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Abstract
In this paper,we compare alternative estimation approaches for factor augmented panel
data models. Our focus lies on panel data sets where the number of panel groups (N )
is large relative to the number of time periods (T ). The principal component (PC) and
common correlated effects (CCE) estimators were originally developed for panel data
with large N and T , whereas the GMMapproaches of Ahn et al. (J Econ 728 174:1–14,
2013) and Robertson and Sarafidis (J Econ 185(2):526–541, 2015) assume that T is
small (that is T is fixed in the asymptotic analysis).Our comparisonof existingmethods
addresses three different issues. First, we analyze the possibility of an inappropriate
normalization of the factor space (the so-called normalization failure). In particular
we propose a variant of the CCE estimator that avoids the normalization failure by
adapting a weighting scheme inspired by the analysis of Mundlak (Econometrica
46(1):69–85, 1978). Second, we analyze the effects of estimating versus fixing the
number of factors in advance. Third, we demonstrate how the design of the Monte
Carlo simulations favors some estimators, which explains the conflicting findings from
existing Monte Carlo experiments.
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1 Introduction

The seminal work of Holtz-Eakin et al. (1988) has provided two important contribu-
tions to the statistical analysis of panel data. First, it proposes a GMM framework for
estimating dynamic panel data models that were further developed and popularized by
Arellano and Bond (1991). This approach has become standard in the dynamic analy-
sis of panel data. The second contribution, the introduction of time varying individual
effects, was less influential and went largely unnoticed for many years. For example,
the excellent monograph of Baltagi (2005)—as all other textbooks on panel data anal-
ysis of the early 2000s—does not consider time varying individual effects or any other
factor structure. Bai (2009) pointed out that time varying individual effects are just
a special case of a factor structure and provided a general framework for estimating
a panel data model with “interactive fixed effects”, which is also referred to as the
factor-augmented panel data model.

With the work of Ahn et al. (2001, 2013), Pesaran (2006), and Bai (2009) the inter-
est in models that account for time varying heterogeneity and cross-section correlation
surged considerably and the 25th International Conference on Panel Data in Vilnius
2019 included a large number of papers dealingwith factor-augmented panel datamod-
els. In empirical practice, the Common Correlated Effects (CCE) approach proposed
by Pesaran (2006) has recently become very popular among empirical researchers.
This is due to the fact that this estimator is easy to understand and implement, a
STATA routine (xtmg) and a Gretl add-on (xtcsd) is available and it performs well
in Monte Carlo studies. It is, however, not clear, whether the CCE approach is simi-
larly attractive in empirical applications where the number of time periods T is small
(say 5–15). Ahn et al. (2013) and Robertson and Sarafidis (2015) proposed a GMM
approach that is shown to be consistent for finite T , whereas the CCE and the principal
component (PC) estimator were developed for samples with large T and N . Su and Jin
(2012) and Westerlund et al. (2019) showed that the CCE approach is consistent and
asymptotically (mixed) normal if T is fixed and N → ∞, whereas the consistency
of the PC estimator requires quite restrictive assumptions (such as i.i.d. errors across
time) in this case. It is, however, not clear how large T should be in order to ensure
reliable estimation and inference.

An important assumption for the CCE estimator is that the (weighted) mean of
the factor loadings is different from zero. This assumption is difficult to verify as the
factors loadings are typically unknown. Furthermore, we show that the CCE estimator
is already biased if the mean of the factor loadings is O(N−1/2). To escape such a
“normalization failure”,we suggest a data-dependentweighting scheme that is inspired
by the Mundlak (1978) approach. In our Monte Carlo simulations we show that this
simple weighting scheme performs well, whenever the original CCE estimator suffers
from a normalization failure.

The rest of the paper is organized as follows. Section 2 compares the existing
estimation methods and Sect. 3 reviews and complements the asymptotic results for
fixed T and N → ∞. Possible problems with the normalization of the estimators
are analyzed in Sect. 4. An extension to multiple factors is considered in Sect. 5 and
empirical approaches for selecting the number of common factors are examined in
Sect. 6. We argue that popular selection rules for the number of factors are generally
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inconsistent if T is fixed. The small sample properties of alternative estimation pro-
cedures are investigated in Sect. 7. Specifically, we illustrate the detrimental effect
of a normalization failure and demonstrate the robustness of the Mundlak-type CCE
estimator. Furthermore, we investigate the effects of estimating the number of factors
on the performance of the estimation procedures. Finally, we employ three general
model setups from the literature in order to compare the competing methods in more
challenging and realistic scenarios. Section 8 concludes.

2 Existing estimation approaches

Consider the factor augmented panel data model:1

yit = β ′xi t + eit (1)

with eit = λi ft + uit , (2)

where xi t and β are k×1 vectors. For the ease of exposition, we first consider a single
factor with r = 1, that is, ft and λi are scalars. The extension to multiple factors is
considered in Sect. 5.

We adopt a “classical” panel data framework where the coefficient vector β is the
same for all cross-section units (homogeneous panel). Furthermore, we assume that T
may be small relative to N , which is typical for many panel data applications. It should
be noted that the asymptotic framework of Pesaran (2006) and Bai (2009) assumes
that N and T tend to infinity, whereas Ahn et al. (2013) and Robertson and Sarafidis
(2015) suppose that T is small and fixed. Furthermore, the latter approach treats ft as
parameter and thereby avoids making any assumptions on these parameters, whereas
Pesaran (2006) and Bai (2009) assume that the factors are weakly correlated random
variables and the loadings are treated as parameters (or also as random variables). We
make the assumption that uit is independent (strictly exogenous) of xi t , ft and λi .
This rules out dynamic specifications.2

It is well known that in the two-way panel data model the individual and time
specific effects (which result as special cases of the factor model with constant factor
and loading, respectively) can be removed by a simple data transformation, where the
variables are adjusted by the individual and time specific averages. It is not difficult
to see that a similar transformation exists for the model with interactive fixed effects,
which is given by

yit − λi yt (λλλ) = β ′ [xi t − λi xt (λ)] + uit − λi ut (λ), (3)

1 The model may include further terms such as γ ′
i dt , where dt is some observed strictly exogenous

regressor, cf. Pesaran (2006). As such additional terms are easily accounted for without affecting the main
results, these extensions are ignored.
2 In panels with individual specific parameters and fixed T , including weakly dependent regressors (such
as lagged dependent variables) results in a bias of order 1/T (the incidental parameter problem). The
GMM-based estimators of Sect. 2.3 are able to cope with this bias by introducing time-dependent vectors
of instruments. In this paper we abstract from such complications. The reader interested in dynamic models
is referred to Juodis and Sarafidis (2018).
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where λλλ = (λ1, . . . , λN )′ and

yt (λλλ) = 1

Nλ2

N∑

i=1

λi yi t

with λ2 = N−1 ∑N
i=1 λ2i . The weighted averages xt (λ) and ut (λ) are constructed

in an analogous manner. Note that et (λλλ) = yt (λλλ) − β ′xt (λ) = ft + ut (λ) serves
as an estimate of ft . Estimating the transformed regression (3) is equivalent to the
least-squares estimator, treating β and f1, . . . , fT as parameters and xi t and λi as

regressors. Accordingly, the resulting estimator is efficient if uit
iid∼ N (0, σ 2).

2.1 The PC estimator

For the PC approach suggested by Bai (2009), equation (3) is replaced by the feasible
version

yit − λ̂i yt (̂λλλ) = β ′ [xi t − λ̂i xt (̂λλλ)
] + eit − λ̂i et (̂λλλ), (4)

where eit = yit − β ′xi t = λi ft + uit and λ̂i denotes the PC estimator of the factor
loading λi , which is equivalent to the element of the eigenvector associated with the
largest eigenvalue of the sample covariance matrix �ee(β) = T−1 ∑T

t=1 et (β)et (β)′
with et (β) = (yi1−β ′xi1, . . . , yiT −β ′xiT )′. As shown byMoon andWeidner (2015)
the sum of squared residuals can be obtained by minimizing the objective function

β̂ = argmin

{
μmin

[
N∑

i=1

(
yi − X iβ

) (
yi − X iβ

)′
]}

(5)

where yi = (yi1, . . . , yiT )′ and X i = (xi1, . . . , xiT )′ andμmin{A} denotes the small-
est eigenvalue of the matrix A. The minimum can be obtained by standard numerical
methods, whereas Bai (2009) proposed to compute the (nonlinear) least-squares esti-
mator of (4) sequentially by starting with the pooled OLS or within-group estimator of
β (that is by ignoring the factor structure in the errors). The first principal component
of the residual eit (β̂) yields a first estimator of the common factor and the associ-
ated loadings are used to obtain the estimated analog of the weighted averages in (4).
The estimation procedure is iterated until the estimators converge to the least-squares
estimators of β and λ.

Moon and Weidner (2019) pointed out that the least-squares objective function
may exhibit several local minima and therefore it is possible that the gradient-based
minimization algorithm fails to find the global minimum. To cope with this problem,
Moon and Weidner (2019) propose a nuclear norm penalty that results in a convex
optimization problem. Another possibility is to initialize the minimization algorithm
by a

√
NT -consistent initial estimator. In this case it is sufficient to assume convexity

in the 1/
√
NT vicinity around the true value.
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2.2 The CCE estimator

In contrast to the PC estimator, the CCE approach proposed by Pesaran (2006) does
not adopt an (asymptotically) efficient weighting scheme, but employs instead pre-
specified weights λ0.3 In practice λ0 = (1, . . . , 1)′ is the default option, but any other
granular weighting scheme is possible. This gives rise to a modified transformation,

yit − λ∗
i yt (λλλ0) = β ′ [xi t − λ∗

i xt (λλλ0)
] + uit − λ∗

i ut (λλλ0), (6)

where

λ∗
i = λi

∑N
i=1 λ20,i∑N

i=1 λ0,iλi

is required to drop the factor from the model. Note that if λ0,i = λi for all i , then
λ∗
i = λi and the transformation is equivalent to (3). Furthermore, if λ0,i = 1 then

λ∗
i = λi/λ, where λ = N−1 ∑N

i=1 λi . By reorganizing (6), we obtain the cross-section
augmented regression equation,

yit = β ′xi t + λ∗
i yt (λλλ0) + γ ′

i xt (λλλ0) + vi t , (7)

where γ i = −λ∗
i β and vi t = uit − λ∗

i ut (λλλ0). In practice, the nonlinear restriction
γ i = −λ∗

i β is ignored and, therefore, γ i is treated as an additional parameter.4

2.3 The HNR and ALS approach

While the CCE and PC approach replace the unobserved factor by (weighted) averages
of y1t , . . . , yNt and x1t , . . . , xNt , the approaches suggested by Holtz-Eakin et al.
(1988) (HNR) and Ahn et al. (2013) (ALS) replace the unknown factor loadings by
linear combinations of yi1, . . . , yiT and xi1, . . . , xiT :

HNR:
1

ft−1
(yi,t−1 − β ′xi,t−1) = λi + 1

ft−1
ui,t−1 (8)

ALS:
1

fT
(yiT − β ′xiT ) = λi + 1

fT
uiT . (9)

Themain difference between these two approaches is that in (8) the linear combination
is time dependent, whereas in (9) the linear combination is the same for all time series.
As we do not see any advantage in using the variant HNR (and in our simulations the

3 This does not imply, however, that the CCE estimator is always inefficient whenever λ �= λ0. As shown
byWesterlund et al. (2019) the CCE estimator is asymptotically efficient if r = k+1 and uit is i.i.d. across
i and t .
4 The restricted version of the CCE estimator is considered in Everaert and De Groote (2016). In our
experience, imposing the nonlinear restriction does not result in an important gain in efficiency. In the
model with r > 1 the restriction cannot be imposed anyway.
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HNR estimator tends to perform worse than the ALS estimator), we focus on the ALS
variant in the following analysis.

Inserting (9) in model (1) yields

ALS: yit = β ′xi t + θt yiT − θtβ
′xiT + νi t for t = 1, . . . , T − 1, (10)

where θt = ft/ fT and νi t = uit − θt uiT . Note that this approach involves T − 1
additional parameters θ1, . . . , θT−1, whereas the CCE approach involves N (k + 1)
additional parameters, whichmay be amuch larger number of parameters, in particular
if N is large relative to T .

Equation (10) can be estimated as a linear equation by ignoring the nonlinear
relationship δt = θtβ and treating δt as additional parameters, cf. Hayakawa (2012).
Furthermore, as the regressor yiT is correlated with the errors, an instrumental variable
approach is required for estimating the coefficients efficiently. Since it is assumed that
xi t is strictly exogenous, we employ observations of all time periods to construct
the T k × 1 instrumental variable vector zi = (x′

i1, x
′
i2, . . . , x

′
iT )′. The first stage

regression yields ŷiT = π̂ ′zi , where π̂ ′zi is the fitted value from a regression of yiT
on zi . The second stage regression is

yit = β ′xi t + θt ŷiT − θtβ
′xiT + νi t .

Estimating the latter equation by OLS yields the two-stage least squares (2SLS) esti-
mator. Since the error term νi t is autocorrelated (due to the common component
θt uiT ), a GMM estimator based on the moment condition E(νi ⊗ zi ) = 0 with
νi = (νi1, . . . , νiT )′ is more efficient, in general.

2.4 The RS estimator

The GMM estimator of Robertson and Sarafidis (2015) results from multiplying the
original model by the vector of instruments zi (e.g. the instruments of the ALS esti-
mator) such that

zi yi t = (
zi x′

i t

)
β + (ziλi ) ft + zi uit .

The respective moment condition is given by

E
(
mzy − Mzxβ − f ⊗ γ

) = 0,

where

mzy =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
N

N∑
i=1

zi yi1

...

1
N

N∑
i=1

zi yiT

⎞

⎟⎟⎟⎟⎟⎟⎠
Mzx =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
N

N∑
i=1

zi x′
i1

...

1
N

N∑
i=1

zi x′
iT

⎞

⎟⎟⎟⎟⎟⎟⎠
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γ = 1

N

N∑

i=1

ziλi f = (
f1 · · · fT

)′
.

Note that in this model the N factor loadings λ1, . . . , λN enter in form of the T k
dimensional vector γ , resulting in a considerable dimensionality reduction whenever
N is much larger than T . The GMM estimator results from minimizing the criterion
function

Q(β, γ , f ) = (
mzy − Mzxβ − f ⊗ γ

)′ W N
(
mzy − Mzxβ − f ⊗ γ

)
, (11)

where W N is a consistent estimator of the optimal weighting matrix

W =
[
E

(
1

N

N∑

i=1

ũi ũ′
i

)]−1

with ũi = mzy −Mzxβ − f ⊗γ . Robertson and Sarafidis (2015) propose to minimize
the function Q(·) by applying a sequential GMM estimator. Let f 0t denote some start-
ing value. Replacing ft by f 0t , the parameters β and γ are obtained by linear GMM.
Replacing γ by the respective GMM estimator, we obtain an updated estimator for ft
by another linear GMM estimation step. This sequential GMM estimator eventually
converges to the minimum of (11). An alternative estimator based on linear GMM is
proposed by Juodis and Sarafidis (2020).

It is important to notice that the first-order condition of the GMM estimator is
invariant to some scaling factor c, such as f ∗ = c f and γ ∗ = γ /c. The PC estimator

implies c = 1/
√∑T

t=1 f 2t and the original ALS estimator imposes c = 1/ fT . The
objective function of the least-squares estimator does not impose any normalization
of the factors. There exists a unique minimum for the product f ⊗ γ , but the decom-
position into γ and f is somewhat arbitrary and depends on the starting value of the
iterative algorithm.

3 Asymptotic properties for fixed T

The asymptotic properties of the PC and CCE estimators are typically derived by
adopting a joint limit theory, where T and N tend to infinity (e.g. Pesaran 2006;
Bai 2009; Greenaway-McGrevy et al. 2012 and Westerlund and Urbain 2015). The
asymptotic analysis revealed that the PC and CCE estimators are

√
NT -consistent

whenever
√
T /N → 0 and

√
N/T → 0. This requirement is fulfilled if for some fixed

constant, 0 < a < ∞, the paths of the sample sizes admit the inequality aT 0.5+ε <

N < aT 2−ε for some ε > 0. Statistical inference based on these estimators suffers
from an asymptotic bias whenever T /N → κ > 0. This bias does not show up in
the asymptotic analysis of Pesaran (2006), as he assumes that the coefficient vector
β i = β+vi is individual specific,where vi is a randomerror that prevents the estimator
from achieving the usual

√
NT convergence rate. In the literature cited above, bias-
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corrected estimators are suggested that remove the asymptotic bias from the limiting
distribution.

For fixed T and N → ∞ the CCE estimator of the factors is consistent as et (λ0)

converges in probability to c ft , where c is some scale factor that is different from
zero. Therefore, the errors-in-variable problem vanishes for N → ∞ and fixed T (cf.
Westerlund et al. 2019).

For the asymptotic analysis of the PC estimator, it is usually assumed that
min(N , T ) → ∞ (cf. Bai 2009) and, therefore, the PC estimator may be inconsistent
if T is fixed and N → ∞ (see Remark 1 of Bai 2009). Under more restrictive assump-
tions it is, however, possible to show that the PC estimator of the factors is consistent
if T is fixed and N → ∞. To focus on the main issues assume that β is known. Fur-
thermore, we assume that the vectors fff = ( f1, . . . , fT )′ and λλλ = (λ1, . . . , λN )′ are
parameter vectors to be estimated. The PC estimator solves the first-order conditions:

1

N

N∑

i=1

(eeei − f̂ff λ̂i )̂λi = 0 where ei = (ei1, . . . , eiT )′ (12)

1

T

T∑

t=1

(eeet − f̂tλ̂λλ) f̂t = 0 where et = (e1t , . . . , eNt )
′, (13)

subject to T−1 ∑T
t=1 f̂ 2t = T−1 f̂ff

′
f̂ff = 1. Since λ̂i = T−1 f̂ff

′
eeei , we obtain

1

N

N∑

i=1

(
ei − 1

T
f̂ f̂

′
ei

)
e′
i f̂ = M f̂

(
1

N

N∑

i=1

ei e′
i

)
f̂ = 0, (14)

where M f̂ = IT − T−1 f̂ f̂
′
with M f̂ f̂ = 0. For N → ∞ we have

1

N

N∑

i=1

ei e′
i

p→ σ 2
λ f f ′ + 	u,

where σ 2
λ = plim

N→∞
N−1 ∑N

i=1 λ2i , 	u = plim
N→∞

N−1 ∑N
i=1 uiu

′
i , and ui =

(ui1, . . . , uiT )′. Assume that uit is i.i.d. with 	u = σ 2
u IT . As N → ∞ the moment

condition is solved by letting f̂ = f and, therefore, the PCestimator for f is consistent
(up to a scaling factor). If uit is heteroskedastic or autocorrelated, then M f���u fff �= 0
in general and, therefore, the PC estimator is inconsistent as N → ∞. On the other
hand, if both N and T tend to infinity, the PC estimator is consistent no matter of a
possible heteroskedasticity or (weak) autocorrelation (cf. Chamberlain and Rothschild
1983).

The asymptotic theory for the HNR and ALS estimators assumes that T is fixed and
N tends to infinity. The GMM estimator is based on kT (T − 1) moment conditions
with k+ T −1 unknown parameters. Therefore, no problem arises if T is fixed and N
tends to infinity. Accordingly, the estimators are asymptotically normally distributed
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and centered around zero. Of course the problem of instrument proliferation arises if
T gets large and the asymptotic theory breaks down if T 3/N → κ > 0 (cf. Bekker
1994 and Lee et al. 2017).5

4 Identification

Since the factor space is not identified without some normalization of the factors
and factor loadings, the estimation approaches impose some normalization that may
be problematical in empirical practice. The CCE and ALS approaches require the
following conditions:

CCE:
1

N

N∑

i=1

λ0,iλi �= 0, (15)

ALS: fT �= 0 , (16)

whereas the requirement for the PC estimator T−1 ∑T
t=1 f 2t > 0 is unproblematic,

as otherwise the factor does not exist. The violation of the restrictions (15) and
(16) may result in poor distributional properties of the estimator. If, for example,
N−1 ∑ λ0,iλi = 0, then the cross-section mean et (λλλ0) does not depend on the factor
and, therefore, the CCE estimator is biased whenever xi t and λi ft are correlated (cf.
Westerlund and Urbain 2013). Similarly, if fT = 0, then yiT = β ′xiT + uiT and the
instruments are not able to identify the parameters θt and δt .

One may argue that the chance that (15) or (16) is exactly zero is negligible, so
that problems only occur in rare cases (if at all). Unfortunately, this is not true, as the
problems already arise whenever N−1 ∑ λ0,iλi = Op(N−1/2). For illustration, let us
assume λ0,i = 1, such that yt (λλλ0) = yt and λ = Op(N−1/2). Including the cross-
section averages yt and xt is equivalent to augmenting with et and xt . Furthermore,

et = λ ft + ut

= λ f ∗
t ,

where f ∗
t = ft + (ut/λ). Since in our case ut/λ = Op(1), it follows that the factor

f ∗
t is different from ft . In this case, et does not represent the true factor and the CCE

estimator of β is inconsistent whenever the factor is correlated with the regressors.
To sidestep this difficulty, we follow the analysis ofMundlak (1978) and decompose

the factor loadings into a systematic component related to the ordinary average xi and
the projection error ξi :

λi = γ0 + γ ′
1xi + ξi , (17)

5 A practical solution is to reduce the set of instruments (cf. Juodis and Sarafidis 2018) or applying other
methods of dimensionality reduction (Breitung 2015, Section 15.2.3).
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where xi = T−1 ∑T
t=1 xi t and ξi is uncorrelated with xi . In this specification γ ′

1xi
represents a possible linear dependence of λi on the regressors that gives rise to an
endogeneity bias. Inserting (17) in (1) yields

yit = β ′xi t + λ∗
i ft + e∗

i t ,

where λ∗
i = γ0 + γ ′

1xi , e
∗
i t = ξi ft + uit and E(e∗

i t |xi t ) = 0. This estimation equation
is related to the projection approach of Hayakawa (2012), who considers a projection
of λi on the vector zi = vec(X i ), also known as Chamberlain projection. A second
difference to the Hayakawa (2012) approach is that he employs the projection for
GMM estimation of ALS, whereas we employ the Mundlak projection in the context
of CCE estimation.

The weighting scheme for the CCE estimator results as

yt (λ
∗) = 1

Nλ2∗

N∑

i=1

λ∗
i yi t

= γ̃0

(
1

N

N∑

i=1

yit

)
+ γ̃ ′

1

(
1

N

N∑

i=1

xi yi t

)

where γ̃0 = γ0/λ2∗ and γ̃ 1 = γ 1/λ
2∗

and λ2∗ = 1
N

∑N
i=1(λ

∗
i )

2. Since γ̃0 and γ̃ 1 are unknown, we augment the regression
by the following (k + 1)2 cross-section averages:

1

N

N∑

i=1

yit ,
1

N

N∑

i=1

x1,i t , · · · ,
1

N

N∑

i=1

xk,i t ,

1

N

N∑

i=1

x1,i yi t ,
1

N

N∑

i=1

x1,i x1,i t , · · · ,
1

N

N∑

i=1

x1,i xk,i t ,

...
...

...

1

N

N∑

i=1

xk,i yi t ,
1

N

N∑

i=1

xk,i x1,i t , · · · ,
1

N

N∑

i=1

xk,i xk,i t .

This estimator is referred to as CCE(M).6 It is important to note that this approach
implies the inclusion of (k + 1)2 cross-section averages, attached with individual
specific coefficients. It follows that T needs to be larger than (k + 1)2 which may be
a severe restriction in empirical practice. Furthermore, the small sample properties of
the CCE(M) estimator may suffer from a large number of auxiliary regressors.

6 This estimator can be seen as a special case of the combination-CCE estimator proposed by Karabiyik
et al. (2019).
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Similar normalization problems arise for the HNR and ALS approaches, but these
estimators apply a normalization to the factors. For example, if fT is zero, then the
linear combination of yiT and xiT is not able to identify the factor and, therefore, the
ALS approach is biased whenever fT = 0 and xi t is correlated with λi ft . If T is
small, then one may try out all possible time periods for normalization and select the
normalization that minimizes the GMMobjective function. For a large number of time
series this approach is rather time-consuming. In such cases the normalization may be
selected by estimating the factor by the PC approach. Then, the normalization period
with the largest factor (in absolute value) is selected as the normalization period.

In appendix of Ahn et al. (2013) a more flexible approach is proposed, which
we refer to as ALS∗. Let H denote the T × (T − 1) orthogonal complement of
f = ( f1, . . . , fT )′ such that H ′ f = 0. To obtain (10) we let

H ′
ALS =

⎛

⎜⎜⎜⎝

1 0 0 · · · 0 −θ1
0 1 0 · · · 0 −θ2
...

. . .
...

0 0 0 · · · 1 −θT−1

⎞

⎟⎟⎟⎠ .

To avoid normalizing T − 1 elements to unity, we transform the equations for unit i
by using a more general matrix with property H ′ f = 0, such that H ′ei = H ′( yi −
X iβ), where yi = (yi1, . . . , yiT )′, X i = (xi1, . . . , xiT )′, ẽi = H ′ei . Given β, the
estimator of H is based on themoment conditionE(H ′ei z′i ) = 0,where zi = vec(X i ).
Accordingly, a GMM estimator for H can be obtained as

Ĥ = argmin
HHH

{
tr

(
H ′�ez�

−1
zz �′

ezH
)}

s.t. H ′H = IT−1,

where �ez = N−1 ∑N
i=1 ei z

′
i and �zz = N−1 ∑N

i=1 zi z
′
i . Accordingly, the estimator

Ĥ is obtained as the matrix of eigenvectors corresponding to the smallest T − 1
eigenvalues of the matrix �ez�

−1
zz �′

ez . Given Ĥ , the estimator for β is obtained from
the OLS regression

Ĥ
′
yi = Ĥ

′
X iβ + ẽi .

This estimation step yields an updated estimator for β that can be used to obtain a new
estimator of H , until convergence. A drawback of this variant of the ALS estimator
is that no standard errors for β are readily available, as the respective estimation step
is affected by the estimation error in Ĥ .

It is interesting to compare this approach to the PC estimator of Bai (2009), which
can be obtained by solving the problem

H̃ = argmin
HHH

{
tr

(
H ′�eeH

)}
s.t. H ′H = IT−1,

where �ee = N−1 ∑N
i=1 ei e

′
i . Accordingly, the difference between the PC and

ALS/RS approaches is that the former extracts the factors from the residual vector
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ei , whereas the ALS/RS approach first projects the residuals on the space spanned by
the vector of instruments zi . Accordingly, the latter approach assumes that the factors
are correlated with the regressors, whereas the PC approach does not.

Robertson and Sarafidis (2015) show that their estimator considered in Sect. 2.4 is
asymptotically equivalent toALS∗ if the error uit is i.i.d. If uit is heteroskedastic and/or
serially correlated, then the weighting matrix Wn results in an asymptotic efficiency
gain.

5 Multiple factors

So far we assumed that there is only a single factor. It is not difficult to see that for a
panel data model with a vector of r ≥ 1 factors fff t and the conformable r × 1 loading
vector λλλi , the estimation equation (3) is given by

yit − λλλ′
i yyy

∗
t (���) =

[
x′
i t − λ′

i XXX
∗
t (
)

]
β + uit − λλλ′

iuuut (���), (18)

where��� = (λλλ1, . . . ,λλλN )′ and

yyy∗
t (���) =

(
N∑

i=1

λλλiλλλ
′
i

)−1 N∑

i=1

λi yi t

and XXX
∗
t (���) =

(
N∑

i=1

λiλ
′
i

)−1 N∑

i=1

λi xxx
′
i t

and the r × 1 vector uuut (
) is constructed in a similar manner. This shows that
efficient estimation requires r linear independent weighting schemes applied to
yyyt = (x1t , . . . , yNt )

′ and XXXt = (x′
1t , . . . , x

′
Nt )

′.
To show consistency of themodifiedCCE estimator, CCE(M), a different reasoning

is required. For the ease of exposition assume k = 2 regressors and r = 2 factors. We
obtain 2 different weighting schemes:

y(1)
t = 1

N

N∑

i=1

x1,i yi t x (1)
1,t = 1

N

N∑

i=1

x1,i x1,i t x (1)
2,t = 1

N

N∑

i=1

x1,i x2,i t

y(2)
t = 1

N

N∑

i=1

x2,i yi t x (2)
1,t = 1

N

N∑

i=1

x2,i x1,i t x (2)
2,t = 1

N

N∑

i=1

x2,i x2,i t

that are used to obtain the following relationships:

(
y(1)
t

y(2)
t

)
−

(
x (1)
1,t x (1)

2,t

x (2)
1,t x (2)

2,t

)
β =

(
ξ

(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)(
f1,t
f2,t

)
+ Op(N

−1/2)
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where ξ
(�)
k = N−1 ∑N

i=1 x�,iλk,i . Accordingly, if the matrix

� =
(

ξ
(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)

is invertible7, we can obtain the linear combinations that represent the factors as

(
f1,t
f2,t

)
= �−1

(
y(1)
t

y(2)
t

)
− �−1

(
x (1)
1,t x (1)

2,t

x (2)
1,t x (2)

2,t

)
β + Op(N

−1/2).

Thus, asymptotically the space spannedby ( f1,t , f2,t ) is contained in the space spanned
by the corresponding 6 cross-sectional averages y(1)

t , y(2)
t , x (1)

1,t , x
(1)
2,t , x

(2)
1,t , and, x

(2)
2,t .

8

6 Determining the number of factors

As argued by Pesaran (2006), the CCE estimator is consistent if the actual number
of factors r is not larger than k + 1. This requires, however, that r − 1 factors are
correlated with the k regressors. This is due to the fact that one factor can be identified
by the cross-section average et (λ0) = yt (λ0) − β ′xt (λ0), whereas the identification
of the other factors requires some relationship to the cross-section averages of the
regressors xt . Furthermore, the correlation pattern needs to be sufficiently informative
for identifying the factors.

It is often argued that the CCE approach is attractive, as we do not need to select
the number of factors, whereas for all other approaches, the number of factors needs
to be known (or determined from the data). If the number of factors is smaller than
k + 1 and the normalization requirements are satisfied, then the CCE estimator is
consistent, but the small sample properties may suffer from including many cross-
section averages. This is comparable to applying the PC estimator with r = k + 1
factors. As shown byMoon andWeidner (2015), under some additional assumptions,9

the PC estimator is robust against over-specifying the number of factors. A similar
result is obtained by Westerlund et al. (2019) for the CCE estimator. Since under
certain conditions the CCE estimator for β is as efficient as the OLS estimator using
the true factors, there is no gain in (asymptotic) efficiency by changing the weighting
scheme or imposing nonlinear restrictions to the auxiliary parameters that are implied
by knowing the number of factors. It is, however, not clear whether this result provides
a good guidance for empirical applications in finite samples.

7 Note that for finite N the matrix � is almost surely invertible, even if λi and xi t are uncorrelated for all
i and t . To establish consistency we require that the probability limit of � is invertible as N → ∞.
8 The alert reader may have noticed that the linear combination does not involve the ordinary cross-section
averages N−1 ∑

i yi t , N
−1 ∑

i x1,i t and N−1 ∑
i x2,i t that are employed in the CCE estimator. These

additional averages are not required for identification but often improve the statistical properties of the
estimator. They may also help to escape the problems resulting from a (nearly) singular matrix �.
9 The proof of Moon and Weidner (2015) requires T → ∞ and is based on the i.i.d. assumption but they
note that it appears that their results extend to a less restrictive setting.
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In practice, it may therefore be interesting to estimate the number of factors. To this
end,wemay invoke the criteria proposedbyBai andNg (2002) andAhnandHorenstein
(2013).Both approaches are based on the eigenvalues of the residual covariancematrix.
Denote by μ̂1 ≥ · · · ≥ μ̂T the ordered eigenvalues of the T × T sample covariance
matrix �̂ee = N−1 ∑N

i=1 êi ê
′
i , where the residual vector êi is obtained by estimating

the model with maximum number of factors r∗. Furthermore, let

σ̂ 2
u (r) = 1

NT

N∑

i=1

T∑

t=1

û2i t = 1

T

T∑

j=r+1

μ̂ j

where ûi t denotes the residual from estimating the model with r factors. Bai and Ng’s
(2002) criterion ICp2 minimizes

BN(r) = log
(
σ̂ 2
u (r)

) + r
N + T

NT
log(min[N , T ]),

for r ∈ {0, 1, . . . , r∗}, whereas the criterion proposed by Ahn and Horenstein (2013)
maximizes the eigenvalue ratios

AH(r) = μ̂ j/μ̂ j+1 for r ∈ {1, 2, . . . , r∗}

and the mock eigenvalue μ̂0 =
(∑T

j=1 μ̂ j

)
/ log(T ). Let r0 denote the true number

of factors. If β̂∗ − βββ = Op(1/
√
NT ), we have

1

NT

N∑

i=1

T∑

t=1

(yit − β̂
′
∗xi t )2 = 1

NT

N∑

i=1

T∑

t=1

e2i t − 2
1

NT

N∑

i=1

T∑

t=1

eit x′
i t (β̂ββ∗ − βββ) + Op

(
1

NT

)

= 1

NT

N∑

i=1

T∑

t=1

e2i t + Op

(
1√
NT

)
.

Accordingly, the BN and AH criteria include an additional term of order
Op((NT )−1/2) that does not affect the asymptotic properties as N and T tend to
infinity.

Let us consider the asymptotic properties of the respective estimators r̂ if T is fixed
and N → ∞. The condition limN→∞ P (̂r < r0) = 0 implies (cf. Bai and Ng 2002)

c(N , T ) = N + T

NT
log(min[N , T ]) → 0. (19)

As condition (19) is not satisfied for fixed T , the BN criterion may select some r̂ < r0,
even if N → ∞. The requirement limN→∞ P (̂r > r0) = 0 implies

lim
N→∞ P

(
(r − r0)c(N , T ) + log

(
σ̂ 2
u (r)

) − log
(
σ̂ 2
u (r0)

)
> 0

)
= 1 for all r > r0.

(20)
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Since log
(
σ̂ 2
u (r0)

)− log
(
σ̂ 2
u (r)

) = Op(N−1) + Op(T−1) for r > r0 (cf. Lemma 4 of
Bai and Ng 2002), it may happen that for small T , condition (20) is violated as well.
Hence, the BN criterion may not be consistent for fixed T . In practice it is neverthe-
less possible that the BN criterion selects the number of factors consistently, if the
eigenvalues μ̂1, . . . , μ̂r0−1 are sufficiently large and μ̂r0+1, . . . , μ̂r∗ are sufficiently
small relative to μ̂r0 .

Since for fixed T , μ̂r is Op(1) for all r = 1, . . . , T , it follows that the eigenvalue
ratio AH(r) is Op(1) for fixed T and all r ∈ {1, . . . , r∗}. Therefore, the AH criterion
cannot be shown to be a consistent selection rule for fixed T . It may nevertheless
perform well, if the slope of the eigenvalue function is sufficiently steep at r = r0.

A possibility to sidestep these problems is to adopt the BIC selection criteria of
Ahn et al. (2013) and Robertson and Sarafidis (2015). These criteria are based on the
Sargan–Hansen specification test for GMM estimators. If the number of factors is too
small, then the remaining cross-correlation among the residuals results in a large value
of the test statistic. The penalty function is constructed such that the sum of the test
statistic and the penalty function obtains a minimum at the correct number of factors
as N tends to infinity.

7 Monte Carlo simulations

In this section we assess the performance of alternative estimation methods in various
settings and highlight some favorable and problematic aspects of alternative estimation
methods. The simulation results in Sects. 7.1–7.2 are based on the following simple
data-generating process

yit = βxit + λi ft + uit (21)

xit = μ + λi ft + λi + ft + εi t (22)

with β = 0.5 and r = 1. Hence, the regressor is correlated with the loadings, the factor
and the product of both. The regression error uit and the idiosyncratic component of
the regressor, εi t , are independent standard normal random variables. The constant μ
is drawn from aU [0, 1] distribution. The DGPs in Sects. 7.1 to 7.2 differ with respect
to the distributional assumptions on the factors and their loadings.

The (near) violation of the normalization restrictions for the CCE and ALS estima-
tors is examined in Sect. 7.1. In Sect. 7.2, we compare the PC and CCE estimator with
regard to their different weighting schemes. In Sect. 7.3 we address the estimation of
the number of factors, r , for the PC, ALS* and RS approaches. There, we consider a
similar DGP as in (21) and (22) for r = 1 and r = 2. The last Sect. 7.4 considers the
relative performance of the CCE, PC, ALS* and RS estimation approaches in more
general settings that are based on the DGPs considered by Bai (2009), Chudik et al.
(2011) and Ahn et al. (2013).
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7.1 Normalization failure

As argued in Sect. 4, theCCEandALS/HRNapproachesmay suffer from a violation of
their normalization conditions. The performance already deteriorates if the parameters
approach the

√
N -vicinity of the problematic subspace. In amodel with a single factor,

the normalization of the equally weighted CCE estimator (λ0,i = 1) requires that
λ = N−1 ∑N

i=1 λi �= 0. We have argued that whenever λ = c/
√
N , the factor cannot

be represented by a linear combination of yi and xi as N → ∞.
Sarafidis and Wansbeek (2012) and Westerlund and Urbain (2013) analyze the

performance of the CCE estimator when the normalization condition is violated. In
order to study the performance of the CCE estimator when λ is different but close to
zero, we consider the model in (21) and (22), where we generate the factor loadings
as

DGP1: λi ∼ N (μλ, 1) for μλ ∈ [0, 1] and ft ∼ N (0, 1).

Hence, the loadings are normally distributed with expectation that ranges from 0 to 1.
Figure 1a–d presents the absolute bias for the original CCE, the Mundlak-type

CCE(M) estimator suggested in Sect. 4, and the PC estimator for N = 100 and
N = 500 with a small (T = 10) and moderate (T = 50) number of time periods. The
PC estimator of Bai (2009) is obtained by a sequential estimation procedure using the
pooled OLS estimator as starting value for β (see Sect. 2.1). It turns out that the CCE
estimator is severely biased even if the mean of λi is substantially different from zero.
This is due to the fact that a bias already occurs whenever μλ = O(N−1/2). This
reasoning predicts that for fixed μλ the bias gets smaller if N increases. Indeed, this
is what we observe when comparing panel (a) and (c) as well as (b) and (d). Note that√
100/

√
500 ≈ 0.44 and, therefore, we expect that the bias reduces to a value less

than one half which is a good approximation for μλ > 0.1. The other two estimators,
PC and CCE(M), are virtually unbiased, which is expected as the estimators do not
rely on the assumption μλ �= 0.

In a similar manner, the normalization of the ALS estimator may be problematic if
the factors approach the problematic subspace. The ALS estimator requires fT �= 0.
To examine the consequences of an (approximate) violation of this normalization
condition, we consider the model in (21) and (22) where the factors are generated as

DGP2: ft ∼ N (0, 1) for t = 1, ..., T − 1 and fT ∼ N (μT , 0.5) for μT ∈ [0, 1]

and the factor loadings are standard normally distributed. As the final value of the
factor is crucial, we generate it by a distribution with expectation ranging from 0 to 1.

Figure 1e–f presents the bias for the ALS estimator when T = 5 and N = 100 or
N = 500, respectively. As expected, the ALS estimator is severely biased whenever
μT = E( fT ) is small. But even for moderate values ofμT the bias remains substantial
and decreases only gradually for larger values of μT . It should be noted that if the
regression includes an individual specific intercept, then the factors are demeaned and,
therefore, assuming a nonzero mean appears inappropriate.
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Fig. 1 Normalization failure for CCE (DGP1) and ALS (DGP2)

Figure 1e–f also presents the bias of two estimators that circumvent the problems
with the normalization of the original ALS estimator. The estimator ALS∗ refers to
the GMM estimator that estimates the matrix H that is used to remove the factors
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(see Sect. 4).10 Our simulation results suggest that this estimator performs quite well
in terms of bias, as it is virtually unbiased for all values of μT . Another approach to
escape the normalization problem is the GMMmax estimator, where in a first step the
factor is estimated using the PC approach. In the second step, the time period for the
normalization is chosen according to the maximum absolute value of the estimated
factor and the original ALS estimator is adapted, where the time period with the largest
factor is shifted to the end of the sample. Both estimators are able to reduce the bias
dramatically.

The figures also include the RS estimator, which corresponds to the FIVU estimator
of Robertson and Sarafidis (2015). This estimator does not require fT �= 0 for nor-
malization (see Sect. 2.4) and thus the bias does not depend on the value of μT . The
RS estimator has a slight advantage in terms of bias when N = 100. With N = 500,
the bias of the ALS∗, GMMmax and RS estimators is nearly zero.

To summarize, our findings confirm earlier evidence that the normalization applied
for the original CCE or ALS/HNR estimators may be problematical, whenever the
factors or loadings approach a normalization failure. It is, however, easy to adjust
the estimators such that they perform well for all values of the parameter space. Our
Monte Carlo exercise indicates that the PC and CCE(M) estimators as well as ALS∗,
GMMmax and RS are very robust against a possible normalization failure.

7.2 Fixed versus data driven weights

From the reasoning of Sect. 2, it turns out that the CCE estimator is expected to
outperform the PC estimator whenever the weighting scheme λλλ0 comes close to the
actual set of loadings λλλ, see also Westerlund and Urbain (2015). For equal weights
with λ0,i = 1 for all i , the CCE estimator performs well, whenever (i) the absolute
value of the mean of the loadings is large (to avoid the normalization failure) and (ii)
the variance of the loadings is small. Our DGP3 represents such a scenario, whereas
the DGP4 favors the PC estimator by generating factor loadings with large variance,

DGP3: λi ∼ N (1, 0.1), ft ∼ N (0, 1)

DGP4: λi ∼ N (1, 3), ft ∼ N (0, 1).

The remaining details of the simulation setup are identical to the model in (21) and
(22).

The results reported in Table 1 clearly confirm our assertion that the CCE estimator
outperforms the PC estimator in DGP3, whereas the PC estimator performs better for
DGP4. This finding suggests to find a weighting scheme that comes close to the actual
distribution of the loadings. This is the notion behind the Mundlak-type CCE variant
that employs the individual specificmeans yi and xi , since a linear combinationof these
averages can be seen as (CCE type) estimates of the loadings λi . Therefore, we hope
to improve the original CCE estimator by applying weights that are correlated with the
loadings.Our results from the simpleMonteCarlo experiment suggest that theCCE(M)
approach of choosing a data driven weighting scheme performs similar to the best

10 Following Ahn et al. (2013), we use β = 0 as starting value for the iterative ALS∗ procedure.
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Table 1 Fixed versus data driven weights

N T Bias*100 RMSE*100

PC CCE CCE(M) PC CCE CCE(M)

DGP3

50 10 1.23 0.00 0.19 6.43 5.12 5.93

100 10 0.56 0.06 0.21 3.94 3.56 4.04

100 20 0.10 −0.14 −0.09 2.43 2.33 2.42

100 50 0.09 −0.04 0.02 1.49 1.48 1.51

100 100 0.08 −0.03 0.02 1.06 1.06 1.08

500 500 0.05 −0.01 −0.01 0.20 0.20 0.20

DGP4

50 10 0.18 −2.31 0.19 4.65 6.62 5.97

100 10 0.24 −1.09 0.22 3.26 4.05 4.17

100 20 0.01 −1.30 −0.08 2.15 3.05 2.45

100 50 0.08 −1.22 0.01 1.34 2.36 1.51

100 100 0.10 −1.20 0.01 0.97 2.00 1.08

500 500 0.08 −0.24 −0.01 0.20 0.36 0.20

This table reports the simulation results generated with DGPs 3 and 4. The results are based on 1000
replications

estimator in the respective situation. Furthermore, as shown in the previous subsection,
the CCE(M) estimator sidesteps the risk of a normalization failure. Provided that this
estimator is similarly easy to compute as the original CCE estimator, it appears as if
this estimator is a robust variant of the original CCE estimator.

7.3 Selecting the number of factors

In practice, it is necessary to select the number of factors for the PC and GMM estima-
tion procedures. The choice is important, since misspecifying the number of factors
can have severe consequences: Overspecifying the number of factors can have adverse
effects on the sampling properties of the estimators, while an underspecification may
lead to inconsistent estimates if the ignored factors are correlated with the regressors.
One possibility for selecting the number of factors is simply to specify the number
according to some ad hoc rule, for instance r = k + 1, as usually advocated for the
CCE approach. Another option is to use a consistent criterion for the number of fac-
tors, such as the ones proposed by Bai and Ng (2002) (hereafter: BN) and Ahn and
Horenstein (2013) (AH). Note that these selection criteria were developed for the pure
factor model without regressors. Furthermore, the asymptotic theory underlying these
approaches requires T → ∞ (see Sect. 6). It is therefore interesting to investigate the
performance of these criteria that were not initially developed for a small number of
time periods. For the GMM estimators, the number of factors can be estimated using
model information criteria, such as the Schwarz Criterion (BIC) considered by Ahn
et al. (2013) and Robertson and Sarafidis (2015).
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Table 2 Hit rates for selection criteria

N T r = 1 r = 2

BNPC AHPC BICALS∗ BICRS BNPC AHPC BICALS∗ BICRS

100 5 0.0 94.6 91.7 83.0 0.0 46.8 86.4 76.6

250 5 0.0 96.2 96.9 96.7 0.0 50.8 93.2 89.5

500 5 0.0 96.9 98.8 98.3 0.0 52.1 96.3 94.1

250 10 100.0 99.9 90.6 97.0 99.6 86.4 89.7 92.9

500 10 99.9 99.9 96.7 98.4 99.4 89.8 95.9 96.9

500 15 100.0 100.0 92.3 99.6 100.0 97.9 92.9 98.8

In order to study the performance of these selection criteria, we consider a similar
model as in (21) and (22) with r = 1 and r = 2. For the loadings and factors, we
assume the following DGP,

DGP5: λ j,i ∼ N (0, 1), f j,t ∼ N (0, 1) for j = 1, 2.

As reported in Table 2, the hit rates for a single factor, r = 1, are nearly 100% for
the BN and AH criteria whenever T ≥ 10. For T = 5 the BN criterium does not
work and nearly always picks the maximum number of factors. On the other hand
the AH criterion works remarkably well, even for a number of time periods as small
as T = 5.11 The hit rates for the BIC criteria exceed 90% in all but one case. For
r = 2 the hit rates for the AH criterion are substantially lower, but the estimators are
still quite accurate, even if T = 10 and N is large. For the BIC criteria, the hit rates
decrease by only a small amount and do not seem to be very sensitive to the number
of factors, in particular if N > 100.

In Table 3, we report bias and RMSE for the PC, ALS∗ and RS estimators based on
the true number of factors (r = 1 and r = 2) as a benchmark. In addition we assess
the performance of the estimators, when the number of factors is estimated based on
selection criteria.12 As expected, using the AH method for r = 1 in order to estimate
the number of factors for the PC estimator produces bias and RMSE results that are of
similarmagnitude as the true number of factors. Applying the BIC criterion to estimate
the number of factors for the GMM estimators produces very accurate estimates when
N > 100, accordingly.

For r = 2, the performance of the PC estimator using the AH criterion shows a
considerable bias, in particular if T is as small as 5. In contrast, bias and RMSE of
the GMM estimators applying the BIC criterion are similar to the estimators based on
the true number of factors when N > 100. When T increases to 10, there is still a
substantial performance gap between the PC estimator using the AH method and the

11 The performance is similar to the case where β is known (not shown). Therefore, the estimation of β does
not seem to have an important effect on the performance of the BN and AH selection criteria. Furthermore,
the growth ratio statistic of Ahn and Horenstein (2013) performs similar to the eigenvalue ratio statistic.
For reasons of space we do not show the respective results.
12 To save space, we do not show results for the estimators based on the BN criterion, since the hit rates
are either 0% or (close to) 100%.
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Table 3 Selecting the number of factors

N T r = 1 r = 2

Bias*100 RMSE*100 Bias*100 RMSE*100

PCr PCAH PCr PCAH PCr PCAH PCr PCAH

100 5 0.20 0.31 5.10 5.30 0.67 5.47 6.83 11.06

250 5 0.12 0.24 3.22 3.51 0.29 4.89 4.14 10.13

500 5 0.14 0.30 2.25 2.66 0.22 4.54 3.04 9.13

250 10 0.07 0.08 2.04 2.04 0.17 1.51 2.20 4.79

500 10 0.09 0.10 1.42 1.44 0.06 1.07 1.55 3.93

500 15 0.07 0.07 1.06 1.06 0.11 0.28 1.18 1.81

ALS∗
r ALS∗

BIC ALS∗
r ALS∗

BIC ALS∗
r ALS∗

BIC ALS∗
r ALS∗

BIC

100 5 0.14 0.15 6.22 6.84 −0.33 −0.65 7.46 8.15

250 5 −0.01 0.04 3.69 3.83 0.08 0.10 4.33 4.53

500 5 0.23 0.23 2.62 2.64 0.04 −0.01 3.08 3.26

250 10 −0.02 −0.02 2.25 2.36 0.00 −0.02 2.23 2.32

500 10 0.10 0.10 1.59 1.61 −0.06 −0.06 1.58 1.59

500 15 0.04 0.03 1.20 1.22 0.03 0.03 1.18 1.20

RSr RSBIC RSr RSBIC RSr RSBIC RSr RSBIC

100 5 −0.58 0.74 6.01 7.93 −0.92 −0.26 7.88 9.00

250 5 −0.17 −0.12 3.65 3.76 −0.21 −0.14 4.72 4.99

500 5 0.11 0.10 2.60 2.66 −0.07 −0.10 3.58 3.59

250 10 −0.40 −0.29 2.42 2.68 −0.86 −0.73 3.20 3.21

500 10 −0.10 −0.10 1.66 1.66 −0.44 −0.41 2.16 2.11

500 15 −0.17 −0.17 1.29 1.29 −0.65 −0.62 2.05 2.00

This table reports bias and RMSE results for DGP5 with r = 1 and r = 2 for the PC, ALS∗ and RS
estimators with the true number of factors and estimated number of factors based on selection criteria. The
results are based on 1000 replications

PC estimator based on the true number of factors, whereas the GMM estimators based
on the BIC criterion perform much better. This is surprising as Table 2 suggests that
the hit rates of the BIC criterion are only slightly better in these cases. The reason is
that the AH criterion tends to underestimate the number of factors, whereas the BIC
criterion overestimates the number of factors in case the correct number of factors is
not found.

Consider, for instance, T = 10 and N = 500. The BIC estimator finds the correct
number of factors (r = 2) in more than 95% of the cases and overestimates the number
in the other (< 5%) cases. The AH estimator finds the correct value of r = 2 in 89.8%
of the cases, however underestimates the number in all other cases. Since the estimator
is biased if the number of factors is too small, the AH criterion tends to produce a
large negative bias in some cases, whereas the BIC criterion tends to produce unbiased
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estimators with a slightly larger variance than estimating with the correct number of
factors in some very rare cases.

7.4 Performance inmore general setups

So far the DGPs considered in this paper were simplified versions of the ones con-
sidered in the literature and focus on the particular features of these models. In the
following,we study the relative performance of theCCE, PC,ALS∗ andRSapproaches
in more sophisticated simulation setups, similar to the simulation experiments of Bai
(2009), Chudik et al. (2011) and Ahn et al. (2013). The details of these data generating
processes are presented in the online appendix to this paper. TheMonte Carlo design of
Bai (2009) employs two regressors that are correlated with two factors, their loadings
and the product of both. The idiosyncratic error is i.i.d. across individuals and time
periods. We refer to this model as DGP6. DGP7 refers to the factor model of Chudik
et al. (2011) that includes two regressors and three factors. A special feature of this
DGP is that the factor loadings of the regressors are independent of the loadings in
the errors eit and, therefore, the regressors are not correlated with the errors. The fac-
tors are generated by independent AR(1) processes and the idiosyncratic component
uit is heteroskedastic but mutually and serially uncorrelated. DGP8 corresponds to
the Monte Carlo design of Ahn et al. (2013), which includes two regressors and two
factors. The first regressor is correlated with the first factor and the second regressor
is correlated with the second factor. The idiosyncratic error is autocorrelated, but the
variances are identical across panel units and time periods.

The results in Table 4 indicate that the relative performance of the estimators
depends quite sensitively on the DGP considered. The first panel of Table 4 presents
the results for DGP6. The CCE estimator is not consistent in this setting, since the
rank condition is violated and both factor and loading vectors are correlated with
both regressors. The other three estimators are consistent in this setting, where the RS
estimator is the least biased when T = 5 and the ALS∗ exhibits the lowest bias for
T ≥ 10. The latter performs best in terms of RMSE with only slight advantages over
the PC estimator when T ≥ 10.

The second panel of Table 4 reports the results for DGP7. The CCE estimator is
the favored one in this setting. It has a very small bias and exhibits the lowest RMSE
for nearly all considered (N , T ) combinations, in particular if T is as small as 5.
Comparing the PC and GMM estimators, the results slightly favor the PC estimator in
terms of RMSE. The difference between the PC and the CCE estimator is negligible
when T = 15 and N = 500. With regard to the GMM estimators, the RS estimator
has a marginally lower RMSE when T = 5 and N is large, while the results indicate
small advantages for the ALS∗ estimator when T ≥ 10.

The third panel of Table 4 presents the results for DGP8. The GMM estimators are
the least biased estimators in this setting. The ALS∗ estimator exhibits the smallest
RMSE for all (N , T ) combinations with only slight advantages over the RS estimator.
For example, for T = 10 and N = 500, the RMSE of the ALS∗ estimator is about
40% lower than the RMSE of the PC estimator and more than 60% lower than the
RMSE of the CCE estimator. The CCE estimator is problematic in this setting, since
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the expectation of the loadings is equal to zero. The PC estimator is problematic in
this small T setting. However, the RMSE is lower for larger samples with T = 15 and
N = 500.

8 Conclusion

In this paper we compare three existing approaches for estimating factor augmented
panel data models. We argue that the PC estimator can be seen as an estimated analog
of the optimal transformation for eliminating the common factors from the data. The
CCE estimator applies a data transformation that has the important advantage that
the weighting scheme is fixed and does not involve any sampling error. This ensures
that the estimator is consistent even if T is fixed, whereas the PC estimator requires
muchmore restrictive assumptions (such as i.i.d. errors) whenever T is fixed. The third
estimation approach corresponds to the nonlinearGMMestimators ofAhn et al. (2013)
and Robertson and Sarafidis (2015). In contrast to the PC and CCE estimators, the
number of parameters does not dependon N ,whichmakes these estimators particularly
attractive for models with large N and small T .

In this paper we focus on the typical micro panel data setup where T is small
compared to N . Since for an approximate factor model the consistency of the PC
estimator requires T → ∞, it is interesting to investigate how large T needs to be for
ensuring the PCestimator to be approximately unbiased.OurMonteCarlo experiments
indicate that for all data generating mechanisms considered in this paper T = 10 is
already sufficient to achieve reasonable small sample properties of the PC estimator.

Some versions of the estimators impose normalization conditions that may be prob-
lematical in practice. For the original CCE estimator, we propose a simple weighting
scheme based on a decomposition similar to Mundlak (1978). The resulting CCE(M)
estimator is able to escape the endogeneity bias that may occur in the

√
N vicinity

of the normalization failure at the cost of introducing a larger number of additional
auxiliary parameters. The PC, ALS∗ and RS estimators sidestep the possibility of a
normalization failure and performwell in all ourMonte Carlo experiments. Sometimes
the CCE and ALS∗ estimators perform slightly better than the PC estimator, but in
other Monte Carlo setups the PC estimator tends to outperform all other competitors.
Furthermore, we show that for small T the selection criteria for the number of factors
proposed by Bai and Ng (2002) and Ahn and Horenstein (2013) may be inconsistent,
whereas the BIC criteria of Ahn et al. (2013) and Robertson and Sarafidis (2015)
perform well.
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