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Abstract
In this article, we introduce the rectangular knapsack problem as a special case of
the quadratic knapsack problem consisting in the maximization of the product of two
separate knapsack profits subject to a cardinality constraint. We propose a polynomial
time algorithm for this problem that provides a constant approximation ratio of 4.5.
Our experimental results on a large number of artificially generated problem instances
show that the average ratio is far from theoretical guarantee. In addition, we suggest
refined versions of this approximation algorithm with the same time complexity and
approximation ratio that lead to even better experimental results.

Keywords Quadratic knapsack problem · Approximation algorithm · Multiobjective
combinatorial optimization · Hypervolume

1 Introduction

The classical (linear) knapsack problem (KP) is a combinatorial optimization problem.
Given a finite set {1, . . . , n} of items i with assigned profit andweight values pi andwi ,
respectively, and a finite capacity W , KP decides which items to include to maximize
the total profit while satisfying a capacity constraint. The capacity and profit and
weight values are all assumed to be positive integer and each item can be included
at most once. KP is an NP-complete problem but is solvable in pseudo-polynomial
time by dynamic programming. Several interesting and challenging variants of KP
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108 B. Schulze et al.

have been introduced in the past (see (Kellerer et al. 2004) for an overview). One of
those is the quadratic knapsack problem (QKP).

In contrast toKP, the profit of a collection of items inQKP is not only determined by
the sum of individual profits, but also by profits generated by pairwise combinations
of items. This can be used to model the fact that two items may complement each
other such that their profit is increased if both of them are selected. The quadratic
objective still allows to model that the profit of two items is independent of each other
by setting the combined profit to 0. In this case, including both items does not increase
the profit over the sum of the individual profits. Furthermore, a negative combined
profit value can model the fact that both items together are less profitable than the sum
of individual profits. This might be the case, if both items are substitutes for each other
and including both items is as profitable as including one.

The formulation of quadratic knapsack problems (QKP) is very general and, there-
fore, its range of applications is quite wide. For example, Johnson et al. (1993) present
a problem in the context of compiler construction that can be formulated as a QKP.
Moreover, QKPs have been discussed in the context of the location of airports, freight
handling terminals, railway stations, and satellite stations (Rhys 1970;Witzgall 1975).

We present a variant of QKP which we call the rectangular knapsack prob-
lem (RKP). The profit matrix is built by the product of two vectors and the constraint
is a cardinality constraint.

The main motivation for problem RKP arises when solving the cardinality con-
strained bi-objective knapsack problem (2oKP)

max

( n∑
i=1

ai xi ,
n∑

i=1

bi xi

)
(2oKP)

s. t.
n∑

i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

where a, b ∈ Nn , with a, b �= 0n = (0, 0, . . . , 0)� ∈ Nn , and k ∈ N, k < n. Instead
of computing the set of efficient solutions for this bi-objective optimization problem,
we want to find one (or several) representative nondominated point(s). Originally
proposed by Zitzler and Thiele (1998) in the context of evolutionary algorithms, the
hypervolume indicator is often used as a versatile quality measure of representation
of the efficient set in multiobjetive optimization (c.f. Kuhn et al. 2016). The problem
of finding one solution of 2oKP that maximizes the hypervolume, considering (0, 0)�
as reference point, is equivalent to RKP.

The structure of RKP allows to formulate a polynomial time 4.5-approximation
algorithm. For maximization problems, an algorithm is called a polynomial time
ρ-approximation algorithm, if it computes a feasible solution in run time being poly-
nomial in the encoding length of the input such that

ρ ≥ OPT

ALG
.
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Here, OPT denotes the optimal objective function value of the maximization prob-
lem and ALG the objective function value of the solution which is the output of the
algorithm (Cormen et al. 2001).

The remainder of this article is organized as follows: In Sect. 2, we give an introduc-
tion to quadratic knapsack problems. We introduce the rectangular knapsack problem
in Sect. 3 and present upper and lower bounds. These bounds motivate an approxima-
tion algorithm that is formulated in Sect. 4, for which a constant approximation ratio ρ

is proven. Furthermore, we also introduce improved implementations of this approx-
imation method. In Sect. 5 we present a computational study of these algorithms and
compare the realized approximation ratios to the theoretical bound of 4.5. Section 6
concludes this article.

2 Quadratic knapsack problems

Gallo et al. (1980) first introduced thebinary quadratic knapsack problem (QKP). It is a
variant of the classical knapsack problem and can be concisely stated as follows: Given
n items, the profit for including item i is given by the coefficient pii . Additionally, a
profit pi j + p ji is generated if both items i and j are selected. The values pi j (which
are often assumed to be non-negative integers) can be compactly written in a profit
matrix

P:=(pi j )i=1,...,n
j=1,...,n

.

The profits pi j and p ji are either both realized, i.e., if items i and j are selected, or
both not realized, i.e., if item i or item j is not selected. Hence, pi j and p ji can be
assumed to be equally valued, which results in a symmetric matrix P .

As for the classical knapsack problem, each item i has a positive integral weightwi

and the goal is to select a subset of items that maximizes the overall profit while the
sum of weights does not exceed the given capacity W . As usual, the binary decision
variable xi indicates if item i is selected, xi = 1, or not, xi = 0. Thus, QKP can be
defined as follows:

max x�Px =
n∑

i=1

n∑
j=1

pi j xi x j (QKP)

s. t.
n∑

i=1

wi xi ≤ W

xi ∈ {0, 1}, i = 1, . . . , n.

It is well-known that the quadratic knapsack problem (with knapsack constraint but
also with cardinality constraint) is NP-complete in the strong sense, which can be
shown by a polynomial reduction from the Clique-problem (Garey and Johnson 1979;
Pisinger 2007).
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110 B. Schulze et al.

The quadratic knapsack problem has been widely studied in the literature, see
Pisinger (2007) for a comprehensive survey. Exact solution algorithms are mainly
based on branch-and-bound (B&B) schemes. Besides the model of QKP, Gallo et al.
(1980) also presented the first B&B algorithm for this optimization problem. Since
then, several techniques have been presented to compute good upper bounds for B&B
algorithms [e.g., Billionnet and Calmels 1996, Rodrigues et al. (2012): lineariza-
tion of the quadratic problem; Caprara et al. (1999): upper planes; Billionnet et al.
(1999): Lagrangian decomposition; Helmberg et al. (2000): semidefinite relaxation
techniques] and to fix decision variables at their optimal value before applying the
final optimization (Billionnet and Soutif 2004; Pisinger et al. 2007).

However, few results are knownabout the approximation ofQKP. Since the problem
is stronglyNP-hard, a fully polynomial time approximation scheme (FPTAS) cannot
be expected unless P = NP . Furthermore, it is unknown whether there exists an
approximation with a constant approximation ratio for QKP. Taylor (2016) present an
approximation algorithm based on an approach for the densest k-subgraph problem.
They show that for ε > 0, QKP can be approximated with an approximation ratio in

O(n
2
5+ε) and a run time ofO(n

9
ε ). Rader andWoeginger (2002) prove that for a variant

of QKP, where positive as well as negative profit coefficients pi j are considered, there
does not exist any polynomial time approximation algorithm with finite worst case
guarantee unless P = NP . Other approximation results concentrate on special cases
ofQKP (Pferschy andSchauer 2016): FPTAS forQKPongraphs of bounded treewidth
and polynomial time approximation scheme (PTAS) for graphs that do not contain any
fixed graph H as a minor; Kellerer and Strusevich (2010) and Xu (2012): FPTAS for
the symmetric quadratic knapsack problem; Pferschy and Schauer (2016): QKP on
3-book embeddable graphs is stronglyNP-hard; Rader and Woeginger (2002): QKP
on vertex series-parallel graphs is strongly NP-hard).

3 Rectangular knapsack problems

The (cardinality constrained) rectangular knapsack problem (RKP) is a variant of QKP
which can be written as follows:

max f (x) = x�a b�x =
n∑

i=1

n∑
j=1

aib j xi x j (RKP)

s. t.
n∑

i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

where a, b ∈ Nn , with a, b �= 0n , and k ∈ N, k < n. Note, that P = a b�, i.e.,
rank(P) = 1, with pi j = aib j and p ji = a jbi , i.e., in general, P is not symmetric.
We assume that k ≥ 2. Otherwise, i.e., if k = 1, the problem reduces to finding the
largest coefficient aibi , for i ∈ {1, . . . , n}.
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On the rectangular knapsack problem: approximation of a… 111

The rectangular objective function is formulated in analogy to the so-called
Koopmans-Beckmann form of the quadratic assignment problem, see Burkard et al.
(1998), which is also a particular case of the more general Lawler formulation. In both
cases, the two respective four dimensional arrays of profit/cost coefficients are given
as a product of two lower dimensional parameter matrices or vectors, respectively.

The complexity of RKP is an open question. However, we can prove that two
different simple extensions of this problem are NP-hard:

(A) RKP with a general knapsack constraint (
∑n

i=1 wi xi ≤ W , with wi ,W ∈ N for
i = 1, . . . , n) instead of the cardinality constraint and

(B) RKP including negative objective function coefficients a, b ∈ Zn with a, b �= 0n .

The complexity results are proven via polynomial reduction toPartition: Given a finite
set C = {c1, . . . , cn} with ci ∈ Zn for all i ∈ I = {1, . . . , n}, the question is whether
there exists an index set I ′ ⊂ I such that

∑
i∈I ′

ci =
∑
i∈I\I ′

ci .

Partition is NP-complete and remains NP-complete even if it is required
that |I ′| = n

2 .
(A) can be reduced to Partition by setting ai = bi = wi :=ci for i = 1, . . . , n and

W := 1
2

∑n
i=1 ci . The answer to Partition is “yes” if and only if the optimal solution

has value (
∑n

i=1 ci )
2

4 .

(B) can be reduced to Partition with |I ′| = n
2 , by setting ai :=ci , bi :=

∑n
i=1 ci
k − ci

for i = 1, . . . , n and k:= n
2 . Note that some coefficients bi might be negative. An upper

bound for this instance can be computed by simple transformations on the objective
function, where the inequality in (∗) holds due to the cardinality constraint of RKP:

n∑
i=1

ai xi ·
n∑
j=1

b j x j

=
n∑

i=1

ci xi ·
n∑
j=1

(∑n
�=1 c�

k
− c j

)
x j

n∑
i=1

ci xi ·
⎛
⎝
∑n

�=1 c�

k

n∑
j=1

x j −
n∑
j=1

c j x j

⎞
⎠

(∗)≤
n∑

i=1

ci xi ·
⎛
⎝ n∑

�=1

c� −
n∑
j=1

c j x j

⎞
⎠

=
n∑

i=1

ci xi ·
n∑
j=1

c j (1 − x j )

=
∑
i∈I ′

ci ·
∑
j∈I\I ′

c j
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112 B. Schulze et al.

(∗∗)≤ (
∑n

i=1 ci )
2

4

Again, the answer to Partition is “yes” if and only if the optimal solution has value
(
∑n

i=1 ci )
2

4 , i.e., if the bound is tight. The answer is “no” in two cases: Either if there
exists a partition but with |I ′| �= n

2 . In this case inequality (∗) is strict. Or if there does
not exist a partition. In this case inequality (∗∗) is strict.

3.1 Illustrative interpretation

The denotation rectangular knapsack problem is motivated by the special structure of
P given by the coefficients ai b j . Each coefficient can be interpreted as the area of a
rectangle. Accordingly, for fixed item ı̂ ∈ {1, . . . , n}, all rectangles corresponding to
coefficients aı̂ b j , j = 1, . . . , n, have the same width, and all rectangles corresponding
to coefficients a j bı̂ , j = 1, . . . , n, have the same height. Note that the objective
function can be rewritten as

f (x) = x�a b�x = (a�x) · (b�x) =
n∑

i=1

ai xi ·
n∑

i=1

bi xi ,

which can be interpreted as choosing a subset S ⊂ {1, . . . , n} of items such that the
area of the rectangle with width

∑
i∈S ai and height

∑
i∈S bi is maximized.

Example 1 We consider the following instance of RKP:

max
(
(7, 12, 2, 5, 4)�x

) · ((6, 3, 8, 5, 10)�x)

s. t.
5∑

i=1

xi ≤ 2

xi ∈ {0, 1}, i = 1, . . . , 5

The corresponding rectangles are plotted inFig. 1. Each rectangle has the sameposition
in the overall rectangle as the corresponding coefficient pi j = aib j in the profit
matrix P . The optimal solution x = (0, 1, 0, 0, 1)� generates an objective function
value that corresponds to the highlighted area in the figure.

3.2 Bounds

The structure of the profit matrix P implies an easy computation of bounds for RKP.
In the following, we assume that all instances are defined or reordered such that

a1 ≥ · · · ≥ an
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On the rectangular knapsack problem: approximation of a… 113

a5

a4

a3

a2

a1

b1 b2 b3 b4 b5

7 · 6 7 · 3 7 · 8 7 · 5 12 · 10

12 · 6 12 · 3 12 · 8 12 · 5 12 · 10

2 · 6 2 · 3 2 · 8 2 · 5 2 · 10

5 · 6 5 · 3 5 · 8 5 · 5 5 · 10

4 · 6 4 · 3 4 · 8 4 · 5 4 · 10

Fig. 1 Visualization of coefficients pi j = ai b j , interpreted as areas of rectangles

and, in case of ties, i.e., if ai = ai+1 for i ∈ {1, . . . , n − 1}, such that

bi ≥ bi+1.

Let Sn denote the symmetric group of order n and π ∈ Sn denote a permutation of
{1, . . . , n}. More specifically, consider π such that

bπ(1) ≥ · · · ≥ bπ(n)

and in case of ties, i.e., if bπ( j) = bπ( j+1) for j ∈ {1, . . . , n − 1}, such that

aπ( j) ≥ aπ( j+1).

Using the sorted coefficients ai , bπ( j) of the objective function, one can compute
an upper bound for RKP in a straightforward way.

123



114 B. Schulze et al.

Lemma 1 For every feasible solution x ∈ {0, 1}n of RKP, the following inequality
holds:

f (x) ≤
k∑

i=1

ai ·
k∑
j=1

bπ( j):=U

This bound is tight, if
{π( j) : 1 ≤ j ≤ k} = {1, . . . , k}. (1)

Note that, in general, this upper bound does not correspond to a solution of RKP
since the value of a variable xi may be differently defined w. r. t. the respective sorting
of the coefficients. As soon as Eq. (1) holds, the upper bound U corresponds to a
feasible solution of RKP and this solution is optimal.

Proof We consider the objective function of RKP:

f (x) =
n∑

i=1

ai xi ·
n∑

i=1

bi xi =
n∑

i=1

ai xi ·
n∑
j=1

bπ( j) xπ( j).

The cardinality constraint restricts the number of selected items to k. Due to the
ordering of coefficients ai , it is

0 ≤
n∑

i=1

ai xi ≤
k∑

i=1

ai

for every feasible solution x of RKP. Analogously, due to the definition of the permu-
tation π , we know that

0 ≤
n∑
j=1

bπ( j) xπ( j) ≤
k∑
j=1

bπ( j)

for every feasible solution x of RKP. Thus,

f (x) =
n∑

i=1

ai xi ·
n∑
j=1

bπ( j) xπ( j) ≤
k∑

i=1

ai ·
k∑
j=1

bπ( j) = U .

Furthermore, if {π( j) : 1 ≤ j ≤ k} = {1, . . . , k}, the upper bound is based on the
selection of the k items 1, . . . , k:

k∑
i=1

ai ·
k∑
j=1

bπ( j) =
k∑

i=1

ai ·
k∑

i=1

bi =
n∑

i=1

ai xi ·
n∑

i=1

bi xi
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On the rectangular knapsack problem: approximation of a… 115

with

xi =
{
1, for i ∈ {1, . . . , k}
0. otherwise

The solution x is feasible and realizes U . Hence, x is optimal and U is a tight upper
bound. 
�

A lower bound on RKP can also be obtained by using the sorting of the coefficients.
Let x̃ and x̂ ∈ {0, 1}n be defined as follows:

x̃i =
{
1, for i ∈ {

1, . . . ,
⌈ k
2

⌉} ∪ {
π(1), . . . , π

(⌊ k
2

⌋)}
0, otherwise

(2)

x̂i =
{
1, for i ∈ {

1, . . . ,
⌊ k
2

⌋} ∪ {
π(1), . . . , π

(⌈ k
2

⌉)}
0, otherwise

(3)

For notational convenience, let κ:= k
2 , κ:= ⌈ k

2

⌉
, and κ:= ⌊ k

2

⌋
. If k is even, the equality

κ = κ = k
2 holds, i.e., x̃ and x̂ are identical.

Remark 1 The definition of x̃ guarantees that at least the product

κ∑
i=1

ai ·
κ∑
j=1

bπ( j)

is realized in the objective function. Due to the ordering of the coefficients ai and
bπ( j), this is the maximal possible value that a product of κ coefficients ai and κ

coefficients b j can achieve. The same holds analogously for x̂ . This property is impor-
tant to prove an approximation quality in the following, see the proof of Theorem 1.

Lemma 2 For an optimal solution x∗ of RKP, the following inequality holds:

f (x∗) ≥ max
{
f (x̃), f (x̂)

}:=L.

Proof The solutions x̃ and x̂ are both elements of {0, 1}n . The sets {1, . . . , κ} and
{π(1), . . . , π(κ)} have cardinality κ and the sets {π(1), . . . , π(κ)} and {1, . . . , κ}
have cardinality κ . Therefore, it holds:

n∑
i=1

x̃i ≤ κ + κ

n∑
i=1

x̂i ≤ κ + κ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= k. (4)

Both solutions x̃ and x̂ are feasible for RKP and the corresponding objective func-
tion values are lower bounds on the optimal objective function value. 
�
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Fig. 2 Area that defines the upper bound U for Example 2

Remark 2 Note that equality is obtained in Eq. (4) if the sets {1, . . . , κ} and
{π(1), . . . , π(κ)} ({1, . . . , κ} and {π(1), . . . , π(κ)}, respectively) are disjoint. If the
sets are not disjoint, the bound can be improved by including more items. We discuss
this in Sect. 4.1.

We define L̃:= f (x̃) and L̂:= f (x̂). The following example shows a connection
between the bound computation and the visualization of RKP as a selection of a
subset of rectangular areas.

Example 2 Consider the following instance of RKP:

max
(
(6, 5, 5, 4, 3, 3, 2, 1)�x

) · ((6, 11, 4, 10, 6, 9, 1, 8)�x)

s. t.
8∑

i=1

xi ≤ 5

xi ∈ {0, 1}, i = 1, . . . , 8.

Thus, the permutation π is π = (2, 4, 6, 8, 1, 5, 3, 7)� and the permuted vector bπ is
given by bπ = (11, 10, 9, 8, 6, 6, 4, 1)� .

As described above, the coefficients ai ·bπ( j), for i, j = 1, . . . , 8, can be interpreted
as rectangles with width ai and height bπ( j) and, consequently, with area ai · bπ( j).
We arrange the rectangles line by line according to the index i , and column by column
according to the index π( j) (see Fig. 2). In doing so, the rectangles representing the
coefficients are sorted in non-increasing manner from top to bottom and from left to
right. Feasible solutions of RKP correspond to 52 rectangles, which have to be part
of intersections of rows and columns with equal sets of indices I, i.e., a set of indices
I ⊂ {1, . . . , 8} with |I| ≤ 5.

123



On the rectangular knapsack problem: approximation of a… 117

Fig. 3 Area that defines the lower bound L = L̂ for Example 2. The assignment of labels I to IV is
relevant for the proof of Equality (5)

– The upper bound computation chooses the 5 largest rows and columns, i.e., a1 to
a5 and bπ(1) to bπ(5). In our example, we obtain:

U =
5∑

i=1

ai ·
5∑
j=1

bπ( j) = (6 + 5 + 5 + 4 + 3) · (11 + 10 + 9 + 8 + 6)

= 23 · 44 = 1012.

This corresponds to the area of the 52 largest rectangles in the upper left part of
the overall rectangle in Fig. 2.

– For the lower bound computation atmost 5 variables corresponding to the first three
and two (two and three, respectively) indices of rows and columns are selected. In
doing so, the largest 2 ·3 rectangles in the upper left part of the overall rectangle in
Fig. 3 (lower bound L̂) are included in the solution and, in addition, feasibility is
guaranteed. In the example, the candidate solutions are x̃ = (1, 1, 1, 1, 0, 0, 0, 0)�
and x̂ = (1, 1, 0, 1, 0, 1, 0, 0)�. The lower bound is computed as:

L = max
{L̃, L̂}

= max
{
(6 + 5 + 5 + 4) · (6 + 11 + 4 + 10),

(6 + 5 + 4 + 3) · (6 + 11 + 10 + 9)
}

= max
{
620, 648

} = 648.

The optimal solution of this instance is x∗ = (1, 1, 1, 1, 0, 1, 0, 0)� with f (x∗) =
920. We can verify that indeed: U = 1012 ≥ 920 ≥ 648 = L.

123



118 B. Schulze et al.

In this context, we show that the following inequality holds:

L ≥
κ∑

i=1

κ∑
j=1

aibπ( j). (5)

Referring to the description of Example 2, the right-hand side of this inequality cor-
responds to the area of the κ · κ largest rectangles in the left upper part of the overall
rectangle (see also Remark 1). We partition the area corresponding to the lower bound
into four distinct areas to show that the inequality holds:

L ≥ L̂ =
n∑

i=1

n∑
j=1

ai b j x̂i x̂ j

=
κ∑

i=1

κ∑
j=1

ai bπ( j)

︸ ︷︷ ︸
I

+
κ∑

i=1
π(i)/∈{1,...,κ}

κ∑
j=1

aπ(i) bπ( j)

︸ ︷︷ ︸
II

+
κ∑

i=1

κ∑
j=1

j /∈{π(1),...,π(κ)}

ai b j

︸ ︷︷ ︸
III

+
κ∑

i=1
π(i)/∈{1,...,κ)}

κ∑
j=1

j /∈{π(1),...,π(κ)}

aπ(i) b j

︸ ︷︷ ︸
IV

≥
κ∑

i=1

κ∑
j=1

ai bπ( j)

In the context of Example 2, the four terms resulting from this partition correspond,
in this order, to the four areas (I to IV) in Fig. 3.

Analogously, using the definition of x̃ , it holds that:

L ≥
κ∑

i=1

κ∑
j=1

ai bπ( j). (6)

4 Approximation algorithms

The results of Sect. 3.2 naturally motivate an approximation algorithm, see Algo-
rithm 1. It computes the solutions x̃ and x̂ and outputs the better alternative as an
approximate solution.

The computation of x̃ and x̂ and of their objective function values L̃ and L̂ can be
realized in timeO(n). Therefore, with a time complexity ofO(n log n), the sorting of
the coefficients determines the time complexity of Algorithm 1.

Theorem 1 Algorithm 1 is a polynomial time 4.5-approximation algorithm for the
rectangular knapsack problem.

Proof Algorithm 1 returns a feasible solution in polynomial time O(n log n).
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Algorithm 1 Approximation algorithm for RKP

Input: coefficients a = (a1, . . . , an)� sorted in non-increasing order, b = (b1, . . . , bn)�, capacity k

1: x̃ :=0n , x̂ :=0n , κ:=
⌈
k
2

⌉
and κ:=

⌊
k
2

⌋
2: compute permutation π ∈ Sn such that

{
bπ( j) > bπ( j+1), or
bπ( j) = bπ( j+1) and aπ( j) ≥ aπ( j+1)

for j = 1, . . . , n − 1

3: for i :=1, . . . , κ do // set x̃ and x̂ analogous to (2) and (3)
4: x̃i :=1, x̃π(i):=1
5: x̂i :=1, x̂π(i):=1
6: end for
7: x̃κ :=1
8: x̂π(κ):=1

9: L̃:=(a� x̃) · (b� x̃)
10: L̂:=(a� x̂) · (b� x̂)
11: if L̃ ≥ L̂ then
12: L:=L̃, x :=x̃
13: else
14: L:=L̂, x :=x̂
15: end if
Output: lower bound L for RKP and corresponding solution x

Case 1 k even
Since the coefficients ai , bπ( j) are in non-increasing order, it holds that

U =
k∑

i=1

k∑
j=1

ai bπ( j)

=
κ∑

i=1

κ∑
j=1

ai bπ( j) +
k∑

i=κ+1

κ∑
j=1

ai bπ( j) +
κ∑

i=1

k∑
j=κ+1

ai bπ( j) +
k∑

i=κ+1

k∑
j=κ+1

ai bπ( j)

≤ 4 ·
κ∑

i=1

κ∑
j=1

ai bπ( j) ≤ 4L

Case 2 k odd
In analogy to case 1 we again use the fact that the coefficients ai , bπ( j) are in
non-increasing order. We can assume without loss of generality that:

κ∑
i=1

κ∑
j=1

ai bπ( j) ≤
κ∑

i=1

κ∑
j=1

ai bπ( j).

This inequality is equivalent to:

κ∑
i=1

κ∑
j=1

ai bπ( j) +
κ∑

i=1

ai bπ(κ) ≤
κ∑

i=1

κ∑
j=1

ai bπ( j) +
κ∑
j=1

aκ bπ( j)
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⇐⇒
κ∑

i=1

ai bπ(κ) − aκ bπ(κ) ≤
κ∑
j=1

aκ bπ( j) − aκ bπ(κ)

⇐⇒
κ∑

i=1

ai bπ(κ) ≤
κ∑
j=1

aκ bπ( j). (7)

Thus, the following inequality holds. Note that we use Eqs. 5 and 6 to bound
several terms.

U =
k∑

i=1

k∑
j=1

ai bπ( j)

=
κ∑

i=1

κ∑
j=1

ai bπ( j) +
k∑

i=κ+1

k∑
j=κ+1

ai bπ( j) +
κ∑

i=1

k∑
j=κ+1

ai bπ( j) +
k∑

i=κ+1

κ∑
j=1

ai bπ( j)

≤L +
κ∑

i=1

κ∑
j=1

ai bπ( j) +
κ∑

i=1

κ∑
j=1

ai bπ( j) +
κ∑

i=1

κ∑
j=1

ai bπ( j)

≤ 2L +
⎛
⎝ κ∑
i=1

κ∑
j=1

ai bπ( j) +
κ∑

i=1

ai bπ(κ)

⎞
⎠ +

κ∑
i=1

κ∑
j=1

ai bπ( j)

(7)≤ 3L +
κ∑
j=1

aκ bπ( j) +
κ∑

i=1

κ∑
j=1

ai bπ( j)

≤ 3L + aκ bπ(κ) +
κ∑
j=1

aκ bπ( j) +
κ∑

i=1

κ∑
j=1

ai bπ( j)

= 3L + aκ bπ(κ) +
κ∑

i=1

κ∑
j=1

ai bπ( j)

≤ 4L + aκ bπ(κ) // worst case: aκ bπ(κ) = ai bπ( j), i = 1, . . . , κ, j = 1, . . . , κ

≤ 4L + 1

κ
· 1
κ

·
κ∑

i=1

κ∑
j=1

ai bπ( j)

≤ 4L + 1

κ
· 1
κ

· L
≤ 4.5 · L (8)

In summary, this yields the approximation factor ρ:

OPT

L ≤ U
L ≤ 4.5 · L

L = 4.5 = ρ.


�
As presented in the proof of Theorem 1, we can guarantee better results for even

values of k. Also, if k is odd the quality of the approximation increases for increasing
values of k.
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Remark 3 – If k is even, the result of Theorem 1 improves to a 4-approximation
algorithm.

– For fixed odd values of k, Algorithm 1 is a polynomial time ρ-approximation
algorithm for RKP with [cf. Eq. (8)]:

k 3 5 7 9 11 13 15 17 19

κ 1 2 3 4 5 6 7 8 9

κ 2 3 4 5 6 7 8 9 10

ρ = 4 + 1

κ
· 1
κ

9

2

25

6

49

12

81

20

121

30

169

42

225

56

289

72

361

90

However, in the worst case the approximation ratio is tight as is shown in the
following example.

Example 3 Consider an instance of RKP with n ≥ 3k, M ∈ R, and coefficients

a1 = . . . = ak = M ak+1 = . . . = an−k = M − 1 an−k+1 = . . . = an = 1

b1 = . . . = bk = 1 bk+1 = . . . = bn−k = M − 1 bn−k+1 = . . . = bn = M,

with

bπ(i) =

⎧⎪⎨
⎪⎩
bn−k+i for i = 1, . . . , k

bi for i = k + 1, . . . , n − k

bi−(n−k) for i = n − k + 1, . . . , n.

Algorithm 1 computes a lower bound solution with

Leven = (κ · M + κ · 1)2 = k2

4
(M + 1)2

for even values of k and

Lodd = (κ · M + κ · 1)(κ · M + κ · 1)
= 1

4

(
(k2 − 1)M2 + 2(k2 + 1)M + k2 − 1

)
.

for odd values of k, respectively.
As one can easily see, one optimal solution is given by x∗ with x∗

k+1 = . . . = x∗
2k =

1 and x∗
1 = . . . = x∗

k = x∗
2k+1 = . . . = x∗

n = 0 and f (x∗) = (k · (M − 1))2 =
k2(M − 1)2.

Thus, for increasing values of M the approximation ratio tends towards

lim
M→∞ ρeven = lim

M→∞
f (x∗)
Leven

= k2

k2
4

= 4
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for even values of k and

lim
M→∞ ρodd = lim

M→∞
f (x∗)
Lodd

= k2

k2−1
4

≤ 4.5

for odd values of k ≥ 3, respectively. Note that, for fixed values of k, ρodd exactly
matches the approximation ratios given in Remark 3.

4.1 Improvements of the approximation algorithm

In practice, Algorithm 1 can be improved in two different ways. A first observation is
that, due to the definition of the lower bound solution x̃ [c.f. (2)], we do not use the
full capacity of RKP, if the sets {1, . . . , κ} and {π(1), . . . , π(κ)} are not disjoint, i.e.,
if
∑n

i=1 x̃i < k. Hence, it is possible to increase the lower bound value by including
further items. Algorithm 2 demonstrates a possible procedure to compute an improved
lower bound Limpr that takes this into account.

An additional parameter k′, which we call adaptive capacity, is introduced to
increase the sets {1, . . . , κ} and {π(1), . . . , π(κ)}, and, therefore, increase the number
of selected items, without violating the constraint. In the beginning, k′ is set to k. After
computing the lower bound solution x̃ as defined in (2), the algorithm tests whether k
items are selected or not. In the latter case, the adaptive capacity k′ is increased by the
difference k −∑n

i=1 x̃i . A re-computation of x̃ , using k′ as capacity, allows to include
more items in accordance with the ordering of the respective coefficients ai or bπ(i)

which compensates for the fact that the original sets are not disjoint. Subsequently, it
is tested again if the constraint is satisfied with equality. If not, the adaptive capacity k′
is further increased. Otherwise, the algorithm continues by computing x̂ using the
current value of the parameter k′ as capacity and testing which of the lower bound
values is larger.

Lemma 3 If the solution x̃ allows to increase the adaptive capacity k′ to k′ + (k −∑n
i=1 x̃i ) (in Step 10 of Algorithm 2), then this increase is also feasible for the com-

putation of x̂ .

Proof For ease of notation, we assume that we are examining the iteration where
the adaptive capacity k′ is increased for the first time from the capacity k to k′ =
k + (k −∑n

i=1 x̃i ). The following discussion can be applied in an analogous manner
to all further iterations by adapting the notation accordingly.

If k is even, we know that x̃ = x̂ and the statement is trivially true. Otherwise, i.e.,
if k is odd, we can take advantage of the fact that the solution x̃ or x̂ uses less than k
items if:

– for x̃ : {1, . . . , κ} ∩ {π(1), . . . , π(κ)} �= ∅.
– for x̂ : {1, . . . , κ} ∩ {π(1), . . . , π(κ)} �= ∅.

Therefore, we define

Ĩ:={1, . . . , κ} ∪ {π(1), . . . , π(κ)},
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Algorithm 2 Improved approximation algorithm for RKP with adaptive capacity

Input: coefficients a = (a1, .., an)� sorted in non-increasing order, b = (b1, . . . , bn)�, capacity k

1: x̃ :=0n , x̂ :=0n , stop:=0, k′:=k, κ ′:=
⌈
k′
2

⌉
, κ ′:=

⌊
k′
2

⌋
, a:=1

2: compute permutation π ∈ Sn such that

{
bπ( j) > bπ( j+1), or
bπ( j) = bπ( j+1) and aπ( j) ≥ aπ( j+1)

for j = 1, . . . , n − 1

3: while stop = 0 do
4: for i :=a, . . . , κ ′ do // include further items
5: x̃i :=1, x̃π(i):=1
6: end for
7: x̃κ ′ :=1
8: if

∑n
i=1 x̃i < k then // no equality in constraint

9: a:=κ ′ + 1
10: k′:=k′ + (

k −∑n
i=1 x̃i

)
// increase adaptive capacity k′

11: κ ′:=
⌈
k′
2

⌉
, κ ′:=

⌊
k′
2

⌋
12: else // equality obtained
13: stop :=1
14: end if
15: end while
16: for i :=1, . . . , κ ′ do // compute x̂
17: x̂i :=1, x̂π(i):=1
18: end for
19: x̂π(κ ′):=1

20: L̃:=(a� x̃) · (b� x̃)
21: L̂:=(a� x̂) · (b� x̂)
22: if L̃ ≥ L̂ then
23: L:=L̃, x :=x̃
24: else
25: L:=L̂, x :=x̂
26: end if
Output: lower bound L and corresponding solution x

Î:={1, . . . , κ} ∪ {π(1), . . . , π(κ)} and
J := Ĩ ∩ Î = {1, . . . , κ} ∪ {π(1), . . . , π(κ)}.

It holds that
∑n

i=1 x̃i = |Ĩ| and that
∑n

i=1 x̂i = |Î|. Furthermore, we know that

|Ĩ| =
{

|J |, if κ ∈ {π(1), . . . , π(κ)}, i,e., if Ĩ = J
|J | + 1, else

.

Furthermore, we know that

|Î| =
{

|J |, if π(κ) ∈ {1, . . . , κ}, i,e., if Î = J
|J | + 1, else

Considering these relations, we distinguish four cases:
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Case 1 |Ĩ| = |J | and |Î| = |J |
Thus, k′ can be set to k + (k − |J |) = k + (k − |Ĩ|) for x̃ and for x̂ .

Case 2 |Ĩ| = |J | + 1 and |Î| = |J | + 1
Thus, k′ can be set to k + (k − (|J | + 1)) = k + (k − |Ĩ|) for x̃ and for x̂ .

Case 3 |Ĩ| = |J | + 1 and |Î| = |J |
For x̂ , k′ can be set to k+(k−|J |) = k+(k−|Î|). The use of x̃ in Step 10 of
Algorithm 2 leads to k′ = k+(k−|Ĩ|) = k+(k−(|J |+1)) < k+(k−|J |)
which is feasible for x̂ .

Case 4 |Ĩ| = |J | and |Î| = |J | + 1
Since |Ĩ| = |J |, we know that κ ∈ {π(1), . . . , π(κ)} (∗). In a first iteration
we examine the consequences of setting k′:=k + 1. Thus, k′ is even and we
define the corresponding solution as:

x ′
i =

{
1, for i ∈ {1, . . . , κ} ∪ {π(1), . . . , π(κ)}
0, otherwise

,

where {1, . . . , κ}∪{π(1), . . . , π(κ)} (∗)= {1, . . . , κ}∪{π(1), . . . , π(κ)} = Î.
Thus, setting the adaptive capacity k′ to k+1 does not change x̂ , i.e., x ′ = x̂ .
Hence, k′ can be set to

k + 1 + (k − (|Î| + 1)) = k + (k − |J |) = k + (k − |Ĩ|)

for x̃ and for x̂ . 
�
Lemma 4 Let n be the number of items and let k be the capacity of RKP. Algorithm 2
terminates, has a worst case time complexity ofO(n log n), and a worst case approx-
imation ratio of 4.5.

Proof The while-loop for computing the solution x̃ with
∑n

i=1 x̃i = k is critical for
the termination of Algorithm 2. In the first iteration, at least κ variables are set to 1.
The parameter k′ is increased by at least 1 in each consecutive iteration and, thus, in
at least every second iteration an additional entry of x̃ is set to 1. Hence, after at most
2 · κ + 1 = k iterations k variables have been selected for x̃ and the loop terminates.

We take advantage of the ordering of the coefficients to set only new variables to
1 if the adaptive capacity is increased. Thus, the execution of the while loop requires
O(k). The complexity of Algorithm 2 is determined by the sorting algorithm (cf.
Algorithm 1), i.e., Algorithm 2 has a worst case time complexity of O(n log n).

The approximation ratio is at most 4.5, since the heuristic solution of Algorithm 1
gives a lower bound on the heuristic solution of Algorithm 2. In the worst case, the
approximation ratio is tight, since Algorithm 2 computes the same heuristic solution
for the RKP instance of Example 3 as Algorithm 1. 
�
Example 4 We apply the improved approximation algorithm, Algorithm 2, on the
instance of RKP of Example 2. The solution x̃ is defined by the set

Ĩ = {1, 2, 3} ∪ {π(1), π(2)} = {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}
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Fig. 4 Lower bounds L̃ , L̂ and L for Examples 2 and 4

with |Ĩ| = ∑n
i=1 x̃i = 4 < 5. Thus, the adaptive capacity can be set to k′:=5 + (5 −

4) = 6. The re-computation of x̃ leads to

Ĩ = {1, 2, 3} ∪ {π(1), π(2), π(3)} = {1, 2, 3} ∪ {2, 4, 6} = {1, 2, 3, 4, 6}

with |Ĩ| = ∑n
i=1 x̃i = 5. Hence, the cardinality constraint is tight and, since k′ is even,

the solution x = (1, 1, 1, 1, 0, 1, 0, 0)� generates the improved lower bound L =
f (x) = 920. The optimal solution of the instance x∗ is identical to the improved
lower bound solution x∗ = x .

As proven above, setting the adaptive capacity to k′:=6 is also feasible for x̂ . The
solution x̂ defined by k′ = 5 corresponds to the set

Î = {1, 2} ∪ {π(1), π(2), π(3)} = {1, 2} ∪ {2, 4, 6} = {1, 2, 4, 6}

with |Î| = ∑n
i=1 x̂i = 4 < 5. Hence, one additional item can be included, resulting

again in the same lower bound solution x = (1, 1, 1, 1, 0, 1, 0, 0)� (with k′ = 6).
The areas of rectangles corresponding to the lower bounds L̃ and L̂ based on the first
computations of x̃ and x̂ (Algorithm 1), respectively, and the improved lower boundL
(Algorithm 2) are shown in Fig. 4.

A second improvement of Algorithm 1 ismotivated differently:Without an analysis
of the input data, the distribution of the entries of the coefficient vectors a and b is
unknown, and, thus, there might be better selections then deciding equally according
to both of the orderings. One possible approach is to compute various alternative
solutions, still based on the sorting of the coefficients, and select the best solution.The
alternatives can be defined by setting the variables only corresponding to the sorting
of a, to the sorting of b, and by all alternatives in between, i.e., x1 = . . . = x j = 1,
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xπ(1) = . . . = xπ(k− j) = 1 and xi = 0 for all remaining indices, for 0 ≤ j ≤ k. We
call this approach shifted selection.

The combination of both improvements, shifted selection and adaptive capacity,
is formalized in Algorithm 3. If the adaptive capacity is updated, further items are
included according to the ordering of the coefficients bπ(i). Other strategies are pos-
sible: include further items according to the ordering of the coefficients ai , alternate
between both orderings or include arbitrarily chosen items. The quality of those strate-
gies strongly depends on the given problem instance.

Algorithm 3 Improved approximation algorithm for RKP with shifted selection wrt.
a and b and adaptive capacity

Input: coefficients a = (a1, . . . , an)� sorted in non-increasing order, b = (b1, . . . , bn)�, capacity k
1: x :=0n and L:=0
2: compute permutation π ∈ Sn such that

{
bπ( j) > bπ( j+1), or
bπ( j) = bπ( j+1) and aπ( j) ≥ aπ( j+1)

for j = 1, . . . , n − 1

3: for j :=0, . . . , k do
4: x̂ :=0n
5: for i :=1, . . . , k − j do
6: x̂i :=1
7: end for
8: for i :=1, . . . , j do
9: x̂π(i):=1
10: end for
11: j ′:= j + 1
12: while

∑n
i=1 x̂i < k do

13: x̂π( j ′):=1
14: j ′:= j ′ + 1
15: end while
16: L̂:=(a� x̂) · (b� x̂)
17: if L̂ > L then
18: L:=L̂, x :=x̂
19: end if
20: end for
Output: lower bound L for RKP and corresponding solution x

In practice, it is quite intuitive to assume that Algorithm 3 leads to better approxi-
mation results than that of the basic version of Algorithm 1. However, the theoretical
approximation ratio is the same.

Theorem 2 Algorithm 3 is a polynomial time 4.5-approximation algorithm for the
rectangular knapsack problem.

Proof Algorithm3 returns a feasible solution in polynomial time, since each alternative
solution x̂ and the corresponding objective function value can be computed in linear
time and there are linearly many alternatives (c.f. Theorem 1).

The approximation ratio is at most 4.5, since the solutions x̃ and x̂ of Algorithm 1
are included in the set of alternatives. In the worst case, the approximation ratio is
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tight, since Algorithm 3 computes the same heuristic solution for the RKP instance of
Example 3 as Algorithm 1. 
�

5 Computational experiments

In this section, the quality of all presented variants of the approximation algorithm
is evaluated experimentally on a wide range of RKP instances. We implemented the
basic variant of the approximation algorithm (Algorithm1), the improved variantswith
adaptive capacity (Algorithm 2), the shifted selection, and the combined version of
these two improvements (Algorithm3);wewill refer to the solution quality returned by
these variants as Lbasic, Limpr, Lshift, Lcomb, respectively. All algorithm variants were
implemented in C. The QKP solver by Caprara et al. (1999) was used to compute the
optimal solutions of RKP (see Pisinger 2016). The computational experiments were
performed on an Intel Quadcore 3.2GHz with 4GB RAM running Linux compiled
with gcc 4.8.

Three different classes of instances were generated to test the algorithms:

Uncorrelated instances The coefficients ai , bi are generated according to a uniform
distribution within the range [0, 100].
Positively correlated instancesThe coefficientsai are generated according to a uniform
distributionwithin the range [0, 100] and bi = ai+n(i)where n(i) is a value generated
according to a uniform distribution within the range [−5, 5].
Negatively correlated instances The coefficients ai are generated according to a uni-
form distribution within the range [0, 100] and bi = max{100 − ai + n(i), 0} where
n(i) is a value generated according to a uniform distribution within the range [−5, 5].

For each type of instances, four different constraint slacknesses ck , with k = �ck ·n�,
were chosen: ck = 0.1, ck = 0.25, ck = 0.5, and ck = 0.75. The instance sizes
were n = 100, 200, 300, 400, except for the negatively correlated instances, where
problems with n = 25, 50, 75 were generated, additionaly. For the latter instance
class, the QKP solver was not able to solve instances with n ≥ 75 and k ≥ 14 within
one hour of CPU-time. For each combination of instance class, size and constraint
slackness, 10 instances were generated. Noteworthy, all approximation algorithms
required at most 0.01 seconds for all instances tested.

Tables 1, 2, 3 and 4 present the average results obtained for the three classes of
instances where columns z∗/L• refer to the average approximation ratios obtained by
the four algorithm variants and column U/L∗ gives an upper bound on the approxi-
mation ratio, with L∗ = min{Lbasic,Limpr,Lshift}. In general, the results indicate that
the approximation quality of all algorithm variants is much better than the guaranteed
approximation ratio of 4.5 and that the improved versions yield even better results than
the basic variant, except on negatively correlated instances, for which all versions pre-
sented a similar performance. Moreover, the instance size does not play a strong role
on the approximation ratio. However, the performance of the four variants seem to be
affected by the instance type. In the following, we discuss the results in more detail
for each instance type.
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Table 1 Results for uncorrelated instances

n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗

100 0.10 1.37 1.32 1.24 1.22 1.50

0.25 1.34 1.18 1.18 1.17 1.52

0.50 1.37 1.06 1.14 1.12 1.32

0.75 1.36 1.02 1.08 1.08 1.14

200 0.10 1.41 1.32 1.28 1.26 1.56

0.25 1.35 1.17 1.24 1.20 1.52

0.50 1.33 1.07 1.16 1.14 1.34

0.75 1.37 1.02 1.09 1.09 1.14

300 0.10 1.38 1.32 1.27 1.26 1.55

0.25 1.34 1.17 1.25 1.20 1.52

0.50 1.35 1.06 1.15 1.14 1.32

0.75 1.40 1.02 1.10 1.09 1.14

400 0.10 1.45 1.33 1.35 1.30 1.61

0.25 1.35 1.18 1.26 1.20 1.55

0.50 1.33 1.06 1.16 1.15 1.33

0.75 1.38 1.01 1.10 1.10 1.14

Table 2 Results for positively correlated instances

n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗

100 0.10 2.85 1.00 1.00 1.00 1.00

0.25 2.74 1.00 1.00 1.00 1.00

0.50 2.69 1.00 1.00 1.00 1.00

0.75 2.28 1.00 1.00 1.00 1.00

200 0.10 2.78 1.00 1.00 1.00 1.00

0.25 2.91 1.00 1.00 1.00 1.00

0.50 2.74 1.00 1.00 1.00 1.00

0.75 2.29 1.00 1.00 1.00 1.00

300 0.10 2.50 1.00 1.00 1.00 1.00

0.25 2.95 1.00 1.00 1.00 1.00

0.50 2.79 1.00 1.00 1.00 1.00

0.75 2.29 1.00 1.00 1.00 1.00

400 0.10 2.83 1.00 1.00 1.00 1.00

0.25 2.97 1.00 1.00 1.00 1.00

0.50 2.71 1.00 1.00 1.00 1.00

0.75 2.28 1.00 1.00 1.00 1.00

Uncorrelated instances The experimental results in Table 1 suggest that the improved
variant performs better as the constraint slackness increases and that a larger capacity
value k improves the approximation (see Remark 3). Differently, the basic variant does
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Table 3 Results for negatively correlated instances in comparison with exact solutions

n ck z∗/Lbasic z∗/Limpr z∗/Lshift z∗/Lcomb U/L∗

25 0.10 1.06 1.06 1.06 1.06 3.62

0.25 1.06 1.06 1.06 1.06 3.13

0.50 1.04 1.04 1.04 1.04 2.33

0.75 1.02 1.02 1.02 1.02 1.62

50 0.10 1.08 1.08 1.08 1.08 3.56

0.25 1.06 1.06 1.06 1.06 3.06

0.50 1.04 1.04 1.04 1.04 2.26

0.75 1.02 1.02 1.02 1.02 1.57

75 0.10 1.08 1.08 1.08 1.08 3.56

Table 4 Results for negatively
correlated instances in
comparison with the upper
bound on the exact solutions

n ck U/Lbasic U/Limpr U/Lshift U/Lcomb

100 0.10 3.45 3.45 3.45 3.45

0.25 2.96 2.96 2.96 2.96

0.50 2.20 2.20 2.20 2.20

0.75 1.54 1.54 1.54 1.54

200 0.10 3.54 3.54 3.54 3.54

0.25 3.06 3.05 3.06 3.05

0.50 2.25 2.24 2.25 2.24

0.75 1.56 1.56 1.56 1.56

300 0.10 3.56 3.55 3.56 3.55

0.25 3.04 3.04 3.04 3.04

0.50 2.24 2.23 2.24 2.23

0.75 1.56 1.55 1.56 1.55

400 0.10 3.51 3.51 3.51 3.51

0.25 3.01 3.01 3.01 3.01

0.50 2.23 2.23 2.23 2.23

0.75 1.55 1.55 1.55 1.55

not seem to be affected by ck and presents the worst approximation ratio in all cases.
The shifted and combined variants present the best approximation ratio for small ck .
Both variants also improve the approximation for larger ck but not as much as for the
improved variant, which gives the best approximation ratio.

Positively correlated instances Table 2 shows that the basic variant has the worst
approximation ratio, although still far from the theoretical bound. For this variant,
many items seem to be selected twice due to both orderings, which can be expected for
positive correlated instances since the orderings of the coefficients to both objective
functions should be rather similar. Noteworthy, all the three improved variants are
close to an approximation ratio of 1.0. We observed that as soon as the equality in the
constraint is ensured, all improved variants solve the problem to optimality.
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Negatively correlated instances For this instance type, all variants present a similar
approximation ratio; see Tables 3 and 4. In fact, the basic variant generates very good
approximation results with approximation ratios close to 1.0 for the tested instances
(see Table 3). This is especially good, since the exact algorithm could not solve larger
instances in less then one hour of CPU-time whereas the approximation algorithm
can compute a high quality approximation in less then 0.01 seconds. For these larger
instances the upper bounds on the approximation ratio U/L• show a similar behavior
as for the small instances. For small ck the bound takes values around 3.5 and improves
for larger values of ck up to around 1.5.

6 Conclusion

We presented a geometric interpretation of the rectangular knapsack problem. Upper
and lower bounds for the problem can be computed directly by sorting the coefficients
of the objective function.

Based on these bound computations, we introduced a polynomial time approxi-
mation algorithm for RKP that provides an approximation ratio of 4.5. In practice,
however, the algorithm can be further improved by selecting additional items if the
cardinality constraint is not met with equality. Furthermore, the selection strategy for
items can be modified

We tested all algorithm variants on knapsack instances with three different cor-
relation structures, up to 400 items, and four different constraint slacknesses. The
approximations were computed in 0.01 seconds or less per instance. We observed that
in practice the approximation ratios of all algorithms are much better than the theoret-
ical ratio of 4.5. Thus, our approximation algorithms are an efficient tool to compute
approximations of good quality for RKP.

In the future it would be interesting to integrate the bound computations in a branch-
and-boundprocedure to formulate an exact algorithm forRKP.Furthermore, the results
seem to be transferable to higher dimensions, where we think of problems of the form

max f (x) =
m∏
j=1

n∑
i=1

p j
i xi

s. t.
n∑

i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n.

The bound computations and algorithm formulations should be convertible without
problems, whereas the proof of an approximation ratio may becomemore complicated
due to more possible cases that may occur.

We also suggested a field of application for RKP. Finding a representative solu-
tion of the bi-objective cardinality constrained knapsack problem that maximizes the
hypervolumewith the origin as reference point is modeled by the rectangular knapsack
problem. It is, therefore, very interesting for future research.
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