
Halffmann, Pascal; Dietz, Tobias; Przybylski, Anthony; Ruzika, Stefan

Article — Published Version

An inner approximation method to compute the weight
set decomposition of a triobjective mixed-integer problem

Journal of Global Optimization

Provided in Cooperation with:
Springer Nature

Suggested Citation: Halffmann, Pascal; Dietz, Tobias; Przybylski, Anthony; Ruzika, Stefan (2020) : An
inner approximation method to compute the weight set decomposition of a triobjective mixed-
integer problem, Journal of Global Optimization, ISSN 1573-2916, Springer US, New York, NY, Vol.
77, Iss. 4, pp. 715-742,
https://doi.org/10.1007/s10898-020-00898-9

This Version is available at:
https://hdl.handle.net/10419/288277

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10898-020-00898-9%0A
https://hdl.handle.net/10419/288277
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Global Optimization (2020) 77:715–742
https://doi.org/10.1007/s10898-020-00898-9

An inner approximation method to compute the weight set
decomposition of a triobjective mixed-integer problem

Pascal Halffmann1 · Tobias Dietz1 · Anthony Przybylski2 · Stefan Ruzika1

Received: 3 January 2019 / Accepted: 2 March 2020 / Published online: 11 March 2020
© The Author(s) 2020

Abstract
This article is dedicated to the weight set decomposition of a multiobjective (mixed-)integer
linear problem with three objectives. We propose an algorithm that returns a decomposition
of the parameter set of the weighted sum scalarization by solving biobjective subproblems via
Dichotomic Search which corresponds to a line exploration in the weight set. Additionally,
we present theoretical results regarding the boundary of the weight set components that
direct the line exploration. The resulting algorithm runs in output polynomial time, i.e. its
running time is polynomial in the encoding length of both the input and output. Also, the
proposed approach can be used for each weight set component individually and is able to give
intermediate results, which can be seen as an “approximation” of the weight set component.
We compare the running time of ourmethodwith the one of an existing algorithm and conduct
a computational study that shows the competitiveness of our algorithm. Further, we give a
state-of-the-art survey of algorithms in the literature.

Keywords Multiobjective optimization · Weight set decomposition · Weighted sum
method · Scalarization

1 Introduction

Multiobjective optimization problems have gained a lot of attention lately, especially when it
comes to problems with integer or both integer and continuous variables. From a theoretical
point of view, many well-studied single objective optimization problems have been extended
to a multiobjective setting, since real-world problems naturally often have more than one
objective function. Instead of combining these to one objective function via weights and

The research of Pascal Halffmann is supported by Deutsche Forschungsgemeinschaft (DFG) Grant RU
1524/4-1. Tobias Dietz acknowledges DFG Grant RU 1524/2-2. The work of Anthony Przybylski is partially
supported by the project Agence nationale de la recherche (ANR)/DFG-14-CE35-0034-01 “Exact Efficient
Solution of Mixed Integer Programming Problems with Multiple Objective Functions (vOpt)”.

B Pascal Halffmann
halffmann@mathematik.uni-kl.de

1 Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 14, 67663 Kaiserslautern, Germany

2 Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00898-9&domain=pdf
http://orcid.org/0000-0002-3462-4941

716 Journal of Global Optimization (2020) 77:715–742

thereby fixing the importance of the different objective functions, one is interested in getting
various or all “optimal” solutions to provide a decision support for the user. All optimal
solutions for a multiobjective problem, also known as efficient solutions, and their objective
function values denoted asnondominated images, are in general not computable by combining
objective functions and then solving such a weighted sum problem. Still, this weighted sum
scalarization is a useful and broadly applied scalarization formultiobjective optimization even
though the optimal solutions obtained, the so-called supported efficient solutions and their
corresponding supported nondominated images, are only a fraction of all efficient solutions
and all nondominated images, respectively. Though the number of supported nondominated
images may be exponential in the size of the input, this may hold true even if we restrict
ourselves to extreme supported nondominated images, which are additionally extreme points
of the convex hull of all images.1

The weight set decomposition has become a useful tool to find all extreme supported non-
dominated images: The weight set is the set of eligible parameters for the weighted sum
scalarization, i.e. all positive weights. This set can be decomposed into weight set compo-
nents for every extreme supported nondominated image such that each component consists
of those weights for which the corresponding image is optimal for a weighted sum prob-
lem with this particular weight. As the weight set components are convex polytopes, this
structure is of considerable aid when computing extreme supported nondominated images.
Moreover, knowledge about the weight set provides insights about the adjacency structure
of the nondominated set which expands the work of Gorski, Klamroth, and Ruzika [13].

In this article, we present a new algorithm for computing theweight set decomposition and,
thereby, the set of extreme supported nondominated images of a triobjective mixed-integer
linear problem. It is applicable to a broad class of multiobjective problems. For this purpose,
we make use of the properties of the weight set components and the Dichotomic Search.
Furthermore, we prove that our algorithm runs in output polynomial time, that is, its running
time is polynomial in the encoding length of both the input and output. In a computational
study, we examine and present the benefits of our algorithm for practical usages. Additionally,
the algorithm has various innovative properties such as at every intermediate step of the
algorithm, the current subset of the weight set component has a polyhedral structure and is
convex. This property can be used for the computation of an “approximation” of weight set
components. However, this is not in the focus of this article.

1.1 Related work

For biobjective problems, the set of all extreme supported nondominated images can be com-
puted by Dichotomic Search [2,7]: Starting with the two lexicographically optimal images,
the normalized normal vector of the line passing through these images is used as a weight
vector for the weighted sum problem. Solving this, either the two existing points are optimal
or a new supported nondominated image is computed which then yields a better objective
function value. In the former case, the algorithm stops searching new nondominated points
between the existing points and continues investigating other pairs of points. In the latter
case, this procedure is repeated with the newly found point and either of the original points.
This procedure yields a superset of the set of the extreme supported nondominated images
and it also provides the weight set decomposition of the one dimensional weight set.

For problems with more than two objective functions, only a few methods for finding all
extreme supported nondominated images are known. These methods can be categorized into

1 For example for the shortest path problem, this has been proven by Müller-Hannemann and Weihe [19].

123

Journal of Global Optimization (2020) 77:715–742 717

two approaches: The methods of Bökler and Mutzel [5], Özpeynirci and Köksalan [21] and
Przybylski, Gandibleux, and Ehrgott [22] iteratively decompose implicitly or explicitly the
weight set using supersets of the components for any known supported nondominated image.
In contrast, Alves and Costa [1] use subsets of the components for any known supported
nondominated image and iteratively extend the known area of the weight set components.

Przybylski, Gandibleux, and Ehrgott [22] propose the first algorithm to find all extreme
supported nondominated images for general multiobjective (mixed-) integer problems and
present basic properties of the weight set. Originally, their algorithm has been designed for
three objectives but can be recursively applied to problems with more objectives. Initialized
with lexicographically optimal images, it decomposes the weight set into components using
the known images. That is, the weight set is decomposed such that a weight vector belongs to
the component of an image if theweighted sumof this image is better than for the other known
images. For two adjacent components the common subedge is searched using Dichotomic
Search and either it is stated that this is indeed a common edge or a new image is found. This
is repeated until all edges for all supersets of the weight set components are indeed edges
of the components. Additionally, Przybylski, Gandibleux, and Ehrgott [22] are the first to
provide a computational study of a weight set decomposition algorithm for problems with
three objectives.

Özpeynirci and Köksalan [21] present an algorithm that implicitly utilizes supersets of
weight set components. It generalizes the work of Aneja and Nair [2] and Cohon [7] and can
be seen as a multiobjective Dichotomic Search. The algorithm is initialized with infeasible
but nondominated “dummy images” and the corresponding hyperplane of these points is
considered. Using the (positive valued) normal vector of this hyperplane as a weight vector
for the weighted sum scalarization, a new nondominated supported image is returned. In the
following, the hyperplanes where the new image replaces one previous image are considered.
If the normal vector of such an hyperplane is not positive, they use an existing image to
compute a new weight vector and the algorithm proceeds with a call to the weighted sum
procedure. This is repeated, until no new nondominated image is found. The authors provide
additional improvements and give the first computational study of weight set decomposition
for problems with four objectives. However, even though it is stated that the algorithm works
formultiple objectivemixed-integer problems, the algorithm that computes the dummypoints
presented by Özpeynirci [20] needs integer objective function values.

In their work on finding extreme supported solutions for multiple objective combinatorial
problems, Bökler and Mutzel [5] make use of the previous work of Ehrgott, Löhne, and
Shao [9], Hamel et al. [15], and Heyde and Löhne [16], where a geometric dual problem is
introduced. They show that there is a one-to-one correspondence between optimal facets of
the dual polyhedron(using the extreme points of the dual) and the weight set components of
the extreme supported nondominated images. This gives rise to an implicitway to compute the
weight set decomposition. Starting with one lexicographically optimal image of the original
problem they compute a polyhedron containing the dual polyhedron. Using an extreme point
of this polyhedron as a weight vector, either the corresponding weighted sum problem states
that the extreme point is also an extreme point of the dual polyhedron or a new supported
nondominated solution and a face defining inequality to trim the polyhedron is returned.
This is repeated until the polyhedron is indeed the dual polyhedron. A further improvement
is made using a lexicographic variant of the weighted sum scalarization and it is proven that
the algorithm runs in output polynomial and even incremental polynomial time for fixed
number of objective functions, given a polynomial time algorithm for the single objective
problem. Bökler et al. are the first to state a running time for their algorithm and to provide
a computational study for more than four objectives.

123

718 Journal of Global Optimization (2020) 77:715–742

Alves and Costa [1] propose a method that explicitly utilizes subsets of the weight set
component for any known supported nondominated image. This last method has been mainly
designed for an interactive usage, and specifically for the triobjective case. However, one can
also determine the set of all extreme supported nondominated images with this algorithm.
Starting with an arbitrary weight vector of the weight set, any time a weighted sum problem
is solved obtaining an optimal solution, information from the branch and bound tree is
applied to obtain a subset of the corresponding weight set component. Given such subsets the
algorithm enlarges the current subset of the weight set component by merging subsets of the
same component via a convex hull routine or using theoretical results on adjacency between
components. Alternatively, Alves and Costa [1] take again information from the weighted
sum problem using a weight vector slightly outside of the current subset. By adjacency, this
procedure can be rerun with any adjacent component to iteratively explore and compose the
whole weight set.

1.2 Our contribution

Given a triobjective mixed-integer linear problem, we propose an algorithm for computing
theweight set decomposition and all extreme supported nondominated images. The algorithm
utilizes subsets of the weight set components of all known extreme supported nondominated
images. These subsets are also convex polytopes, a fact that we take advantage of in the
algorithm. Also, the algorithm heavily relies on a variant of the Dichotomic Search that we
apply in a various ways: For the initialization, we examine the boundary with Dichotomic
Search in order to get some extreme supported nondominated images and the common edge
segments of the boundary and the related components. Further, given a subset of a component,
this can also consist of an edge, we examine the weight set by searching via Dichotomic
Search on the line perpendicular to an edge of the subset, of which we do not know if it is
an edge of the component. From this line search, we get new points on the boundary of the
weight set component and possible adjacent images. This information is then used by several
theoretical results that state, if we have found an edge or an sub-edge of the component. In
the latter case, we apply again Dichotomic Search in order to search on the extended line of
the sub-edge to find the whole edge of the component.
For our algorithm, we are able to provide a running time that is output polynomial for
fixed number of objective functions, and with some minor requirements the algorithm runs
in incremental polynomial time. The asymptotic running time is competitive regarding the
method of Bökler and Mutzel [5] and is besides their algorithm the only algorithm with an
output sensitive (and incremental) running time.
Not only is this algorithm a new combination of well known methods with further devel-
opments and therefore easy to comprehend, it also has several innovative traits that are of
advantage for the practical use. The algorithm explores the weight set components one by
one, so if the user is interested in the weight set component of one image, he can use this
algorithm solely for this particular image. Also, when exploring a component, at any inter-
mediate step the subset of the component computed by the algorithm is a convex polytope
and therefore fulfils important properties of the weight set component. Further, all extreme
points of the subset are on the boundary of the component. Due to these properties, the inter-
mediate subset can be seen as an “approximation” of the weight set component, which has
some practical benefits.
Additionally, if we expand the subset in a certain direction, it is guaranteed that the maximum
expansion in this direction is achieved.

123

Journal of Global Optimization (2020) 77:715–742 719

The remainder of the article is structured as follows: In Sect. 2 we introduce necessary
notation, definitions and properties concerning multiobjective optimization and weight set
decomposition. In the next section, we state further theoretical results for weight set decom-
position and weight set components. On these results we build our algorithm, which we
present in Sect. 4. Additionally, we prove correctness, analyse the running time, and com-
pare our algorithm with existing ones in the literature both via a computational study and via
an analysis of the asymptotic running time and general advantages and disadvantages of the
approaches. We conclude the article in Sect. 5 with a summary of our results and an outlook
to future topics of research.

2 Preliminaries

In the following, some basic definitions and concepts of multiple objective programming and
polyhedral theory are stated. For more detailed introductions, we refer to Ehrgott [8] and
Ziegler [25].

A multiobjective mixed-integer linear problem with p ≥ 2 objectives, n1 > 0 discrete,
and n2 ≥ 0 continuous variables can be concisely stated as

min Cx (MOP)

s.t. Ax ≤ b,

x ∈ Z
n1 × R

n2 ,

with n:=n1 + n2, A ∈ R
m×n,m ∈ N, C ∈ R

p×n, b ∈ R
m . Remark, we allow the case that

n2 = 0, i.e., integer and combinatorial problems.
Let X :={x ∈ Z

n1 ×R
n2 : Ax ≤ b} be the set of feasible solutions (referred to as feasible

set) and Y :={Cx : x ∈ X} ⊆ R
p the set of images. The Euclidean vector spaces Rn and Rp

comprising the set of feasible solutions and the set of images are called decision space and
criterion space or image space, respectively. We clarify the relation between these sets by
the function z : X → Y , z(x) = Cx .

Since there does not exist a canonical order in Rp for p ≥ 2, the following variants of the
componentwise order are used. For y1, y2 ∈ R

p and N = {1, . . . , p}, we define
y1 � y2 :⇔ y1i ≤ y2i for all i ∈ N ,

y1 ≤ y2 :⇔ y1 � y2 but y1 �= y2,

y1 < y2 :⇔ y1i < y2i for all i ∈ N .

For p ∈ N, the nonnegative orthant is defined as Rp
≥:={r ∈ R

p : r ≥ 0} and, likewise, the
sets Rp

� and Rp
> are defined.

An image y∗ ∈ Y is nondominated (weakly nondominated) if there is no other image y ∈ Y
such that y ≤ y∗ (y < y∗). Analogously, x ∈ X is called efficient (weakly efficient), if z(x) is
nondominated (weakly nondominated). The set of all nondominated (weakly nondominated)
images is referred to by YN (YwN) and the set of (weakly) efficient solutions by XE (XwE).

The convex hulls of X and Y , denoted by conv X and conv Y , are polyhedra. Recall that
the dimension of a polyhedron P ⊆ R

p is the maximum number of affinely independent
points of P minus one. For w ∈ R

n and t ∈ R, the inequality w
y ≤ q is called valid for P
if P ⊆ {y ∈ R

n : w
y ≤ q}. A set F ⊆ P is a face of P if there is some valid inequality
w
y ≤ q such that F = {y ∈ P : w
y = q}. As a face is itself a polyhedron, we can adopt

123

720 Journal of Global Optimization (2020) 77:715–742

the notion of dimension and denote special faces: An extreme point is a face of dimension 0,
an edge is a 1-dimensional face and a facet has dimension p − 1.
The definition of nondominance can also be applied to any subset S in Rp , in particular to a
polytope P ⊂ R

p and to its faces. Consequently, the set of nondominated points of S ⊂ R
p

is denoted by SN .
Given some permutation π of the set {1, . . . , p} and the associated order for the objective

functions, we refer to the problem

lex min (zπ(1), . . . , zπ(p)) (LexMOP (π))

s.t. x ∈ X

as the lexicographic mathematical programming problem with respect to permutation π .
This optimization problem can be understood as minimizing the objective function zπ(1)
first. Then, over the set of minimizers of zπ(1), the next objective function zπ(2) is mini-
mized and so on. Varying the permutation π , different solutions and their images can be
found, the so-called lexicographically optimal solutions (images). Clearly, these images
are nondominated. For biobjective problems, there exist two lexicographic optimal images,
yUL = zUL := lexmin(z1, z2){x∈X} and yLR = zLR := lexmin(z2, z1){x∈X}.

Scalarization methods are useful tools to compute efficient solutions. The most common
method is the weighted sum method introduced by Zadeh [24] which linearly combines the
objective functions to get the scalar-valued optimization problem

min λ
(Cx) (Πλ)

s.t. x ∈ X .

Every optimal solution to Πλ is a (weakly) efficient solution of the original problem if
λ ∈ R

p
> (λ ∈ R

p
≥) [11]. The image y of a solution x that can be obtained by the weighted

sum method is called a supported nondominated image. The set of supported nondominated
images is denoted by YSN . All other images are called unsupported. A supported nondomi-
nated image y ∈ Y is an extreme supported nondominated image, if y cannot be expressed
by a convex combination of points in YN\{y}. Prominent examples of such images are the
lexicographically optimal images. The set of extreme supported nondominated images is
denoted by YESN . All other supported nondominated images are called nonextreme. For
efficient solutions in XE , we use these terms analogously.
Since normalization of the weight vector does not change the set of optimal solutions, we
consider the normalized weight set for the weighted sum scalarization

Λ>:=
{

λ ∈ R
p
> :

p∑
k=1

λk = 1

}
. (4)

Note that Λ> is not closed and thus not compact. It turns out to be convenient to consider
the closure of the normalized weight set

Λ:=cl(Λ>) =
{

λ ∈ R
p
� :

p∑
k=1

λk = 1

}
. (5)

The set Λ is a polytope of dimension p − 1 and in particular, it is two-dimensional in the

triobjective case, and there is a bijection between Λ and
{
λ ∈ R

p−1
� : ∑p

k=1 λk ≤ 1
}
, see

Fig. 1 for an example. In the following, for the sake of simplicity, we address both sets as the

123

Journal of Global Optimization (2020) 77:715–742 721

Fig. 1 An example of a weight set decomposition and the corresponding image space. Remark that the third
coordinate of the weight vector can be computed by λ3 = 1 − (λ1 + λ2)

weight set denoted by Λ. It should be clear by the usage of λ ∈ Λ, whether its dimension is
p or p − 1 and we automatically add or remove one entry of the vector if needed. However,
we denote the p-dimensional λ as weight vector and the (p − 1)-dimensional λ as weight
point in order to highlight the usage in a scalarization or polyhedral context.

For y ∈ Y , we denote by Λ(y) the weight set component of y defined by

Λ(y):=
{
λ ∈ Λ : λ
y = min

{
λ
y′ : y′ ∈ conv Y

}}
. (6)

This corresponds to the subset of weights λ ∈ Λ for which y is the image of an optimal
solution of (Πλ).

Przybylski et al. [22] presented basic properties of the weight set.

Proposition 2.1 (Przybylski et al. [22]) Let y be a supported nondominated image. Then, it
holds:

1. Λ(y) = {λ ∈ Λ : λ
y ≤ λ
y′ for all y′ ∈ YESN\{y}}.
2. Λ(y) is a convex polytope.
3. A nondominated image y is an extreme supported nondominated image of Y if and only

if Λ(y) has dimension p − 1.
4. Λ = ⋃

y∈YESN
Λ(y).

5. Let S be a set of supported nondominated images. Then

YESN ⊆ S ⇐⇒ Λ =
⋃
y∈S

Λ(y).

Proposition 2.1(5) gives a certificate for a set of supported nondominated images S to sub-
sume the set YESN . This certificate requires to be able to compute Λ(y) for any supported
nondominated image y which can be easily done if YESN is known, using Proposition 2.1(1).
However, YESN is not known initially. Additionally, the notion of adjacency between extreme
supported nondominated images is introduced and a result which justifies that adjacency is
well-defined and symmetric is provided.

Definition 2.2 (Przybylski et al. [22]) Two extreme supported nondominated images y1 and
y2 are called adjacent if their common facet Λ(y1) ∩ Λ(y2) in the weight set is a polytope
of dimension p − 2.

123

722 Journal of Global Optimization (2020) 77:715–742

Fig. 2 Visualization of Propositions 2.3 and 2.4: On the left the weight set components Λ(y1), Λ(y2) and
Λ(y3) share an edge among themselves. However, due to the propositions the case on the right is not possible,
as one edge of Λ(y2) is partially an edge of both Λ(y1) and Λ(y3)

Proposition 2.3 (Przybylski et al. [22]) Let y1 and y2 be two supported nondominated images
and Λ(y1) ∩ Λ(y2) �= ∅. Then Λ(y1) ∩ Λ(y2) is the common face of Λ(y1) and Λ(y2) with
maximal dimension.

A similar result for the two dimensional weight set has been conducted by Alves and
Costa [1] which gives another perspective on this issue:

Proposition 2.4 (Alves and Costa [1]) Let λ0, λ1, λ2 ∈ Λ be three weight vectors that are
located on the same line segment. Let the nondominated images y1 and y2 be the images of
optimal solutions for (Πλ0) and (Πλ1). Let y

1 be also the image of an optimal solution for
(Πλ2). Then y2 is also the image of an optimal solution of (Πλ2).

The last two results are visualized in Fig. 2 and give rise to an algorithmic idea: If two
subsets of the weight set components of y1 and y2 have an intersection that is not reduced
to a single weight vector, then this intersection either defines the complete common edge of
both subsets or it can be extended for one or both subsets, e.g. the one of y2 up to λ2.

At last, we recall notions regarding running time and complexity of optimization problems,
for a basic introduction see the book of Arora and Barak [3]. General multiple objective
mixed-integer and integer problems are NP-hard and only particular cases are polynomially
time solvable, see Figueira et al. [10]. In order to quantify the asymptotic running time for
problems with a large output, the notion of output-sensitive complexity was developed by
Johnson et al. [17] and recently reused by Bökler and Mutzel [5] and Bökler et al. [4] in the
multiple objective context. Instead of defining the complexity for enumeration problems and
enumeration algorithms, we introduce it solely for multiple objective problems. Given such
a problem with reasonably small encoding length of the output2 and let the cardinality of the
output denoted by k, then this problem is in

1. TotalP (Output Polynomial Time/Output Sensitive),
2. IncP (Incremental Polynomial Time),

if there is an algorithm that solves the MOP such that

1. its running time is a polynomial of the encoding length of the input and the output,

2 Reasonably small means here, that each element of the output has an encoding length bounded by a poly-
nomial of the encoding length of the input.

123

Journal of Global Optimization (2020) 77:715–742 723

2. the ith delay for i = 0, . . . , k, is a polynomial of the encoding length of the input and of
that subset of the output that has been returned before the ith solution has been returned.

Here, the ith delay for i = 1, . . . , k − 1 characterizes the time between the output of the ith
and (i + 1)th solution. The 0th delay is the time between the start of the algorithm and its
first output and likewise the kth delay is the time between the last output and the termination
of the algorithm.

3 Foundations

In this section, we present the fundamental parts of our algorithm.
Given a (extreme) supported nondominated image y, we compute its weight set compo-

nentΛ(y) by startingwith a subset of the component.We demand some specific requirements
of this subset:

Definition 3.1 A subset ∅ �= L(y) ⊆ Λ(y) is called an inner approximate component of
Λ(y), if L(y) is a convex polytope and every extreme point of L(y) is on the boundary of
Λ(y). It is full-dimensional if dim L(y) = dimΛ(y).

Basically, the inner approximate component fulfills almost every property of a weight set
component except for completeness, that is, every weight vector for which y is optimal is
not necessarily contained in L(y). Also, adjacency between inner approximate components
or between an inner approximate component and a weight set component may not hold,
although the corresponding weight set components are adjacent.

Next, we specify the faces of such an inner approximate component.

Definition 3.2 Let L(y) be an inner approximate component of Λ(y) and F a face of L(y).
Then, F is a final face if it is known that F is a face of Λ(y). Otherwise, F is an interim face.
In particular, for edges we have interim and final edges.

Remark that every face of Λ(y) and every extreme point of L(y) is by definition a final
face. As these extreme points are located on the boundary of the weight set component and in
order to avoid confusion when using the notion of extreme, we call a point λ on the boundary
of Λ(y) an intersection point. If an intersection point λ is indeed an extreme point of Λ(y),
then it is an extreme intersection point. The notion emerges from the fact that these points
are in the intersection of two weight set components of supported nondominated images,
λ ∈ Λ(y) ∩ Λ(y′) with y �= y′. In this case, we also say that λ separates y and y′ and
L(y) ∩ L(y′) �= ∅ holds. The same terminology can be used for other faces. Further, we
assume that L(y)\L(y′) �= ∅ and L(y′)\L(y) �= ∅. This assumption will be verified by
construction, as we will see in the description of the algorithm in Sect. 4.

The algorithm for triobjective optimization problems utilizes inner approximate compo-
nents and successively enlarges the components until it is verified that L(y) = Λ(y) holds
true for some y and later for every extreme supported nondominated image. This general
technique is split into its main features and these will be discussed in the following subsec-
tions:

– Enlarging the inner approximate component by finding new intersection points (Perpen-
dicular Search),

– Identifying interim edges of L(y) as final edges or as subsets of final edges (Check Edge),
– Enlarging an interim edge that is a subset of a final edge to the final edge (Extend Edge),

123

724 Journal of Global Optimization (2020) 77:715–742

– Initializing and updating the inner approximate components.

In most of these features, a line search in the weight set is conducted: Given two points
λ1, λ2 ∈ Λ, we search the line between these points by transforming the triobjective problem
into a biobjective problem:

min (W (Cx)) (ΠW)

s.t. x ∈ X ,

where W :=
(

λ11 λ12 λ13

λ21 λ22 λ23

)
is a Partial Weighted Sum Matrix (PWS Matrix). We call (ΠW) a

Partial Weighted Sum Problem.
Solving this problem via Dichotomic Search returns a weight set decomposition for the

biobjective problem: We get solutions x1, . . . , xd of (ΠW) and weight vectors w0, w1, . . . ,

wd ∈ R
2, d ∈ N, such that Λ(WCxi) = [wi−1, wi]. These weight vectors can be used to

get information for the weight set decomposition of (MOP) as it is proven in [14]:

Remark 3.3 If W is a matrix described as above such that W does not have zero-valued
columns, then the Dichotomic Search on (ΠW) returns supported nondominated images
z(x1), . . ., z(xd) of (MOP) and weight vectors λ1 = W
w0,W
w1, . . . ,W
wd = λ2 ∈
R
3 such that [W
wi−1,W
wi] ⊆ Λ(z(xi)) for i = 1, . . . , d . Further, the corresponding

weight points of W
wi for i = 1, . . . , d − 1 are intersection points.

This result on line search is applied by the perpendicular search, the extend edge routine,
and in a slightly different fashion for the initialization.

3.1 Perpendicular search

Given an inner approximate component L(y) for a supported nondominated image y, it is
clear that in the triobjective case dim L(y) ≤ 2. In particular, we are interested in the case
where L(y) does not consist of only one point, so we have at least one edge of L(y). Suppose
we have an interim edge E of L(y), we will discuss other cases later. Now, as the goal is to
computeΛ(y), we aim to enlarge L(y). For this purpose, we use the procedurePerpendicular
Search, see Algorithm 1.

Algorithm 1 Perpendicular Search

Require: An interim edge E = [λ1, λ2] of L(y).
Ensure: An intersection point λ∗ that separates y from a supported image y∗.
1: Construct a line I = [λa , λb] with λa = 1

2

(
λ1 + λ2

)
perpendicular to E and λb is a weight point on the

boundary of Λ.
2: Perform a line search on I : set of images y1, . . . , yd and weight points λa = λ̄0, λ̄1, . . . , λ̄d = λb is

returned.
3: if y1 = y then
4: y∗ ← y2, λ∗ ← λ̄1

5: else
6: y∗ ← y1, λ∗ ← λ̄0

7: end if
8: return λ∗, y∗

123

Journal of Global Optimization (2020) 77:715–742 725

Fig. 3 An example of Perpendicular Search: Performing a line search on the line [λa , λb] returns y1 = y and

y2 and the intersection point λ∗ = λ̄1. Thus, we replace the edge [λ1, λ2] by the edges [λ1, λ∗] and [λ∗, λ2]

Basically, a line perpendicular to E starting from the middle point of E to some weight
point λb is searched via line search. In particular, λb may be chosen on the boundary of Λ.
Then, depending if y is found or not, we get a new intersection point, which may lie on the
interim edge E . Next, the correctness of this procedure is proven.

Proposition 3.4 The weight point λ∗ returned by Perpendicular Search is an intersection
point of Λ(y). Moreover, y∗ is a supported nondominated image.

Proof When performing the line search on I , the corresponding PWSmatrixW does not have
a zero-valued column.W has a zero-valued column, if both λa and λb are located on the same
edge of the boundary of Λ. However, as I is perpendicular to E , either λ1 /∈ Λ or λ2 /∈ Λ.
Hence, as W fulfils the requirements of Remark 3.3, we get that y∗ is a supported non-
dominated image. If λ∗ = λ̄1, then it also follows that λ∗ is an intersection point of Λ(y).
Otherwise, the corresponding solutions of both y and y1 are optimal for Π

λ̄0
and hence

λ̄0 ∈ Λ(y) ∩ Λ(y1). Hence, λ̄0 is an intersection point of Λ(y). ��

Remark 3.5 By construction, there is a subinterval of I that is given by either [λ̄1, λ̄2] (if
λ∗ = λ̄1) or [λ̄0, λ̄1] (otherwise) such that this subinterval belongs to L(y∗) and consequently,
we have L(y∗)\L(y) �= ∅.

The next proposition states and proves how we can enlarge L(y).

Proposition 3.6 After Perpendicular Search, if λ∗ �= λa, replace E by [λ1, λ∗] and [λ∗, λ2],
and L(y) remains an inner approximate component.

Proof By Proposition 3.4, λ∗ is an intersection point of Λ(y). L(y) can be described by a
sequence of intersection points. In case that λ∗ �= λa , we insert λ∗ between λ1 and λ2.
By construction, we only have to ensure that L(y) remains convex. As λ∗ is on the boundary
of Λ(y) and the same holds true for every extreme point of L(y) the convexity immediately
follows by the convexity of Λ(y). This shows the statement. ��

An example of Perpendicular Search can be seen in Fig. 3. The procedure Perpendicular
Search can be seen as an improvement in comparison to the procedure used by Alves and

123

726 Journal of Global Optimization (2020) 77:715–742

Costa [1] to determine weight points outside of Λ(y). Indeed, it is interesting to note that
the weight point obtained in the case of the procedure proposed by Alves and Costa [1] is
located in the line segment of the weight set that is considered in the procedurePerpendicular
Search. This last procedure has the advantage to generate, in one call, one point located on
the boundary of Λ(y), which could require an undefined number of calls in the case of the
procedure proposed by Alves and Costa [1].

At last, we take a look at some details of Perpendicular Search: Given L(y) has at least
one edge, we assumed that we have at least one interim edge. Clearly, if it is determined that
Λ(y) = L(y), a further search is not necessary. However, it may occur that dim(L(y)) = 1,
hence there is only one final edge E . Then, we install a dummy interim edgewhich is identical
to E and perform perpendicular search, but we do not know in which direction perpendicular
to E we have to search. As it is a final edge which has been marked final in a prior point in
time, we know one adjacent extreme supported nondominated image ȳ and hence this “side”
of E has been already explored. So, we search in the opposite direction of the component of
this adjacent image. We tackle the two cases of Perpendicular Search:

– If y1 = y, we can replace the dummy interim edge by the two new edges and resume the
algorithm.

– Otherwise, we can state that Λ(y) = L(y): λ∗ is an intersection point that separates y, ȳ
and y∗. In both directions L(y) cannot be enlarged and it consists solely of the edge E .
In particular, dimΛ(y) = 1 and y is a nonextreme supported nondominated image.

If we consider an image y such that L(y) = {λ}, we dismiss y from consideration until
dim(L(y)) = 1. If this does not occur, we omit y.
Also, as we are only interested in the intersection point of the line search that separates y from
another image, we do not have to perform a full Dichotomic Search. In fact, we only consider
a Partial Dichotomic Search. Recall that in a full Dichotomic Search, if a new optimal image
improving the weighted sum objective value has been found, two weight vectors that are the
normal vectors of the lines connecting one of the old images to the new one are computed
to define new weighted sum problems. In a partial Dichotomic Search, we only consider the
weight vector for which one of the defining points is y.

3.2 Check edge

Given an interim edge, one needs to check, whether this edge is indeed a final edge or at least
a subset of a final edge. First, we clarify which subsets of edges we aim for.

Definition 3.7 A subface of a face F is a subset G ⊆ F such that G is a convex polytope
with dim(G) = dim(F). In particular, for edges, we have subedges.

This definition simplifies the notation of the following Separation Theorem:

Theorem 3.8 (Separation Theorem)

1. If two intersection points λ1 and λ2 separate the same pair of images y and y′ then
[λ1, λ2] is a subface of Λ(y)∩Λ(y′) and, hence, a subedge of the common edge of Λ(y)
and Λ(y′).

2. If [λ1, λ2] ⊆ Λ(y) ∩ Λ(y′) and if λ1 and/or λ2 are extreme intersection points, then λ1

and/or λ2 are extreme points of Λ(y) ∩ Λ(y′).
3. Let y be a (extreme) supported nondominated image and let λ1, λ2 and λ3 be three

intersection points such that:

123

Journal of Global Optimization (2020) 77:715–742 727

Fig. 4 Two examples of the Separation Theorem: On the left we have that both λ1 and λ2 separate y and y′,
hence [λ1, λ2] is a subedge by Theorem 3.8 1. Even more, as λ1 is on the boundary of Λ, it is an extreme
intersection point. On the right, we are in the case of Theorem 3.8, 3.: We have a final edge of L(y) that
separates y and y2

– λ1, λ2 and λ3 are located on a same line,
– λ1, λ2 and λ3 separate y and respectively y1, y2 and y3 (with possible equalities

between these points),
– λ2 is located in the relative interior of the edge [λ1, λ3],

then [λ1, λ3] is a subedge ofΛ(y)∩Λ(y2) and y2 is an extreme supported nondominated
image, if λ2 was found by Perpendicular Search. If y1 �= y2 and/or y3 �= y2, then λ1

and/or λ3 are extreme intersection points of Λ(y) ∩ Λ(y2).

Proof 1. By definition of the intersection points, λ1 and λ2 are located in Λ(y)∩Λ(y′). As
Λ(y) ∩ Λ(y′) is a convex polytope, the statement follows immediately.

2. This statement is a direct consequence of Proposition 2.3.
3. As λ1, λ2 and λ3 are all located on the boundary of Λ(y), and as they are located on the

same line, conv{λ1, λ2, λ3} = [λ1, λ3] is a subedge of an edge E of Λ(y). Next, as λ2 is
located in the relative interior of [λ1, λ3], it is also located in the relative interior of E . As
the optimal solutions are the same for all weight vectors corresponding to weight points
in the interior of E , E is a subedge of the common edge ofΛ(y) andΛ(y2). Finally, if λ2

is found by Perpendicular Search and as Λ(y2)\Λ(y) �= ∅, Λ(y2) is composed of more
than the edge [λ1, λ3] and is therefore a polytope of dimension 2. We conclude that y2

is an extreme supported nondominated image by application of Proposition 2.1(3).
The rest is again a direct consequence of Proposition 2.3.

��
In Fig. 4, some cases of Theorem 3.8 are visualized. In the algorithm, we use Theorem 3.8,

when a new interim edge is constructed or the middle point of an edge is identified as an
intersection point by Perpendicular Search. We call this test by Theorem 3.8 Check Edge.

3.3 Extend edge

Assume that the Separation Theorem returns that a given interim edge E is a subedge of a
final edge. In order to extend this subedge to the final edge, we again make use of the line
search, which is similar to Perpendicular Search.

123

728 Journal of Global Optimization (2020) 77:715–742

Algorithm 2 Extend Edge

Require: An interim edge E = [λ1, λ2] of L(y) which is a subedge separating y and y′.
Ensure: An extreme intersection point λ∗ that separates y from y′ and the corresponding optimal image y∗.
1: Let λ1 be a non-extreme intersection point.
2: Construct a line I = [λa , λb] with λa = λ1 parallel to E and λb is a weight point fon the boundary.
3: Perform a line search on I : set of images y1, . . . , yd and weight points λa = λ̄0, λ̄1, . . . , λ̄d = λb is

returned.
4: if (λ̄1)
 · y1 = (λ̄1)
 · y then
5: y∗ ← y2, λ∗ ← λ̄1

6: else
7: y∗ ← y1, λ∗ ← λ̄0

8: end if
9: return λ∗, y∗

Let E = [λ1, λ2] and λ1, λ2 are intersection points that separate y and y′ and without loss
of generalization λ1 is not known as extreme intersection point. Then, a line search parallel
to E starting from λ1 in opposite direction of λ2, and ending at a known weight point, e.g.
on the boundary of Λ, is performed, see Algorithm 2.

Like for Perpendicular Search, a Partial Dichotomic Search is sufficient.

Proposition 3.9 The weight point λ∗ returned by Extend Edge is an extreme intersection
point of Λ(y) separating y, y′ and y∗.

Proof As the PWSmatrixW corresponding to the line search on I has clearly no zero-valued
column, byRemark 3.3,λ∗ is an intersection point and y∗ is a supported nondominated image.
If (λ̄1)
 · y1 = (λ̄1)
 · y, the solution belonging to y is an optimal solution for the weighted
sum problem with weight λ̄1 and λ1. Otherwise, this holds only for λ1. In both cases, as
the line I is parallel to an edge of Λ(y), it follows that λ∗ is an intersection point of L(y).
By Proposition 2.3, the same holds for y′, hence λ∗ separates y, y′ and y∗. Further, λ∗ is
extreme, as for every λ ∈ (λ∗, λb] the solution belonging to y is not an optimal solution for
the weighted sum problem. ��

As λ∗ is indeed an intersection point of L(y), we describe how to enlarge L(y).

Proposition 3.10 After Extend Edge, if λ∗ �= λ1, replace λ1 by λ∗ and L(y) remains an inner
approximate component.

Proof Similarly to the proof of Proposition 3.6, λ∗ must be added in the sequence of inter-
section points. The difference is that the alignment of λ2, λ1, λ

∗ makes λ1 redundant in the
sequence. ��

In Fig. 5, an example of Extend Edge is visualized. At last, if both endpoints of E are not
known as extreme intersection points, the whole line passing through E with endpoints on
the boundary of Λ can be searched via a full Dichotomic Search, instead of two lines with a
Partial Dichotomic Search.

3.4 Initialization

At last, we deal with the question of how we initialize at least one inner approximate compo-
nent. As pointed out in Perpendicular Search, the dimension of L(y) has to be at least one,
i.e., we have at least one edge. In order to generate such inner approximate components, we

123

Journal of Global Optimization (2020) 77:715–742 729

Fig. 5 An example of Extend Edge: We know that the edge [λ1, λ2] is a subedge and λ2 is an extreme

intersection point. Extend Edge searches the line [λa , λb] and finds a new intersection point λ∗ = λ̄1 of L(y).
Hence we replace λ1 by λ∗ and the edge [λ2, λ∗] becomes a final edge

perform line searches on the boundary of Λ: We use the extreme points
(
0 0
)

,
(
1 0

)

and
(
0 1

)

of Λ as start and endpoints of the line search. However, with these points for the

line search we do not fulfil the requirements of Remark 3.3: For example, the line search for
the first two extreme points has

W =
(
0 0 1
1 0 0

)

as PWS Matrix, which clearly has zero-valued column and therefore solving the problem
with Dichotomic Search minWCx returns not necessarily efficient solutions for (MOP)
and therefore no intersection points. We can overcome this problem in the following way:
whenever a weighted sum problem is solved during Dichotomic Search, for example for a
weight vector w ∈ R

2 minw
 · WCx has to be solved, solve for this particular W

lex min (w
(WCx),C2·x) (Π lex
w)

s.t. x ∈ X ,

instead, where C2· is the second row of C.

Remark 3.11 If W is a PWS Matrix with one zero-valued column, then the Dichotomic
Search that utilizes (Π lex

w) instead of weighted sum problems on (ΠW) returns supported
nondominated images z(x1), . . . , z(xd) of (MOP) and weight vectors λ1 = W
 ·w0,W
 ·
w1, . . . ,W
 · wd = λ2 ∈ R

3 such that [W
 · wi−1,W
 · wi] ⊆ Λ(z(xi)) for i = 1, . . . , d .
Further, the corresponding weight points of W
 · wi for i = 1, . . . , d − 1 are intersection
points.

Proof As the solutions we get by (Π lex
w) are efficient, the proof is analogously to the proof

of Remark 3.3 which has been done by Halffmann, Dietz, and Ruzika [14]. ��

123

730 Journal of Global Optimization (2020) 77:715–742

Fig. 6 Initialization of the inner
approximate components:
Searching on the boundary of Λ

returns the images y1, . . . y4. We
get the inner approximate
component of y1 by taking the
convex hull of the two edges
belonging to y1

Regarding the solvability of (Π lex
w), by Glasser [12] only minor requirements are needed

to ensure that if the weighted sum problem is polynomially solvable so is the lexicographic
problem3. For many cases, especially with linear objective functions, the asymptotic running
times of the weighted sum problem and the lexicographic problem coincide, however there
may be problems, where the algorithm for the lexicographic problem is significantly slower
but still running in polynomial time. Clearly, for well-known combinatorial problems like
shortest path we either can replace the comparison operator in the algorithm by its lexico-
graphical version or - if the objective function values are non-negative and integer - we can
solve two weighted sum problems like it is proposed in Ehrgott [8].

If the requirements of Glaßer et al. are not met or the algorithm for the lexicographic
problem is significantly worse than the one of the weighted sum problem, we simply apply
the Dichotomic Search on the boundary of the weight set. Then, we either get an extreme
supported nondominated image or an image that is weakly dominated by such an ESN image.
This is an immediate consequence of the following result:

Proposition 3.12 ([23]) Let (P) be a problem with p objectives and let (PI) be a subproblem
with |I | objectives given by the objectives indexed by I ⊂ {1, . . . , p}. Let y be an extreme
supported image for (PI), then if y is nondominated for (P), it is also an extreme supported
image for (P).

Clearly, even if the returned image is only weakly nondominated, we get the correct
intersection points. The first attempt to extend the weight set component of this image will
show that it is reduced to only one edge, and will allow to discover the extreme supported
nondominated image dominating it.

In Fig. 6, a possible initialization is depicted.

3 It is required that the solutions and images can be computed in polynomial time regarding the encoding
length of the input and the same has to hold for the encoding length of the images and solutions.

123

Journal of Global Optimization (2020) 77:715–742 731

4 Algorithm

4.1 Presentation of the algorithm and correctness

As described in the preceding section, the algorithm will maintain a set S of supported
nondominated images, and for each known supported nondominated image y ∈ S, a polytope
L(y) ⊆ Λ(y) will also be maintained. This will be done by storing a set P of intersections
points and a set E of final edges (i.e. edges of polytopes L(y) that are identified as edges of
Λ(y)). Algorithm 3 starts with the initialization described in Sect. 3.4 followed by a main
loop that will iteratively enlarge the sets L(y) toΛ(y) for any known supported image y, and
simultaneously discover new supported images. This loop simply relies on the successive
application of the Perpendicular Search procedure applied on an interim edge, the checking
of an edge to identify if it is a subedge of a final edge (implicit in Algorithm 3) and next
the application of the Extend Edge procedure if necessary, as described in Sect. 3. Updating
P, S, and L(y) is done by adding λ∗ to P , y∗ to S and following the rules of Proposition 3.6
and Proposition 3.10. In the pseudocode of the algorithm we use ↓ to indicate the input of
the procedures and ↑ for the output.

Algorithm 3 WSD Approx Algorithm
Require: An instance of a triobjective mixed-integer linear program
Ensure: S contains YESN
1: Initialize(S ↑, P ↑, E ↑)
2: for all y ∈ S do
3: if dim L(y) = 1 then
4: Let E be the only edge of L(y)
5: Perpendicular Search(E ↓, λ∗ ↑, y∗ ↑); Update(P, S, L(y));
6: if dim L(y) = 1 then
7: y is a non-extreme image and L(y) will no longer be considered.
8: end if
9: end if
10: if dim L(y) = 2 then
11: while at least one edge of L(y) is an interim edge do
12: if there is an edge E of L(y) with E /∈ E that is a subedge of Λ(y) then
13: Extend Edge(E ↓, λ∗ ↑, y∗ ↑); Update(P, S, L(y));
14: else
15: Choose any edge E that is not in E
16: Perpendicular Search(E ↓, λ∗ ↑, y∗ ↑); Update(P, S, L(y));
17: end if
18: end while
19: end if
20: end for

Lemma 4.1 The identification of a final edge using the loop of lines 11-18 of Algorithm 3 is
done with at most three searches in total (perpendicular search and extend edge).

Proof Theorem 3.8 shows in which case we find a subedge of an edge. Suppose we examine
y1 and we are in a particular case of the third statement of Theorem 3.8, which is clearly
the worst case. We have found three intersection points in that order with the following
separation, see also Figure 7.

123

732 Journal of Global Optimization (2020) 77:715–742

Fig. 7 Illustration of known intersection points to finally obtain all final edges of a polytope L(y) (implying
that L(y) = Λ(y)). In particular, the first detected subedge (of the final edge [λ1, λ4]) is obtained by the
knowledge of the intersection points λ1, λ2, λ3. For the last final edge [λ4, λ5], no extension is necessary as
λ1 and λ5 are already known as extreme

– λ1 separates y1 and y3,
– λ2 separates y1 and y2,
– λ3 separates y1 and y2.

Hence, by these points we can conclude that we have found a subedge and λ1 is an extreme
point; regarding the chronological order of the points, each point is necessary for this result.
Hence, we need three perpendicular searches and additionally one call to extend edge, as the
line segment [λ1, λ3] is only a subedge, see Fig. 7.
Even though we have performed four searches for the edge [λ1, λ4], we can rearrange the
points such that λ4 is counted for the edge that has λ4 as common endpoint with the edge
[λ1, λ4]. Furtherwe can show that, using the same construction as above,we need additionally
two perpendicular searches and one extend edge, so again we get four searches. We can
continue like that, however, at one point we reach a known definitive edge D, as each L(y)
is initialized by at least one known edge: As in Fig. 7, we have the extreme point of the edge
D λ5, which separates y1 and some image y4. Hence we need one additional perpendicular
search to find λ6 and by Theorem 3.8 3. we can conclude that [λ4, λ5] is a final edge. So,
by this reassignment of intersection points, we need one search for the last edge and at most
three for any other edge. ��

Definition 4.2 LetYESN be the set of extreme supported images of aMOP with p objectives,
we construct the adjacency graph GWS of the weight set as follows: GWS = (V , E) with
V = YESN and E = {(yi , y j), yi , y j ∈ V | dimΛ(yi) ∩ Λ(y j) = p − 2}.
An example of the adjacency graph can be seen in Fig. 1. The corresponding image space
with the lines between the extreme supported nondominated images resemble the adjacency
graph.

Observation 4.3 The adjacency graph GWS of the weight set is planar and connected for
p = 3. This is not the case for p ≥ 4.

Theorem 4.4 Algorithm 3 terminates in finite time and determines the set of all nondominated
extreme images.

123

Journal of Global Optimization (2020) 77:715–742 733

Fig. 8 Missed extreme point with missed extension of subedges and missed extreme points with missed edges

Proof We show that for each y ∈ S, the loop of lines 11-18 terminates in finite time and that
L(y) = Λ(y) when it terminates. The number of edges and extreme points of Λ(y) (except
edges and extreme points on the boundary of Λ that are found with the initialization), is
limited by the number of adjacent extreme supported points to y, which is necessarily finite.
Lemma 4.1 implies that the identification of an edge of Λ(y) requires at most three searches
in total (Perpendicular Search and Edge Extend). Further, for every edge, the algorithm will
find at most one non-extreme image. The non-extreme characteristic is proven with one
Perpendicular Search. We conclude the finiteness of the algorithm.

Suppose now that at termination of the while loop of lines 11-18, we have for y ∈ S,
L(y) ⊂ Λ(y). This implies that at least one extreme point λ of Λ(y) is not an extreme point
of L(y). Consequently, there are two (sub)edges (incident to λ) of Λ(y) that are not edges
of L(y). Fig. 8 illustrates possible situations for a missed extreme point λ.

On these figures, only one extreme point ofΛ(y) does not belong to L(y). To have several
consecutive missed extreme points would not modify the idea of the proof. In Fig. 8 on the
left, λ is missed because two subedges of Λ(y) have not been extended. This cannot happen
as at termination of the while loop of lines 11-18, all edges of L(y) are final, i.e. are edges of
Λ(y) according to Proposition 3.8. On the right, two full edges of Λ(y) are missed, and an
edge E of L(y) is cutting the interior of Λ(y). However, the final character of E contradicts
the conditions to detect subedges of Λ(y), described by Proposition 3.8. Indeed, the two
extreme intersection points of E clearly separate two different pairs of extreme supported
images, and there cannot be any intersection point in the relative interior of E , as intersection
points are located on the boundary of Λ(y). We conclude that at termination of the while
loop of lines 11-18, Λ(y) and L(y) have the same set of extreme points and are therefore
equal.

We show next that YESN ⊆ S. For all y ∈ S, Λ(y) is computed and we know all adjacent
extreme supported images. We consider the adjacency graph GWS from Definition 4.2. As
GWS is connected, we necessarily have YESN ⊂ S. ��
Theorem 4.5 Let v:=|YESN |. Then the overall running time of Algorithm 3 is O(v2 · TWS),
where TWS is the running time of the weighted sum algorithm.

Proof We show this by proving several claims.
Claim 1: Each search with partial Dichotomic Search needs at most O(v) calls to the

weighted sum algorithm.
In the worst case the line on which we perform a partial Dichotomic Search crosses every
weight set component and we examine every extreme supported nondominated image. Non-
extreme supported nondominated images may also be found if the line passes through the
boundary of a weight set component. This does not change the worst case.

Claim 2: The initialization of the algorithm needs at most O(v) calls to the weighted sum
algorithm.

123

734 Journal of Global Optimization (2020) 77:715–742

As we search on the boundary of the weight set, we can find at most all v extreme supported
images on each edge of the boundary ofΛ. Hence, we need at mostO(v) calls to the weighted
sum algorithm to find all edges of weight set components on the boundary. Remark, that we
assume by Sect. 3.4 that the found images are nondominated and the found edges are indeed
final edges of the components.

Claim 3: All initial constructions of the sets L(y) can be done in total inO(v log v) time.
Each initialization of L(y) can be done by a planar convex hull algorithm,which has a running
time of O(k · log k) for k points [6]. For this initialization, some final edges will already be
known. In particular, we use the endpoints of these edges to construct the convex hull that
defines L(y). The number of initially known edges in this convex hull is not known. On the
other hand, each edge of the weight set decomposition is used exactly once for the convex
hull algorithm: a final edgeΛ(y1)∩Λ(y2) is found, when y1 has been examined, and is only
necessary for the initialization of L(y2). Analogously, we need the edges on the borderline
only once. By planarity of the adjacency graph, Observation 4.3, the number of edges of the
graph, which is the number of edges of the weight set decomposition not on the borderline,
is at most 3 · v − 6. On the borderline we have at most 3 · v edges. Hence, we need O(v)

edges for all initializations. As the function f (k) = k · log k is superadditive, we can bound
the total time for all initializations by O(v · log v).
Claim 4: Checking if an interim edge is a final edge or a subedge of a final edge can be done
in constant time.
This is only a matter of storage of the intersection points. Indeed, if the interim edge is
linked to the intersection points on this edge, their number cannot be more than three by
Theorem 3.8. Checking if the separated images are the same for at most three intersection
points is obviously doable in constant time.

Using these results we can construct the total running time as follows:
The initialization can be done inO(v ·TWS) (Claim 2) plus the initialization of the weight set
components in O(v log v) (Claim 3). For each edge we need 3 · v calls to the weighted sum
algorithmand checking an interimedge is done in constant time (Claim4).ByObservation 4.3
the adjacency graph is planar and therefore has at most 3 · v − 6 edges and each edge
corresponds to an edge of the weight set decomposition (without the edges on the boundary
of the weight set). Hence, we need a computation time of O(v2 · TWS) to find all edges.
As this term dominates all other terms in running time, it is the total running time of our
algorithm. ��
Corollary 4.6 If the running time of the weighted sum algorithm TWS, which is usually the
algorithm for the single objective problem, is polynomial in the encoding length of the input
(and output), the problem is in TotalP and our algorithm has a running time polynomial in
the encoding length of the input and output.

However, due to the usage of the Dichotomic Search this version of the algorithm is not
in incremental polynomial time: Bökler et al. [4] have shown that the Dichotomic Search
Algorithm for biobjective problemsmay have a delay exponential in the input and preceeding
output even though the weighted sum algorithm has polynomial running time.
From the mentioned article, we can deduce that a lexicographic variant of the Dichotomic
Search runs in incremental polynomial time, if we have a polynomial time algorithm to
solve the lexicographic problem LexMOP (π). This lexicographic variant is similar to the
problem Π lex

w presented in the initialization phase of our algorithm. We can apply this in
the procedures Perpendicular Search and Extend Edge as well to ensure an incremental
polynomial time running time of our algorithm.

At last, we can state the overall result:

123

Journal of Global Optimization (2020) 77:715–742 735

Theorem 4.7 (WSD-Approx Algorithm) Given an multiobjective mixed-integer problem
with three objectives, the WSD-Approx Algorithm returns a weight set decomposition in
O(v2 · TWS), where TWS is the running time of the weighted sum algorithm. If the weighted
sum algorithm runs in output polynomial time, the WSD-Approx Algorithm runs in output
polynomial time.

Moreover, if the lexicographic version of MOP is solvable in polynomial time, then the
WSD-Approx Algorithm equipped with the lexicographic variant of the Dichotomic Search
runs in incremental polynomial time. The ith delay is in O(vi · TWS−lex + TWS−lex), where
vi is the number of extreme supported nondominated images found so far and TWS−lex is the
running time of an algorithm for problem Π lex

w .

4.2 Illustrative example

To illustrate our method, we solve the instance of a tri-objective assignment problem [22]
defined by the following cost matrices:

C1 =

⎛
⎜⎜⎝
2 5 4 7
3 3 5 7
3 8 4 2
6 5 2 5

⎞
⎟⎟⎠ , C2 =

⎛
⎜⎜⎝
3 3 6 2
5 3 7 3
5 2 7 4
4 6 3 5

⎞
⎟⎟⎠ and C3 =

⎛
⎜⎜⎝
4 2 5 3
5 3 4 3
4 3 5 2
6 4 7 3

⎞
⎟⎟⎠ .

The initialization explores the boundary of the weight set, we obtain the following solutions:

– x1 with x11 = x22 = x34 = x43 = 1 with image y1 = (9, 13, 16),
– x2 with x11 = x24 = x32 = x43 = 1 with image y2 = (19, 11, 17),
– x3 with x12 = x23 = x31 = x44 = 1 with image y3 = (18, 20, 13),
– x4 with x11 = x23 = x34 = x42 = 1 with image y4 = (14, 20, 14),
– x5 with x11 = x23 = x32 = x44 = 1 with image y5 = (20, 17, 14).

The set S is therefore initialized with these supported images and subsequently we get a
set of extreme intersection points P = {λ1, . . . , λ5}:
– λ1 separates y3 and y4,
– λ2 separates y1 and y4,
– λ3 separates y1 and y2,
– λ4 separates y2 and y5,
– λ5 separates y3 and y5.

From this we obtain the final edges E . We show the exploration of the weight set compo-
nents in Fig. 9. We focus on Λ(y1), as the other components are very easy to compute. The
full weight set decomposition is depicted in Fig. 1.

4.3 Comparison with the literature

Przybylski, Gandibleux, andEhrgott [22], similar to our approach, use theDichotomic Search
but they start with supersets of the weight set components instead of subsets. While our
algorithm enlarges an “inner approximation” of the weight set components by applying the
Dichotomic Search and separation results, they apply some of these methods in a different
fashion to shrink an “outer approximation”. Due to these different approaches, a comparison

123

736 Journal of Global Optimization (2020) 77:715–742

(a) (b)

(c) (d)

(e) (f)

Fig. 9 An example for the WSDApprox Algorithm

123

Journal of Global Optimization (2020) 77:715–742 737

would automatically become a discussion about the up- and downsides of supersets and
subsets, respectively. We compare these approaches more thoroughly in the computational
study, see Sect. 4.4.

Therefore, we focus on the articles by Bökler and Mutzel [5] and Alves and Costa [1], as
the former also present a running time and the latter use subsets of weight set components
as well.

In the case of p = 3, Bökler andMutzel [5] achieve a running time ofO(v ·(poly(n,m, L)

+v
9
4 log v) +poly(n, v, L)) andO(v ·(poly(n,m, L)+v log v), if the lexicographic problem

can be solved in polynomial time. Here, poly(n,m, L) is a polynomial in the number of
variables n, number of constraints m and L is the encoding length of the largest number in
the constraint matrix.
Clearly, in the absence of a polynomial time algorithm for the lexicographic problem we
have a faster worst-case running time than Bökler and Mutzel: If the running time of the

weighted sum algorithm is for example smaller than O(v
5
4 · log v), which is the case for

combinatorial problems with polynomial time weighted sum algorithms and exponentially
large number of extreme supported nondominated images, we outperform their algorithm.
However, as mentioned in Sect. 3.4, we easily met the requirement of Glasser et al. [12] for
combinatorial problems. In this case, it is hard to compare the running times: It depends on
the actual size of poly(n,m, L) and the number of extreme supported nondominated images
in comparison to the encoding length of the input. Hence, we have to compare log v with
TWS−lex (or TWS) which is not comparable in general. Surely there are instances where their
algorithm has a faster or the same or a slower running time than ours. But, instead of only
returning extreme supported images and related solutions, we additionally provide the user of
our algorithm with an explicit description of the weight set decomposition. And further, we
can return each component individually as soon aswe have fully discovered the component or
give intermediate results like an “approximation” of the component which creates additional
value. We discuss this further in Sect. 5.

As mentioned before, Alves and Costa [1] use subsets of the weight set components. They
enlarge these subsets by solving a weighted sum algorithm slightly outside of the subset and
returning information of the Branch and Bound tree. There are some drawbacks with these
methods where our usage of the Dichotomic Search gives a guaranteed enlargement of the
subsets.
First, the newpart of the subset is generated from theBranch andBound tree and could be very
small, if the tree structure or the solution structure is unfortunate. Hence, arbitrarily many
searches outside of the subsets have to be conducted to complete the weight set component,
which results in as many convex hull operations.
Second, the search slightly outside of the subset is executed by using a weight point that is
perpendicular to an edge of the subset with a certain distance, e.g. a distance of ε = 0.01 as
used in the example by Alves and Costa. As it can be seen in their own example in [1], weight
set components (for mixed-integer problems) can get very small even for small instances.
Hence, it can occur that we “jump” a weight set component by setting ε = 0.01. That is, we
get a new image whose component is not adjacent to the one of the current image. Clearly,
the choice of ε is for practical purposes only and is set by experience. On the contrary,
our algorithm overcomes these difficulties, as we get the maximum expansion in a certain
direction, we automatically ensure a convex polyhedral structure, and we guarantee that we
find the adjacent image. Nevertheless, the algorithm by Alves and Costa is adequate for
practical purposes and may be faster in the average case. And, as it is built for an interactive
use, it has a different intention and hence advantages for other settings.

123

738 Journal of Global Optimization (2020) 77:715–742

4.4 Computational study

Wecompare the performance of our algorithmwith thosemethods of Przybylski, Gandibleux,
and Ehrgott [22] (PGE2010), Bökler and Mutzel [5] (BM2015), and Özpeynirci and Kök-
salan [21] (OK2015). However, only the code of PGE2010 was available and executed on the
same computer. For the comparison with the other approaches, we have used a computer with
the same specifications as in [5]. Therefore, the differences in running times reported below
are subject to different programming skills, different programming languages and partly dif-
ferent computer architectures. As a consequence, our study can only roughly compare the
competitiveness of the four algorithms.

We use instances of theMultiobjective Assignment Problem (MOAP) and theMultiobjec-
tive Knapsack Problem (MOKP) with three objectives for our tests. These instances are the
same as the ones in the computational study in [22] and the MOAP instances used in [5,21]
are generated in the same fashion. For MOAP, we use 10 series of 10 instances of 3AP with a
size varying from 5×5 to 50×50 with a step of 5 and randomly generated objective function
coefficients in [0, 20]. For MOKP, we take into account 10 instances per series with a size
varying from 50 to 350 with a step of 50. The objective function and constraint coefficients
are uniformly generated in [1, 100]. Our algorithm is implemented in Julia 1.2 and using an
implementation of the Hungarian Method [18] coded in C that is callable by Julia to solve
single objective assignment problems. For the knapsack problems, a dynamic programming
based approach is coded in C. The implementation of the PGE2010 algorithm has been done
in C and uses the same single objective solvers. All C code is compiled using GCC 9.2 with
optimizer option -O3. In the study by Bökler and Mutzel [5], the BM2015 and the OK2015
algorithm have been implemented in C++ using double precision arithmetic and compiled
using LLVM 3.3. For both studies the experiments are performed on an Intel Core i7-3770,
3.4 GHz and 16GB of memory running Ubuntu Linux.

In Table 1, we present the results on the MOAP instances for WSD_APPROX and
PGE2010 and report the mean on running time, number of extreme supported images, and
number of solver calls per image found. Both implementations have been able to solve all
instances in this study. The minor discrepancy in the number of extreme supported images
is due to numerical precision: On the one hand, non-extreme supported images may have

Table 1 Experimental results on 3AP instances

Size WSD_APPROX PGE2010 [22]

Time (s) |YESN | Solv. calls p. p. Time (s) |YESN | Solv. calls p. p.

5 × 5 0.000 8.3 11.05 0.000 8.3 5.58

10 × 10 0.003 37.2 16.13 0.001 37.2 6.70

15 × 15 0.016 83.4 16.95 0.007 83.4 6.76

20 × 20 0.059 156.4 17.51 0.026 156.4 6.97

25 × 25 0.147 245.1 17.51 0.067 245.1 6.97

30 × 30 0.334 351.9 17.42 0.151 351.9 7.01

35 × 35 0.755 514.9 17.69 0.336 514.9 7.06

40 × 40 1.321 646.6 17.86 0.596 646.7 7.10

45 × 45 2.204 810.5 17.79 0.992 810.6 7.08

50 × 50 3.923 1061.5 17.92 1.774 1061.8 7.11

123

Journal of Global Optimization (2020) 77:715–742 739

Table 2 Experimental results on 3KP instances. The numbers in brackets indicate that one instance of this
size could not be solved by the PGE2010 implementation

Size WSD_APPROX PGE2010 [22]

Time (s) |YESN | Solv. calls p. p. Time (s) |YESN | Solv. calls p. p.

50 0.013 58.1 16.66 0.007 58.1 6.68

100 0.096 173.3 17.98 0.047 173.4 7.16

150 0.333 331.9 18.73 0.164 332 7.38

200 0.933 628.9 19.54 0.464 629 7.50

250 1.437 821.7 19.97 0.715 822.1 7.54

300 2.710 1176.7 20.65 1.366 1177.6 7.62

350 4.578 1693.3 22.54 (2.342) (1668.4) (7.66)

been identified as extreme, on the other hand some extreme supported images may have such
minuscule weight set components that they are identified as non-extreme.

The PGE2010 algorithm is faster than our algorithm. However, the running times are of
the same order of magnitude and may be explained by the issues listed above. Note that
the third column of the table shows that our algorithm needs 2.5 times more calls to the
single objective solver. This hints to the main difference between the “inner approximation”
and the “outer approximation” approach. In our algorithm, a new neighbour is found via
perpendicular search, which needs at least three calls of the single objective solver. In fact,
our algorithm heavily relies on solving single objective problems to obtain information while
less geometry is involved. Only the end point of the line search and the construction of the
initial subsets need some geometry induced computations. For the “outer approximation”
approach, this observation is inverted: Whenever a new image is found, the computation of
the superset of its weight set component needs significantly more computational effort, as
its facets with its (possible) adjacent images have to be computed. However, finding a new
image by checking a facet of the superset often needs only one solver call. As the weight
set is only two dimensional, the geometry of the weight set and its components is rather
simple. Hence, it seems that the computation of the supersets is not that time consuming and
an “outer approximation” approach may be slightly favourable for these instance sizes and
three objectives.

The results for the knapsack instances in Table 2 underline our findings for the assignment
instances. The running times of the two algorithms are competitive. One peculiar difference
in the outcome of the computational study of these algorithms for knapsack problems is that
one of the largest instances could not be solved by PGE2010. This is due to a problem in
numerical precision that induces a segmentation fault.However, issues on numerical precision
are immanent in the computation of the weight set decomposition: Weight set components
get very small very quickly with increasing problem size. We also face these problems, as
the inner approximate components are even smaller than the actual components. It seems
that our algorithm is more stable in that matter.

In Table 3,we compare our algorithmwith the results forMOAP reported in [5] and present
the median and the mean absolute deviation of the running times. Clearly, we are competitive
with the algorithm in [5] as we have slightly faster running times and less deviation. Also, our
study shows that we outperform the algorithm by Özpeynirci and Köksalan [21], as we are
a factor of almost 1300 faster at the largest instances. The instances are generated similarly
but not the same which explains the discrepancy in the number of extreme supported images.

123

740 Journal of Global Optimization (2020) 77:715–742

Table 3 Experimental results on 3AP instances

Size WSD_APPROX BM2015 [5] OK2010 [21] [5,21]

Time (s) |YESN | Time (s) Time (s) |YESN |
Median MAD Median Median MAD Median MAD Median

10 × 10 0.00 0.001 37.5 0.01 0.002 0.03 0.010 31.5

20 × 20 0.06 0.009 148.5 0.11 0.014 6.31 1.491 150.5

30 × 30 0.34 0.063 341.5 0.70 0.120 160.24 57.858 368.5

40 × 40 1.28 0.147 613.5 2.57 0.195 1660.63 542.646 709.0

Overall, we can conclude that our algorithm is competitive with the algorithms by Przybylski,
Gandibleux, and Ehrgott [22] and Bökler and Mutzel [5] and is substantially faster than the
one by Özpeynirci and Köksalan [21].

5 Conclusion

In this article, we have proposed a new algorithm to compute the weight set decomposition
and consequently all extreme supported nondominated images for a multiobjective (mixed-)
integer linear problem with three objectives. This algorithm can be described as a graphical
approach and makes use of the biobjective Dichotomic Search to explore the weight set.
Further, we have established necessary results that determine whether a line segment is part
of the common face of two weight set components, hence separates these components.
In comparison to the literature, our algorithm can return the whole weight set decomposition
but also one particular weight set component as soon as it is examined. Further, it is able to
return an intermediate subset of the component, while the extreme points of subset are always
on the boundary of the component and hence we have a guaranteed maximal improvement
of the subset in every step of the algorithm. As the subset is a convex polyhedron at any
time, intermediate results can also be returned that have valuable properties for the user. In
the case of a polynomial time algorithm to solve the weighted sum problem, and hence also
for the lexicographic problem, our algorithm is output sensitive and even runs in incremental
polynomial time. The running time is on the same level of the algorithm by Bökler and
Mutzel [5]. Also, the results of the computational study show that practical running times
of our algorithm are better than or at the same level as available algorithms. In conclusion,
our algorithm is an easily comprehensible, running time competitive algorithm with original
features especially for practical purposes.
There are two immediate ideas for future research: one is the generalization of our algorithm to
more than three objectives, as someparts like the perpendicular search canbe takenover,while
other parts could be solved in a recursive fashion. The other one concerns the “approximation”
of weight set components. We think that our general approach is able to provide approximate
weight set components, if applied properly. However, there are several issues that prevent
us from an immediate adaption of the algorithm to generate an approximation method: as
this has not been done before, a measurement for the quality of an approximation has to be
introduced. Also, a proper selection of the edges that a perpendicular search is applied to goes
hand in hand with the approximation ratio. While for the exact method we do this selection
in a depth-first manner, a breadth-first approach or other strategies may be better in terms of
approximation.

123

Journal of Global Optimization (2020) 77:715–742 741

In general, a deeper analysis of the weight set and its components for both general and
special problems is desired as well as further practical applications of the weight set decom-
position.

Acknowledgements Open Access funding provided by Projekt DEAL. At this point, we would like to thank
Przybylski, Gandibleux, and Ehrgott for providing their implementation and their instances. Also, we acknowl-
edge the comments of anonymous referees that have helped to improve this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alves, M.J., Costa, J.P.: Graphical exploration of the weight space in three-objective mixed integer linear
programs. Eur. J. Oper. Res. 248(1), 72–83 (2016). https://doi.org/10.1016/j.ejor.2015.06.072

2. Aneja, Y.P., Nair, K.P.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979). https://doi.
org/10.1287/mnsc.25.1.73

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press,
Cambridge (2009)

4. Bökler, F., Ehrgott, M., Morris, C., Mutzel, P.: Output-sensitive complexity of multiobjective combinato-
rial optimization. J. Multi-Criteria Decision Anal. 24(1–2), 25–36 (2017). https://doi.org/10.1002/mcda.
1603.Mcda.1603

5. Bökler, F., Mutzel, P.: Output-sensitive algorithms for enumerating the extreme nondominated points
of multiobjective combinatorial optimization problems. In: N. Bansal, I. Finocchi (eds.) Algorithms -
ESA 2015: 23rd Annual European Symposium, Patras, Greece, September 14–16, 2015, Proceedings,
pp. 288–299. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-48350-3_25

6. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete
Comput. Geom. 16(4), 361–368 (1996). https://doi.org/10.1007/BF02712873

7. Cohon, J.L.: Multiobjective Programming and Planning. Dover Books on Computer Science. Dover,
Mineola (2004)

8. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
9. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of benson’s “outer approximation algorithm” for multiple

objective linear programming. J. Global Optim. 52(4), 757–778 (2012). https://doi.org/10.1007/s10898-
011-9709-y

10. Figueira, J.R., Fonseca,C.M.,Halffmann, P.,Klamroth,K., Paquete, L., Ruzika, S., Schulze, B., Stiglmayr,
M., Willems, D.: Easy to say they are hard, but hard to see they are easy—towards a categorization of
tractable multiobjective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 24(1–2),
82–98 (2017). https://doi.org/10.1002/mcda.1574

11. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3),
618–630 (1968). https://doi.org/10.1016/0022-247X(68)90201-1

12. Glaßer, C., Reitwießner, C., Schmitz, H., Witek, M.: Approximability and hardness in multi-objective
optimization. In: F. Ferreira, B. Löwe, E. Mayordomo, L. Mendes Gomes (eds.) Programs, Proofs, Pro-
cesses. CiE 2010, Lecture Notes in Computer Science, vol. 6158, pp. 180–189. Springer, Berlin (2010)

13. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple objective combi-
natorial optimization. J. Optim. Theory Appl. 150(3), 475–497 (2011). https://doi.org/10.1007/s10957-
011-9849-8

14. Halffmann, P., Dietz, T., Ruzika, S.: Partial scalarization: A new way to solve multiobjective problems?.
Private Communication (2018)

15. Hamel, A.H., Löhne, A., Rudloff, B.: Benson type algorithms for linear vector optimization and applica-
tions. J. Global Optim. 59(4), 811–836 (2014). https://doi.org/10.1007/s10898-013-0098-2

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2015.06.072
https://doi.org/10.1287/mnsc.25.1.73
https://doi.org/10.1287/mnsc.25.1.73
https://doi.org/10.1002/mcda.1603.Mcda.1603
https://doi.org/10.1002/mcda.1603.Mcda.1603
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/s10898-011-9709-y
https://doi.org/10.1007/s10898-011-9709-y
https://doi.org/10.1002/mcda.1574
https://doi.org/10.1016/0022-247X(68)90201-1
https://doi.org/10.1007/s10957-011-9849-8
https://doi.org/10.1007/s10957-011-9849-8
https://doi.org/10.1007/s10898-013-0098-2

742 Journal of Global Optimization (2020) 77:715–742

16. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2),
836–845 (2008). https://doi.org/10.1137/060674831

17. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf.
Process. Lett. 27(3), 119–123 (1988). https://doi.org/10.1016/0020-0190(88)90065-8

18. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97
(1955). https://doi.org/10.1002/nav.3800020109

19. Müller-Hannemann,M.,Weihe, K.: On the cardinality of the pareto set in bicriteria shortest path problems.
Ann. Oper. Res. 147(1), 269–286 (2006). https://doi.org/10.1007/s10479-006-0072-1

20. Özpeynirci, Ö.: Approaches formultiobjective combinatorial optimization problems. Ph.D. thesis,Middle
East Technical University, Department of Industrial Engineering, Ankara, Turkey (2008)

21. Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of
multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010). https://doi.org/10.1287/
mnsc.1100.1248

22. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme
points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386
(2010). https://doi.org/10.1287/ijoc.1090.0342

23. Przybylski, A., Gandibleux,X., Ehrgott,M.:A two phasemethod formulti-objective integer programming
and its application to the assignment problemwith three objectives. Discrete Optim. 7(3), 149–165 (2010).
https://doi.org/10.1016/j.disopt.2010.03.005

24. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1),
59–60 (1963). https://doi.org/10.1109/TAC.1963.1105511

25. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, Berlin (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1137/060674831
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/s10479-006-0072-1
https://doi.org/10.1287/mnsc.1100.1248
https://doi.org/10.1287/mnsc.1100.1248
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1016/j.disopt.2010.03.005
https://doi.org/10.1109/TAC.1963.1105511

	An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Preliminaries
	3 Foundations
	3.1 Perpendicular search
	3.2 Check edge
	3.3 Extend edge
	3.4 Initialization

	4 Algorithm
	4.1 Presentation of the algorithm and correctness
	4.2 Illustrative example
	4.3 Comparison with the literature
	4.4 Computational study

	5 Conclusion
	Acknowledgements
	References

