data, we estimate an input requirement
function and inefficiency on a sample of 2000German households. Our results suggest
that the mean inefficiency amounts to around 20%, indicating a notable potential for
energy savings.Moreover, we find that household size and income are among themain
determinants of individual inefficiency. This information can be used to increase the
cost-efficiency of programs aimed to enhance energy efficiency.

Keywords Household electricity consumption · Stochastic frontier analysis ·
Technical efficiency

JEL Classification D1 · Q4 · Q5

1 Introduction

Global energy consumption is projected to grow by 25% until 2040, implying rising
greenhouse gas (GHG) emissions (IEA 2019, p. 35). To mitigate GHG emissions,
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fostering energy efficiency has become a major political goal in many countries. For
instance, the European Union (EU) started to set energy efficiency targets in 2006,
enacting an action plan that aimed at reducing the consumption of primary energy by
20% by 2020 compared to 1990 levels. Specifically, EU member states were required
to set individual reduction targets and report on these regularly. More recently, a new
target for 2030 was stipulated, which aims at reducing energy use by 32.5% (EU
2020) relative to a business as usual scenario. In addition, the EU has launched several
initiatives to fulfill these targets, including, for instance, standards for energy-using
products (Houde and Spurlock 2016), regulations for buildings (Frondel et al. 2020),
and mandatory energy labels for electric appliances (Andor et al. 2020; Houde 2018).

In order to develop cost-efficient strategies for energy saving, it is helpful to estimate
the saving potentials in the different sectors. If there is a substantial potential for
energy savings in a sector, the question arises as to how energy efficiency can be
optimally increased. A low rate of energy efficiency in the residential sector may
have two different causes: First, consumers might hesitate to purchase energy-efficient
technologies, even though they pay off. For this so-called energy-efficiency-gap (Jaffe
and Stavins 1994), many explanations have been provided in the literature, such as
imperfect information, inattention, and biased beliefs (Allcott and Greenstone 2012;
Gerarden et al. 2017). Second, given the appliance stock, households might use it
inefficiently, for instance, by not switching the light off when absent from home.

In this paper, we aim to both measure the level and identify the determinants of
inefficiency in the use of residential electricity. For this purpose, we use survey data
on about 2000 households in Germany comprising electricity consumption levels,
detailed information on the appliance stock and utilization, as well as socioeconomic
characteristics. We are the first to conduct such a study in Germany, which presents
a special case, as it has decided to phase out nuclear power by 2022 and coal power
by 2038. At the same time, the deployment of renewable energy sources is drasti-
cally expanding and also ambitious targets for energy consumption have been set. For
instance, by 2050, the German government aims to reduce electricity consumption by
50% in comparison with the level in 2008 (BMWi 2018).1

We estimate inefficiency by employing stochastic frontier analysis (SFA) methods.
Furthermore, we allow for personal characteristics to influence the efficiency level,
providing insights into who are the less efficient households. This information can be
used to target policies on households that have the greatest potential for increasing
efficiency and ultimately reducing energy consumption. This in turn could lead tomore
cost-effective policies and lower greenhouse gas emissions (see, e.g., Gillingham et al.
2018; Allcott and Greenstone 2012).

The econometric methods of estimating efficiency can roughly be divided into para-
metric and nonparametric kinds of approaches (see, for instance, Andor and Hesse
2014; Andor et al. 2019 and Parmeter and Zelenyuk 2019). Both make use of eco-
nomic production theory and aim to identify potentials of increasing output given a
set of inputs. This is achieved by estimating a production frontier and benchmarking
between units (or entities of production) to gain knowledge about technical and rela-

1 Ringel et al. (2016) provide a more comprehensive review of energy policy in Germany and analyze its
socioeconomic impacts.
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tive efficiency. The theoretical foundations for the parametric approach of stochastic
frontier analysis (SFA) used in this paper have been laid by Aigner et al. (1977) and
Meeusen and van den Broeck (1977).

The literature on the efficient use of energy initially focused on the economic theory
of production using aggregate data (for an overview, see our literature review in Sect. 2
and Filippini and Hunt 2015). More recently, scholars make use of disaggregated data.
For instance, Alberini and Filippini (2018) estimate the technical efficiency in the use
of electricity using data on US households. In addition, the recent literature (e.g.,
Blasch et al. 2017; Boogen 2017; Broadstock et al. 2016; Weyman-Jones et al. 2015)
also considers the role of determinants of (in)efficiency since residential consumers are
typically very heterogeneous in various dimensions, such as lifestyle and household
size, income, as well as the number and utilization of electric appliances.

We identify determinants of inefficiency (contrasting, e.g., Alberini and Filippini
2018), which allows us to draw policy conclusions that were not possible with previous
study approaches. In particular, we use micro-level data (contrasting Orea et al. 2015)
and consider a larger suite of both energy services and determinants of inefficiency
than, for instance,Weyman-Jones et al. (2015) andBroadstock et al. (2016).Moreover,
we explicitlymodel inefficiency in the consumption of electricity rather than assuming
that its determinants, such as gender and education, have a direct bearing on the
electricity consumption (compared to Boogen 2017 and Blasch et al. 2017).

In our view, it is crucial to consider the determinants of individual inefficiency
because the mere knowledge about the existence of inefficiency in residential elec-
tricity consumption does not allow any inference on how to reduce it. The impact
of individual characteristics on inefficient energy consumption can inform various
stakeholders. For instance, governments and companies concerned with reducing
greenhouse gas emissions might advance policies that nudge consumers to a more
efficient use of appliances or entail financial rewards (List et al. 2017). Moreover,
better informed consumers can reduce their energy costs by conditioning on a larger
information set.

Our results suggest that the mean inefficiency in German residential electricity
consumption is around 20%. Thus, there is a considerable potential for improving the
energy efficiency.Moreover, we find that smaller households, low-income households,
tenants, and households living in multiple-family homes tend to use electricity less
efficiently. Hence, targeting these households with energy efficiency programs, such
as energy audits and information campaigns, might improve their cost-effectiveness
and maximize the reduction of electricity consumption and related GHG emissions.
While the existing literature recommends targeting in particular households with high
electricity consumption levels (for instance, Allcott 2011 and Andor et al. 2020), our
findings thus suggest additional criteria for targeting.

The subsequent section provides a literature review, and Sect. 3 explains the data
for our analysis. Section 4 describes the methodology, and Sect. 5 presents our results.
The last section summarizes and concludes.
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2 Background

While increasing energy efficiency is a political goal in many countries around the
world, there is no unique definition of what exactly “energy efficiency” is and how
to measure and monitor it (for a discussion, see Filippini and Hunt 2015). Without a
clear definition, it is also difficult to evaluate the effects of energy efficiency policies.
In the past, the most considered indicator was energy intensity, typically defined as
energy consumption per square meter at the household level or the ratio of energy
consumption to GDP. However, many have criticized this indicator (see, for instance,
IEA 2009, Evans et al. 2013), particularly because energy intensity does not directly
measure the “true” energy efficiency. For example, the indicator can substantially vary
just because the GDP suddenly decreases, e.g., due to a financial crises or a pandemic.

More recently, economists have proposed other approaches to define and estimate
energy efficiency from an economics perspective Filippini and Hunt (2015). In partic-
ular, the different approaches measure the level of the efficient use of energy based on
the economic theory of production and use empirical methods. To this end, Filippini
and Hunt (2015) propose to measure energy efficiency econometrically by estimat-
ing a demand function for energy. Consequently, the difference between the optimal
amount of energy, which corresponds to the cost minimizing input combination to
produce a given level of energy services, and the observed amount of energy reflects
the level of energy inefficiency.

As there is a long history of research on the production and efficiency analysis,
several methods have already been developed, for instance, the classic nonparametric
data envelopment analysis (DEA) and the parametric stochastic frontier analysis (SFA)
(for a review of these two methods, see Andor and Hesse 2014; Andor et al. 2019 and
Parmeter and Zelenyuk 2019). Filippini and Hunt (2015, p. 58) argue that economic
approaches “are a sounder basis for measuring energy efficiency based on economic
foundations rather than relying on simple energy intensity indicators.”

In the following, we briefly summarize the received literature on economic
approaches to estimate energy efficiency based on efficiency analysis methods. Specif-
ically, we provide an overview of empirical studies that estimate the level of efficiency
in the use of energy (see Table 1). These studies can be further categorized by the
specific sector analyzed, the kind of data, and whether studies consider determinants
of inefficiency, i.e., u = f (δ, z).

One strand of the literature on the nexus of energy efficiency and the application
of efficiency methods involves the use of aggregate data. For instance, Filippini and
Hunt (2011), Evans et al. (2013), and Zhou et al. (2012) determine energy efficiency
measures of whole economies in OECD countries, while Borozan (2018), Saussay
et al. (2012), and Filippini et al. (2014) estimate efficiency across European countries.
On a more regional level, (Wei et al. (2009)) as well as Filippini and Zhang (2016)
estimate energy efficiency for Chinese provinces, whereas Filippini and Hunt (2012)
and Orea et al. (2015) analyze energy efficiency in US states.

Another strand of the literature employs disaggregated data. While there is some
work on individual firms in the industry (see, e.g., Bernstein 2020; Boyd 2008; Lund-
gren et al. 2016 andAmjadi et al. 2018) and in the commercial sector (Buck andYoung
2007), detailed data are also used in the residential sector. For instance, Grösche (2009)

123



Determining the efficiency of residential electricity consumption 2901

Table 1 Literature review table—energy efficiency and determinants

Study Unit Location Method Data Range u = f (δ, z)

Alberini and
Filippini
(2018)

Households USA SFA Micro Panel

Bernstein
(2020)

Electric power
plants

USA SFA Micro Panel �

Blasch et al.
(2017)

Households Switzerland SFA Micro Panel

Boyd (2008) Manufacturing
plants

USA SFA Micro Panel

Boogen (2017) Households Switzerland SFA Micro Cross-section

Borozan
(2018)

Regional
differences

Europe DEA Aggregate Panel �

Broadstock
et al. (2016)

Households China SFA Micro Cross-section �

Buck and
Young
(2007)

Commercial
buildings

Canada SFA Micro Cross-section �

Filippini and
Hunt (2011)

Economies OECD SFA Aggregate Cross-section

Filippini and
Hunt (2012)

Households USA SFA Aggregate Panel

Filippini et al.
(2014)

Policies &
households

EU SFA Aggregate Panel �

Grösche
(2009)

Single-family
homes

USA DEA Micro Cross-section �

Lundgren
et al. (2016)

Industry Sweden SFA Micro Panel �

Orea et al.
(2015)

Households &
rebound

USA SFA Aggregate Panel �

Otsuka (2017) Households Japan SFA Aggregate Panel �
Saussay et al.
(2012)

Policies &
households

EU SFA Aggregate Panel �

Weyman-
Jones et al.
(2015)

Households Portugal SFA Micro Cross-section �

Zhou et al.
(2012)

Economies OECD SFA Aggregate Cross-section

estimates energy efficiency of single-family homes in the USA between 1997 and
2001. Based on survey data on the appliance stock, Weyman-Jones et al. (2015) and
Broadstock et al. (2016) estimate overall residential energy efficiency for Portuguese
and Chinese households, respectively. Using efficiency methods on a sample of Swiss
electricity customers, Boogen (2017) and Blasch et al. (2017) find that the level of
inefficiency is within the range of 20–25%. Alberini and Filippini (2018) conduct a
similar analysis for the USA and detect inefficiency levels of around 10%.
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Since residential consumers are typically very heterogeneous in various dimensions,
such as lifestyle, household size, and income, the recent literature in this domain has
started to account for socio-demographic characteristics.2 For instance, Otsuka (2017)
estimates residential electricity efficiency scores of 47 prefectures in Japan and finds
that efficiency increases with household size and floor size due to economies of scale.
Using aggregate data on residential energy consumption, Orea et al. (2015) include
economic determinants of the demand for energy services to estimate rebound effects.3

They find that the rebound effect declines with income and household size, while it
increaseswith energy prices. In her analysis, Boogen (2017) accounts for housing char-
acteristics as additional inputs to the energy appliance stock and utilization behavior.
She detects, for instance, that urban households use electricity less efficiently, while
households residing in single-family homes use electricity more efficiently. Blasch
et al. (2017) focus on energy and financial literacy and find that energy consumption
is lower among households with energy and financial literate heads.

This paper differs from the existing literature in that we use micro-level data (com-
pared to Orea et al. 2015) and explicitly model determinants of inefficiency rather than
excluding them (Alberini and Filippini 2018) or including them on the frontier itself
(Blasch et al. 2017; Boogen 2017) to estimate the impact on consumption. Our view
is that determinants of efficiency provide a helpful source of information to exploit
and that the electricity usage frontier might not be directly impacted by, for example,
the gender of a household head. Instead, systemic differences in how people deviate
from the frontier manifest in model heterogeneity via determinants. Yet, as robustness
checks,we also estimatemodels that consider the determinants on the frontier aswell as
on the frontier and the inefficiency term.What is more, our study is special in the sense
that we are able to study various determinants of inefficiency, socio-demographics as
well as the number and utilization of electric appliances. Thus, we extend the work
by Weyman-Jones et al. (2015) and Otsuka (2017) who use a relatively simple model
and by Broadstock et al. (2016) who focus on regional aspects.4

3 Data

To estimate the efficiency of residential electricity consumption, we draw on detailed
household level data obtained from two surveys that were conducted byRWI—Leibniz
Institute for Economic Research and the professional German survey institute forsa.5

2 A comprehensive review of the research on both socio-demographic and psychological determinants of
individual residential energy consumption is given by Frederiks et al. (2015). Mills and Schleich (2012)
analyze the determinants for the demand of energy-efficient appliances.
3 The rebound effect denotes the idea that rising energy efficiency decreases the marginal cost of a certain
energy service and in turn may increase the consumption of that (direct rebound) or other energy services
(indirect rebound). For more information on the rebound effect and a review of relevant literature, see, e.g.,
Gillingham et al. (2016).
4 Another way to control for heterogeneity is the estimation of true random effects (TRE) and true fixed
effects (TRF) models (Greene 2005; Chen et al. 2014) or of persistent inefficiency (Kumbhakar et al. 2014).
Yet, all these models require a panel structure and are thus not feasible given our data set.
5 Specifically, RWI developed the questionnaires and commissioned forsa to carry out the data collection.
Two of the authors (Mark A. Andor and S. Sommer) were part of the RWI team.
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forsa collects data using a state-of-the-art tool that allows panelists to fill out the
questionnaire either online or by using their television. Respondents—in our case
household heads—retrieve and return questionnaires from home and can interrupt
and continue the survey at any time. A large set of socioeconomic and demographic
background information on all householdmembers is available from forsa’s household
selection procedure and updated regularly. The first survey is part of the German
Residential Energy Survey (GRECS), which took place in early 2014, and gathered
data on energy consumption and cost as well as on socioeconomic characteristics of
8561 households (RWI 2015).

Of those, 5220 households disclosed electricity billing information. We dropped
274 households with electric heating systems because their electricity consumption
differs substantially from regular electricity customers and 321 outlier households
(for details, see, Frondel et al. 2019).6 From the remaining households, we randomly
selected about 2100 households for a second survey that followed in mid-2014. Its
main purpose was to gather information on the households’ electric appliance stock
and its utilization.

Starting from 2106 observations, our estimation sample is reduced to 1638 due to
the cumulation of item-nonresponses. Tables 2 and 3 document the summary statistics
for our estimation sample. Table 2 shows that mean electricity consumption amounts
to 3675 kilowatt-hours (kWh). Yet, electricity consumption is very heterogeneous, as
indicated by the large standard deviation and the wide range from about 500 to more
than 14,000 kWh. Moreover, the electricity consumption varies notably with respect
to household size (Fig. 1). Not only is the consumption higher in larger households,
but also the distribution becomes wider. Specifically, the distribution of electricity
consumption exhibits the lowest variation for single-person households, while the
spread is much larger for households with four and more members.

Table 2 furthermore summarizes socioeconomic characteristics. For example, with
shares of about 30% and 43%, respectively, single- and two-person households rep-
resent the overwhelming majority of our sample, whereas households with three and
more members are relatively rare. On average, respondents are 3.5 weeks absent from
home, 58 years old,7 and have a monthly household net income of 2850 Euro. Around
two-thirds of the respondents live in their own property, and slightly less than a third
are women. This relatively low share of women could be due to the fact that we delib-
erately asked the household heads—defined as the person in a household that usually
makes financial decisions at the household level—to complete the questionnaire. Fur-
thermore, 44% of the respondents live in single-family homes, 17% in two-family

6 As electricity is not used for heating purposes among the households in our sample, we do not include
variables about the quality of the dwelling, such as double glazing and property age.
7 Theoretically, the relatively high mean age could have practical implications, e.g., regarding the decision
on investments in more energy-efficient appliances. Empirically, though, the relationship between age and
investment decisions is not clear-cut: On the one hand, older household heads might be less likely to adopt
energy-efficient technologies than younger household heads as the expected returns are lower. On the other
hand, younger households aremore likely tomove and hencemight be less inclined to adopt energy-efficient
appliances (Mills and Schleich 2012).
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Table 2 Summary statistics of socioeconomic characteristics

Variable Mean St. Dev. Min Max

Electricity consumption 3675 2026 521 14,816

1-person household 0.304 0.460 0 1

2-person household 0.427 0.495 0 1

3-person household 0.145 0.352 0 1

4+ person household 0.125 0.330 0 1

# Weeks absent from home 3.476 4.550 0 51

Age 57.9 12.7 19 87

East Germany 0.191 0.393 0 1

Income 2852 1286 700 5700

Homeowner 0.674 0.469 0 1

Female 0.299 0.458 0 1

Single-family home 0.447 0.497 0 1

Two-family home 0.175 0.380 0 1

Multiple-family home 0.379 0.485 0 1

Dwelling size 114.067 48.334 26 420

# Children 0.269 0.656 0 4

0
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.0
00

2
.0

00
3

.0
00

4
.0

00
5

D
en
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Fig. 1 Electricity consumption for different household sizes

homes, and the remainder of 39% in buildings with multiple apartments. The average
dwelling size amounts to 114m2.

Table 5 compares the characteristics of our sample to those of the population
of German household heads and illustrates that our sample contains slightly less
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Table 3 Summary statistics of
household appliances

Variable Mean St. Dev. Min Max

# Refrigerators 1.440 1.020 0 18

# Freezers 0.741 0.708 0 9

Washing machine 0.976 0.153 0 1

# Washing cycles 186.817 149.939 13 1469

Dishwasher 0.838 0.368 0 1

# Dish washing cycles 152.603 123.207 0 832

Tumble dryer 0.565 0.496 0 1

# Drying cycles 55.643 90.052 0 1040

# TV sets 1.824 1.112 0 16

# PCs 1.958 1.196 0 9

# Light bulbs 25.451 16.016 0 170

# Meals 320.032 136.245 0 728

Water heating 0.165 0.371 0 1

Air-conditioning 0.004 0.065 0 1

Electric oven 0.946 0.226 0 1

Aquarium/terrarium 0.066 0.248 0 1

Waterbed 0.042 0.200 0 1

Sauna 0.076 0.266 0 1

Solarium 0.012 0.107 0 1

Pond pump 0.161 0.368 0 1

single-person households, while two-person households are slighlty over-represented.
Moreover, the respondents in our sample tend to be older compared to official data.

With respect to appliances, we gathered information on the ownership and their uti-
lization (Table 3). Some major appliances, such as refrigerators and freezers, operate
the whole day and permanently consume electricity. In such cases, we use information
on the number of appliances available in a household, e.g., households have on aver-
age 1.4 refrigerators (# Refrigerators) and 0.7 freezers (# Freezers). For other major
appliances, we elicited the utilization in the previous week or month and extrapolated
it to the entire year. On average, households use the washing machine 187 times per
year (# Washing cycles) and the dishwasher about every other day, in total 153 times
per year (# Dish washing cycles). Tumble dryers are used only 57 times per year (#
Drying cycles). The lower usage of dishwashers and tumble dryers is also due to a
lower prevalence of these appliances: As our data indicate, 98% of the households
have a washing machine, 84% have a dishwasher, and only 57% possess a tumble
dryer (Table 3). We observe a large heterogeneity with respect to these variables:
Some households report to run the washing machine up to four times per day and the
dishwasher up to two times.

In general, gathering data on the utilization of some appliances may be prone
to large uncertainties. Specifically, it is unlikely that a respondent of a multi-person
household is able to disclose reliable information on the time spent watching television
by all household members. Therefore, we employ the number of such appliances
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that are present in a household, as the respondents might recollect this information
more precisely than usage behavior. For instance, on average, households possess 1.8
televisions (# TV sets) and about two desktop PCs or laptops (# PCs).

Last, for less common appliances, such as air conditioning, aquariums and terrar-
iums, waterbeds, saunas, and solariums, we only report whether the households own
them. For instance, we observe that 16.5% of the households use electricity for water
heating, while waterbeds are much less prevalent (4%), but almost every household
has an electric oven (95%).

The appliances displayed in Table 3 undoubtedly represent only a limited set of all
those electric devices that are typically available, but this selection should account for a
large share of residential electricity consumption. Tominimize the respondents’ burden
in filling out the questionnaire, we have deliberately refrained from asking about the
total appliance stock, including appliances with rather low consumption rates, such as
electric tooth brushes, water kettles, bread cutters, hoovers, and chargers.

4 Methodology

The literature on efficiency analysis can be roughly divided into the two branches of
parametric and nonparametric approaches. Data envelopment analysis (DEA, Charnes
et al. 1978) is the most widely applied nonparametric approach for efficiency analysis.
It is quite flexible, but (in its standard form) does not consider statistical noise. In turn,
stochastic frontier analysis (SFA, Aigner et al. 1977, Meeusen and van den Broeck
1977) methods take statistical noise into account and typically require assumptions
regarding the functional form of the frontier and the distribution of the error term (for
more details, see, for instance, Andor and Hesse 2014, Parmeter and Zelenyuk 2019).

As residential electricity consumption seems to be driven by a considerable degree
of randomness, we decided to apply SFA (for a discussion of SFA approaches, see,
for example, Parmeter and Kumbhakar 2014 and Andor and Parmeter 2017).

Filippini and Hunt (2015) compare three different models of applying SFA to
electricity consumption: (1) Input requirement functions (Boyd 2008); (2) Shephard
sub-vector distance functions that use an inefficiency term with a negative sign and
a different specification of the dependent variable (Zhou et al. 2012); and (3) input
demand frontier functions, which are identical to (1) except that they take input prices
instead of quantities (Filippini and Hunt 2011).8 To estimate the efficiency level for
residential electricity consumption, we specify an input requirement frontier function,
which is given by:

ln yi = α + β ′xi + εi , with εi = vi + ui for i ∈ {1, . . . , N }, (1)

where ln yi is the log electricity consumption per m2 for household i , xi is a vector
of inputs, reflecting the households electric appliances and their utilization (Table 3),
and β is a vector of the corresponding parameters. The error term εi is decomposed
by εi = vi + ui into two independent parts. vi is a symmetric disturbance term

8 Theoretically, there is a fourth alternative approach proposed by Reinhard et al. (1999). Yet, this approach
is rarely used (see, Filippini and Hunt 2015).
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and captures stochastic noise (like the error term in an ordinary least square (OLS)
model) and ui ≥ 0 is a one-sided error term, which indicates the level of inefficiency
in the electricity consumption. This definition of the error terms constitutes the main
distinction to the standard OLSmethod (Jondrow et al. 1982; Battese and Coelli 1988;
Kumbhakar and Lovell 2000).

To give readers unfamiliar with efficiency analysis intuition, we briefly explain
the general idea of SFA (see also, Andor and Hesse 2014). For the decomposition of
the composed error term εi into the noise term vi and the inefficiency term ui , the
skewness of the distribution of the error term εi is crucial. Inefficiency can only affect
the dependent variable in one direction. In our case, inefficiency leads to more energy
use than optimal, but it can never lead to less use than the optimal (minimal) use
level. Therefore, the inefficiency distribution is skewed. By contrast, “randomness”
can contribute positively or negatively and we expect by definition – analogously to
the standard OLS case—that, on average, it is balanced. Therefore, it is plausible
to assume a symmetric distribution with a zero mean for the noise term vi . As the
distribution of the composed error term εi is the combination of the distributions of ui
and vi , it indicates the presence of inefficiency. The likelihood of inefficiency increases
with the skewness of the distribution of εi . Using distributional assumptions for the
noise term and the inefficiency term, SFA estimates the error term εi as well as the ratio
of noise and inefficiency, by means of the method of moments, maximum likelihood
or pseudo-maximum likelihood (Andor and Parmeter 2017).

Equation (1) represents the minimum electricity consumption of household i given
a highly efficient appliance stock and its highly efficient utilization conditional on xi ,
i.e., the frontier (abstracting from noise, vi = ui = 0). If a household is not on the
frontier, the distance to it reflects the level of inefficiency in the use of electricity.
Technical efficiency (TE, θ ) provides a metric on the unit interval, which describes
the percentage of electricity consumption not accounted for from the frontier, namely
yi

β ′xi
, which is captured by the one-sided error term, ui .

For our error specification, we estimate the classic normal half-normal (henceforth,
NHN) model, i.e., vi ∼ N

(
0, σ 2

v

)
and ui ∼ |N (

0, σ 2
u

)| (Aigner et al. 1977). The
NHN error distribution has the property that the efficiency scores are monotonic in the
residual εi . Given this specification,we can estimate TEvia the conditional expectation
E[(e−ui )|εi ] (Jondrow et al. 1982). Formally, evidence of inefficiency can be tested
via the existence of skewness in the OLS residuals.

There is evidence that households do not operate on the frontier due to disparities
in personal characteristics and the appliance stock (Blasch et al. 2017; Boogen 2017).
Therefore, we depart further from OLS and additionally allow for “determinants” of
inefficiency zi to impact the pre-truncation mean μi of the ineffiency term ui via
(Battese and Coelli 1995; Kumbhakar 1991):

μi = δ0 + δ′zi for i ∈ {1, . . . , N }, (2)

where ui is defined by the truncation of the normal distribution at zero with variance
σ 2. Hence, we have ui ∼ |N (

μi , σ
2
u

)|. Positive coefficients on the right hand side of
Equation (2) indicate that an increase in the corresponding variable is associated with
increased inefficiency.
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As an alternative, we allow for heterogeneous inefficiency by labeling the variance
of the inefficiency term σ 2

u as a function of “determinants” σ 2
u,i = exp(δ′zi ) (Caudill

and Ford 1993).We refer to the formermodel as “NHN-Zμ” and to the latter as “NHN-
Zσ .” As determinants of the inefficiency, zi , we use the socioeconomic characteristics
reported in Table 2, for which δ is the corresponding parameter vector.9 Hence, com-
pared to the existing literature (e.g., Blasch et al. 2017 andBoogen 2017), we explicitly
model determinants of inefficiency rather than including them on the frontier itself.
Our view is that the electricity usage frontier is not directly impacted by, for example,
the gender of a household head. Instead, systemic differences in how people deviate
from the frontier manifest in model heterogeneity via determinants. More succinctly,
we segment our variables into factors that directly utilize electricity for the frontier
and factors that may indirectly impact household electricity usage for inefficiency.
Limitations pertaining to our model specification regarding which variables should
be x’s and which should be z’s could be mitigated by a model selection algorithm,
although we are unaware of such an algorithm within the SFA framework.10

Furthermore, rather than regressing the residuals of a first stage SFA regression
without determinants on a set of determinants, this estimation procedure is carried
out in one step.11 The practice of allowing for determinants of inefficiency has two
advantages. First, the determinants allow for Eq.(1) to have heteroscedasticity via ui
(e.g., Caudill and Ford 1993 and Caudill et al. 1995) and thus, this is a less restrictive
model. Second, without determinants, providing policy recommendations is difficult
as inefficiency is randomly determined. By contrast, because we include determinants,
inefficiency is no longer random. Hence, based on the results, we can discuss ways of
improving the energy efficiency of residential electricity consumption.

To avoid distributional assumptions on ui and vi , we deploy nonlinear least squares
(NLS) as a robustness check (Wang and Schmidt 2002). Being that the NHN and
NHN-Zσ models both have the scaling property, meaning that they can be written as
the product of a scaling function and the basic distribution, NLS is a useful extension
given the direct comparability (see also, Parmeter and Kumbhakar 2014). The NLS
model is given by:12

ln yi = α + β ′xi + vi − δ0e
δ′ zi . (3)

There is a trade-off between distributional assumptions and efficiency in using NLS
versus maximum likelihood. Hence, if the NHN-Zσ specification is the correct func-

9 Orea et al. (2015) use a similar approach to estimate the rebound effect of energy consumption. Yet, we
refrain from estimating rebound effects (thus assuming a zero rebound effect) as we lack data on marginal
prices. Moreover, the findings of Chakravarty et al. (2013) and Davis (2008) suggest that the rebound
effect is relatively modest for residential electricity consumption because of a low price elasticity and high
saturation of electric appliances.
10 Therefore, we also estimate two alternative models where the determinants enter (i) on the frontier as
well as (ii) on the frontier and via the inefficiency term as robustness checks (Table 9 in Appendix).
11 For a discussion on one-step vs two-step estimation, see Andor and Parmeter 2017.
12 Due to convergence failure of the NLS optimization algorithms, the constant (δ0) was also exponentiated
making it positive. This assumption is mitigated by the fact that in all other specifications herein, the
inefficiency increases the dependent variable. In other words, inefficient households utilize more electricity
than efficient ones.
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tional form, we would expect the NLS standard errors to be larger than those on the
NHN-Zσ model.

5 Results

For our analysis, we consider electricity consumption perm2 and take the logarithm to
interpret the regression coefficients as semi-elasticities. Hence, we quantify the effect
of each appliance or utilization to overall electricity consumption per m2 as a change
in percentages. To provide a benchmark for our analysis, we start with estimating the
OLS version of Equation (1) without considering inefficiency, i.e., ui =0 (first column
of Table 4). We find, for instance, that electric water heating increases electricity
consumption by about 23%. Moreover, an aquarium or terrarium leads to an increase
of electricity consumption by 16%. Furthermore, each use of a dishwasher increases
consumption on average by 0.03%, whereas operating the tumble dryer consumes
about twice as much electricity and thus increases electricity consumption by 0.05%.
Given themean electricity consumptionfigure (Table 2) and average usage, conditional
on possessing the respective appliance (185 times for the dishwasher and 100 for the
tumble dryer), we find that a dishwasher consumes on average 204 kWh and a tumble
dryer 184 kWh per year.

Determining the skewness of the OLS residuals provides a formal test for the
existence of inefficiency. In our application, the skewness of the residuals amounts
to 0.159 and is statistically different from zero (p < 0.000), suggesting that there
is a considerable level of inefficiency. In addition, the skewness of the residuals is
a necessary condition for the convergence of the maximum likelihood function. The

statistically significant coefficient for γ = σ 2
u

σ 2 also indicates that there is inefficiency in
our data set (Column 2 of Table 4). Comparing theOLS result with the SFA estimation,
inwhichwe use a normal-half-normal (NHN) distribution for the composed error term,
we note that the coefficients are fairly similar in magnitude, except for the constant
since E(εi ) �= 0.

The last column of Table 4 shows the results of the SFA model (NHN-Zμ) that
additionally includes an estimation to identify the determinants of inefficiency in the
electricity use.13 The higher value of the log likelihood indicates that the model fit
is superior. While the coefficients for the frontier are similar to the model without
determinants, we observe that, for instance, the household size and residing in East
Germany are statistically significant determinants of inefficiency. For instance, the
positive sign of the coefficient onEastGermany indicates that EastGermanhouseholds
use electricity more inefficiently than households residing in West Germany.

The value for γ is notably larger, indicating that the degree of the residual explained
by inefficiency increased after including determinants, as it commonly occurs in SFA.
The reduction in significance of σ 2 in NHN-Zμ is not cause for concern given that
both σv and σu are significant at the 0.001 and 0.01 levels, respectively. Furthermore,
we observe that σ 2 increases, although the increase is entirely due to an increase in

13 The results of the specification where we model the variance of the inefficiency term as a function of
determinants are shown in Appendix (Table 6) and are similar to the results presented in the main text.
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Table 4 Estimation results

OLS Coeff. Std. Err. NHN Coeff. Std. Err. NHN-Zμ Coeff. Std. Err.

Frontier

Water heating 0.233*** (0.029) 0.227*** (0.028) 0.210*** (0.029)

AC −0.168 (0.160) −0.195 (0.162) −0.138 (0.154)

Electric oven −0.041 (0.047) −0.041 (0.046) −0.016 (0.049)

Aquarium/terrarium 0.163*** (0.043) 0.163*** (0.042) 0.167*** (0.042)

Waterbed 0.093* (0.053) 0.095* (0.053) 0.087* (0.052)

Sauna −0.041 (0.040) −0.043 (0.040) −0.021 (0.040)

Solarium −0.071 (0.099) −0.070 (0.098) −0.043 (0.093)

Pond pump 0.085** (0.029) 0.087*** (0.029) 0.111*** (0.029)

Refrigerators −0.014 (0.011) −0.016 (0.011) −0.016 (0.011)

Freezers 0.023 (0.016) 0.026 (0.016) 0.039** (0.016)

Washing 0.0001 (0.0001) 0.0001 (0.0001) 0.0001* (0.0001)

Dish washing 0.0003** (0.0001) 0.0003*** (0.0001) 0.0004*** (0.0001)

Drying 0.0005*** (0.0001) 0.0005*** (0.0001) 0.001*** (0.000)

TVs 0.038*** (0.011) 0.037*** (0.011) 0.032*** (0.011)

PCs 0.011 (0.010) 0.010 (0.010) 0.013 (0.010)

Light bulbs −0.003*** (0.001) −0.003*** (0.001) −0.002*** (0.001)

Meals 0.0003*** (0.0001) 0.0003*** (0.0001) 0.0003*** (0.0001)

Constant 3.189*** (0.055) 2.908*** (0.063) 2.916*** (0.060)

Absent – – – – -0.120* (0.072)

East Germany – – – – 0.235** (0.115)

ln(Income) – – – – −0.558 (0.347)

Homeowner – – – – −0.650 (0.408)

Two-family home – – – – 1.037 (0.779)

Multiple-family home – – – – 1.172 (0.871)

Age – – – – −0.014 (0.011)

Female – – – – −0.436 (0.304)

Children – – – – −0.437 (0.482)

2 persons household – – – – 1.029* (0.608)

3 persons household – – – – 1.002* (0.607)

4+ persons household – – – – 0.021 (0.727)

Constant – – – – 2.758** (1.212)

σ 2 – – 0.255*** (0.021) 0.596* (0.336)

γ – – 0.487*** (0.075) 0.785*** (0.123)

θ̄ – – 0.772*** (0.002) 0.831*** (0.002)

Log likelihood value – – −898.6 −844.8

No. of observations 1,638

Standard errors are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% level, respectively. The upper panel shows the results of Equation (1), while the lower panel shows

the results of Equation (2). σ 2 = σ 2
u + σ 2

v , γ = σ2
u

σ2 , and θ is the mean efficiency score
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σu with σ 2 = σ 2
u + σ 2

v = 0.352 + 0.362 = 0.25∗∗∗ (and λ = σu/σv = 0.97∗∗∗) in the
NHN, while σ 2 = 0.682 + 0.352 = 0.59∗ (and λ = 1.91∗∗) in the NHN-Zμ. 14

The mean level of technical efficiency θ̄ for the NHN model amounts to 0.772 and
spans from 0.317 to 0.943 (Table 7). Additionally controlling for the determinants of
inefficiency raises the mean efficiency score to 0.831. Hence, the mean inefficiency
of German households in the use of electricity amounts to 0.169, which seems at
first glance comparable to Swiss households (Blasch et al. 2017; Boogen 2017), but
somewhat higher compared to US households (Alberini and Filippini 2018).

However, the conclusion that efficiency is lower than in the USA would be mis-
leading and a misinterpretation of the SFA estimates as they merely reflect relative
efficiency rather than absolute efficiency levels. Even households that are labeled as
efficient based on the estimation results could still be inefficient in absolute terms.
Consequently, a comparison across studies is not possible as the estimated efficient
frontier is not the same and dependent on the specific data set. In fact, it seems unlikely
that the energy efficiency is lower in Germany than in the USA, as, for instance, the
average household electricity consumption in Germany is around 3300 kWh, while it
is over 12,000 kWh in the USA (Andor et al. 2020).

Moreover, by including the determinants of inefficiency, the distribution of the
efficiency scores becomes wider (Fig. 2), ranging from 0.201 to 0.959 (Table 7).15

While only 1.5% of the sample households exhibit an efficiency level of less than 50%,
around 18% of the sample achieve an efficiency level of at least 90%. Furthermore,
mean efficiency increased in the model with determinants from 0.77 to 0.83, as is
common in practice when parameterizing the distribution of ui .

As a robustness check,we estimate aNLSmodel. Themean efficiency score is 0.767
(see Table 7 and for its distribution Fig. 4 in the Appendix) and the correlation with
the efficiency scores from the linear NHN-Zμ model is ρ=0.61. The full estimation
results for the NLSmodel can be found in Table 8 in the Appendix. It bears noting that
the results are qualitatively the same as those presented in the main text. This indicates
that our original specification captures the key features of interest.

We analyze more deeply to what extent the determinants drive efficiency by dis-
playing the efficiency scores for different socioeconomic groups. For starters, Fig. 3a
shows that households with four or more members use electricity relatively more
efficiently than smaller households. This suggests that larger households can exploit
some economies of scale by sharing appliances for instance. Figure 3b illustrates that
respondents in West Germany are slightly more efficient than residents of East Ger-
many. The difference amounts to five percentage points and is statistically significant
at the 1% level.

Moreover, we find that households with an income of less than EUR 1500 are
notably less efficient than wealthy households with an income of at least EUR 4500
(Fig. 3c). This finding can be driven by the fact that wealthier households can afford

14 Thanks to a reviewer’s suggestion, we estimate two alternatives where the determinants enter (i) on the
frontier aswell as (ii) on the frontier and via the inefficiency term (seeTable 9).Wefind that the log likelihood
values for our model in the main text performs somewhat better than (i). Moreover, we find that model (ii)
is not well behaved, as γ is close to unity, which we believe to be caused by model misspecification.
15 Notably, the correlation between the two efficiency scores (with andwithout determinants of inefficiency)
is relatively high (ρ = 0.841).
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Fig. 2 Distribution of technical efficiency of SFA models

more energy-efficient appliances and have a higher willingness to pay for energy
efficiency (Andor et al. 2020; Houde 2018). Furthermore, high-income households
exhibit a larger price elasticity (Frondel et al. 2019), which could result in using
electricity more efficiently. In addition, less affluent households might have higher
opportunity cost for each Euro of disposable income, as needs, e.g., food, and housing,
must first be met before investments in energy efficiency can be made. Not only is
the mean of the efficiency score higher among wealthier households, but also their
distribution is much narrower. A frequency analysis indicates that three quarters of
households with an income below EUR 1500 exhibit lower efficiency scores than the
mean of high-income households. Moreover, among the households in the highest
decile of the distribution of efficiency, 11% have incomes below EUR 1500, while
about a quarter earns incomes larger than EUR 4500.

Furthermore, households that reside in their own dwellings tend to use electricity
more efficiently than tenants (Fig. 3d). Hence, it might be that homeowners are more
attentive to energy issues than tenants. The divergence in efficiency might be rooted
in the landlord-dilemma (Allcott and Greenstone 2012): If landlords bear the cost
resulting from electricity consumption, tenants are not incentivized to use electricity
efficiently. Conversely, if tenants bear the electricity costs, landlords are not incen-
tivized to equip the apartments with an energy-efficient appliance stock. Another
reason could be that because of a larger price elasticity (Frondel et al. 2019), home-
owners consume electricity more efficiently. As in the case of income, we observe a
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much narrower distribution of energy efficiency among homeowners. While the least
efficient 10% of tenants exhibit an efficiency score of 0.50, the least efficient 10% of
homeowners show a mean efficiency score of 0.70. However, at the top decile of the
distribution, we do not find a considerable difference as the 10% most efficient have
an efficiency value of at least 0.95, irrespective of renting or owning the dwelling.

We furthermore find that households that reside in single-family homes use electric-
ity notablymore efficiently than households in two ormultiple-family homes (Fig. 3e).
Lastly, differentiating across gender, we find that households with a male household
head tend to use electricity slightly more efficiently (Fig. 3f), even though the differ-
ence amounts to merely two percentage points.

6 Conclusion

Growing greenhouse gas emissions have spurred political action inducing individuals
to reduce their energy consumption. To optimally develop and align such policies, it
is important to study the potentials to save energy in different sectors and determine
the best strategies to increase energy efficiency. In general, there are two reasons why
households can be inefficient in the use of electricity: consumers might hesitate to
invest in energy-efficient technologies (Allcott and Greenstone 2012; Gerarden et al.
2017) or they might use their appliances inefficiently.

In this paper, we applied stochastic frontier analysis (SFA) methods to estimate
the efficiency of residential electricity consumption. We used detailed survey data
from German households on electricity consumption, the electric appliance stock and
its utilization, as well as socioeconomic characteristics. Moreover, we allowed for
personal characteristics to influence the level of efficiency, which provides us with
insights into how to approach the efficient frontier.

Our results suggest that the mean efficiency level amounts to 83% in the German
residential electricity sector. Assuming that this point estimate is exactly true and that
the 17% inefficiency could be reduced for the 42 million German households (with
an average electricity consumption of 3300 kWh), this results in potential electricity
savings of roughly 23.6 billion kWh. Based on the average carbon intensity of the
German electricity mix (486 g per kWh, Andor et al. 2020), this would reduce CO2
emissions by about 11 million tons. Our results therefore indicate considerable energy
saving potentials.

Our analysis of determinants of inefficiency revealed that household size, income,
homeownership, and the building type are among the main drivers of inefficiency.
These results might help to target groups of households that could benefit most from
programs, which aim at enhancing energy efficiency, such as energy audits and infor-
mation campaigns. For instance, we find that low-income households and tenants
exhibit lower efficiency values on average than wealthier households and homeown-
ers. Moreover, their distribution of efficiency scores is wider, implying very large
conservation potentials at the lower end of the distribution, i.e., among particularly
inefficient households. While the existing literature suggests that in particular high
consumption households should be targeted (for instance, Allcott 2011 and Andor
et al. 2020), our findings indicate additional criteria for targeting.
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To foster energy efficiency in Germany, households with less than four members,
low-income households, and tenants should be targeted. As demographic trends in
Germany indicate that in the future smaller households will be more prevalent, energy
policy needs to pay special attention to these households as they exhibit lower effi-
ciency scores. Furthermore, raising households’ incomes could increase their energy
efficiency level. This could be achieved either by social policy or by energy policy, e.g.,
via subsidies for energy-efficient appliances and/or transfers for low-income house-
holds. Regarding the lower efficiency levels of tenants, policy-makers should aim
to mitigate the landlord-tenant dilemma that arises because of diverging incentives.
Potential instruments include energy performance contracting and energy labeling
(Ástmarsson et al. 2013).

Clearly, all potential measures need a separate evaluation and it is not clear if they
should be applied in the end. For instance, Davis et al. (2014) demonstrate that a large-
scale appliance replacement program that helped millions of Mexican households
replacing their old refrigerators and air conditioners with energy-efficient models was
an expensive way to reduce energy use. Similarly, Fowlie et al. (2018) detect negative
returns to a US-wide weatherization program.

Furthermore, one needs to bear in mind that energy efficiency improvements might
induce a rebound effect that counteracts some of the savings (Orea et al. 2015). Yet,
the findings of Chakravarty et al. (2013) and Davis (2008) give hope that the rebound
effect is relatively modest for residential electricity consumption because of a low
price elasticity and high saturation of electric appliances.

Lastly, we would like to explicitly highlight one methodological aspect to read-
ers who are unfamiliar with efficiency analysis methods as it is important for the
interpretation of the results. The estimated mean inefficiency of around 20% seems
similar to findings for Switzerland (Blasch et al. 2017; Boogen 2017) but higher than
the estimated 10% for the USA (Alberini and Filippini 2018). At first glance, these
results might lead to the “naïve” conclusion that the energy efficiency is higher in the
USA. However, such a conclusion would be misleading and a misinterpretation of
the SFA estimates because they reflect relative efficiency and not absolute efficiency
levels. If all households in one data set were inefficient in absolute terms, efficiency
analysis methods would still determine “efficient” households that define the frontier.
Therefore, even the estimated efficient households could still be inefficient in absolute
terms.

Consequently, a comparison across studies is not possible because the estimated
efficient frontier differs and depends on the specific data set. Given the average house-
hold electricity consumption (e.g., around 3300 kWh in Germany vs. 12,000 kWh in
the USA), it seems indeed unlikely that the energy efficiency is lower in Germany
and Switzerland than in the USA. Future studies could aim to compare the energy
efficiency of countries within one study based on disaggregated data. While these con-
siderations furthermore highlight that the application and interpretation of efficiency
analysis methods, such as stochastic frontier analysis (SFA) or data envelopment anal-
ysis (DEA), might not always be straightforward and thus expert knowledge seems
beneficial, we hope that our study, in particular, shows the merits of efficiency analysis
methods for political consulting.
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Appendix

Table 5 Distribution of socioeconomic characteristics in both our sample and in Germany

Our sample Germany (2013)

Household size:

1-person household 0.304 0.405

2-person household 0.427 0.344

3-person household 0.145 0.125

4+ person household 0.125 0.126

East Germany 0.191 0.211

Income > 4700 EUR 0.107 0.102

Age:

Age between 18 and 34 0.056 0.192

Age between 35 and 64 0.588 0.526

Age 65 and above 0.356 0.282

Female 0.299 0.352

Children in household 0.170 0.287

Source: Destatis, (2014)
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Table 6 SFA estimation results
of NHN-Zσ

Coeff. Std. err.

Frontier

Water heating 0.211*** (0.028)

Air conditioning −0.123 (0.151)

Electric oven −0.012 (0.047)

Aquarium/terrarium 0.167*** (0.041)

Waterbed 0.09*1 (0.051)

Sauna −0.012 (0.038)

Solarium −0.033 (0.092)

Pond pump 0.110*** (0.028)

Refrigerators −0.013 (0.011)

Freezers 0.037** (0.016)

Washing 0.0001 (0.000)

Dish washing 0.0004*** (0.000)

Drying 0.0005*** (0.000)

TV sets 0.033*** (0.011)

PCs 0.014 (0.010)

Light bulbs −0.002*** (0.001)

Meals 0.0003*** (0.000)

Constant 2.9079 (0.064)

Inefficiency

Absent −0.124*** (0.046)

East 0.289 (0.209)

ln(Income) −0.528** (0.238)

Homeowner −0.535* (0.284)

Two-family home 0.712** (0.308)

Multiple-family home 1.026*** (0.314)

Age −0.012 (0.008)

Female −0.338 (0.207)

Children −0.451 (0.295)

2 persons household 0.970*** (0.263)

3 persons household 0.963** (0.374)

4+ persons household 0.405 (0.644)

Constant 1.761 (1.811)

σv 0.372*** (0.012)

No. of observations 1,638

Standard errors are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively

Table 7 Distribution of
efficiency scores

NHN NHN-Zμ NLS NHN-Zσ

Minimum 0.317 0.201 0.400 0.201

25th percentile 0.738 0.803 0.729 0.787

Median 0.786 0.859 0.777 0.842

Mean 0.772 0.831 0.767 0.821

75th percentile 0.823 0.891 0.819 0.881

Maximum 0.943 0.959 0.986 0.994
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Table 8 Results of the nonlinear
least square model

Coeff. Std. err

Frontier

Water heating 0.228*** (0.028)

Air conditioning −0.120 (0.156)

Electric oven 0.004 (0.047)

Aquarium/terrarium 0.169*** (0.042)

Waterbed 0.106** (0.053)

Sauna −0.004 (0.040)

Solarium −0.016 (0.097)

Pond pump 0.106*** (0.029)

Refrigerators −0.008 (0.011)

Freezers 0.036** (0.017)

Washing 0.000 (0.000)

Dish washing 0.000*** (0.000)

Drying 0.001*** (0.000)

TV sets 0.032*** (0.011)

PCs 0.009 (0.010)

Light bulbs −0.002*** (0.001)

Meals 0.000*** (0.000)

Constant 2.866*** (0.108)

Inefficiency

Absent −0.050** (0.023)

East Germany 0.174* (0.093)

ln(Income) −0.216** (0.101)

Homeowner −0.339** (0.139)

Two-family home 0.144 (0.123)

Multiple-family home 0.286** (0.142)

Age −0.004 (0.003)

Woman −0.196* (0.102)

Children −0.144 (0.108)

2 persons household 0.557** (0.185)

3 persons household 0.656** (0.235)

4+ persons household 0.453* (0.254)

Constant 0.503 0.682

No. of observations 1,638

Standard errors are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively
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Table 9 SFA estimation results with alternative assumptions on the determinants of inefficiency

Coeff. Std. err. Coeff. Std. err

Frontier

Water heating 0.226*** (0.028) 0.219*** (0.028)

Air conditioning −0.179 (0.158) −0.144 (0.152)

Electric oven −0.007 (0.046) −0.013 (0.045)

Aquarium/terrarium 0.166*** (0.042) 0.162*** (0.040)

Waterbed 0.113** (0.052) 0.115** (0.052)

Sauna −0.008 (0.039) −0.010 (0.037)

Solarium 0.017 (0.096) 0.034 (0.094)

Pond pump 0.106*** (0.029) 0.108*** (0.028)

Refrigerators −0.010 (0.011) −0.014 (0.011)

Freezers 0.039*** (0.016) 0.042*** (0.016)

Washing 0.000 (0.000) 0.000 (0.000)

Dish washing 0.000*** (0.000) 0.000*** (0.000)

Drying 0.001*** (0.000) 0.001*** (0.000)

TV sets 0.027** (0.010) 0.024** (0.010)

PCs 0.007 (0.010) 0.005 (0.010)

Light bulbs −0.002*** (0.001) −0.002*** (0.001)

Meals 0.000** (0.000) 0.000** (0.000)

Absent −0.005*** (0.002) −0.010*** (0.003)

East 0.074*** (0.027) 0.100*** (0.029)

ln(Income) −0.062** (0.026) −0.024 (0.026)

Homeowner −0.083*** (0.029) −0.072** (0.030)

Two-family home 0.019 (0.029) −0.056* (0.029)

Multiple-family home 0.108*** (0.030) 0.060** (0.029)

Age −0.001 (0.001) 0.001 (0.001)

Female −0.050** (0.023) −0.039* (0.022)

Children −0.043* (0.025) 0.005 (0.023)

2 persons household 0.181*** (0.031) 0.175*** (0.033)

3 persons household 0.245*** (0.043) 0.370*** (0.042)

4+ persons household 0.214*** (0.060) 0.256*** (0.059)

Constant 3.313*** (0.216) 3.010*** (0.215)

Inefficiency

Absent – – 1.944 (1.827)

East – – -22.015 (15.252)

ln(Income) – – −26.349 (20.741)

Homeowner – – −4.526 (6.652)

Two-family home – – 81.321 (71.382)

Multiple-family home – – 59.101 (51.815)

Age – – −1.159 (1.017)

Female – – −7.130 (7.020)

Children – – −148.004 (129.929)

2 persons household – – 8.331 (7.578)

3 persons household – – −291.141 (264.310)

4+ persons household – – −18.396 (23.576)

Constant – – 72.852 (47.262)

σ2 0.246*** 0.019 34.592 (29.226)

γ 0.518*** 0.069 0.997*** (0.003)

No. of observations 1,638

Log likelihood −846.88 −811.79

Standard errors are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively
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