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Abstract
We consider the problem of finding an optimal transport plan between an absolutely
continuous measure and a finitely supported measure of the same total mass when the
transport cost is the unsquared Euclidean distance. We may think of this problem as
closest distance allocation of some resource continuously distributed over Euclidean
space to a finite number of processing sites with capacity constraints. This article
gives a detailed discussion of the problem, including a comparison with the much
better studied case of squared Euclidean cost. We present an algorithm for computing
the optimal transport plan, which is similar to the approach for the squared Euclidean
cost by Aurenhammer et al. (Algorithmica 20(1):61–76, 1998) and Mérigot (Comput
Graph Forum 30(5):1583–1592, 2011). We show the necessary results to make the
approach work for the Euclidean cost, evaluate its performance on a set of test cases,
and give a number of applications. The later include goodness-of-fit partitions, a novel
visual tool for assessing whether a finite sample is consistent with a posited probability
density.

Keywords Monge–Kantorovich problem · Spatial resource allocation · Wasserstein
metric · Weighted Voronoi tessellation
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134 V. Hartmann, D. Schuhmacher

1 Introduction

Optimal transport and Wasserstein metrics are nowadays among the major tools for
analyzing complex data. Theoretical advances in the last decades characterize exis-
tence, uniqueness, representation and smoothness properties of optimal transport plans
in a variety of different settings. Recent algorithmic advances (Peyré and Cuturi
2018) make it possible to compute exact transport plans and Wasserstein distances
between discrete measures on regular grids of tens of thousands of support points, see
e.g. Schmitzer (2016, Sect. 6), and to approximate such distances (to some extent) on
larger and/or irregular structures, see Altschuler et al. (2017) and references therein.
The development of new methodology for data analysis based on optimal transport is
a booming research topic in statistics and machine learning, see e.g. Sommerfeld and
Munk (2018), Schmitz et al. (2018), Arjovsky et al. (2017), Genevay et al. (2018),
and Flamary et al. (2018). Applications are abundant throughout all of the applied sci-
ences, including biomedical sciences (e.g. microscopy or tomography images; Basua
et al. 2014, Gramfort et al. 2015), geography (e.g. remote sensing; Courty et al. 2016,
Guo et al. 2017), and computer science (e.g. image processing and computer graphics;
Nicolas 2016, Solomon et al. 2015). In brief: whenever data of a sufficiently complex
structure that can be thought of as a mass distribution is available, optimal transport
offers an effective, intuitively reasonable and robust tool for analysis.

More formally, for measures μ and ν on R
d with μ(Rd) = ν(Rd) < ∞ the

Wasserstein distance of order p ≥ 1 is defined as

Wp(μ, ν) =
(
min

π

∫
Rd×Rd

‖x − y‖p π(dx, dy)

)1/p

, (1)

where the minimum is taken over all transport plans (couplings) π between μ and ν,
i.e. measures π on Rd × R

d with marginals

π(A × R
d) = μ(A) and π(Rd × A) = ν(A)

for every Borel set A ⊂ R
d . The minimum exists by Villani (2009, Theorem 4.1)

and it is readily verified, see e.g. Villani (2009, after Example 6.3), that the map
Wp is a [0,∞]-valued metric on the space of measures with fixed finite mass. The
constraint linear minimization problem (1) is known as Monge–Kantorovich problem
(Kantorovich 1942; Villani 2009). From an intuitive point of view, a minimizing π

describes how the mass of μ is to be associated with the mass of ν in order to make
the overall transport cost minimal.

A transport map fromμ to ν is ameasurablemap T : Rd → R
d satisfying T#μ = ν,

where T# denotes the push-forward, i.e. (T#μ)(A) = μ(T −1(A)) for every Borel set
A ⊂ R

d . We say that T induces the coupling π = πT if

πT (A × B) = μ(A ∩ T −1(B))
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Semi-discrete optimal transport: the unsquared Euclidean distance case 135

for all Borel sets A, B ⊂ R
d , and call the coupling π deterministic in that case. It is

easily seen that the support of πT is contained in the graph of T . Intuitively speaking,
we associate with each location in the domain of the measure μ exactly one location
in the domain of the measure ν to which positive mass is moved, i.e. the mass of μ is
not split.

The generally more difficult (non-linear) problem of finding (the p-th root of)

inf
T

∫
Rd

‖x − T (x)‖p μ(dx) = inf
T

∫
Rd×Rd

‖x − y‖p πT (dx, dy), (2)

where the infima are taken over all transport maps T from μ to ν (and are in general
not attained) is known as Monge’s problem (Monge 1781; Villani 2009).

In practical applications, based on discrete measurement and/or storage proce-
dures, we often face discrete measures μ = ∑m

i=1 μiδxi and ν = ∑n
j=1 ν jδy j , where

{x1, . . . , xm}, {y1, . . . , yn} are finite collections of support points, e.g. grids of pixel
centers in a grayscale image. The Monge–Kantorovich problem (1) is then simply
the discrete transport problem from classical linear programming (Luenberger and Ye
2008):

Wp(μ, ν) =
(
min
(πi j )

m∑
i=1

n∑
j=1

di jπi j

)1/p

, (3)

where di j = ‖xi − y j‖p and any measure π = ∑m
i=1

∑n
j=1 πi jδ(xi ,y j ) is represented

by the m × n matrix (πi j )i, j with nonnegative entries πi j satisfying

n∑
j=1

πi j = μi for 1 ≤ i ≤ m and
m∑

i=1

πi j = ν j for 1 ≤ j ≤ n.

Due to the sheer size of m and n in typical applications this is still computationally
a very challenging problem; we have e.g. m = n = 106 for 1000 × 1000 grayscale
images, which is far beyond the performance of a standard transportation simplex
or primal-dual algorithm. Recently many dedicated algorithms have been developed,
such as (Schmitzer 2016), which can give enormous speed-upsmainly if p = 2 and can
compute exact solutions for discrete transportation problemswith 105 support points in
seconds to a fewminutes, but still cannot deal with 106 or more points. Approximative
solutions can be computed for this order of magnitude and p = 2 by variants of the
celebrated Sinkhorn algorithm (Cuturi 2013; Schmitzer 2019; Altschuler et al. 2017),
but it has been observed that these approximations have their limitations (Schmitzer
2019; Klatt et al. 2019).

The main advantage of using p = 2 is that we can decompose the cost function as
‖x − y‖2 = ‖x‖2 +‖y‖2 −2x	y and hence formulate the Monge–Kantorovich prob-
lem equivalently as maxπ

∫
Rd×Rd x	y π(dx, dy). For the discrete problem (3) this

decomposition is used in Schmitzer (2016) to construct particularly simple so-called
shielding neighborhoods. But also if one or both of μ and ν are assumed absolutely
continuous with respect to Lebesgue measure, this decomposition for p = 2 has clear
computational advantages. For example if the measures μ and ν are assumed to have
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136 V. Hartmann, D. Schuhmacher

densities f and g, respectively, the celebrated Brenier’s theorem, which yields an opti-
mal transport map that is the gradient of a convex function u (McCann 1995), allows
to solve Monge’s problem by finding a numerical solution u to the Monge-Ampère
equation det(D2u(x)) = f (x)

/
g(∇u(x)); see Santambrogio (2015, Sect. 6.3) and

the references given there.
In the rest of this article we focus on the semi-discrete setting, meaning here that

the measure μ is absolutely continuous with respect to Lebesgue measure and the
measure ν has finite support. This terminology was recently used inWolansky (2015),
Kitagawa et al. (2019), Genevay et al. (2016) and Bourne et al. (2018) among others.
In the semi-discrete setting we can represent a solution to Monge’s problem as a
partition of Rd , where each cell is the pre-image of a support point of ν under the
optimal transport map. We refer to such a partition as optimal transport partition.

In the case p = 2 this setting is well studied. It was shown in Aurenhammer et al.
(1998) that an optimal transport partition always exists, is essentially unique, and takes
the form of a Laguerre tessellation, a.k.a. power diagram. The authors proved further
that the right tessellation can be found numerically by solving a (typically high dimen-
sional) unconstrained convex optimization problem. Since Laguerre tessellations are
composed of convex polytopes, the evaluation of the objective function can be done
very precisely and efficiently. Mérigot (2011) elaborates details of this algorithm and
combines it with a powerful multiscale idea. In Kitagawa et al. (2019) a damped New-
ton algorithm is presented for the same objective function and the authors are able to
show convergence with optimal rates.

In this article we present the corresponding theory for the case p = 1. It is shown
in Sect. 2.3 of Crippa et al. (2009) and independently in Geiß et al. (2013), which both
treat more general cost functions, that an optimal transport partition always exists, is
essentially unique and takes the form of a weighted Voronoi tessellation, or more pre-
cisely an Apollonius diagram. We extend this result somewhat within the case p = 1
in Theorems 1 and 2 below. We prove then in Theorem 3 that the right tessellation
can be found by optimizing an objective function corresponding to that from the case
p = 2. Since the cell boundaries in an Apollonius diagram in 2d are segments of
hyperbolas, computations are more involved and we use a new strategy for computing
integrals over cells and for performing line search in the optimization method. Details
of the algorithm are given in Sect. 4 and the complete implementation can be down-
loaded fromGithub1 and is included in the latest version of the transport-package
(Schuhmacher et al. 2019) for the statistical computing environment R (R Core Team
2017). Up to Sect. 4 the present paper is a condensed version of the thesis (Hartmann
2016), to which we refer from time to time for more details. In the remainder we eval-
uate the performance of our algorithm on a set of test cases (Sect. 5), give a number of
applications (Sect. 6), and provide a discussion and open questions for further research
(Sect. 7).

At the time of finishing the present paper, it has come to our attention that Theo-
rem 2.1 of Kitagawa et al. (2019), which is for very general cost funtions including
the Euclidean distance (although the remainder of the paper is not), has a rather large
overlap with our Theorem 3. Within the case of Euclidean cost it assumes somewhat

1 https://github.com/valentin-hartmann-research/semi-discrete-transport.

123

https://github.com/valentin-hartmann-research/semi-discrete-transport


Semi-discrete optimal transport: the unsquared Euclidean distance case 137

stronger conditons than our Theorem 3, namely a compact domainX and a bounded
density for μ. In addition the statement is somewhat weaker as it does not contain
our statement (c). We also believe that due to the simpler setting of p = 1 our proof
is accessible to a wider audience and it is more clearly visible that the additional
restrictions on X and μ are in fact not needed.

We end this introduction by providing some first motivation for studying the semi-
discrete setting for p = 1. This will be further substantiated in the application Sect. 6.

1.1 Why semi-discrete?

The semi-discrete setting appears naturally in problems of allocating a continuously
distributed resource to a finite number of sites. Suppose for example that a fast-food
chain introduces a home delivery service. Based on a density map of expected orders
(the “resource”), the management would like to establish delivery zones for each
branch (the “sites”). We assume that each branch has a fixed capacity (at least in the
short run), that the overall capacity matches the total number of orders (peak time
scenario), and that the branches are not too densely distributed, so that the Euclidean
distance is actually a reasonable approximation to the actual travel distance; seeBoscoe
et al. (2012). We take up this example in Sect. 6.2. A somewhat different model that
addswaiting time costs to the distance-based costs instead of using capacity constraints
was studied theoretically in Crippa et al. (2009).

An important general class that builds on resource allocation are location-alloca-
tion problems: where to position a number of sites (branches, service stations, etc.)
in such a way that the sum of the resource allocation cost plus maybe further costs
for installation, maintainance and waiting times is minimized, possibly under capacity
and/or further constraints. See e.g. Mallozzi et al. (2019) for a flexible model, which
was algorithmically solved via discretizing the continuous domain. Positioning of
sites can also be competitive, involving different agents (firms), such as in Núñez and
Scarsini (2016).

A special case of location-allocation is the quantization problem, which consists in
finding positions and capacities of sites that minimize the resulting resource allocation
cost. SeeBourne et al. (2018, Sect. 4) for a recent discussion using incomplete transport
and p = 2.

As a further application we propose in Sect. 6.3 optimal transport partitions as
a simple visual tool for investigating local deviations from a continuous probability
distribution based on a finite sample.

Since the computation of the semi-discrete optimal transport is linear in the reso-
lution at which we consider the continuous measure (for computational purposes), it
can also be attractive to use the semi-discrete setting as an approximation of either the
fully continuous setting (if ν is sufficiently simple) or the fully discrete setting (if μ

has a large number of support points). This will be further discussed in Sect. 2.
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138 V. Hartmann, D. Schuhmacher

1.2 Why p = 1?

The following discussion highlights some of the strengths of optimal transport based
on an unsquared Euclidean distance (p = 1), especially in the semi-discrete setting,
and contrasts p = 1 with p = 2.

From a computational point of view the case p = 2 can often be treated more
efficiently, mainly due to the earlier mentioned decomposability, leading e.g. to the
algorithms in Schmitzer (2016) in the discrete andAurenhammer et al. (1998),Mérigot
(2011) in the semi-discrete setting. The case p = 1 has the advantage that the
Monge–Kantorovich problem has a particularly simple dual (Villani 2009, Particular
Case 5.16), which is equivalent to Beckmann’s problem (Beckmann 1952; Santam-
brogio 2015, Theorem 4.6). If we discretize the measures (if necessary) to a common
mesh of n points, the latter is an optimization problem in n variables rather than the
n2 variables needed for the general discrete transport formulation (3). Algorithms that
make use of this reduction have been described in Solomon et al. (2014) (for general
discrete surfaces) and in Schmitzer and Wirth (2019, Sect. 4) (for general incomplete
transport), but their performance in a standard situation, e.g. complete optimal trans-
port on a regular grid in R

d , remains unclear. In particular we are not aware of any
performance comparisons between p = 1 and p = 2.

In the present paper we do not make use of this reduction, but keep the source
measure μ truly continuous except for an integral approximation that we perform
for numerical purposes. We describe an algorithm for the semi-discrete problem with
p = 1 that is reasonably fast, but cannot quite reach the performance of the algorithm
for p = 2 in Mérigot (2011). This is again mainly due to the nice decomposition
property of the cost function for p = 2 or, more blatantly, the fact that we minimize
for p = 2 over partitions formed by line rather than hyperbola segments.

From an intuitive point of view p = 1 and p = 2 have both nice interpretations and
depending on the application setting either the one or the other may be more justified.
The difference is between thinking in terms of transportation logistics or in terms
of fluid mechanics. If p = 1, the optimal transport plan minimizes the cumulative
distance by which mass is transported. This is (up to a factor that would not change
the transport plan) the natural cost in the absence of fixed costs or any other savings
on long-distance transportation. If p = 2, the optimal transport plan is determined by
a pressureless potential flow fromμ to ν as seen from the kinetic energy minimization
formulation of Benamou and Brenier (2000), Villani (2009, Chapter 7).

Thedifferent behaviors in the twocases canbe illustratedby thediscrete toy example
in Fig. 1. Each point along the incomplete circle denotes the location of one unit of
mass of μ (blue x-points) and/or ν (red o-points). The unique solution for p = 1
moves one unit of mass from one end of the circular structur to the other. This is how
we would go about carrying boxes around to get from the blue scenario to the red
scenario. The unique solution for p = 2 on the other hand is to transport each unit a
tiny bit further to the next one, corresponding to a (discretized) flow along the circle.
It is straightforward to adapt this toy example for the semi-discrete or the continuous
setting. A more complex semi-discrete example is given in Sect. 6.1.
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Semi-discrete optimal transport: the unsquared Euclidean distance case 139

Fig. 1 Optimal transport maps from blue-x to red-o measure with unit mass at each point. Left: the trans-
portation logistics solution (p = 1); right: the fluid mechanics solution (p = 2). (Color figure online)

One argument in favour of the metric W1 is its nice invariant properties that are
not shared by the other Wp. In particular, considering finite measures μ, ν, α on R

d

satisfying μ(Rd) = ν(Rd), p ≥ 1 and c > 0, we have

W1(α + μ, α + ν) = W1(μ, ν), (4)

W1(cμ, cν) = c W1(μ, ν). (5)

The first result is in general not true for any other p, the second result holds with
a factor c1/p on the right hand side. We prove these statements in the appendix.
These invariance properties have important implications for image analysis, where
it is quite common to adjust for differring levels of brightness (in grayscale images)
by affine transformations. While the above equalities show that it is safe to do so for
p = 1, it may change the resulting Wasserstein distance and the optimal transport
plan dramatically for other p; see Appendix and Sect. 6.1.

It is sometimes considered problematic that optimal transport plans for p = 1 are
in general not unique. But this is not so in the semi-discrete case, as we will see in
Sect. 2: the minimal transport cost in (1) is realized by a unique coupling π , which is
always deterministic. The same is true for p = 2. Amajor difference in the case p = 1
is that for d > 1 each cell of the optimal transport partition contains the support point
of the target measure ν that it assigns its mass to. This can be seen as a consequence of
cyclical monotonicity (Villani 2009, beginning of Chapter 8). In contrast, for p = 2,
optimal transport cells can be separated by many other cells from their support points,
which canmake the resulting partition hard to interpret without drawing corresponding
arrows for the assignment; see the bottom panels of Fig. 5. For this reason we prefer
to use p = 1 for the goodness-of-fit partitions considered in Sect. 6.3.

2 Semi-discrete optimal transport

We first concretize the semi-discrete setting and introduce some additional notation.
Let nowX and Y be Borel subsets of Rd and let μ and ν be probability measures on
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140 V. Hartmann, D. Schuhmacher

X and Y , respectively. This is just for notational convenience and does not change
the set of admissible measures in an essential way: we may always setX = Y = R

d

and any statement about μ and ν we make can be easily recovered for cμ and cν for
arbitrary c > 0.

For the rest of the article it is tacitly assumed that d ≥ 2 to avoid certain pathologies
of the one-dimensional case that would lead to a somewhat tedious distinction of cases
in various results for a case that is well-understood anyway. Moreover, we always
require μ to be absolutely continuous with density � with respect to d-dimensional
Lebesgue measure Lebd and to satisfy

∫
X

‖x‖ μ(dx) < ∞. (6)

We assume further that ν = ∑n
j=1 ν jδy j , where n ∈ N, y1, . . . , yn ∈ Y and

ν1, . . . νn ∈ (0, 1]. Condition (6) guarantees that

W1(μ, ν) ≤
∫
X

‖x‖ μ(dx) +
∫
Y

‖y‖ ν(dy) =: C < ∞, (7)

which simplifies certain arguments.
The set of Borel subsets of X is denoted by BX . Lebesgue mass is denoted by

absolute value bars, i.e. |A| = Lebd(A) for every A ∈ BX .
We call a partition C = (C j )1≤ j≤n ofX into Borel sets satisfying μ(C j ) = ν j for

every j a transport partition from μ to ν. Any such partition characterizes a transport
map T from μ to ν, where we set TC(x) = ∑n

j=1 y j1{x ∈ C j } for a given transport

partition C = (C j )1≤ j≤n and CT = (T −1(y j ))1≤ j≤n for a given transport map T .
Monge’s problem for p = 1 can then be equivalently formulated as finding

inf
C

∫
X

‖x − TC(x)‖ μ(dx) = inf
C

n∑
j=1

∫
C j

‖x − y j‖ μ(dx), (8)

where the infima are taken over all transport partitions C = (C j )1≤ j≤n from μ to
ν. Contrary to the difficulties encountered for more general measures μ and ν when
considering Monge’s problem with Euclidean costs, we can give a clear-cut existence
and uniqueness theorem in the semi-discrete case, without any further restrictions.

Theorem 1 In the semi-discrete setting with Euclidean costs (always including d ≥ 2
and (6)) there is a μ-a.e. unique solution T∗ to Monge’s problem. The induced coupling
πT∗ is the unique solution to the Monge–Kantorovich problem, yielding

W1(μ, ν) =
∫
X

‖x − T∗(x)‖ μ(dx). (9)

Proof The part concerning Monge’s problem is a consequence of the concrete con-
struction in Sect. 3; see Theorem 2.
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Semi-discrete optimal transport: the unsquared Euclidean distance case 141

Clearly πT∗ is an admissible transport plan for the Monge–Kantorovich problem.
Since μ is non-atomic and the Euclidean cost function is continuous, Theorem B in
Pratelli (2007) implies that the minimum in the Monge–Kantorovich problem is equal
to the infimum in the Monge problem, so πT ∗ must be optimal.

For the uniqueness ofπT ∗ in theMonge–Kantorovich problem, letπ be an arbitrary
optimal transport plan. Define the measures π̃i onX by π̃i (A):=π(A × {yi }) for all
A ∈ BX and 1 ≤ i ≤ n. Since

∑
i πi = μ, all πi are absolutely continuous with

respect to Lebd with densities ρ̃i satisfying
∑

ρ̃i = ρ. Set then Si :={x ∈ X |ρ̃i > 0}.
Assume first that there exist i, j ∈ {1, . . . , n}, i 
= j , such that |Si ∩S j | > 0. Define

Hi, j
< (q):={x ∈ X |‖x − yi‖ < ‖x − y j‖ + q} and Hi, j

> (q), Hi, j= (q) analogously.

There exists a q ∈ R for which both Si ∩ S j ∩ Hi, j
< (q) and Si ∩ S j ∩ Hi, j

> (q) have

positive Lebesgue measure: choose q1, q2 ∈ R such that |Si ∩ S j ∩ Hi, j
< (q1)| > 0 and

|Si ∩ S j ∩ Hi, j
> (q2)| > 0; using binary search between q1 and q2, we find the desired

q in finitely many steps, because otherwise there would have to exist a q0 such that
|Si ∩ S j ∩ Hi, j= (q0)| > 0, which is not possible. By the definition of Si and S j we thus

have α = πi (Si ∩ S j ∩ Hi, j
> (q)) > 0 and β = π j (Si ∩ S j ∩ Hi, j

< (q)) > 0. Switching
i and j if necessary, we may assume α ≤ β. Define then

π ′
i = πi − πi |Si ∩S j ∩Hi, j

> (q)
+ α

β
π j |Si ∩S j ∩Hi, j

< (q)
,

π ′
j = π j + πi |Si ∩S j ∩Hi, j

> (q)
− α

β
π j |Si ∩S j ∩Hi, j

< (q)

and π ′
k = πk for k /∈ {i, j}. It can be checked immediately that the measure π ′ given

by π ′(A × {yi }) = π ′
i (A) for all A ∈ BX and all i ∈ {1, 2, . . . , n} is a transport plan

from μ to ν again. It satisfies

∫
X ×Y

‖x − y‖ π ′(dx, dy) −
∫
X ×Y

‖x − y‖ π(dx, dy)

=
∫

Si ∩S j ∩Hi, j
> (q)

(−‖x − yi‖ + ‖x − y j‖
)

πi (dx)

+ α

β

∫
Si ∩S j ∩Hi, j

< (q)

(‖x − yi‖ − ‖x − y j‖
)

π j (dx)

< 0,

because the integrands are strictly negative on the sets over which we integrate. But
this contradicts the optimality of π .

We thus have proved that |Si ∩ S j | = 0 for all pairs with i 
= j . This implies that
we can define a transport map T inducing π in the following way. If x ∈ Si \ (∪ j 
=i S j )

for some i , set T (x):=yi . Since the intersections Si ∩ S j are Lebesgue null sets, the
value of T on them does not matter. So we can for example set T (x):=y1 or T (x):=yi0
for x ∈ ⋂

i∈I Si \ ⋂
i∈I c Si , where I ⊂ {1, . . . , n} contains at least two elements and

i0 = min(I ). It follows that πT = π . But by the optimality of π and Theorem 2 we
obtain T = T∗ μ-almost surely, which implies π = πT = πT∗ . ��
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142 V. Hartmann, D. Schuhmacher

It will be desirable to know in what way we may approximate the continuous and
discrete Monge–Kantorovich problems by the semi-discrete problem we investigate
here.

In the fully continuous case, we have a measure ν̃ onY with density �̃ with respect
to Lebd instead of the discrete measure ν. In the fully discrete case, we have a discrete
measure μ̃ = ∑m

i=1 μ̃iδxi instead of the absolutely continuous measure μ, where
m ∈ N, x1, . . . , xm ∈ X and μ̃1, . . . μ̃m ∈ (0, 1]. In both cases existence of an
optimal transport plan is still guaranteed by Villani (2009, Theorem 4.1), however we
lose to some extent the uniqueness property.

One reason for this is that mass transported within the same line segment can be
reassigned at no extra cost; see the discussion on transport rays in Sect. 6 of Ambrosio
and Pratelli (2003). In the continuous case this is the only reason, and uniqueness
can be restored by minimizing a secondary functional (e.g. total cost with respect to
p > 1) over all optimal transport plans; see Theorem 7.2 in Ambrosio and Pratelli
(2003).

In the discrete case uniqueness depends strongly on the geometry of the support
points of μ̃ and ν. In addition to collinearity of support points, equality of interpoint
distances can also lead to non-unique solutions. While uniqueness can typically be
achieved when the support points are in sufficiently general position, we are not aware
of any precise result to this effect.

When approximating the continuous problem with measures μ and ν̃ by a semi-
discrete problem, we quantize the measure ν̃ into a discrete measure ν = ∑n

j=1 ν jδy j ,
where ν j = ν̃(N j ) for a partition (N j ) of supp(ν̃). The error we commit inWasserstein
distance by discretization of ν̃ is bounded by the quantization error, i.e.

∣∣W1(μ, ν̃) − W1(μ, ν)
∣∣ ≤ W1(ν̃, ν) ≤

n∑
j=1

∫
N j

‖y − y j‖ ν̃(dy). (10)

We can compute W1(ν̃, ν) exactly by solving another semi-discrete transport problem,
using the algorithm described in Sect. 4 to compute an optimal partition (N j ) for
the second inequality above. However, choosing ν for given n in such a way that
W1(ν̃, ν) is minimal is usually practically infeasible. So we would use an algorithm
that makes W1(ν̃, ν) reasonably small, such as a suitable version of Lloyd’s algorithm;
see Sect. 4.1 below.

When approximating the discrete problemwithmeasures μ̃ and ν by a semi-discrete
problem, we blur each mass μ̃i of μ̃ over a neighborhood of xi using a probability
density fi , to obtain ameasureμwithdensity�(x) = ∑m

i=1 μ̃i fi (x). Typical examples
use fi (x) = 1

hd ϕ
( x−xi

h

)
, whereϕ is the standard normal density and the bandwidth h >

0 is reasonably small, or fi (x) = 1
|Mi |1Mi (x), where Mi is some small neighborhood

of xi . In practice, discrete measures are often available in the form of images, where
the support points xi form a fine rectangular grid; then the latter choice of fi s is very
natural, where the Mi s are just adjacent squares, each with an xi at the center. There
are similar considerations for the approximation error as in the fully continuous case
above. In particular the error we commit in Wasserstein distance is bounded by the
blurring error
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∣∣W1(μ̃, ν) − W1(μ, ν)
∣∣ ≤ W1(μ̃, μ) ≤

m∑
i=1

μ̃i

∫
Rd

‖x − xi‖ fi (x) dx . (11)

The right hand side is typically straightforward to compute exactly, e.g. in the normal
density andgrid cases described above. It can bemade small by choosing the bandwidth
h very small or picking sets Mi of small radius r = supx∈Mi

‖x − xi‖.
What about the approximation properties of the optimal transport plans obtained

by the semi-discrete setting? Theorem 5.20 in Villani (2009) implies for ν(k) → ν̃

weakly and μ(k) → μ̃ weakly that every subsequence of the sequence of optimal
transport plans π

(k)∗ between μ(k) and ν(k) has a further subsequence that converges
weakly to an optimal transport plan π∗ between μ and ν. This implies that for every
ε > 0 there is a k0 ∈ N such that for any k ≥ k0 the plan π(k) is within distance ε (in
any fixed metrization of the weak topology) of some optimal transport plan between
μ and ν, which is the best we could have hoped for in view of the non-uniqueness of
optimal transport plans we have in general. If (in the discrete setting) there is a unique
optimal transport plan π∗, this yields that π(k)∗ → π∗ weakly.

3 Optimal transport maps via weighted Voronoi tessellations

As shown for bounded X in Geiß et al. (2013), the solution to the semi-discrete
transport problem has a nice geometrical interpretation, which is similar to the well-
known result in Aurenhammer et al. (1998): we elaborate below that the sets C∗

j of the
optimal transport partition are the cells of an additively weighted Voronoi tessellation
of X around the support points of ν.

For the finite set of points {y1, . . . , yn} and a vector w ∈ R
n that assigns to each

y j a weight w j , the additively weighted Voronoi tessellation is the set of cells

Vorw( j) = {x ∈ X |‖x − y j‖ − w j

≤ ‖x − yk‖ − wk for all k 
= j}, j = 1, . . . , n.

Note that adjacent cells Vorw( j) and Vorw(k) have disjoint interiors. The intersection
of their boundaries is a subset of H = {x ∈ X |‖x−y j‖−‖x−yk‖ = w j −wk}, which
is easily seen to have Lebesgue measure (and hence μ-measure) zero. If d = 2, the set
H is a branch of a hyperbola with foci at y j and yk . It may also be interpreted as the set
of points that have the same distance from the spheres S(y j , w j ) and S(yk, wk), where
S(y, w) = {x ∈ X |‖x − y‖ = w}. See Fig. 2 for an illustration of these properties.

Of course not all weightedVoronoi tessellations are valid transport partitions fromμ

to ν. But suppose we can find a weight vector w such that the resulting Voronoi
tessellation satisfies indeed μ(Vorw( j)) = ν j for every j ∈ {1, . . . , n}; we call such
a w adapted to (μ, ν). Then this partition is automatically optimal.

Theorem 2 If w ∈ R
n is adapted to (μ, ν), then (Vorw( j))1≤ j≤n is the μ-almost

surely unique optimal transport partition from μ to ν.

123



144 V. Hartmann, D. Schuhmacher

Fig. 2 An additively weighted Voronoi tessellation with 25 cells

A proofwas given inGeiß et al. (2013), Theorem2 formore general distance functions,
but required X to be bounded. For the Euclidean distance we consider here, we can
easily extend it to unbounded X ; see Hartmann (2016, Theorem 3.2).

Having identified this class of optimal transport partitions, it remains to show that
for each pair (μ, ν) we can find an adapted weight vector. We adapt the approach of
Aurenhammer et al. (1998) to the case p = 1, which gives us a constructive proof that
forms the basis for the algorithm in Sect. 4. Our key tool is the function � defined
below.

Theorem 3 Let � : Rn → R,

�(w) =
n∑

j=1

(
−ν jw j −

∫
Vorw( j)

(‖x − y j‖ − w j
)

μ(dx)

)
.

Then

a. � is convex;
b. � is continuously differentiable with partial derivatives

∂�

∂w j
(w) = −ν j + μ(Vorw( j));

c. � takes a minimum in R
n.

Remark 1 Let w∗ ∈ R
n be a minimizer of �. Then by Theorem 3b)

μ(Vorw∗( j)) − ν j = ∂�

∂w j
(w∗) = 0 for every j ∈ {1, . . . , n},
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i.e. w∗ is adapted to (μ, ν). Theorem 2 yields that (V orw∗( j))1≤ j≤n is the μ-almost
surely unique optimal transport partition from μ to ν.

Proof (of Theorem 3) We take a few shortcuts; for full technical details see Chapter 3
of Hartmann (2016).

Part a) relies on the observation that � can be written as

�(w) =
∑

j

(−ν jw j ) − 
(w)

where


(w) =
∫
X

(‖x − T w(x)‖ − wT w(x)) μ(dx),

T w denotes the transportmap induced by theVoronoi tessellationwithweight vectorw
andwewritewy j instead ofw j for convenience. By definition of the weighted Voronoi
tessellation 
 is the infimum of the affine functions


 f : Rn → R, w �→
∫
X

(‖x − f (x)‖ − w f (x)) μ(dx)

over all measurable maps f fromX to Y . Since pointwise infima of affine functions
are concave and the first summand of � is linear, we see that � is convex.

By geometric arguments it can be shown that [w �→ μ(Vorw( j))] is continuous;
see Hartmann (2016, Lemma 3.3). A short computation involving the representation

(w) = inf f 
 f (w) used above yields for the difference quotient of 
, writing e j

for the j-th standard basis vector and letting h 
= 0,

∣∣∣∣
(w + he j ) − 
(w)

h
+ μ(Vorw( j))

∣∣∣∣ ≤ ∣∣−μ(Vorw+he j ( j)) + μ(Vorw( j))
∣∣ −→ 0

as h → 0. This implies that 
 is differentiable with continuous j-th partial derivative
−μ(Vorw( j)) and hence statement b) follows.

Finally, for the existence of a minimizer of � we consider an arbitrary sequence
(w(k))k∈N of weight vectors in Rn with

lim
k→∞ �(w(k)) = inf

w∈Rn
�(w).

We show below that a suitably shifted version of (w(k))k∈N that has the same�-values
contains a bounded subsequence. This subsequence then has a further subsequence
(u(k)) which converges towards some u ∈ R

n . Continuity of � yields

�(u) = lim
k→∞ �(u(k)) = inf

w∈Rn
�(w)

and thus statement c).
To obtain the bounded subsequence, note first that adding to each weight the same

constant neither affects the Voronoi tessellation nor the value of �. We may therefore
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assume w
(k)
j ≥ 0, 1 ≤ j ≤ n, for all k ∈ N. Choosing an entry i and an infinite set

K ⊂ N appropriately leaves us with a sequence (w(k))k∈K satisfying w
(k)
i ≥ w

(k)
j for

all j and k. Taking a further subsequence (w(l))l∈L for some infinite L ⊂ K allows
the choice of an R ≥ 0 and the partitioning of {1, . . . , n} into two sets A and B such
that for every l ∈ L

i) 0 ≤ w
(l)
i − w

(l)
j ≤ R if j ∈ A,

ii) w
(l)
i − w

(l)
j ≥ index(l) if j ∈ B,

where index(l) denotes the rank of l in L , in the sense that l is the index(l)-th smallest
element of L .

Assume that B 
= ∅. The Voronoi cells with indices in B will at some point be
shrunk to measure zero, meaning there exists an N ∈ L such that

∑
j∈A

μ
(
Vorw(l) ( j)

) = 1 for all l ≥ N .

Write

w
(l)
A = min

i∈A
w

(l)
i and w

(l)
B = max

i∈B
w

(l)
i ,

and recall the constant C from (7), which may clearly serve as an upper bound for the
transport cost under an arbitrary plan. We then obtain for every l ≥ N

�(w(l)) =
n∑

j=1

(
−ν jw

(l)
j −

∫
Vor

w(l) ( j)

(‖x − y j‖ − w
(l)
j

)
μ(dx)

)

≥ −C +
n∑

j=1

w
(l)
j

(
μ

(
Vorw(l) ( j)

) − ν j

)

= −C +
∑
j∈A

w
(l)
j

(
μ

(
Vorw(l) ( j)

) − ν j

)
−

∑
j∈B

w
(l)
j ν j

≥ −C − R + w
(l)
A

(
1 −

∑
j∈A

ν j

)
− w

(l)
B

∑
j∈B

ν j

≥ −C − 2R + index(l),

which contradicts the statement limk→∞ �(w(k)) = infw∈Rn �(w) < ∞. Thus we
have B = ∅.

We can then simply turn (w(l))l∈L into a bounded sequence by substracting the
minimal entry w(l) = min1≤i≤n w

(l)
i from each w

(l)
j for all l ∈ L . ��
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4 The algorithm

The previous section provides the theory needed to compute the optimal transport
partition. It is sufficient to find a vector w∗ where � is locally optimal. By convexity,
w∗ is then a global minimizer of � and Remark 1 identifies the μ-a.e. unique optimal
transport partition as (Vorw∗( j))1≤ j≤n .

For the optimization process we can choose from a variety of methods thanks to
knowing the gradient ∇� of � analytically from Theorem 3. We consider iterative
methods that start at an initial weight vector w(0) and apply steps of the form

w(k+1) = w(k) + tk �w(k), k ≥ 0,

where �w(k) denotes the search direction and tk the step size.
Newton’s method would use �w(k) = −(

D2�(w(k))
)−1∇�(w(k)), but the Hes-

sianmatrix D2�(w(k)) is not available to us.We therefore use a quasi-Newtonmethod
that makes use of the gradient. Just like Mérigot (2011) for the case p = 2, we have
obtained many good results using L-BFGS (Nocedal 1980), the limited-memory vari-
ant of the Broyden–Fletcher–Goldfarb–Shanno algorithm, which uses the value of the
gradient at the current as well as at preceding steps for approximating the Hessian.
The limited-memory variant works without storing the whole Hessian of size n × n,
which is important since in applications our n is typically large.

To determine a suitable step size tk for L-BFGS, we use the Armijo rule (Armijo
1966), which has proven to be well suited for our problem. It considers different values
for tk until it arrives at one that sufficiently decreases�(w(k)): the step size tk needs to
fulfill �(w(k) + tk�w(k)) ≤ �(w(k))+ c tk∇�(w(k))T �w(k) for a small fixed c with
0 < c < 1. We use the default value c = 10−4 of the L-BFGS library (Okazaki and
Nocedal 2010) employed by our implementation, which is also given as an example
by Nocedal and Wright (1999). An alternative that could be investigated is to use a
non-monotone line search such as the one proposed in Grippo et al. (1986). There
the above condition is relaxed by admitting a step whenever it sufficiently decreases
a function value from one of the previous K iterations, for some K ≥ 1. This might
lead to fewer function evaluations and also to convergence in fewer steps. We also
considered replacing the Armijo rule with the strong Wolfe conditions (1969, 1971)
as done in Mérigot (2011), which contain an additional decrease requirement on the
gradient. In our case, however, this requirement could often not be fulfilled because of
the pixel splitting method used for computing the gradient (cf. Sect. 4.2), which made
it less suited.

4.1 Multiscale approach to determine starting value

To find a good starting value w(0) we use a multiscale method similar to the one
proposed in Mérigot (2011). We first create a decomposition of ν, i.e. a sequence
ν = ν(0), . . . , ν(L) of measures with decreasing cardinality of the support. Here ν(l)

is obtained as a coarsening of ν(l−1) by merging the masses of several points into one
point.

123



148 V. Hartmann, D. Schuhmacher

It seems intuitively reasonable to choose ν(l) in such a way that W1(ν
(l), ν(l−1))

is as small as possible, since the latter bounds |W1(μ, ν(l)) − W1(μ, ν(l−1))|. This
comes down to a capacitated location-allocation problem, which is NP-hard even in
the one-dimensional case; see Sherali and Nordai (1988). Out of speed concerns and
since we only need a reasonably good starting value for our algorithm, we decided
to content ourselves with the same weighted K -means clustering algorithm used by
Mérigot (2011) (referred to as Lloyd’s algorithm), which iteratively improves an initial
aggregation of the support of ν(l−1) into | supp(ν(l))| clusters towards local optimality
with respect to the squared Euclidean distance. The resulting ν(l) is then the discrete
measure with the cluster centers as its support points and as weights the summed up
weights of the points of ν(l−1) contained in each cluster; see Algorithm 3 in Hartmann
(2016). The corresponding weighted K -median clustering algorithm, based on alter-
nating between assignment of points to clusters and recomputation of cluster centers
as the median of all weighted points in the cluster, should intuitively give a ν(l) based
on which we obtain a better starting solution. This may sometimes compensate for the
much longer time needed for performing K -median clustering.

Having created the decomposition ν = ν(0), . . . , ν(L), we minimize � along the
sequence of these coarsened measures, beginning at ν(L) with the initial weight vector
w(L,0) = 0 ∈ R

| supp(ν(L))| and computing the optimal weight vector w(L,∗) for the
transport fromμ to ν(L). Every time we pass to a finer measure ν(l−1) from the coarser
measure ν(l), we generate the initialweight vectorw(l−1,0) from the last optimalweight
vector w(l,∗) by assigning the weight of each support point of ν(l) to all the support
points of ν(l−1) from whose merging the point of ν(l) originated; see also Algorithm 2
in Hartmann (2016).

4.2 Numerical computation of8 and∇8

For practical computation we assume here that X is a bounded rectangle in R
2 and

that the density of the measure μ is of the form

�(x) =
∑
i∈I

ai1Qi (x)

for x ∈ X , where we assume that I is a finite index set and (Qi )i∈I is a partition of
the domainX into (small) squares, called pixels, of equal side length. This is natural
if � is given as a grayscale image and we would then typically index the pixels Qi

by their centers i ∈ I ⊂ Z
2. It may also serve as an approximation for arbitrary �.

It is however easy enough to adapt the following considerations to more general (not
necessarily congruent) tiles and to obtain better approximations if the function � is
specified more generally than piecewise constant.

The optimization procedure requires the non-trivial evaluation of � at a given
weight vector w. This includes the integration over Voronoi cells and therefore the
construction of a weighted Voronoi diagram. The latter task is solved by the package
2D Apollonius Graphs as part of the Computational Geometry Algorithms Library
(CGAL 2015). The integrals we need to compute are
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∫
Vorw( j)

ρ(x) dx and
∫
Vorw( j)

‖x − y j‖ρ(x) dx .

By definition the boundary of a Voronoi cell Vorw( j) is made up of hyperbola seg-
ments, each between y j and one of the other support points of ν. The integration
could be performed by drawing lines from y j to the end points of those segments and
integrating over the resulting triangle-shaped areas separately. This would be executed
by applying an affinely-linear transformation that moves the hyperbola segment onto
the hyperbola y = 1/x to both the area and the function we want to integrate. The
required transformation can be found in Hartmann (2016, Sect. 5.6).

However, we take a somewhat more crude, but also more efficient path here,
because it is a quite time-consuming task to decide which pixels intersect which
weighted Voronoi cells and then to compute the (areas of the) intersections. We there-
fore approximate the intersections by splitting the pixels into a quadratic number of
subpixels (unless the former are already very small) and assuming that each of them
is completely contained in the Voronoi cell in which its center lies. This reduces the
problem from computing intersections to determining the corresponding cell for each
center, which the data structure used for storing the Voronoi diagram enables us to
do in roughly O(log n) time; see Karavelas and Yvinec (2002). The operation can be
performed even more efficiently: when considering a subpixel other than the very first
one, we already know the cell that one of the neighboring subpixel’s center belongs
to. Hence, we can begin our search at this cell, which is either already the cell we are
looking for or lies very close to it.

The downside of this approximation is that it can make the L-BFGS algorithm
follow search directions along which the value of � cannot be sufficiently decreased
even though there exist different directions that allow a decrease. This usually only
happens near aminimizingweight vector and can therefore be controlled by choosing a
not too strict stopping criterion for a given subpixel resolution, see the next subsection.

4.3 Our implementation

Implementing the algorithm described in this section requires two technical choices:
the number of subpixels every pixel is being split into and the stopping criterion for
the minimization of �. We found that choosing the number of subpixels to be the
smallest square number such that their total number is larger than or equal to 1000n
gives a good compromise between performance and precision.

The stopping criterion is implemented as follows: we terminate the optimization
process once ‖∇�(w)‖1/2 ≤ ε for some ε > 0. Due to Theorem 3b) this criterion
yields an intuitive interpretation: ‖∇�(w)‖1/2 is the amount of mass that is being
mistransported, i.e. the total amount of mass missing or being in surplus at some ν-
location yi when transporting according to the current tessellation. In our experience
this mass is typically rather proportionally distributed among the different cells and
tends to be assigned in a close neighborhood of the correct cell rather than far away.
So even with somewhat larger ε, the computed Wasserstein distance and the overall
visual impression of the optimal transport partition remain mostly the same. In the
numerical examples in Sects. 5 and 6 we choose the value of ε = 0.05.

123



150 V. Hartmann, D. Schuhmacher

Fig. 3 Realizations of the measure μ for all six parameter combinations in Sect. 5. First row: smoothness
s = 0.5; second row: smoothness s = 2.5. The correlation scale γ is 0.05, 0.15 and 0.5 (from left to right)

We implemented the algorithm in C++ and make it available on GitHub2 under the
MIT license. Our implementation uses libLBFGS (Okazaki and Nocedal 2010) for the
L-BFGS procedure and the geometry library CGAL (CGAL2015) for the construction
and querying of weighted Voronoi tessellations. The repository also contains a Matlab
script to visualize such tessellations. Our implementation is also included in the latest
version of the transport-package (Schuhmacher et al. 2019) for the statistical
computing environment R (R Core Team 2017).

5 Performance evaluation

We evaluated the performance of our algorithm by randomly generating measures μ

and ν with varying features and computing the optimal transport partitions between
them. The measure μ was generated by simulating its density � as a Gaussian random
field with Matérn covariance function on the rectangle [0, 1] × [0, 0.75], applying a
quadratic function and normalizing the result to a probability density. Corresponding
images were produced at resolution 256×196 pixels and were further divided into 25
subpixels each to compute integrals overVoronoi cells. In addition to a variance param-
eter, which we kept fixed, the Matérn covariance function has parameters for the scale
γ of the correlations, which we varied among 0.05, 0.15 and 0.5, and the smoothness
s of the generated surface, which we varied between 0.5 and 2.5 corresponding to a
continuous surface and a C2-surface, respectively. The simulation mechanism is simi-
lar to the ones for classes 2–5 in the benchmark DOTmark proposed in Schrieber et al.
(2017), but allows to investigate the influence of individual parameters more directly.
Figure 3 shows one realization for each parameter combination. For the performance
evaluation we generated 10 realizations each.

2 https://github.com/valentin-hartmann-research/semi-discrete-transport.
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(a) n= 250, s= 0.5 (b) n= 250, s= 2.5

(c) n= 1000, s= 0.5 (d) n= 1000, s= 2.5

Fig. 4 Runtimes of the experiments of Sect. 5. Bars and lines indicate means and standard deviations over
200 experiments, combining 10 realizations of μ with 20 realizations of ν. The measures μ are based on
Gaussian random fields with Matérn covariance function; see Fig. 3. The measures ν are based on support
points picked uniformly at random with unit masses (blue) or masses picked from the corresponding μ

(red). Rows: ν with n = 250 versus n = 1000 support points. Columns: smoothness parameter s = 0.5
versus s = 2.5. Note the different scaling. (Color figure online)

The measures ν have n support points generated uniformly at random on [0, 1] ×
[0, 0.75], where we used n = 250 and n = 1000. We then assigned either mass 1 or
mass�(x) to each point x and normalized to obtain probabilitymeasures.Wegenerated
20 independent ν-measures of the first kind (unit mass) and computed the optimal
transport from each of the 10×6μ-measures for each of the 6 parameter combinations.
We further generated for each of the 10×6μ-measures 20 corresponding ν-measures
of the second kind (masses from μ) and computed again the corresponding optimal
transports. The stopping criterion for the optimization was an amount of ≤ 0.05 of
mistransported mass.

The results for n = 250 support points of ν are shown in Fig. 4a, b, those for
n = 1000 support points in Fig. 4c, d. Each bar shows the mean of the runtimes
on one core of a mobile Intel Core i7 across the 200 experiments for the respective
parameter combination; the blue bars are for the ν measures with uniform masses, the
red bars for the measures with masses selected from the corresponding μ measure.
The lines indicate the standard deviations.
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We observe that computation times stay more or less the same between parameter
choices (with some sampling variation) if the ν-masses are taken from the correspond-
ing μ-measure. In this case mass can typically be assigned (very) locally, and slightly
more so if ρ has fewer local fluctuations (higher γ and/or s).

This seems a plausible explanation for the relatively small computation times.
In contrast, if all ν-masses are the same, the computation times are considerably

higher and increase substantially with increasing γ and somewhat with increasing
smoothness. This seems consistent with the hypothesis that the more the optimal
transport problem can be solved by assigning mass locally the lower the computation
times. For larger scales many of the support points of ν compete strongly for the
assignment of mass and a solution can only be found globally. A lower smoothness
may alleviate the problem somewhat, because it creates locally more variation in the
available mass.

In addition to the runtimes, we also recorded how many update steps for the weight
vector w were performed until convergence. We only investigate the update steps
for the transport to the original measure ν, not the coarsenings νl , l > 0, because
the former dominates the runtime, and also has a different dimensionality than the
coarsenings. We have computed the Pearson and Spearman correlation coefficients
between the numbers of update steps and the runtimes. Both for n = 250 and n = 1000
support points of ν, these correlation coefficients are larger than 0.99, indicating very
high correlation. This strongly suggests that the differences in runtimes are not due to
intricacies of the line search procedure or Voronoi cell computations, but rather due
to differences in the structures of the simulated problem instances.

We would like to note that to the best of our knowledge the present implementation
is the first one for computing the optimal transport in the semi-discrete setting for the
case p = 1, which means that fair performance comparisons with other algorithms
are not easily possible.

6 Applications

We investigate three concrete problem settings in order to better understand the work-
ings and performance of our algorithm as well as to illustrate various theoretical and
practical aspects pointed out in the paper.

6.1 Optimal transport between two normal distributions

We consider the two bivariate normal distributions μ = MVN2(a, σ 2I2) and ν =
MVN2(b, σ 2I2), where a = 0.8 · 1, b = 2.2 · 1 and σ 2 = 0.1, i.e. they both have the
same spherical covariance matrix such that one distribution is just a displacement of
the other. For computations we have truncated both measures to the setX = [0, 3]2.
By discretization (quantization) a measure ν̃ is obtained from ν. We then compute the
optimal transport partition and the Wasserstein distances between μ and ν̃ for both
p = 1 and p = 2. Computations and plots for p = 2 are obtained with the package
transport (Schuhmacher et al. 2019) for the statistical computing environment R
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Table 1 Theoretical continuous and computed semi-discrete Wasserstein distances, together with the dis-
cretization error

MVN versus MVN MVN + Leb versus MVN + Leb

Theoretical Computed Discr. error Theoretical Computed Discr. error

p = 1

1.979899 1.965988 0.030962 1.979899 2.164697 0.653370

p = 2

1.979899 1.965753 0.034454 Unknown 0.827809 0.220176

(R Core Team 2017). For p = 1 we use our implementation presented in the previous
section.

Note that for the original problem of optimal transport from μ to ν the solution is
known exactly, so we can use this example to investigate the correct working of our
implementation. In fact, for any probability measure μ′ on R

d and its displacement
ν′ = T#μ′, where T : R2 → R

2, x �→ x + (b − a) for some vector b − a ∈ R
d , it

is immediately clear that the translation T induces an optimal transport plan for (1)
and that Wp(μ

′, ν′) = ‖b − a‖ for arbitrary p ≥ 1. This holds because we obtain by
Jensen’s inequality (E‖X − Y‖p)1/p ≥ ‖E(X − Y )‖ = ‖b − a‖ for X ∼ μ′, Y ∼ ν′;
therefore Wp(μ

′, ν′) ≥ ‖b − a‖ and T is clearly a transport map from μ′ to ν′ that
achieves this lower bound. For p = 2 Theorem 9.4 in Villani (2009) yields that T is the
unique optimal transport map and the induced plan πT is the unique optimal transport
plan. In the case p = 1 neither of these objects is unique due to the possibility to
rearrange mass transported within the same line segment at no extra cost.

Discretization was performed by applying the weighted K -means algorithm based
on the discretization of μ to a fine grid and an initial configuration of cluster centers
drawn independently from distribution ν and equipped with the corresponding density
values of ν as weights. The number of cluster centers was kept to n = 300 for better
visibility in the plots below. We write ν̃ = ∑n

i=1 δyi for the discretized measure. The
discretization error can be computed numerically by solving another semi-discrete
transport problem, see the third column of Table 1 below.

The first column of Fig. 5 depicts the measures μ and ν̃ and the resulting optimal
transport partitions for p = 1 and p = 2. In the case p = 1 the nuclei of the weighted
Voronoi tessellation are always contained in their cells, whereas for p = 2 this need
not be the case. We therefore indicate the relation by a gray arrow pointing from the
centroid of the cell to its nucleus whenever the nucleus is outside the cell. The theory
for the case p = 2, see e.g. Merigot (2011, Sect. 2), identifies the tessellation as a
Laguerre tessellation (or power diagram), which consists of convex polygons.

The partitions obtained for p = 1 and p = 2 look very different, but they both
capture optimal transports along the direction b−a very closely. For p = 2 we clearly
see a close approximation of the optimal transport map T introduced above. For p = 1
we see an approximation of an optimal transport plan π that collects the mass for any
y ∈ Y somewhere along the way in the direction b − a.

The second column of Table 1 gives the Wasserstein distances computed numeri-
cally based on these partitions. Both of them are very close to the theoretical value of
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μ and ν̃(a) Measures (b) Measures μ ′ and ν̃ ′

(c) p= 1 (d) p= 1

(e) p= 2 (f) p= 2

Fig. 5 Left column: semi-discrete transport between a bivariate normal distribution μ and a discretized
bivariate normal distribution ν̃. Right column: same with Lebesgue measures added to both distributions
(before discretization). Panels a and b illustrate the measures. The densities of the continuous measures μ

and μ′ are displayed as gray level images, the point masses of the discrete measures ν and ν′ are shown
as small discs with areas proportional to the masses placed there. Panels c to f show the optimal transport
partitions
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‖b − a‖ = √
2 · 1.4 ≈ 1.979899, and in particular they are well inside the boundaries

set by the approximation error.
We also investigate the effect of adding a common measure to both μ and ν: let

α = Lebd |X and proceed in the same way as above for the measures μ′ = μ+α and
ν′ = ν +α, calling the discretized measure ν̃′. Note that the discretization error (sixth
column of Table 1) is considerably higher, on the one hand due to the fact that the
n = 300 support points of ν̃′ have to be spread far wider, on the other hand because
the total mass of each measure is 10 now compared to 1 before.

The second columnof Fig. 5 depicts themeasuresμ′ and ν̃′ and the resulting optimal
transport partitions for p = 1 and p = 2. Both partitions look very different from their
counterpartswhen noα is added.However the partition for p = 1 clearly approximates
a transport plan along the direction of b − a again. Note that the movement of mass
is much more local now, meaning the approximated optimal transport plan is not
just obtained by keeping measure α in place and moving the remaining measure μ

according to the optimal transport plan π approximated in Fig. 5c, but a substantial
amount of mass available from α is moved as well. Furthermore, Fig. 5d gives the
impression of a slightly curved movement of mass. We attribute this to a combination
of a boundary effect from trimming the Lebesgue measure toX and numerical error
based on the coarse discretization and a small amount of mistransported mass.

The computed W1-value for this new example (last column of Table 1) lies in the
vicinity of the theoretical value again if one allows for the rather large discretization
error.

The case p = 2 exhibits the distinctive curved behavior that goes with the fluid
mechanics interpretation discussed in Sect. 1.2, see also Fig. 1. Various of the other
points mentioned in Sect. 1.2 can be observed as well, e.g. the numerically computed
Wasserstein distance is much smaller than for p = 1, which illustrates the lack of
invariance and seems plausible in view of the example in Remark 2 in the appendix.

6.2 A practical resource allocation problem

We revisit the delivery problem mentioned in the introduction. A fast-food delivery
service has 32 branches throughout a city area, depicted by the black dots on the
map in Fig. 6. For simplicity of representation we assume that most branches have
the same fixed production capacity and a few individual ones (marked by an extra
circle around the dot) have twice that capacity. We assume further that the expected
orders at peak times have a spatial distribution as indicated by the heatmap (where
yellow to white means higher number of orders) and a total volume that matches
the total capacity of the branches. The task of the fast-food chain is to partition the
map into 32 delivery zones, matching expected orders in each zone with the capacity
of the branches, in such a way that the expected cost in form of the travel distance
between branch and customer is minimal. We assume here the Euclidean distance,
either because of a street layout that comes close to it, see e.g. Boscoe et al. (2012),
or because the deliveries are performed by drones. The desired partition, computed
by our implementation described in Sect. 4.3, is also displayed in Fig. 6. A number
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Fig. 6 The optimal partition of the city area for the delivery example

of elongated cells in the western and central parts of the city area suggest that future
expansions of the fast-food chain should concentrate on the city center in the north.

6.3 A visual tool for detecting deviations from a density map

Very recently, asymptotic theory has been developed that allows, among other things,
to test based on the Wasserstein metric Wp whether a sample in R

d comes from a
given multivariate probability distribution Q. More precisely, assuming independent
and identically distributed random vectors X1, . . . , Xn with distribution P , limiting
distributions have been derived for suitable standardizations of Wp(

1
n

∑n
i=1 δXi , Q)

both if P = Q and if P 
= Q. Based on an observed value Wp(
1
n

∑n
i=1 δxi , Q), where

x1, . . . , xn ∈ R
d , these distributions allow to assign a level of statistical certainty

(p-value) to statements of P = Q and P 
= Q, respectively. See Sommerfeld and
Munk (2018), which uses general p ≥ 1, but requires discrete distributions P and Q;
and del Barrio and Loubes (2018), which is constraint to p = 2, but allows for quite
general distributions (P and Q not both discrete).

We propose here the optimal transport partition between an absolutely continuous
Q and 1

n

∑n
i=1 δxi as a simple but useful tool for assessing the hypothesis P = Q. We

refer to this tool as goodness-of-fit (GOF) partition. If d = 2, relevant information
may be gained from a simple plot of this partition in a similar way as residual plots are
used for assessing the fit of linear models. As a general rule of thumb the partition is
consistent with the hypothesis P = Q if it consists of many “round” cells that contain
their respective P-points roughly in their middle. The size of cells may vary according
to local densities and there are bound to be some elongated cells due to sampling error
(i.e. the fact that we can only sample from P and do not know it exactly), but a local
accumulation of many elongated cells should give rise to the suspicion that P = Q
may be violated in a specific way. Thus GOF partitions provide the data scientist
both with a global impression for the plausibility of P = Q and with detailed local
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Fig. 7 A data example and a continuous density to compare it to

Fig. 8 Goodness-of-fit partitions for the data points in the left panel of Fig. 7 compared (on the left) with
the density in the right panel of Fig. 7 and (on the right) with the uniform density on the square

information about the nature of potential deviations of P from Q. Of course they are
a purely explorative tool and do not give any quantitative guarantees.

We give here an example for illustration. Suppose we have data as given in the left
panel of Fig. 7 and a distribution Q as represented by the heat map in the right panel.
Fig. 8 shows the optimal transport partition for this situation on the left hand side.
The partition indicates that the global fit of the data is quite good. However it also
points out some deviations that might be spurious, but might also well be worth further
investigation: one is the absence of points close to the two highest peaks in the density
map, another one that there are some points too many in the cluster on the very left of
the plot. Both of them are quite clearly visible as accumulations of elongated cells.

As an example of a globally bad fit we show in the right panel of Fig. 8 the GOF
partition when taking as Q the uniform measure on the square.

For larger d direct visual inspection becomes impossible. However, a substantial
amount of information may still be extracted, either by considering statistics of the
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GOF partition in d dimensions that are able to detect local regions of common ori-
entation and high eccentricity of cells, or by applying dimension reduction methods,
such as (Flamary et al. 2018), before applying the GOF partition.

7 Discussion and outlook

We have given a comprehensive account on semi-discrete optimal transport for the
Euclidean cost function, arguing that there are sometimes good reasons to prefer
Euclidean over squared Euclidean cost and showing that for the Euclidean case the
semi-discrete setting is particularly nice because we obtain a unique solution to the
Monge–Kantorovich problem that is induced by a transport map. We have provided a
reasonably fast algorithm that is similar to the AHA-algorithm described in detail in
Mérigot (2011) but adapted in various aspects to the current situation of p = 1.

Our algorithm converges towards the optimal partition subject to the convergence
conditions for the L-BFGS algorithm; see e.g. Nocedal (1980). Very loosely, such
conditions state that we start in a region around the minimizer where the objective
function� shows to some extent quadratic behavior. Similar to the AHA-algorithm in
Mérigot (2011), a proof of such conditions is not available. In practice, the algorithm
has converged in all the experiments and examples given in the present paper.

There are several avenues for further research, both with regard to improving speed
and robustness of the algorithm and for solving more complicated problems where
our algorithm may be useful. Some of them are:

– As mentioned earlier, it may well be that the choice of our starting value is too
simplistic and that faster convergence is obtained more often if the sequence
ν = ν(0), . . . , ν(L) of coarsenings is e.g. based on the K -median algorithm or
a similar method. The difficulty lies in finding ν(l−1) that makes W1(ν

(l), ν(l−1))

substantially smaller without investing too much time in its computation.
– We currently keep the threshold ε in the stopping criterion of the multiscale
approach in Sect. 4.1 fixed. Another alleviation of the computational burden may
be obtained by choosing a suitable sequence εL , . . . , ε0 of thresholds for the var-
ious scales. It seems particularly attractive to use for the threshold at the coarser
scale a value εl > 0 that is smaller than the value εl−1 at the finer scale, especially
for the last step, where l = 1. The rationale is that at the coarser scale we do not
run easily into numerical problems and still reach the stricter εl -target efficiently.
The obtained weight vector is expected to result in a better starting solution for
the finer problem that reaches the more relaxed threshold εl−1 more quickly than
a starting solution stemming from an εl−1-target at the coarser scale.

– The L-BFGS algorithm used for the optimization process may be custom-tailored
to our discretization of μ in order to reach the theoretically maximal numerical
precision that the discretization allows. It could e.g. use simple gradient descent
from the point on where L-BFGS cannot minimize � any further since even in the
discretized case the gradient always points in a descending direction.

– Approximating the intersections of μ-pixels with weighted Voronoi cells by
splitting pixels into very small subpixels has shown good results. However, as
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mentioned in Sect. 4.2, higher numerical stability and precision could be obtained
by computing the intersections between the Voronoi cells and the pixels of μ

exactly. Currently we are only able to do this at the expense of a large increase in
the overall computation time. It is of considerable interest to have a more efficient
method at hand.

– One of the reviewers pointed out that there are recent formulae available for the
Hessian of the function � in Theorem 3. Indeed, based on Theorem 1 in De
Gournay et al. (2019) we formally obtain in our setting a Hessian matrix with
entries

∂2�

∂w j ∂wk
(w) = −

∫
Vorw( j)∩Vorw(k)

∥∥∥∥ x − y j

‖x − y j‖ − x − yk

‖x − yk‖
∥∥∥∥

−1

�(x) σd−1(dx)

(12)
for j 
= k, where σd−1 denotes (d − 1)-dimensional Hausdorff measure, and

∂2�

∂w2
j

(w) = −
∑
k 
= j

∂2�

∂w j ∂wk
(w).

Unfortunately, condition (Diff-2-a) required for this theorem is not satisfied for the
unsquared Euclidean cost, since the norm term in (12) (without taking the inverse)
goes to 0 as x → ∞ along the boundary set H = {x ∈ R

d |‖x − y j‖−‖x − yk‖ =
w j − wk}. We conjecture that the second derivative of � at w still exists and is
of the above form if the integrals in (12) are finite (maybe under mild additional
conditions).
If this can be established, we may in principle use a Newton method (with appro-
priate step size correction) for optimizing �. It remains to be seen, however, if the
advantage from using the Hessian rather than performing a quasi Newton method
outweighs the considerably higher computational cost due to computing the above
integrals numerically. Another goal could be to establish global convergence of
such a Newton algorithm under similar conditions as in Theorem 1.5 in Kitagawa
et al. (2019), which is quite general, but requires higher regularity of the cost
function.

– Semi-discrete optimal transport may be used as an auxiliary step in a number of
algorithms for more complicated problems. The most natural example is a simple
alternating scheme for the capacitated location-allocation (or transportation-
location) problem; see Cooper (1972). Suppose that our fast-food chain from
Sect. 6.2 has not entered themarket yet andwould like to openn branches anywhere
in the city and divide up the area into delivery zones in such a way that (previously
known) capacity constraints of the branches are met and the expected cost in terms
of travel distance is minimized again. A natural heuristic algorithm would start
with a random placement of n branches and alternate between capacitated alloca-
tion of expected orders (the continuous measure μ) using our algorithm described
in Sect. 4 and the relocation of branches to the spatial medians of the zones. The
latter can be computed by discrete approximation, see e.g. Croux et al. (2012), and
possibly by continuous techniques, see Fekete et al. (2005) for a vantage point.
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Appendix: Formulae for affine transformations of measures

We have the following relations when adding a common measure or multiplying by a
common nonnegative scalar. The proof easily extends to a complete separable metric
space instead of Rd equipped with the Euclidean metric.

Lemma 1 Let μ, ν, α be finite measures on R
d satisfying μ(Rd) = ν(Rd). For p ≥ 1

and c > 0, we have

Wp(α + μ, α + ν) ≤ Wp(μ, ν), (13)

W1(α + μ, α + ν) = W1(μ, ν), (14)

Wp(cμ, cν) = c1/p Wp(μ, ν), (15)

where we assume for (14) that W1(μ, ν) < ∞.

Proof Write� = {(x, x)|x ∈ R
d}. Denote byα� the push-forward ofα under themap

[Rd → R
d ×R

d , x �→ (x, x)]. Letπ∗ be an optimal transport plan for the computation
of Wp(μ, ν). Then π∗ + α� is a feasible transport plan for Wp(α + μ, α + ν) that
generates the same total cost as π∗. Thus

Wp(α + μ, α + ν) ≤ Wp(μ, ν).

Likewise cπ∗ is a feasible transport plan for Wp(cμ, cν) that generates c1/p times the
cost of π∗ for the integral in (1). Thus

Wp(cμ, cν) ≤ c1/p Wp(μ, ν).

Replacing c by 1/c, as well as μ by cμ and ν by cν, we obtain (15).
It remains to show W1(α + μ, α + ν) ≥ W1(μ, ν). For this we use that a transport

plan π between μ and ν is optimal if and only if it is cyclical monotone, meaning that
for all N ∈ N and all (x1, y1), . . . , (xN , yN ) ∈ supp(π), we have

N∑
i=1

‖xi − yi‖ ≤
N∑

i=1

‖xi − yi+1‖,

where yN+1 = y1; see Villani (2009, Theorem 5.10(ii) and Definition 5.1).
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Letting π∗ be an optimal transport plan for the computation of W1(μ, ν), we show
optimality of π∗ + α� for the computation of W1(μ + α, ν + α). We know that π∗
is cyclical monotone. Let N ∈ N and (x1, y1), . . . , (xN , yN ) ∈ supp(π∗ + α�) ⊂
supp(π∗) ∪ �. Denote by 1 ≤ i1 < . . . < ik ≤ N , where k ∈ {0, . . . , N }, the
indices of all pairs with xi j 
= yi j , and hence (xi j , yi j ) ∈ supp(π∗). By the cyclical
monotonicity of π∗ (writing ik+1 = i1) and the triangle inequality, we obtain

N∑
i=1

‖xi − yi‖ =
k∑

j=1

‖xi j − yi j ‖ ≤
k∑

j=1

‖xi j − yi j+1‖ ≤
N∑

i=1

‖xi − yi+1‖.

Thus π∗ + α� is cyclical monotone and since it is a feasible transport plan between
μ + α and ν + α, it is optimal for the computation of W1(μ + α, ν + α), which
concludes the proof.

Remark 2 Equation (14) is not generally true for any p > 1. To see this consider the
case d = 1, μ = δ0, ν = δ1 and α = bLeb|[0,1], where b ≥ 1. Clearly Wp(μ, ν) = 1
for all p ≥ 1. Denote by F and G the cumulative distribution functions (CDFs) of
μ + α and ν + α, respectively, i.e. F(x) = μ((−∞, x]) and G(x) = ν((−∞, x]) for
all x ∈ R. Thus

⎧⎨
⎩

F(x) = G(x) = 0 if x < 0,
F(x) = 1 + bx, G(x) = bx if x ∈ [0, 1),
F(x) = G(x) = b + 1 if x ≥ 1.

We then even obtain

W p
p (α + μ, α + ν) =

∫ b+1

0
|F−1(t) − G−1(t)|p dt

= 2
∫ 1

0

t p

bp
dt + 1

bp
(b − 1) = 1

bp

(
b − 1 + 2

p + 1

)
−→ 0

as b → ∞ if p > 1. For the first equality we used the representation of Wp in terms
of (generalized) inverses of their CDFs; see Eq. (2) in Rippl et al. (2016) and the
references given there and note that the generalization from the result for probability
measures is immediate by (15).
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