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Abstract
This paper studies a sole proprietorship economy with imperfect competition in a
transferable utility setting. While consumers behave as price takers, producers issue
real assets strategically to maximize their own utility. Even when complete markets
are technologically feasible, equilibria with incomplete markets are robust, and they
appear in large numbers: There is a continuum of equilibria with different asset spans
that can be welfare-ranked. This real indeterminacy does not vanish as the number of
producers goes to infinity. Therefore, the self-interest of producers restricts economic
outcomes but does not determine them.

Keywords Incomplete markets with production · Imperfect competition ·
Discontinuous games · Real indeterminacy · Endogenously incomplete markets

JEL classification D43 · D51 · D52

1 Introduction

In the Walrasian theory of general economic equilibrium, firms behave as price takers
and there is no strategic interaction. When markets are complete and the number of
firms is large, the assumption of price-taking behavior is well-founded: Gabszewicz
and Vial (1972) start with a small number of firms and enlarge the economy by means
of replication. Even thoughfirms areCournot competitors, theirmarket power vanishes
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82 M. Zierhut

as they grow large in number and small in size relative to the economy. The limit of
Cournot competition is a Walrasian equilibrium. The purpose of the present paper
is to relax the assumption of complete markets. The setting is otherwise equivalent:
It combines a Walrasian consumer side with producers who compete in a Cournot
oligopoly, hence the name Cournot–Walras equilibrium. Although the modification
seems small, the nature of the equilibrium set changes entirely. This challenges the
positive foundations of price-taking behavior.

The model of production is simple: Each firm consists of a production technology,
an entrepreneur who makes the decisions, and a group of capitalists who provide
outside finance. Following the tradition of general equilibrium, the model is closed
and capitalists are consumers driven by their own preferences. For simplicity, there are
only two dates and a single good that represents income today and in each future state
of the world. Production is financed today by issuing assets in the financial market.
Each asset is a claim to a share of the future output. Consumers invest in assets
because their portfolios determine their state-contingent future income. A model of
this kind is introduced by Carvajal et al. (2012), who choose tomake the following two
assumptions: First, all agents have quasilinear utility functions. Second, entrepreneurs
consume only at the present date. Even though these assumptions are restrictive, they
have the merit of rendering the model tractable, with a clear division of roles into
consumers and producers, as in the archetypical model of Cournot (1838).1

Producers choose their asset payoffs strategically. Since they are entrepreneurs who
only care about present income, profit maximization is their natural objective. Quasi-
linear utility guarantees a single-valued mapping from choices to market prices. The
asset payoffs determine not only how income transfers are priced, but also which
income transfers are possible in the first place. Ever since Hart (1975) made a broad
audience aware of the issue, it is widely understood that demand and prices exhibit
discontinuities when the dimension of the income transfer space changes. Discon-
tinuous prices result in discontinuous profits, and discontinuous payoff functions of
profit-maximizing producers result in a discontinuous game. So far, little is known
about the equilibrium set in such models—neither about its qualitative properties,
nor about conditions on the primitives of the model (i.e., preferences, endowments,
technologies) that guarantee its nonemptiness. The focus of the present paper is on
qualitative properties. The properties of interest are the number of equilibria, the types
of assets issued, economic welfare, and the limits of competition as the number of
producers grows large.

A classical result due to Dierker (1972) and Harsanyi (1973) is that Walrasian
exchange economies as well as mixed extensions of finite games have an odd number
of equilibria, provided that certain regularity conditions are fulfilled. It is known that
discontinuities violate these conditions, and there is indeed no reason to presume that
the number of Cournot–Walras equilibria with incomplete markets is odd. One may
be tempted to believe that if the number is not odd, then it should be even, but such
intuition is wrong. In the presence of discontinuities, the number of equilibria does
not become even; it becomes very large: When markets are endogenously incomplete,

1 It should be noted that the idea of extending the concept of Cournot–Walras equilibrium to asset market
economies already appears in Faias (2008).
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Indeterminacy of Cournot–Walras equilibrium with… 83

there is a continuum of Cournot–Walras equilibria. The more incomplete a market
becomes, the larger the set of equilibria grows. Denote by r the number of nonredun-
dant assets, and by |Ω| the number of states; then, |Ω| − r measures the degree of
market incompleteness. Conditional on the existence of at least one equilibrium with
r nonredundant assets and a suitable regularity condition, the following results are
derived:

1. There is a real indeterminacy of dimension r(|Ω| − r) (Theorem 1).

Only if markets are endogenously complete, i.e., |Ω| = r , Cournot–Walras equi-
libria are determinate. In all other cases, there is a real indeterminacy in addition to
the usual financial indeterminacy that arises in the presence of redundant assets. It
includes a continuum of equilibria with different asset spans and different allocations.
This result is obtained in a two-date finance economy with real assets. It is therefore in
contrast to real indeterminacy found in other settings, such as economies with nominal
assets, as in Balasko and Cass (1989), Geanakoplos and Mas-Colell (1989), Werner
(1990) and Nagata (1998), or economies with future spot markets, as in Mas-Colell
(1991). Since income transfers are restricted to the asset span, a natural question is
whether Cournot competition precludes certain types of income transfers. The answer
is negative:

2. The set of equilibrium asset spans is open in the space of all r -dimensional asset
spans (Corollary 2).

This result is interpreted as follows: If there is one equilibrium with an r -
dimensional asset span, then any nearby asset span (in the space of all r -spans) occurs
endogenously at another equilibrium. Therefore, a large number of asset structures
may arise from Cournot competition. The quasilinear setting lends itself to welfare
comparisons of different equilibria. Given the large multiplicity of asset spans and
allocations, it is no surprise that different equilibria are not equally desirable from a
normative viewpoint:

3. Every open subset of the equilibriumset contains two equilibria that can bewelfare-
ranked (Proposition 1).

This leaves room for normative theory: It is possible to design welfare-oriented
objectives for firms that are consistent with the self-interest of their owners. The
attainable welfare standard is lower than constrained efficiency, but it cannot be raised
any further: As Zierhut (2017) shows, constrained efficient production plans would
generically be rejected by majority vote of the owners of the firm.

Finally, it is shown that in a world with incomplete markets, the limit behavior of
Cournot–Walras equilibrium is different from its complete-market counterpart. The
classical result thatWalras equilibria are the unique limit points ofCournot competition
as economies grow large is no longer true under endogenous asset structure choice:

4. The limit economy, as the number of producers goes to infinity, may have a con-
tinuum of incomplete-market equilibria that can be welfare-ranked.

Even though these results reveal several notable properties, they certainly do not
constitute an exhaustive analysis of general equilibrium with imperfect competition.
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84 M. Zierhut

Any economic model is a compromise between generality and tractability, and setting
the focus on one aspect is synonymous with neglecting others. However, several of
these neglected aspects are studied elsewhere. The most important one is existence
of equilibrium, which is addressed in the growing literature on pure-strategy Nash
equilibria in discontinuous games, albeit so far limited to conditions on derived objects
(i.e., demand, best replies).2 Conditions on the primitives of the model are formulated
in existence theorems for Cournot–Walras equilibrium with complete markets, such
as in Shirai (2010). However, these results are not applicable in the present setting
with an endogenous asset span.

Other neglected aspects include market entry and strategic takeovers of firms. A
model with free entry is studied by Novshek and Sonnenschein (1978, 1983) in a
setting with complete markets. In the models of Milne and Ritzberger (2002) and
Demichelis andRitzberger (2011), production technologies are owned by corporations
and large investors acquire shares strategically. Another strand of the literature deals
with complications that occur when the assumptions of the present model are relaxed.
For example, the mapping from production plans to prices need not be single-valued
outside the quasilinear setting. Then, as shownbyDierker andGrodal (1986), existence
may fail even in the mixed extension. Moreover, equilibrium in pure strategies can
only be defined with respect to a price selection. For discussions of this topic, the
reader is referred to Roberts (1980) and Allen (1994).

If there are multiple goods per state, the profit functions of producers depend on the
chosen price normalization rule. In an example by Böhm (1994), any allocation can be
attained at a Cournot–Walras equilibrium under some normalization rule. Moreover, if
a firm has multiple owners who consume multiple goods, there may be disagreement
about the optimal production plan, and profitmaximization is no longer awell-founded
objective of the firm. Dierker and Grodal (1999) and Bejan (2008) attempt to resolve
these issues by proposing different objectives of the firm that depend only on relative
prices. Nevertheless, as long as the objective function depends on prices, demand, or
the utility of consumers, discontinuities arise when the asset structure is endogenous.
Therefore, even in a much more general setting one can expect indeterminacy results
similar to Theorem 1, but also considerable side effects.

The remainder of this paper is organized as follows: Section 2 presents the model.
Section 3 explains the intuition by means of a simple example. Section 4 quantifies
the degree of indeterminacy. Section 5 shows that different equilibria can be welfare-
ranked and discusses the normative implications. Section 6 replicates the economy and
studies the limit points of Cournot competition in an example. Section 7 concludes.

2 Model

Consider a two-date finance economy with a finite number of consumers and a finite
number of producers. Production takes time: The input is required at the present date
(date 0); the output becomes available at the future date (date 1). The future is uncertain,
and the output quantity depends on the state of the world. At date 0, producers choose

2 See Reny (2016) for a comprehensive survey of this literature.
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Indeterminacy of Cournot–Walras equilibrium with… 85

their production plans. Each producer sells a claim to his state-dependent output in
the form of a financial asset. Consumers trade these assets in the financial market. At
date 1, all assets pay off.

The following notation is used throughout: If x is a vector in Euclidean space,
x ≥ 0 means all components are nonnegative, x > 0 means at least one component is
greater than zero, and x � 0 means all components are greater than zero. The inner
product is written as x · y, and I stands for the identity matrix. Moreover, for any set
S, idS denotes the identity map on S, and if S is a component of a product space, prS
denotes the projection onto S. Prices and gradients are viewed as row vectors, while
all other variables are viewed as column vectors.

For a Cs function f : X → Z between two Cs manifolds X , Z with s ≥ 1,
d f [x] : TX [x] → TZ [z] denotes the differential of f at x ∈ X , which is a linear
function between the tangent spaces TX [x] at x and TZ [z] at z. It can be represented in
local coordinates by the Jacobian matrix D f [x]. For a Cs function f : X → R with
s ≥ 2, d2 f [x] : TX [x] × TX [x] → R denotes the second-order differential, which is
the bilinear form whose local representation is the Hessian matrix D2 f [x]. If S ⊂ X ,
then f |S denotes the domain restriction of f to S. If S �⊂ X , then f |S is implicitly
understood as the domain restriction of f to S ∩ X . Moreover, if S is a closed set, the
phrase f is of class Cs on S is understood as f |S having a Cs Whitney extension.

2.1 Commodities, uncertainty andmarkets

There is a single input good at date 0, which serves as the numéraire. The uncertainty
at date 1 is represented by a finite state space Ω . There is one output good for each
state of the world. The financial market opens only at date 0: K ≥ 2 assets are traded
at prices p ∈ R

K . Their state-dependent payoffs at date 1 are collected in an |Ω| × K
payoff matrix A. It is further assumed that K ≥ |Ω|; that is, there are sufficientlymany
producers such that complete markets are always technologically feasible. There are
no short-sale constraints.

2.2 Consumers

There are I ≥ 1 consumers, indexed by superscripts i ∈ {1, . . . , I }. All consumers
have identical consumption sets Ci = R

|Ω|+1
+ . The consumption preferences of con-

sumer i are represented by a utility function Ui : Ci → R. The endowment of the
consumer is ei ∈ Ci . Whenever consumer-specific variables are joined in a single
vector, the superscript is omitted; e.g., e = (e1, . . . , eI ). Whenever consumer-specific
variables are aggregated, a bar is put on top; e.g., ē = ∑I

i=1 ei . Consumers behave
as price takers: Each consumer i chooses a consumption plan ci ∈ Ci and a portfolio
ψ i ∈ R

K from his budget correspondence Bi : R
|Ω|×K × R

K ⇒ Ci × R
K , which is

defined as

Bi (A, p) =
{

(ci , ψ i ) ∈ Ci × R
K

∣
∣
∣
∣ ci ≤ ei +

(−p

A

)

· ψ i
}

. (1)
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86 M. Zierhut

The asset demand correspondence Ψ i∗ : R
|Ω|×K × R

K ⇒ R
K maps tuples (A, p) of

payoffs and prices to solutions of the utility maximization problem

max
ci ,ψ i

U i (ci ) subject to (ci , ψ i ) ∈ Bi (A, p). (2)

Demand of all consumers is joined in the correspondence Ψ ∗ = (Ψ 1∗, . . . , Ψ I∗).

2.3 Producers

There are K ≥ 2 producers, indexed by superscripts k ∈ {1, . . . , K }. The production
set of each producer k is decomposed into a choice setAk ⊂ R

|Ω|
+ , which contains all

feasible output vectors, and a cost function κk : A → R+, in which A =�K
k=1Ak .

Producers do not consume at date 1, and their only concern is present profits. Each
producer k sells the entire output as an asset with payoffs Ak ∈ Ak . The production
preferences of producer k are represented by a profit function Πk : A × R

K+ → R,
defined as revenue minus costs:

Πk(A, p) = pk − κk(A) . (3)

Producers behave strategically: They choose their plans conditional on an inverse
demand function p∗ : A → R

K . The payoff function of producer k can be written as

Πk∗(A) = Πk(A, p∗(A)) , (4)

and depends on strategy combinations A = (Ak, A¬k). In this tuple, Ak represents
his own choice, whereas the collection A¬k represents the choices of the other K − 1
producers. The best-reply correspondence Ak∗ : A ⇒ Ak of producer k associates
with each candidate strategy combination A# ∈ A the solution set to his profit maxi-
mization problem

max
Ak

Πk∗(Ak, A¬k
# ) subject to Ak ∈ Ak . (5)

2.4 Economies

The economy is defined by the characteristics of its consumers and producers. Con-
sumers are described by their utility functions and endowments, which satisfy the
following assumptions.

Assumption 1 (Preferences) For each consumer i ,

Ui (ci ) = ci
0 + ui (ci

1)

for some function ui : R
|Ω|
+ → R that satisfies for each ci

1 ∈ R
|Ω|
++,
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Indeterminacy of Cournot–Walras equilibrium with… 87

1. ui is continuous and of class C3 on R
|Ω|
++

2. dui [ci
1](v) � 0 ∀v > 0

3. d2ui [ci
1](v, v) < 0 ∀v �= 0

4. dui [ci
1](Iω) → ∞ as ci

ω → 0 for any ω ∈ Ω .

Assumption 2 (Endowments) Endowments satisfy e � 0.

Under Assumption 1, utility is quasilinear in consumption at date 0 and consumers
always desire positive consumption at date 1. Under Assumption 2, consumers have
a nonzero endowment in all states of the world, which guarantees that the budget
correspondence does not exhibit a discontinuity when some price goes to zero. Denote
by E ⊂ C the set of endowments that satisfy this assumption. Producers are described
by their choice sets and cost functions, which satisfy the following assumptions.

Assumption 3 (Production possibilities)For each producer k,Ak is a convex, compact
subset of R

|Ω|
+ with nonempty interior.

Assumption 4 (Production costs) For each producer k, κk is continuous and of class
C2 on the interior of Ak .

Note that the interior of Ak is an open subset of R
|Ω| and therefore a smooth |Ω|-

dimensional manifold. Economies are completely defined by the characteristics of
consumers and producers.

Definition 1 An economy is a tuple (U , e,A, κ) that satisfies Assumptions 1, 2, 3,
and 4.

It is implicitly understood that all endogenous objects depend on the economy,
and in the interest of a compact notation, economies are omitted as arguments; for
example, Ψ ∗(A, p) is written instead of Ψ ∗(A, p, U , e,A, κ).

2.5 Cournot–Walras Equilibrium

The economy is in equilibrium if all consumers choose portfolios and consumption
optimally, all producers play best replies, and prices are such that markets clear. The
asset span is the linear subspace Im(A) of feasible transfers of future consumption. If
rank(A) = |Ω|,markets are complete and arbitrary transfers are feasible. If rank(A) <

|Ω|, markets are incomplete. Denote by Ar the set of asset payoff matrices with rank
r

Ar = {A ∈ A | rank(A) = r } ,

and denote by Xr the set of no-arbitrage income transfer matrices for r -dimensional
asset spans

Xr =
{

(A, p) ∈ Ar × R
K+

∣
∣
∣
∣ Im

(−p
A

)

∩ R
|Ω|+1
+ = {0}

}

. (6)
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88 M. Zierhut

Then, the budget correspondence Bi is continuous on Xr for any choice of r ∈ N

and has compact-convex values. Continuity of Bi fails at those points where the rank

of

(−p
A

)

changes. Compactness fails in the presence of arbitrage opportunities; that

is, if there are portfolios ψ ′, ψ ′′ ∈ R
K with identical payoffs A · ψ ′ = A · ψ ′′ but

different prices p · ψ ′ �= p · ψ ′′.3 At all other points, utility maximization problem
(2) has a solution. Under Assumption 1, the optimal consumption of consumer i can
be expressed as a function ci∗ : A × R

K → Ci . This function is of class C2 on Xr

by continuity of Bi . The supply of all assets is normalized to one, such that a price
vector p clears the market if there is some ψ ∈ Ψ ∗(A, p) such that

ψ̄ = 1.

As strong monotonicity of Ui implies that the budget constraint in (1) holds with
equality, the above asset market clearing condition implies that supply and demand
of future consumption meet; that is, c̄i

1 = ēi
1 + Ā. The inverse demand function

p∗ : A → R
K is defined as the solution to

c̄∗
1(A, p∗(A)) = ē1 + Ā . (7)

Due to quasilinear utility, there exists a unique function p∗ that solves (7).4 This
function is continuous on Ar because c̄∗

1 is continuous on Xr . The market for present
consumption is implicitly cleared by Walras’ law.

Definition 2 A Cournot–Walras equilibrium for economy (U , e,A, κ) with inverse
demand p∗ is a tuple (A, p, c, ψ) such that A = A∗(A), p = p∗(A), c = c∗(A, p),
ψ ∈ Ψ ∗(A, p), and ψ̄ = 1.

Note that the present model is a variant of the Cournot–Walras model with financial
markets introduced inZierhut (2020),whichdiffers in the following aspects:On theone
hand, the present assumptions on producers aremore liberal and permit an endogenous
asset span, including endogenously incomplete markets. These are the focus of the
present paper. On the other hand, the present assumptions on consumers are more
restrictive in that utility is quasilinear. This is a simplification. Without quasilinear
utility, theremay bemultiple solutions to (7) and the equilibrium concept is conditional
on a selection p∗. This selection problem disappears under quasilinear utility, and p∗
is a unique inverse demand function, as in the early treatment of Gabszewicz and Vial
(1972). To study the set of Cournot–Walras equilibria, some degree of differentiability
is required at least locally. Equilibria that meet this requirement are called regular.

2.6 Regularity

Let (A, p, c, ψ) be aCournot–Walras equilibrium and denote by r = rank(A) its rank.
Letψ∗ be a local selection at (A, p) of the demand correspondence Ψ ∗ that is of class
3 For a detailed discussion of arbitrage-free markets the reader is referred to Magill and Quinzii (1996,
§9.).
4 For a proof of existence and uniqueness, see Hens and Pilgrim (2002), Theorem 6.9, p. 143.
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Indeterminacy of Cournot–Walras equilibrium with… 89

C2 on Xr . More precisely: ψ∗ is a selection of Ψ ∗|O for some open neighborhood
O of (A, p). The existence of such a local selection is proven in Lemma A10 in the
appendix. Since the interior ofAr is a smooth manifold, the tangent space TAr [A] is
well-defined.

Definition 3 A Cournot–Walras equilibrium with rank(A) = r is regular if

1. dpψ̄
∗|Xr [A, p] spans Im(A�)

2. A∗ is continuously differentiable at A
3. d A∗|Ar [A] − idTAr [A] spans Im(A)K .

An equilibrium that is not regular is called critical. If r = |Ω|, then Definition 3
agrees with the concept of regularity introduced in Zierhut (2020), ψ∗ is continuously
differentiable, and in the generic economy all equilibria with rank r are regular.5

However, if markets are endogenously incomplete with r < |Ω|, this is no longer
true: First, any selection ψ∗ is discontinuous at (A, p). Second, regular equilibria
are typically accompanied by critical equilibria. Both properties will be demonstrated
by means of a simple example in Sect. 3. Since discontinuous demand results in
discontinuous inverse demand p∗, payoff functions (4) of producers are discontinuous.
Therefore, the Cournot game becomes a discontinuous game.

Consider a restricted game that has the following properties in the neighborhoodO:
The payoffs of all producers are of class C2, and each equilibrium with r -dimensional
asset span of the original Cournot game is also an equilibrium of the restricted game
(restricted equilibrium for short). The aim is to infer properties of the set Ξr of
(unrestricted) Cournot–Walras equilibria with rank r from the set Ξ̂r of restricted
equilibria. To define such a restricted game, consider the correspondence Âr : Ar ⇒
Ar with decomposition Âr = Â1

r ×· · ·× ÂK
r that associate with each reference asset

structure A# the restricted choice sets

Âk
r (A#) =

{
Ak ∈ Ak

∣
∣
∣ rank(Ak, A¬k

# ) = r
}

. (8)

The only modification in the restricted game, relative to the original Cournot game,
is that producers solve

max
Ak

Πk∗|Ar (A
k, A¬k

# ) subject to Ak ∈ Âk
r (A#). (9)

instead of (5). By Eq. (4), the payoff function Πk∗|Ar is of class C2 on Ar , provided
that p∗ has these properties (and Lemma A11 in the appendix verifies that p∗ has
these properties). Let Ξ∗

r and Ξ̂∗
r be the sets of regular equilibria of the Cournot game

and the restricted game, respectively. While Ξr ⊂ Ξ̂r by construction, it may well be
thatΞ∗

r � Ξ̂∗
r . An equilibrium that is regular in the Cournot game need not be regular

in the restricted game. At times, it will be convenient to focus on equilibria that are
regular in both games and thus belong to the set Ξ∗∗

r = Ξ∗
r ∩ Ξ̂∗

r . These equilibria
are called strongly regular.

5 In this context, generic means: within an open, dense set of economies. For a discussion and proof, the
reader is referred to Zierhut (2020), in particular Corollary 4.
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90 M. Zierhut

Definition 4 A Cournot–Walras equilibrium with rank(A) = r is strongly regular if
it lies in the set Ξ∗∗

r ; that is, it is a regular equilibrium of both the unrestricted game
and the restricted game.

3 Example

Consider an economy with I = 2 consumers, K = 2 producers, and |Ω| = 2 states
of the world. Both consumers have identical utility functions

Ui (ci ) = ci
0 +

∑

ω∈Ω

ln(ci
ω) i = 1, 2

but different endowments e1 = (2, 0, 1/2)� and e2 = (2, 0, 0)�. Both producers have
identical production technologies with zero costs κk = 0 and

Ak =
{(

1/2 + αk

1/2 − αk

) ∣
∣
∣
∣ αk ∈ [−1/2, 1/2]

}

k = 1, 2 ,

which are described completely by a single parameter αk each. Therefore, the joint
strategy space can be depicted in two dimensions.6 The asset structure A = (A1, A2)

is determined endogenously by the producers. Whenever α1 �= α2, rank(A) = 2
and markets are complete; when α1 = α2, one asset is redundant, rank(A) = 1,
and markets are incomplete. It should be noted that the demand correspondences Ψ i∗
are single-valued only if there is no redundant asset. In the case of α1 = α2, both
consumers are indifferent between assets 1 and 2: Both assets have identical payoffs
and, by the no-arbitrage principle, identical prices. Therefore, it is possible to define
a single-valued selection

ψ i∗(A, p) =
{

Ψ i∗(A, p) ∩ {ψ i ∈ R
2 | ψ i

1 = ψ i
2} if α1 = α2

Ψ i∗(A, p) otherwise

having the property that ci∗(A, p) and ψ i∗(A, p) jointly solve utility maximization
problem (2). The aggregate demand function ψ̄∗(A, p) = ψ1∗(A, p) + ψ2∗(A, p) is
of class C2 on X1 and X2. Therefore, by the implicit function theorem, the solution
p∗ to the market clearing condition ψ̄∗(A, p∗(A)) = 1 is of class C2 on A1 and A2,
and so is Π∗.

The best-reply correspondences of both producers are illustrated in Fig. 1. In each
panel, the strategy of producer 1 is drawn along the horizontal axis, and the strategy
of producer 2 is drawn along the vertical axis. All symmetric strategy combinations
α1 = α2, which result in incomplete markets, lie on the diagonal. Given any α2 ≤
−0.123 and α2 ≥ 0.322, producer 1 finds it optimal to issue a nonredundant asset
and thus to complete the market. At α2 = −0.123 and at α2 = 0.322, producer 1 is

6 For the sake of tractability, e has some components equal to zero and the interior of Ak is empty, which
is not consistent with Assumptions 2 and 3 but innocuous in the present example.
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Fig. 1 Best-reply correspondences of Producer 1 (solid) and Producer 2 (dashed) over the space of strategies
α1 (horizontal axis) and α2 (vertical axis)

indifferent between issuing a nonredundant asset and imitating the strategy of producer
2. At these points, his best-reply correspondence exhibits a discontinuity and maps to
a set of cardinality two. For all points in between, the best reply of producer 1 lies on
the diagonal. Due to the symmetry of the example, the best-reply correspondence of
producer 2 has the same shape.

The right panel displays the best-reply correspondences of both producers. It is easy
to see that there is a continuum of fixed points: The entire line segment ab consists of
Cournot–Walras equilibria, each having an asset span of dimension 1.More abstractly,
this set of equilibria is a 1-dimensionalmanifoldwith boundary.While this set need not
be linear in general, it will be verified in Sect. 4 that the manifold structure survives in
the general setting.The twoboundary equilibria are critical,whereas all other equilibria
are regular. Moreover, all regular equilibria are strongly regular because the best-reply
correspondence in the restricted game is simply Â∗ = idA1 ; thus, Ξ

∗
1 = Ξ∗∗

1 .
To understand the source of this multiplicity of equilibria, it is helpful to study

the payoff function of one producer. Figure 2 shows the profit of producer 1 for all
possible strategies α1 in response to a fixed strategy α2 = 0.12 of his competitor. The
profit function is discontinuous at those points at which the asset span collapses to a
ray. In the figure, this happens at α1 = α2 = 0.12, where the profit function exhibits
an upward jump. Since this profit is higher than the profit under all other strategies,
it is clear that imitation and thus an incomplete asset structure is the best reply of the
producer.

If both producers find it optimal to imitate their competitor, which is to say that
α1 = α2 = 0.12 is indeed an equilibrium, a multiplicity of equilibria is inevitable:
There are two local maxima with profits indicated by the horizontal dashed lines.
The profit at the global maximum is strictly greater than the profit at the second-best
reply. Since Π∗ is of class C2 on A1 and A2, there must be neighborhoodsN1 ⊆ A1
of the combination of best replies and N2 ⊆ A2 of the combination of second-best
replies, such that both producers prefer any strategy combination inN1 over all strategy
combinations in N2. Thus, the entire set N1 consists of fixed points of A∗.

It should be noted that such multiplicity of equilibria with incomplete markets is
robust. Consider perturbations of endowments e: By the implicit function theorem,
Π∗|A1 andΠ∗|A2 vary continuously in some neighborhood E ⊂ E of e. By continuity,
every endowment vector e′ ∈ E must result in best replies in A1 that are strictly
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Fig. 2 Profit of Producer 1 as a function of α1 for fixed α2 = 0.12

preferred to second-best replies in A2 by both producers. Therefore, discontinuities
in the payoff functions of producers have twofold consequences: On the one hand,
equilibria with incomplete markets, which always lie right at a discontinuity of p∗,
appear in large numbers. On the other hand, the cardinality of the equilibrium set is
robust to perturbations of the economy.

This multiplicity of Nash equilibria in the Cournot game results in real indeter-
minacy of allocations on the Walrasian side of the model. To analyze whether these
different economic outcomes are equally desirable from a normative viewpoint, the
transferable utility property is used to measure welfare as

W = u1(c1) + u2(c2) =
∑

i∈{1,2}

∑

ω∈Ω

ln(ci
ω) .

Figure 3 displays the welfare values of all equilibria with α1 = α2 in the interval
αk ∈ [−0.123, 0.322]. It is easy to see that different equilibria can be welfare-ranked.
Moreover, moving toward a welfare-superior equilibrium does not require a strong
intervention: At any welfare suboptimal equilibrium, there is small change in pro-
duction plans that is still consistent with oligopolistic competition but leads to greater
transferable utility.Within the set of all equilibrium strategy combinations, the welfare
optimum is attained at α1 = α2 = 0.087. This is the preferred outcome of a weak
social planner who can only redistribute the numéraire commodity once production
is finished and the market has closed. Nevertheless, a more powerful planner who
can choose production plans before the market opens is still able to achieve a welfare
improvement. Any change in production plans of the form α1 + ε for Producer 1 and
α2 − ε for Producer 2, with ε �= 0, leads to complete markets but leaves the aggregate
input and output unchanged. Once the market opens, trade results in an optimal dis-
tribution of the optimal output. Therefore, a Pareto optimum is reached without any
further intervention of the planner. Moreover, since utility is transferable in present
consumption, welfare is maximized at the Pareto optimal market outcome.
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Fig. 3 Welfare of all equilibria on the manifold ab

Finally, it should be noted that the set of Cournot–Walras equilibria is actually a
2-dimensional manifold with boundary, not a 1-dimensional manifold. Each equi-
librium in the line segment ab is only unique up to the selection ψ∗ from the
demand correspondence. This selection is to a certain extent arbitrary: Since one
of the two assets is redundant at any equilibrium, any change in portfolios of the form
Δεψ

1 = −Δεψ
2 = (ε,−ε) has no effect on allocations c and therefore satisfies util-

ity maximization problem (2) at the same prices p. If (A, p, c, ψ) is an equilibrium,
so is (A, p, c, ψ + Δεψ) for any ε ∈ R. These equilibria are identical in terms of
consumption and welfare but involve different trades in the market for financial assets.
This 1-dimensional financial indeterminacy and the 1-dimensional real indeterminacy
sum up to an equilibrium set of dimension 2.

4 Indeterminacy

The degree of financial indeterminacy is always easy to compute: The only source of
such indeterminacy is redundant assets, and each feasible transfer can be realized by
K − r portfolios. The rest is simple algebra: There are I consumers who must choose
their portfolios. However, once the first I − 1 consumers have made their choices, the
portfolio of the final consumer is determined by the market clearing condition. This
results in financial indeterminacy of degree (I −1)(K −r). Contrary to financial inde-
terminacy, which is welfare-neutral, real indeterminacy involves different allocations
and is therefore welfare-relevant. To quantify the degree of real indeterminacy, the
best-reply correspondence must be studied. This problem is approached in two steps:
In the first step, the set of strongly regular equilibria is described. It turns out that this
set is particularly well behaved. It has the structure of a differentiable manifold. In the
second step, this structure is used to deduce the dimension of the larger set of regular
equilibria. Step one:
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Theorem 1 For any r ∈ N, the set of strongly regular equilibria with r-dimensional
asset span, Ξ∗∗

r , is a C1 manifold of dimension r(|Ω|−r)+ (I −1)(K −r) or empty.
The degree of real indeterminacy is r(|Ω| − r).

The proof of Theorem 1 is based on the differential topology of vector bundles. The
reader unfamiliar with this topic will find a concise summary of all necessary concepts
in the appendix, before the proof of the theorem is presented in full detail.7 The logic of
the proof can be outlined as follows: If (A, p, c, ψ) is a Cournot–Walras equilibrium
with rank(A) = r , then for each producer k,Πk∗(Ak, A¬k) ≥ Πk∗(Ak

#, A
¬k) for any

Ak
# that leads to a different rank. If the equilibrium is strongly regular, the inequality

is strict and Ξ∗∗
r is open in Ξ̂∗

r . Moreover, strong regularity implies that restricted
equilibria can be described as the zeroes of a C1 function between vector bundles.
The set Ξ̂∗

r is the preimage of the zero section under this function, and its dimension
is determined by means of the preimage theorem.

This result can be extended to the whole set Ξ∗
r of regular equilibria. It turns out

that Ξ∗∗
r and Ξ∗

r are of the same dimension, even though the latter need not have the
structure of a C1 manifold. Step two:

Corollary 1 If Ξ∗∗
r is nonempty, the set of regular equilibria Ξ∗

r is of dimension r(|Ω|−
r) + (I − 1)(K − r). The degree of real indeterminacy is r(|Ω| − r).

In light of this quantitative result, which reveals that a large set of asset structures
may occur in equilibrium, a natural qualitative question is what kind of asset can and
what kind cannot arise in equilibrium. To address this question, one further corollary
is added:

Corollary 2 If Ξ∗∗
r is nonempty, the set of r-dimensional equilibrium asset spans is

open in the set of all r-dimensional asset spans.

These results reveal a stark contrast of economic outcomes between oligopolies
with complete and incomplete markets. When markets are complete, the self-interest
of producers determines the economic outcome. In this case, |Ω| = r and thus there
is no real indeterminacy. In addition, if K = |Ω| as in the example, there are no
redundant assets, i.e., K = r , which eliminates the financial indeterminacy. As a
consequence, Ξ∗

r is a finite set of isolated equilibria by Corollary 1.
When markets are incomplete, a large set of outcomes are all individually rational

for producers. The dimension of this set grows with the degree of market incomplete-
ness: A decrease in the dimension of the asset span r has two effects. On the one
hand, the degree of market incompleteness |Ω| − r becomes greater, which enlarges
the real indeterminacy. On the other hand, the number of redundant assets K − r
increases, which enlarges the financial indeterminacy. While individual rationality is
a very restrictive requirement for production decisions when markets are complete, it
permits a rich variety of asset structures in incomplete markets.

Corollary 2 goes one step further and shows that locally anything goes: No asset
span can be ruled out a priori. Recall that the set of all asset spans of a given dimension

7 The idea of using vector bundles to model incomplete market economies goes back to Husseini et al.
(1990) and Hirsch et al. (1990).
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is known to be a manifold called the Grassmannian. The set of asset spans that can
occur in equilibrium is a submanifold. The difference in dimension between the two
manifolds measures how restrictive the self-interest of producers really is. As the
corollary shows: not at all. At a regular Cournot–Walras equilibrium with incomplete
markets, the asset span can be tilted in any direction, and provided that it is not tilted
too far, there exists another regular equilibrium with exactly that new asset span.

These findings are not limited to strategic production choices but extend to all kinds
of financial innovation that cause a discontinuity in demand. Consider the baseline
model of Carvajal et al. (2012) in which a predetermined production plan is split and
sold in the form of multiple assets. Even though the choice sets of such producers are
different, they still act as financial innovators when they issue nonredundant assets.
Such financial innovation causes a discontinuity in their payoff functions, and the
result is again a multiplicity of equilibria. Each of the resulting equilibria is perfectly
consistent with the self-interest of producers, but contrary to Walrasian economies
this self-interest restricts possible economic outcomes to a set rather than to a single
allocation. Given this abundance of possible economic outcomes, it should not be
surprising that a nontrivial welfare ranking is possible. This is formally proven in
Sect. 5.

5 Welfare

Since utility is linear in consumption at date 0 for consumers and producers alike,
there is a natural welfare function W : A × R

K × C × R
I K → R that can be used to

compare different equilibria:

W (A, p, c, ψ) =
I∑

i=1

ui (ci
1) −

K∑

k=1

κk(Ak)

The function W can be interpreted as the objective function of a social planner who
aims at Pareto efficiency, at least in a constrained sense. As utility is transferable, there
is no conflict between efficiency andwelfare, and the Pareto frontier coincides with the
set of maxima of W .8 Consider the weakest possible social planner: This planner can
make no transfers other than a redistribution of date 0 consumption after the market
has closed. The planner can only propose production plans to all producers, but they
are free to deviate if they dislike the proposal. If W attains a maximum ξ∗ onΞ∗∗

r with
production plans A, then these are the production plans the planner would propose.

Note that W defines a total order in the ambient space of the equilibrium manifold.
In the example from Sect. 3, Ξ∗∗

r is a nontrivially ordered set; that is, there are at
least two equilibria that are not welfare-equivalent. In fact, the example satisfies a
stronger property: Any open subset of Ξ∗∗

r is a nontrivially ordered set. Therefore,
at any suboptimal equilibrium, a slight intervention of the social planner can already
attain a Pareto improvement. The following proposition establishes this as a generic

8 In production economies without transferable utility, these two concepts are not well aligned; see Dierker
and Dierker (2010).
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property. The set Ξ∗∗
r of strongly regular equilibria with rank r is said to admit a

locally nontrivial welfare ranking if any open subset of Ξ∗∗
r contains two equilibria

that can be welfare-ranked. The proof of the following proposition can be found in the
appendix:

Proposition 1 For any fixed (U ,A,Π) there is an open, dense subset E∗ ⊆ E having
full Lebesgue measure such that Ξ∗∗

r admits a locally nontrivial welfare ranking for
any economy (U , e,A,Π) with e ∈ E∗ and any r ∈ N such that r < |Ω|.

The geometric interpretation of Proposition 1 is rather simple: Even though the
equilibrium manifold is small enough to be contained in an isoquant of the welfare
function, this happens only in a negligible set of economies. More important is the
economic interpretation of this result: Typically, some equilibria are socially more
desirable than others. Since all equilibria are individually rational for all producers,
even a very weak social planner, who cannot enforce production plans, is able to
achieve a Pareto improvement relative to most market outcomes. The function of this
planner can be decentralized: It is possible to define objectives of the producer that
aim at welfare maximization under the constraint of individual rationality. Therefore,
it is possible to reconcile normative and positive criteria, but these criteria are very
weak.

6 Limit

A classical result for complete markets is that as the number of producers becomes
large, and thus each of them becomes small relative to the size of the economy,
Cournot–Walras equilibria converge to competitive equilibria. In competitive equi-
librium, producers behave as price takers and maximize profits with respect to a given
state price vector q ∈ R

|Ω|. Equilibrium asset prices are characterized by the condition
p = q · A, and since markets are complete, the state price vector is unique and equal
to the marginal cost vectors of all firms; i.e., q = Dκk[Ak] ∀k. Competitive equilibria
are desirable from a normative viewpoint as they result in a Pareto efficient allocation.

The purpose of this section is to analyze how the nature of this result changes when
Cournot–Walras equilibria with incomplete markets are permitted. As in Gabszewicz
and Vial (1972), the base economy (U , e,A,Π) is enlarged by means of replication:
The nth replication is an economy populated by n identical copies of each consumer i
and n identical copies of each producer k. The focus is on the set of Cournot–Walras
equilibria for the limit economy as n → ∞. Four questions are addressed: Does the
indeterminacy vanish in the limit? Are markets complete? Do producers behave as if
they were price takers? Are limit equilibria efficient, at least in constrained sense?

To answer these questions, the example from Sect. 3 is replicated. In this example,
all four questions are answered in the negative. It is sufficient to consider sequences
of symmetric equilibria. Even though Cournot–Walras equilibria need not exist at all
stages of replication in general, the example is sufficiently well behaved that nonex-
istence problems do not occur:

Claim 1 At each stage of replication n, there exists a Cournot–Walras equilibrium
with symmetric strategies.
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Fig. 4 Sets of symmetric equilibrium strategies for replications n = 1, . . . , 30

Claim 1 is easily proven by inspection of themarket price function and its second-order
derivatives. Thedetails canbe found in the appendix. The advantage of symmetric equi-
libria is that the market price at every stage n can be written as a function pk∗

n (αk, α¬k)

of two arguments: αk is a scalar that represents the strategy of producer k, and α¬k is
a scalar that represents the strategy played by each of the other K n − 1 producers. As
a consequence, the set of symmetric equilibria can at any stage be computed as in a
two-player game. Figure 4 depicts this set for the first 30 replications. The equilibrium
intervals are drawn along the vertical axis as the number of replications increases along
the horizontal axis.

The base economy is populated by I = 2 consumers and K = 2 producers, and
all symmetric strategy combinations α1 = α2 in the interval [−0.123, 0.322] induce
a Cournot–Walras equilibrium. In the next round of replication, there are 2I = 4
consumers and 2K = 4 producers. All four producers choose identical strategies
αk , but now the set of equilibrium strategies is the smaller interval [−0.022, 0.266].
In every further round of replication, two replicas of the original consumers and two
replicas of the original producers are added, and the set of equilibriumstrategies shrinks
further. With each replication, the set of equilibrium strategy combinations becomes
smaller, but the dimension of the set stays the same. This is a direct consequence
of Theorem 1: The dimension of the equilibrium set is the sum of the degree of real
indeterminacy r(|Ω|−r) = 1 and the degree of financial indeterminacy K n−r = 2n−
1. As the economy is replicated,more andmore redundant assets are introduced, which
increases the degree of financial indeterminacy while the degree of real indeterminacy
remains unchanged. In order to understandwhy incompletemarkets remain optimal for
the individual producers, the payoff function of Producer 1 is studied as the economy
is enlarged. Figure 5 depicts how the shape of this function changes progressively
from n = 1, over n = 2, to n = 30.

As shown in Fig. 2, the equilibrium strategies are fixed for all other producers. It is
easy to see that the payoff function becomes flatter and flatter. Since production costs
are zero in the example, this is a perfect reflection of the market price function of the
first asset. As the output of a single producer becomes negligible relative to the size of
the economy, his influence on prices diminishes provided the rank of the asset payoff
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Fig. 5 Profit of Producer 1 as a function of α1 in replications n = 1, n = 2, and n = 30. All other producers
play α2 = · · · = α2n = 0.12

matrix does not change. The impact of such a rank change, however, remains large
even if the producer becomes relatively small. It appears that pk∗

n tends to a function
linear in αk except at the point of discontinuity as n → ∞. This impression is correct:

Claim 2 There are functions β, γ , and δ such that

lim
n→∞ pk∗

n (αk, α¬k) =
{

β(α¬k) if αk = α¬k

γ (α¬k) + δ(α¬k)αk otherwise
.

Claim 2 answers the questions whether the indeterminacy of Cournot–Walras equi-
librium vanishes in the limit economy. All its symmetric equilibria can be found by
solving the inequality γ (αk) + δ(αk)αk ≤ β(αk) for αk . This inequality has a con-
tinuum of solutions, and thus the limit economy has a continuum of equilibria. All
strategy combinations αk ∈ [0.087, 0.155] ∀k induce a Cournot–Walras equilibrium.
This also answers the question whether limit equilibria involve complete markets: Not
necessarily. Symmetric strategies result in 1-dimensional asset spans. Thus, the entire
continuum consists of Cournot–Walras equilibria with incomplete markets.

The question whether producers behave as price takers is more delicate. Since
incompleteness entails a multiplicity of state prices, there is no unambiguous notion of
price-taking producers. An extension of price-taking behavior to incomplete market
economies that is based on efficiency considerations is presented by Drèze (1974).
Under his criterion, each producer k takes as given a subjective state price vector qk

defined as a weighted sum of consumers’ marginal rates of substitution. In the present
setting with quasilinear utility, it can be written as

qk =
I∑

i=1

ψ i
k Dui [ci

1] .

Each producer uses his subjective state price vector to estimate the market price of
the asset he issues. If the concept of Cournot–Walras equilibrium is modified in such
a way that producers maximize profits based on these price estimates, one speaks of
Drèze equilibrium.
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Definition 5 A Drèze equilibrium for economy (U , e,A,Π) is a tuple (A, p, c, ψ)

such that

Ak ∈ arg max
Ak
#

I∑

i=1

ψ i
k Dui [ci

1] · Ak
# − κk(Ak

#) subject to Ak
# ∈ Ak ∀k,

as well as p = p∗(A), c = c∗(A, p), ψ ∈ Ψ ∗(A, p), and ψ̄ = 1.

If markets are complete at a Drèze equilibrium, all utility gradients are equalized
and so are the subjective state prices of producers. Therefore, in this special case, the
behavior of producers boils down to objective price-taking as in competitive equilib-
rium.

It is easy to checkwhether aCournot–Walras equilibrium is aDrèze equilibrium, and
such a comparison is also helpful to answer the efficiency question: ACournot–Walras
equilibrium is Pareto efficient if and only if it is a Drèze equilibrium with complete
markets.Whenmarkets are incomplete, Pareto efficiency is typically not attainable, but
then there is a connection to the weaker standard of constrained efficiency, originally
introduced by Diamond (1967). This standard can be described by means of a social
planner who can choose production plans, asset allocations, and date 0 consumption
freely. Constrained efficiency is attained if such a planner cannot achieve a Pareto
improvement. The most important property in the present context is: If a Cournot–
Walras equilibrium is constrained efficient, then it is a Drèze equilibrium.

It can be verified that only one of the symmetric Cournot–Walras equilibria sat-
isfies the condition p = qk · A. It is the equilibrium at αk = 0.087 ∀k, which
maximizes welfare within the set of symmetric strategy combinations. This is the only
Drèze equilibrium within the continuum, and thus the only candidate for constrained
efficiency. Nevertheless, the equilibrium has rather undesirable properties: A welfare
improvement is possible if a significant share of the producers, for example half of
them, changes their production plan slightly such that markets are complete. Thus,
the Drèze equilibrium at hand fails to be constrained efficient.9 As a consequence,
all sequences of symmetric Cournot–Walras equilibria have a constrained inefficient
limit.

The behavior of producers in the limit economy exhibits some similarity with price-
takingbehavior.Restricted to each rank r , producers face a linearmarket price function.
Therefore, they evaluate production plans as if state prices were fixed and independent
of production choices. In fact, the output quantity of each producer is negligible, such
that an individual changewould not affect prices. On the other hand, each producer can
still affect market prices by offering an asset that increases the dimension of the asset
span. Therefore, some form of market power survives in the limit when producers are
small. Moreover, each producer fully takes into account this market power. Markets
are not incomplete out of neglect or out of perceived competitive behavior; they are
incomplete because each producer, in full awareness of his market power, decides not
to enlarge the asset span.

9 For a detailed discussion of constrained inefficient Drèze equilibria when assets are redundant, the reader
is referred to Zierhut (2019).
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7 Conclusion

Endogenous asset structure choice in Cournot–Walras equilibrium results in a discon-
tinuous game. If producers choose to issue redundant assets, the equilibrium lies right
at a discontinuity, and such equilibria are never isolated: The set of regular equilibria is
a continuum whose dimension grows with the number of redundant assets. Therefore,
the set of market outcomes that are individually rational for producers grows larger as
markets become more incomplete.

The incentive to create an incomplete asset structure does not disappear when the
number of producers grows large. Even in the limit economy, where the output of each
producer is negligible relative to the size of the market, there is still market power in
the ability to offer novel assets. However, producers may find it profitable not to use
this power, and market incompleteness is preserved in equilibrium. A multiplicity of
equilibria with different asset spans can be found in economics with large producers
and in economies with small producers alike.

From a positive viewpoint, all equilibria are on par. Each of them is perfectly con-
sistent with the self-interest of producers. However, from a normative viewpoint, not
all equilibria are equally desirable. Different equilibria can be ranked in terms of wel-
fare. Therefore, even a power-oriented settingwith producers who behave strategically
leaves sufficient room for normative theory. Welfare considerations are not obsolete
but may be used to guide production decisions.

The implications for the theory of the firm are self-evident: Even if the firm takes its
own market power fully into account, it can be equipped with an objective that is both
individually rational for its owners and socially desirable in a weak sense. In a sole
proprietorship economy, individual rationality is well-defined since there is only one
type of owner. Other forms of ownership require a broader concept of rationality, and
welfare maximization among the group of owners may serve as the basis. Developing
objectives of the firm that resolve the indeterminacy in a socially desirable way is a
promising direction for future research.
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Appendix

The appendix is composed of two parts. The first part introduces the reader to vector
bundles and presents results in differential topology that are preliminary to proving
the main theorem of this paper. Its centerpiece is the derivation of an implicit function
theorem for bundle mappings. This part is self-contained and may be of independent
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interest. The second part connects those general results with the economic model of
this paper. It contains detailed proofs of Theorem 1, its corollaries, and all propositions
and claims.

A.1 Preliminaries

The preimage theorem (seeVillanacci et al. (2002), p. 125, Theorem49) is a useful tool
for describing the solution set to a system of differentiable equations. If the equation
system is represented by f (x) = z, in which f : X → Z is aCs function between two
Cs manifolds X , Z , then the preimage theorem states that f −1(z) is a Cs manifold
of dimension equal to codim(Z) provided that f is transverse to {z}. A function f
is transverse to a manifold Y , written f � Y , if its differential d f [x] is surjective at
all x ∈ f −1(Y ). The below example illustrates that transversality can be a restrictive
condition. Let Mr (m, n) be the set of m × n matrices with rank r . The following
lemma recollects a well-known property of this set. A detailed proof can be found in
Govaerts (2014), Sect. 4.

Lemma A1 The set Mr (m, n) of m × n matrices with rank r is a smooth manifold of
dimension r(m + n) − r2.

Example Consider the smooth function g : M2(3, 2) × R
3 → R

3 defined as
g(M, x) = M · (M� · M)−1 · M� · x . By Lemma A1, g is a function between
smooth manifolds. It projects each vector x onto the linear subspace spanned by the
columns of M. It is clear that the preimage g−1(0) must be a smooth manifold, yet
the preimage theorem cannot be applied to determine its dimension because g �� {0}.

The problem in the example can be overcome if g is recast as a bundle mapping.
A bundle mapping is a function with additional structure between vector bundles.
A detailed treatment of vector bundles can be found in Hirsch (1994), Chapter 4.
Here, the most important aspects are summarized briefly: A Cs vector bundle V is
constructed by attaching a vector space to each point of a Cs base manifold B. The
vector space attached to point b ∈ B is called fiber of V at b, written V [b]. On open
subsetsO ∈ B, the fiber varies in aCs manner: The entire vector bundle V is described
by Cs homeomorphisms, called vector bundle charts, of the form f : N → O × R

n

in which N is an open subset of V . Therefore, each vector bundle is everywhere
locally homeomorphic to a product of an open subset of the base manifold and some
Euclidean space (of dimension n = dim(V [b])). As a consequence, every Cs vector
bundle is a Cs manifold itself. The converse is true as well: Every Cs manifold can
be viewed as a Cs vector bundle with zero-dimensional fibers.

Let VX , VY be two Cs vector bundles over base manifolds BX ,BY . A Cs bundle
mapping is a Cs function h : VX → VY that has the form h(b, x) = (ϕ(b), h[b](x)),
in which h[b] : VX [b] → VY [ϕ(b)] is aCs function between fibers, and ϕ : BX → BY

is aCs function between the base manifolds. In this case, h is said to cover ϕ. A bundle
mapping is therefore a way of modeling families of functions h[b] whose domains
and ranges depend in a Cs manner on the parameter b. One way of defining Cs vector
bundles is by means of a Cs function F : B → Gr (m) from the base manifold to
the set of all r -dimensional linear subspaces of R

m . The properties of this set Gr (m),
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which is often times referred to as Grassmannian, are summarized in the following
lemma. For a proof, the reader is referred to Duffie and Shafer (1985), Sect. 4.

Lemma A2 The set Gr (m) of r-dimensional linear subspaces of R
m is a compact,

smooth manifold of dimension r(m − r).

The two manifolds Mr (m, n) and Gr (m) are closely related: Every element M of
the former is associated with an element L of the latter through its image L = Im(M).
The following lemmamakes this relationmore precise and can be statedwithout proof.

Lemma A3 There is a smooth submersion ϕ : Mr (m, n) → Gr (m) with Ker(dϕ[M])
= Im(M)n.

Consider the disjoint union

V(B, F) =
⋃

b∈B
{b} × F(b) ,

which is a vector bundle by the following lemma.

Lemma A4 If B is a Cs manifold and F ∈ Cs(B,Gr (m)), then V(B, F) is a Cs vector
bundle.

Proof For every linear subspace L ∈ Gr (m), there is a smooth homeomorphism h[L] :
L → R

r . In particular, there is an open neighborhood N ⊂ Gr (m) of L , and there is
a smooth vector bundle N 2 = {(L, L) | L ∈ N }, such that h : N 2 → N × R

r is a
smooth bundle mapping over the identity. The setO = F−1(N ) is open by continuity
of F . Define a function g−1 : O × R

r → V(B, F) as g−1(b, x) = (b, h(F(b), x)).
Note that g−1 is of class Cs because F is and all other functions are smooth. Its
Jacobian in local coordinates is

Dg−1[b, x] =
(

I 0
DL h[F(b), x] · DF[b] Dx h[F(b), x]

)

,

which has full rank since Dx h[F(b), x] is invertible because h[F(b)] is a home-
omorphism. By the inverse function theorem, g|P is a Cs homeomorphism for
P = g−1(O × R

r ). Thus, g|P is a vector bundle chart of V(B, F). ��
It should be noted that V can be equipped with a Cs homeomorphism σ0 : B → V

that satisfiesσ0(b) = f −1(b, 0) ∀b ∈ O for any vector bundle chart f : N → O×R
n .

The image σ0(B) is an embedded Cs submanifold called the zero section of V .10 It is
easy to check whether a bundle mapping is transverse to the zero section of its range:

Lemma A5 Let f : VX → VY be a Cs bundle mapping that covers a submersion. If
dx f [b, x] is surjective for all (b, x) ∈ f −1(σ0(BY )), then f � σ0(BX ).

10 It should be noted that other authors prefer to call the function σ0 itself the zero section.
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Proof Denote by ϕ the Cs submersion and by n the dimension of the base manifolds.
As ϕ is a submersion, dϕ[b] is surjective and the Jacobian of f in local coordinates

D f [b, x] =
(

Dϕ[b] 0
Db f [b, x] Dx f [b, x]

)

has full rank whenever dx f [b, x] is surjective.
��

Now, it is time to nest the function g from the example within a new func-
tion g̃ : V(M2(3, 2), M �→ R

3) → V(M2(3, 2), M �→ Im(M)) of the form
g̃(M, x) = (M, g(M, x)). By Lemma A4, domain and range of g̃ are smooth vec-
tor bundles. In particular, since the range has a product structure globally, its zero
section is simply M2(3, 2) × {0}. Moreover, g̃ is a smooth bundle mapping cov-
ering the identity. Since Im(dx g̃[M]) = Im(M) by construction, the differential is
always surjective and Lemma A5 ensures that g̃ � M2(3, 2) × {0}. Furthermore,
g−1(0) = g̃−1(M2(3, 2)×{0}) by construction, and therefore, the preimage theorem
applied to g̃ establishes that g−1(0) is a smooth manifold of dimension

dim(g−1(0)) = dim(V(M2(3, 2), M �→ R
3)) − dim(V(M2(3, 2), M �→ Im(M)))

+ dim(M2(3, 2) × {0})
= dim(R3) − dim(Im(M)) + dim(M2(3, 2))

= 3 − 2 + dim(M2(3, 2)) ,

and thus by Lemma A1, dim(g−1(0)) = 7. Therefore, the additional structure of a
bundle mapping enables the application of the preimage theorem in cases in which
transversality in a narrow sense is not satisfied.

The following two lemmata show that new vector bundles can be formed by means
of splitting and joining.

Lemma A6 Let VX×Y be a Cs vector bundle over a manifold B. Then, there exist Cs

vector bundles VX and VY over B whose fibers satisfy VX [b] × VY [b] = VX×Y [b].
Proof Every vector bundle chart f : N → O × R

m × R
n is a Cs bundle mapping

covering σ−1
0 . As VX×Y [b] is a vector space, the local coordinates can always be

chosen in such a way that the Jacobian of the inverse f −1 has all off-diagonal blocks
equal to the zero matrix:

D f −1[b, x, y] =
⎛

⎜
⎝

Dσ0[b] 0 0
0 Dx f −1[b, x, y] 0
0 0 Dy f −1[b, x, y]

⎞

⎟
⎠ . (10)

Define Cs functions g−1 : O × R
m → NX with NX = f −1(O × R

m × {0}) and
h−1 : O × R

n → NY with NY = f −1(O × {0} × R
n) as follows: g−1(b, x) =

f −1(b, x, 0) and h−1(b, y) = f −1(b, 0, y). Note that dg−1[b, x] and dh−1[b, y] are
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both bijective; otherwise, D f −1[b, x, y] in (10) could not have full rank, which would
contradict that f is a vector bundle chart. Thus, by the inverse function theorem for
Cs manifolds, g and h are homeomorphisms. They serve as vector bundle charts for
VX and VY , respectively. ��

Lemma A7 Let VX , VY be Cs vector bundles, and let f : VX → VY be a Cs bundle
mapping covering ϕ. If ϕ is a submersion, there is exists a Cs vector bundle VX×Y

such that VX×Y [b] = VX [b] × VY [ϕ(b)].

Proof Let BX and BY be the base manifolds of VX and VY , respectively. Since ϕ is a
submersion, it translates any open cover ofBX to an open cover ofBY . In particular, for
any pair of vector bundle charts g : NX → OX × R

m of VX and h : NY → OY × R
n

of VY such that ϕ(OX )∩OY is nonempty, one can define a setP = ϕ−1(ϕ(OX )∩OY )

a function �−1 : P × R
m × R

n as �−1(b, x, y) = (g−1(b, x), prY (h−1(ϕ(b), y))).
Then, �−1 is a Cs homeomorphism because g−1 and h−1 are, and � is a vector bundle
chart of VX×Y . ��

Finally, a vector bundle version of the familiar implicit function theorem is derived.

Theorem A1 Let VX×Y , VZ be Cs vector bundles, and let f : VX×Y → VZ be a Cs

bundle mapping that covers a homeomorphism. If f [b](x, y) = z and dx f [b, x, y] is
bijective, then there are open neighborhoods N of (b, x) in VX and O of (b, y) in VY ,
and a unique Cs bundle mapping g : O → N that satisfies f [b](g[b](y), y)) = z for
all (b, y) ∈ O.

Proof Denote by ϕ the Cs homeomorphism. By Lemmata A6 and A7, it is possible to
split VX×Y in two and glue one part to VZ . This results in a Cs vector bundle VZ×Y .
Now, define the Cs function h : VX×Y → VZ×Y as h(b, x, y) = ( f (b, x, y), y).
Note that bijectivity of dx f [b, x, y] implies dim(X) = dim(Z), and thus, range and
domain of h are of the same dimension. The Jacobian in local coordinates

Db,x h[b, x, y] =
⎛

⎜
⎝

Dϕ[b] 0 0
Db f [b, x, y] Dx f [b, x, y] Dy f [b, x, y]

0 0 I

⎞

⎟
⎠ (11)

has full rank since both Dx f [b, x, y] and Dϕ[b] have full rank, the latter because ϕ

is a homeomorphism. As a consequence, the inverse function theorem for Cs mani-
folds (see Villanacci et al. (2002), p. 67, Theorem 48) guarantees the existence of a
Cs inverse h−1. Note that h can be written as h(b, x, y) = (ϕ(b), f [b](x, y), y),
and thus by the positions of the zeroes in (11), it is clear that h−1 is of the
form h−1(b′, x ′, y′) = (ϕ−1(b′), �[b′](x ′, y′), y′) for some � : VZ×Y → VX that
satisfies f [ϕ−1(b′)](�[b′](x ′, y′), y′) = x ′; otherwise, h ◦ h−1 �= idVX×Y . As a
consequence, g[b](y) = �[ϕ(b)](z, y) is the desired bundle mapping that solves
f [b](g[b](y), y)) = z. ��
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A.2 Proofs

Since only regular equilibria are studied, the topological boundaries bdry(Ak) of
production sets can be ignored. Under Assumption 3, the set Ãk = Ak\bdry(Ak) is
nonempty-open and therefore a smooth |Ω|-dimensional manifold. As a consequence,
Ã = �K

k=1 Ãk is a smooth K |Ω|-dimensional manifold. It overlaps with the set
Mr (|Ω|, K ) of |Ω| × K matrices with rank r , which is a smooth manifold itself
by Lemma A1. Since T Ã[A] = R

K |Ω| for any A ∈ Ã, the intersection with any
other manifold is trivially transverse; in particular, Ã � Mr . As a consequence, the
intersection Ãr = Ã∩Mr is another smooth manifold of dimension r(|Ω|+ K )−r2.
Consider the set

X̃r = V(Ãr , A �→ Im(A�)) ,

which is a smooth vector bundle over Ãr by Lemma A4. By construction, if (A, p) ∈
Xr (as defined in Eq. (6)) and A /∈ bdry(A), then (A, p) ∈ X̃r . The objective is to
study the set Ξ∗∗

r of strongly regular equilibria with rank r . The following lemma
establishes that the dimension of Ξ∗∗

r is equal to the dimension of the tractable set
Ξ̂∗

r :

Lemma A8 For any r ∈ N, the set of strongly regular Cournot–Walras equilibria Ξ∗∗
r

is open in the set of regular restricted equilibria Ξ̂∗
r .

Proof By Definition 3, the best-reply correspondence A∗ is single-valued at any
(A, p, c, ψ) ∈ Ξ∗

r . This implies that for each producer k,

Πk∗(Ak, A¬k) > max
Ak
#

Πk∗(Ak
#, A

¬k) subject to Ak
# ∈ Ak\Im(A) . (12)

If (A, p, c, ψ) ∈ Ξ̂∗
r , then also for each k,

Πk∗(Ak, A¬k) = max
Ak
#

Πk∗(Ak
#, A

¬k) subject to Ak
# ∈ Ak ∩ Im(A) . (13)

Note that Definition 3 implies that A∗ is continuous at the equilibrium, which
implies that the maximum in (13) is locally continuous in the first argument Ak

#. Thus,
strict inequality (12) holds in some neighborhoodN ⊂ Ξ̂∗

r of the original equilibrium,
and thus, ξ ∈ N implies ξ ∈ Ξ∗∗

r . ��
The advantage of working with the restricted game is that the dimension of the asset

span is held constant, and therefore, the market price function is continuous. Still, the
best-reply correspondence Â∗ : Ar ⇒ Ar may behave erratically at discontinuities
of the correspondence Âr , which are easy to see when the correspondence is written
in the form

Âk
r (A#) =

{
Ak ∩ Im(A¬k

# ) if rank(A¬k
# ) = r

Ak\Im(A¬k
# ) if rank(A¬k

# ) = r − 1
. (14)
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However, regular equilibria never occur at such discontinuities. Therefore, by Eq.
(14) the choice set Âk

r (A) of any producer k at a regular equilibrium is contained in the
linear subspace L = Im(A). Since the set of linear subspaces is a smooth manifold
by Lemma A2, even the discontinuous correspondence Âr can be equipped with a
differentiable structure in a neighborhood of a regular equilibrium. For fixed e ∈ E,
all regular restricted equilibria are contained in the set

Yr =

⎧
⎪⎪⎨

⎪⎪⎩

(A, p, c, ψ) ∈ Ãr × R

∣
∣
∣
∣
∣
∣
∣
∣

ci − ei =
(−p

A

)

· ψ i ∀i

p ∈ Im(A�)

ψ̄ = 1

⎫
⎪⎪⎬

⎪⎪⎭

, (15)

in whichR = R
K ×R

I (|Ω|+1) ×R
I K is the Euclidean space that contains all possible

market outcomes (p, c, ψ). Since the constraints in (15) are linear,Yr is a vector bundle
over Ãr . In the next step, a continuous selection from the demand correspondence
shall be constructed. For this purpose, restricted equilibria are translated to restricted
quasi-equilibria, which are free of financial indeterminacy. The linear subspace L that
contains the choice sets of all producers is made explicit in its definition:

Definition 6 A restricted quasi-equilibrium for economy (U , e,A,Π) is a tuple
(L, A, p, c, ψ) ∈ Gr (|Ω|)×Ar ×R

K+ ×C×R
I K such that L = Im(A), A ∈ Â∗(A),

p = p∗(A), c = c∗(A, p), ψ ∈ Ψ ∗(A, p) ∩ Im(A�)I , and ψ̄ − 1 ∈ Ker(A).

The main difference between Definitions 2 and 6 is in their degrees of freedom
for portfolio choices. If there are redundant assets, the demand correspondence Ψ ∗
involves a continuum of portfolios with identical payoffs. At a restricted quasi-
equilibrium, the choice of each consumer is confined to one single point of this
continuum. As such confinement may preclude market clearing, the market clear-
ing condition is weakened. While the original market clearing condition ψ̄ − 1 ∈ {0}
is a K -dimensional restriction, the weaker clearing condition ψ̄ − 1 ∈ Ker(A) is only
a (K − r)-dimensional restriction. The set of restricted quasi-equilibria with rank r is
contained in the following set:

Zr =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(L, A, p, c, ψ) ∈ Gr (|Ω|) × Ãr × R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ci − ei =
(−p

A

)

· ψ i ∀i

A ∈ L K

p ∈ Im(A�)

ψ ∈ Im(A�)I

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(16)

Note that Zr is a vector bundle over the Grassmannian Gr (|Ω|). Even though
such restricted quasi-equilibria do not fulfill the market clearing condition of a
restricted equilibrium, it is always possible to translate a regular equilibrium to a
quasi-equilibrium and vice versa:

Lemma A9 For any r ∈ N, there is a smooth submersion π : Yr → Zr having the
following properties:
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(i) If (A, p, c, ψ) is a regular restricted equilibrium, then ξ = π(A, p, c, ψ) is a
restricted quasi-equilibrium.

(ii) If (L, A, p, c, ψ) is a restricted quasi-equilibrium, then ξ ∈ π−1(L, A, p, c, ψ)

is a regular restricted equilibrium.
(iii) If ξ is a restricted quasi-equilibrium, then dim(π−1(ξ)) = (I − 1)(K − r).

Proof Consider the bundle mapping ν : Ãr × R
K → V( Ãr , A �→ Im(A�)) defined

as

ν(A, ψ i ) = A� · (A · A�)−1 · A · ψ i , (17)

which projects portfolio vectors onto the linear subspace spanned by the rows of A.
As a consequence, π(A, p, c, ψ) = (ϕ(A), A, p, c, (ν[A](ψ i ))I

i=1) is a submersion
because ϕ is a submersion by Lemma A3. The three properties are proven separately:

Property (i) By construction, ν[A](ψ i ) ∈ Im(A�) and ν[A](ψ i ) − ψ i ∈ Ker(A).
As a consequence, ν[A](ψ i ) ∈ Ψ i∗(A, p) because

ci = A · ψ i = A · (ψ i + Δψ i ) ∀Δψ i ∈ Ker(A) . (18)

This is true for each consumer i , which results in the portfolio optimality condition
from Definition 6. By the same logic, the weakened market clearing condition must
hold: If ψ̄ = 1, then ν[A](ψ̄) − 1 ∈ Ker(A).

Property (ii) By construction, ψ i + Δψ i ∈ ν[A]−1(ψ i ) for any Δψ i ∈ Ker(A).
Thus, by Eq. (18), ψ i + Δψ i ∈ Ψ i∗(A, p). This holds for each consumer i , which
satisfies the portfolio optimality condition from Definition 2. The same holds true for
the market clearing condition: 1 ∈ ν[A]−1(ψ̄) if ψ̄ − 1 ∈ Ker(A). Thus, the last
condition in (15) is satisfied and the preimage π−1(L, A, p, c, ψ) is nonempty.

Property (iii) Note that ν[A] is a linear mapping from K -dimensional space to
r -dimensional space because r = rank(A) = rank(A�). Accordingly, (ν[A])I

i=1
is a linear mapping from I K -dimensional space to r I -dimensional space. As
part of π , all its arguments satisfy the K -dimensional market clearing condition
ψ̄ − 1 ∈ {0} by Eq. (15). By contrast, restricted quasi-equilibria only satisfy
the r -dimensional condition ψ̄ − 1 ∈ Ker(A). Thus, the preimage of a quasi-
equilibrium portfolio vector under the restriction of (ν[A])I

i=1 is of dimension
I K − I r − (K − r) = (I − 1)(K − r). ��

Restricted quasi-equilibria are very well behaved: Demand, market prices, and
best replies can be represented by differentiable bundle mappings at least in some
neighborhood of the equilibrium. This is the content of the following three lemmata.
To prepare for the endowment perturbations in the proof of Proposition 1, endowments
e are added as an explicit argument.

Lemma A10 For any (A, p, c, ψ) ∈ Ξ̂r with c � 0, there are open neighborhoods
O ⊂ X̃r of (A, p) and E ⊂ E of e as well as C2 bundle mapping ψ� : O × E →
V(Ãr , A �→ Im(A�)I ) that satisfies ψ�[A](p, e) ∈ Ψ ∗(A, p) on O × E .
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Proof Since Ui is strictly increasing under Assumption 1, the budget constraint in
(1) holds with equality and the asset demand correspondence can be written as the
preimageΨ i∗(A, p) = A−1(ci∗

1 (A, p)−ei
1) under the linear transformation A defined

by A. This implies that ν[A] ◦ Ψ i∗ is single-valued. Moreover, it is continuous on Xr

as Ψ i∗ is. Thus, the function ψ i∗ : Xr → R
K , defined as ψ i∗ = ν[A] ◦ Ψ i∗|Xr , is a

continuous selection. It must satisfy the first-order conditions of consumer i . Let Ỹr

be defined like Yr in Eq. (15) but without the constraint ψ̄ = 1. Consider a bundle
mapping b : Ỹr × E → V(Ãr , Im(A�)I ) that covers idÃr

and has components of the
form

bi [A](p, c, ψ, e) = Dui [ei
1 + A · ψ i ] · A − p . (19)

Note that bi [A](p, c, ψ, e) = 0 represents the first-order conditions of con-
sumer i for any c � 0. The mapping b is of class C2 because ui is of class
C3 under Assumption 1. Its Jacobian with respect to ψ i in local coordinates is
Dψ i bi [A, p, c, ψ, e] = A� · D2ui [ci ] · A, which is negative definite on Im(A�).
As a consequence, dψ i bi [A, p, c, ψ, e] is bijective for each consumer i , and there-
fore dψb[A, p, c, ψ, e] is bijective as a whole. By Theorem A1, there exists a C2

solution mapping ψ� = (ψ1�, . . . , ψ I�) to the system of first-order conditions
b[A](p, c, ψ�[A](p, e), e) = 0 for some open subset O × E ⊂ X̃r × E. ��

A direct consequence of Lemma A10 is that optimal consumption c�, which is
defined as

ci�(A, p, e) = ei +
(−p

A

)

· ψ i�(A, p, e) ∀i , (20)

is aC2 bundle mapping onO×E as well. This is also true for themarket price function
at regular restricted equilibria, but with O being a subset of Ãr :

Lemma A11 For any (A, p, c, ψ) ∈ Ξ̂∗
r with c � 0, there are open neighborhoods

O ⊂ Ãr of A and E ⊂ E of e as well as C2 bundle mapping p� : O × E →
V(Ãr , A �→ Im(A�)) that satisfies p�[A](e) = p∗(A) on O × E . Its partial differ-
ential de p�[A, e] is surjective on O × E .

Proof Letψ� be theC2 function fromLemmaA10. Note that themarket clearing con-
dition in Definition 2 implies the market clearing condition in Definition 6, and thus,
the inverse demand function p∗ also solves ψ̄�[A](p∗(A), e) = ν[A](1). To see that
p∗ can be locally represented by a bundlemapping, consider again themapping bi from
Eq. (19). The Jacobian Dpψ

i�[A, p, e] = (Dψ i bi [A, p, c, ψ, e])−1 is negative defi-
nite as the inverse of a negative definite matrix. As a consequence, dpψ̄

�[A, p, e] =
∑I

i=1 dpψ
i�[A, p, e] is bijective since Dpψ̄

�[A, p, e] = ∑I
i=1 Dpψ

i�[A, p, e] is
the sumof negative definitematrices. ByTheoremA1, there exists a uniqueC2 solution
ψ� to

ψ̄�[A](p�[A](e), e) = ν[A](1) ; (21)
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for some open subset O × E ⊂ Ãr × E. By uniqueness of the solution, it must agree
with p∗. By the chain rule, De p�[A, e] = −(Dpψ̄

�[A, p, e])−1 · Deψ̄
�[A, p, e],

and since

Deψ̄
�[A, p, e] = −

I∑

i=1

(Dψ i bi [A, p, c, ψ, e])−1 · Dei bi [A, p, c, ψ, e]

is surjective because Dei
1
bi [A, p, c, ψ, e] = A� · D2ui [ci ] is, the proof is

completed. ��
The following lemma shows that the best-reply correspondence can be locally

equipped with the structure of a bundle mapping:

Lemma A12 For any ξ ∈ Ξ̂∗
r and (L#, A#, p#, c#, ψ#) = π(ξ), there is some open

subset O× E ⊂ V(Gr (|Ω|), L �→ L K ) × E containing (L#, A#, e#) and a C1 bundle
mapping A� : O × E → V(Gr (|Ω|), L �→ L K ) such that A�[L](A, e) = Â∗(A) on
O × E .

Proof Define A�(L, A, e) = (L, Â∗(A)), which is of class C1 on an open setO× E ;
otherwise, Â∗ could not be continuously differentiable at A#, Definition 3 would be
violated, and the reference equilibrium ξ could not be regular. It remains to be verified
that Â∗(A) ∈ L K holds for all (A, e) ∈ O×E . Suppose not; then, Âk∗(A) /∈ Im(A¬k

# )

for some producer k because L = Im(A) at any restricted quasi-equilibrium. By (14),
this is only possible if Âk

r has a discontinuity at A. However, in that case Âk∗ would
be discontinuous at A, and A� could not be of class C1. ��

With the help of these lemmata, the proof of the main theorem is straightforward.

Proof of Theorem 1 Fix some r ∈ N and let (A, p, c, ψ) ∈ Ξ∗∗
r ; then, ξ =

π(A, p, c, ψ) is a restricted quasi-equilibrium by Lemma A9. Let O be an open
neighborhood of ξ inZr , and let E be an open neighborhood of the endowment vector
e in E. Define a bundle mapping f : O × E → Zr that covers the identity as

f [L](A, p, c, ψ, e) =

⎛

⎜
⎜
⎜
⎝

A�[L, A](e) − A

p�[A](e) − p

c�[A](p, e) − c

ψ�[A](p, e) − ψ

⎞

⎟
⎟
⎟
⎠

. (22)

Note that A�, p�, c�, and ψ� are (twice) continuously differentiable by Lemmata
A10, A11, A12 and Eq. (20). Define fe[L](A, p, c, ψ) = f [L](A, p, c, ψ, e) as the
restriction for fixed e. By construction, fe(ξ

′) = 0 is equivalent to π−1(ξ ′) ∈ Ξ̂∗
r .

The Jacobian D fe[ξ ′] = D f [ξ ′, e] at any such ξ ′, with brackets omitted for clarity, is
of the form

D(A,p,c,ψ) f [L, A, p, c, ψ, e] =

⎛

⎜
⎜
⎜
⎝

DAA� − I 0 0 0
DA p� −I 0 0
DAc� Dpc� −I 0
DAψ� Dpψ

� 0 −I

⎞

⎟
⎟
⎟
⎠

, (23)
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which is a lower triangular block matrix. By regularity, DAA�[A, e] − I has
full rank according to Definition 3; otherwise, d Â∗[A] − idL K would not span
L K = Im(A)K . Thus, all matrices along the main diagonal are invertible, and by
Lemma A5, fe � σ0(Gr (|Ω|)). By the preimage theorem, dim( f −1

e (σ0(Gr (|Ω|)))) =
dim(σ0(Gr (|Ω|))) = dim(Gr (|Ω|)). Since all financial indeterminacy is annulled at a
restricted quasi-equilibrium, this dimension measures only the degree of real indeter-
minacy,which is therefore r(|Ω|−r) byLemmaA2. Furthermore, asπ is a submersion
by Lemma A9, fe � σ0(Gr (|Ω|)) implies fe ◦ π � σ0(Gr (|Ω|)). Another applica-
tion of the preimage theorem reveals that ( fe ◦ π)−1(σ0(Gr (|Ω|))) is a C1 manifold
of dimension r(|Ω| − r) + (I − 1)(K − r), in which the difference in dimensions
(I −1)(K −r) follows from the third property of Lemma A9. As this argument can be
repeated for any ξ ∈ Ξ̂∗

r , it can be concluded that Ξ̂∗
r in its entirety is a C1 manifold

of the computed dimension or the empty set. Since Ξ∗∗
r is an open subset of Ξ̂∗

r by
Lemma A8, the theorem is proven.

Proof of Corollary 1 Recall thatΞ∗∗
r ⊆ Ξ∗

r . The dimension ofΞ∗
r has an upper bound:

The set of equilibrium asset spans is at most of dim(Gr (|Ω|)) = r(|Ω| − r) by
Lemma A2. For each asset span L ∈ Gr (|Ω|), equilibrium asset payoffs A ∈ L K

are isolated points. If not, there would exist some nonzero ΔA ∈ L K such that
d(A∗(A)−A)[A](ΔA) = 0, but this is ruled out by the third condition of Definition 3.
In fact, there can only be a finite number of isolated points becauseA is compact under
Assumption 3. Furthermore, for each equilibrium asset payoff matrix A, there is a
unique equilibrium price vector by Lemma A11. Finally, for each tuple (A, p) ∈ X̃r ,
there is a unique equilibrium consumption vector c and up to (I −r)(K −r) consistent
portfolio vectorsψ . Thus, the upper bound is dim(Ξ∗

r ) = r(|Ω|−r)+(I −1)(K −r).
Since dim(Ξ∗∗

r ) = r(|Ω| − r) + (I − 1)(K − r) by Theorem 1, the upper bound is
reached.

Proof of Corollary 2 Itmust be shown that the projection ofΞ∗∗
r onto theGrassmannian

Gr (|Ω|) is an open subset. To do so, define the smooth function h : π(Ξ̂∗
r ) → Gr (|Ω|)

as h(L, A, p, c, ψ) = L . Recall from the proof of Theorem 1 that ξ ∈ π(Ξ̂∗
r ) is

equivalent to fe(ξ) = 0. Therefore, h−1(L) and fe[L]−1(0) are equipotent. Since
the Jacobian in (23) has full rank, fe[L] � {0} and the preimage theorem implies
that fe[L]−1(0) is a 0-dimensional C1 manifold. By equipotence, h−1(L) is always
a set of isolated points, and thus, h is locally injective. Since domain and range of
h are manifolds of equal dimension (see Theorem 1 and Lemma A2), h is open by
invariance of domain. Finally, recall that π is a submersion. By Lemma A8, Ξ∗∗

r is an
open subset of Ξ̂∗

r , and thus, h(π(Ξ∗∗
r )) is an open subset of the Grassmannian.

Finally, it is time to prove that every open subset of Ξ∗∗
r contains two equilibria

that can be welfare-ranked:

Proof of Proposition 1 Suppose not; then, for some r ∈ N therewould be awelfare level
w ∈ R and an open subset S ⊆ Ξ∗∗

r with the property that W (ξ) = w ∀ξ ∈ S. That
is to say, DW [ξ ] ⊥ T Ξ∗∗

r [ξ ] ∀ξ ∈ S. Since the tangent space to Ξ∗∗
r at ξ satisfies

T Ξ∗∗
r [ξ ] = Ker(d fe[π(ξ)] ◦ dπ [ξ ]), this orthogonality condition is equivalent to

Ker(d fe[π(ξ)] ◦ dπ [ξ ]) ⊆ Ker(dW [ξ ]) ∀ξ ∈ S. As in the proof of Theorem 1, let
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O×E be an open subset ofZr ×E. Now, consider the function g : O×E → Zr ×R,
defined as

g(L, A, p, c, ψ, e) =
(

f (L, A, p, c, ψ, e)

W (A, p, c, ψ)

)

,

with restriction ge(L, A, p, c, ψ) = g(L, A, p, c, ψ, e) for fixed e. The Jacobian of
g in local coordinates has the form

D(A,p,c,ψ,e)g[L, A, p, c, ψ, e] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

DAA� − I 0 0 0 De A�

DA p� −I 0 0 De p�

DAc� Dpc� −I 0 Dec�

DAψ� Dpψ
� 0 −I Deψ

�

0 DAW 0 DcW 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

in which all brackets are omitted for the sake of clarity. It is easy to check that
g � {0} × {w}: As shown above, the entire block above the last row has full rank
at any equilibrium, and the last row of g can be perturbed independently. To see
this, note that de p�[A, e] is surjective by Lemma A10 but its kernel is of dimension
nullity(de p�[A, e]) ≥ I (|Ω| + 1) − K . Any vector v ∈ Ker(de p�[A, e]) satisfies
De p�[A, e] · v = 0, and thus, De A�[A, e] · v = 0, but Dec�[A, p, e] · v �= 0
and potentially Deψ

�[A, p, e] · v �= 0. These two effects can be undone by changes
in c and ψ , and changes in c perturb W . In other words, the above matrix has full
rank and g � σ0(Gr (|Ω|)) × {w}. By the parametric transversality theorem (see
Hirsch (1994), p. 79-80, Theorem 2.7 and Guillemin and Pollack (1974), p. 68),
ge � σ0(Gr (|Ω|)) × {w} for any e ∈ E∗, which is an open, dense, full-measure
subset of E . As this argument can be repeated for any economy, the statement can
be extended to an open, dense, full-measure subset E∗ ⊆ E. As a consequence,
rank(d fe[π(ξ)] ◦ dπ [ξ ]) = rank(dge[π(ξ)] ◦ dπ [ξ ]) − 1, and by the rank-nullity
theorem (see Lang (2004), p. 61, Theorem 3.2), nullity(d fe[π(ξ)] ◦ dπ [ξ ]) =
nullity(dge[π(ξ)] ◦ dπ [ξ ]) + 1. But since Ker(d fe[π(ξ)] ◦ dπ [ξ ]) ⊆ Ker(dW [ξ ])
requires nullity(d fe[π(ξ)]◦dπ [ξ ]) = nullity(dge[π(ξ)]◦dπ [ξ ]), this contradicts the
initial statement, which proves the proposition. ��

The appendix ends with proofs of the two claims from Sect. 6.

Proof of Claim 1 Consider a pseudo-economy in which a complete set of (two) state-
contingent claims is available in addition to the assets of both producers. In this
pseudo-economy, the asset span is independent of the production plans chosen, and
there is a unique state price vector q that clears the market. The pseudo-price of the
kth asset,

p̃k = q · Ak , (24)

can at any stage of replication n bewritten as a function p̃k
n(αk, α¬k) of two scalars. The

latter parameter is the average choice of all other producers α¬k = 1
2n−1

∑
j �=k α j .
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Since all production sets are identical, α¬k ∈ [−1/2, 1/2]. Moreover, p̃k
n(αk, α¬k)

equivalently represents the pseudo-price of asset k if all other 2n − 1 producers chose
the identical strategy α¬k . Therefore, it can be determined by solving the system of
Arrow–Debreu equilibrium conditions

q − Dui [ci
1] = 0 ∀i

q · (ci
1 − ei

1) − (ci
0 − ei

0) = 0 ∀i
2n∑

i=1

(ci
1 − ei

1) −
(

n/2 + αk + (2n − 1)α¬k

n/2 − αk − (2n − 1)α¬k

)

= 0

jointly with (24). The solution is

p̃k
n(αk, α¬k) = n + 2nαk

αk − α¬k + n + 2nα¬k
− n − 2nαk

αk − α¬k − 3
2n + 2nα¬k

, (25)

and its second-order derivative with respect to αk is

4n

(
α¬k + 1

2 − n(2α¬k + 1)

(αk − α¬k + n(2α¬k + 1))3
+ 8α¬k − 4 + n(12 − 16α¬k)

(2αk − 2α¬k + n(4α¬k − 3))3

)

.

It is easy to verify that for any combination αk, α¬k ∈ (−1/2, 1/2), the left fraction
has a negative numerator and a positive denominator, and the right fraction has a
positive numerator and a negative denominator.As a result, D2

αk p̃k
n[αk, α¬k] < 0 ∀n ≥

1 and since κk = 0, the payoff function of the producer in the pseudo-economy is
strictly concave. As all production sets are nonempty, convex, and compact, this is
sufficient to guarantee the existence of an equilibrium for the pseudo-economy. By
symmetry of the game, at least one equilibriummust involve symmetric strategies. By
construction,

pk∗
n (αk, α¬k) =

{
β(α¬k) if αk = α¬k

p̃k∗
n (αk, α¬k) otherwise

, (26)

in which β is the solution for p¬k in the system of incomplete-market equilibrium
conditions

p¬k − Dui
[
ei
1 + A¬k · ψ i

¬k

]
· A¬k = 0 ∀i

2n∑

i=1

ψ i
¬k − 2n = 0

A¬k −
(
1/2 + α¬k

1/2 − α¬k

)

= 0 ,
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which can be solved by setting n = 1 since n drops out of the market clearing equation
because all consumers of a type choose identical portfolios. The solution is

β(α¬k) = 15 − 24α¬k + √
33 − (80 − 64α¬k)α¬k

12 − 16α¬k
.

Furthermore, n drops out of the pseudo-price equation in the case of symmetric
strategies:

p̃k∗
n (α¬k, α¬k) = 5 − 8α¬k

3 − 4α¬k

Since β(α¬k) > p̃k∗
n (α¬k, α¬k) for any α¬k ∈ (−1/2, 1/2), the existence of a

symmetric equilibrium for the pseudo-economy implies the existence of a symmetric
equilibrium for the true economy.

Proof of Claim 2 Taking the limit of (25) results in limn→∞ p̃k∗
n (αk, α¬k) = γ (α¬k)+

δ(α¬k)αk , in which γ and δ are defined as

γ (α¬k) = 5

3 + (2 − 8α¬k)α¬k
, δ(α¬k) = 2 − 16α¬k

3 + (2 − 8α¬k)α¬k
,

and the statement follows from (26).
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