
Hübner, Jens; Schmidt, Martin; Steinbach, Marc C.

Article — Published Version

Optimization techniques for tree-structured nonlinear
problems

Computational Management Science

Provided in Cooperation with:
Springer Nature

Suggested Citation: Hübner, Jens; Schmidt, Martin; Steinbach, Marc C. (2020) : Optimization
techniques for tree-structured nonlinear problems, Computational Management Science, ISSN
1619-6988, Springer, Berlin, Heidelberg, Vol. 17, Iss. 3, pp. 409-436,
https://doi.org/10.1007/s10287-020-00362-9

This Version is available at:
https://hdl.handle.net/10419/288275

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10287-020-00362-9%0A
https://hdl.handle.net/10419/288275
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Computational Management Science (2020) 17:409–436
https://doi.org/10.1007/s10287-020-00362-9

ORIG INAL PAPER

Optimization techniques for tree-structured nonlinear
problems

Jens Hübner1 ·Martin Schmidt2 ·Marc C. Steinbach3

Received: 11 June 2019 / Accepted: 8 January 2020 / Published online: 5 February 2020
© The Author(s) 2020

Abstract
Robust model predictive control approaches and other applications lead to nonlinear
optimization problems defined on (scenario) trees. We present structure-preserving
Quasi-Newton update formulas as well as structured inertia correction techniques that
allow to solve these problems by interior-point methods with specialized KKT solvers
for tree-structured optimization problems. The same type of KKT solvers could be
used in active-set based SQP methods. The viability of our approach is demonstrated
by two robust control problems.

Keywords Nonlinear stochastic optimization · Interior-point methods · Structured
Quasi-Newton updates · Structured inertia correction · Robust model predictive
control

Mathematics Subject Classification 90-08 · 90C06 · 90C15 · 90C30 · 90C51

1 Introduction

This paper addresses nonlinear optimization problems (NLPs) with an underlying
tree topology. The prototypical example are multistage stochastic optimization prob-
lems. These are computationally expensive because they involve some random process

B Martin Schmidt
martin.schmidt@uni-trier.de

Jens Hübner
info@jhuebner.de

Marc C. Steinbach
mcs@ifam.uni-hannover.de

1 HaCon Ingenieurgesellschaft mbH, Lister Str. 15, 30163 Hannover, Germany

2 Department of Mathematics, Trier University, Universitätsring 15, 54296 Trier, Germany

3 Institute of Applied Mathematics, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-020-00362-9&domain=pdf
http://orcid.org/0000-0001-6208-5677
http://orcid.org/0000-0002-6343-9809

410 J. Hübner et al.

whose discretization yields a scenario tree that grows exponentially with the length of
the planning horizon. Primal and dual decomposition methods are specially tailored
to linear and mildly nonlinear convex multistage stochastic optimization problems.
Moreover, they extendwell to themixed-integer case. See Birge and Louveaux (2011),
Kall and Wallace (1994) for an overview of algorithmic approaches and of stochas-
tic optimization in general. To tackle highly nonlinear convex and nonconvex NLPs,
we consider interior-point and SQP methods. Interior-point methods (IPMs) are also
efficient on linear or quadratic problems, while SQP methods extend well to mixed-
integer problems. In both cases the key to efficiency is the algebraic structure of the
arising KKT systems rather than the stochastic structure. Therefore, we allow arbi-
trary trees instead of only scenario trees. All methods mentioned above are amenable
to parallelization due to the rich structure of the underlying tree.

In Steinbach (2002) and the references therein, the third author has developed suit-
able formulations and a sequential interior-point approach for convex tree-structured
NLPswith polyhedral constraints, althoughwith parallelization andwith the fully non-
linear and nonconvex case inmind. Other early interior-point approaches for stochastic
optimization include Berger et al. (1995), Carpenter et al. (1993), Czyzyk et al. (1995),
Jessup et al. (1994), Schweitzer (1998). For more recent structure-exploiting parallel
algorithms see, e.g., Blomvall (2003), Blomvall and Lindberg (2002), Gondzio and
Grothey (2006, 2007, 2009), Lubin et al. (2012). Based on the dissertation (Hübner
2016), a massively distributed implementation of our algorithm has been presented in
Hübner et al. (2017). Here we address the extension to fully nonlinear and noncon-
vex problems. In particular, we present proper NLP formulations, structure-preserving
Quasi-Newton updates, and tailored inertia correction techniques. Although all pre-
sented techniques possess a straightforward distributed implementation, we will not
address this in detail.

The paper is structured as follows. In Sect. 2 we briefly introduce our approach and
extend the problem formulations and KKT systems of Steinbach (2002) to the general
NLP case. Section 3 presents (partially) separable Quasi-Newton update formulas that
preserve the problem-specific block structure. The proper specialization of standard
inertia correction techniques to this structure is discussed in Sect. 4. In Sect. 5, finally,
two case studies from robust process control that lead to multistage stochastic NLPs
with ODE dynamics serve as proof of concept for our algorithmic techniques.

2 Tree-sparse optimization

In this paper, we consider the integrated modeling and solution framework for tree-
structured convex NLPs from Steinbach (2002) that we refer to as “tree-sparse”. It
consists of natural model formulations that have favorable regularity properties and
block-level sparsity admitting O(|V |) KKT solution algorithms, where |V | is the
number of tree nodes. There are three standard forms that cover, respectively, the
general case with no further structure and two more specialized control formulations
with different stochastic interpretations. The NLPs that we study below have lin-
earizations whose polyhedral constraints match precisely the structure considered in
Steinbach (2002).

123

Optimization techniques for tree-structured nonlinear problems 411

For the following, let V = {0, . . . , N } denote the node set of a tree rooted in 0.
Given a node j ∈ V , we denote the set of successors by S(j), the predecessor by
i = π(j) (if j �= 0), and the path to the root by Π(j) = (j, π(j), . . . , 0). The level
of j is the path length, i.e., t(j) = |Π(j)| − 1. Finally, Lt stands for the set of level t
nodes and L for the set of leaves. In a scenario tree we have L = LT where T is
the tree’s depth, and every node j has a probability p j such that

∑
j∈Lt

p j = 1 for
every t .

2.1 Tree-sparse NLPs

Consider a general NLP with equality constraints, range inequality constraints, and
simple bounds in the form

min
y

φ(y) s.t. cE (y) = 0, cR(y) ≥ 0, y ∈ [y−, y+]. (1)

We call the NLP tree-sparse if it satisfies certain separability properties. Given a tree
with vertex set V and variable vector y = (y j) j∈V , the objective φ and range con-
straints cR have to be separable with respect to the node variables y j , and the equality
constraints cE split into dynamic constraints with aMarkov structure (y j depends only
on its predecessor yi) and separable global constraints.We distinguish three variants of
tree-sparse NLPs depending on the type of dynamic constraints: implicit tree-sparse
NLPs have implicit dynamics while outgoing and incoming tree-sparse NLPs with
y j = (x j , u j) and y j = (u j , x j), respectively, have explicit dynamics in control
form where the current state x j depends on (xi , ui) or (xi , u j). In the following, we
state these three NLP variants without further explanation. All details can be found in
Steinbach (2002).

The implicit tree-sparse NLP reads

min
y

∑

j∈V
φ j (y j) (2a)

s.t. h j (yi) − g j (y j) = 0, j ∈ V , (2b)

r j (y j) ≥ 0, j ∈ V , (2c)

y j ∈ [y−
j , y+

j], j ∈ V , (2d)
∑

j∈V
e j (y j) = 0, (2e)

the outgoing tree-sparse NLP is given by

min
x,u

∑

j∈V
φ j (x j , u j) (3a)

s.t. h j (xi , ui) − x j = 0, j ∈ V , (3b)

r j (x j , u j) ≥ 0, j ∈ V , (3c)

x j ∈ [x−
j , x+

j], u j ∈ [u−
j , u+

j], j ∈ V , (3d)

123

412 J. Hübner et al.

∑

j∈V
e j (x j , u j) = 0, (3e)

and the incoming tree-sparse NLP reads

min
u,x

∑

j∈V

(
φi j (xi , u j) + φ j (x j)

)
(4a)

s.t. h j (xi , u j) − x j = 0, j ∈ V , (4b)

ri j (xi , u j) ≥ 0, r j (x j) ≥ 0, j ∈ V , (4c)

u j ∈ [u−
j , u+

j], x j ∈ [x−
j , x+

j], j ∈ V , (4d)
∑

j∈V

(
ei j (xi , u j) + e j (x j)

) = 0. (4e)

At the root, j = 0, the preceding variable yi is empty and the dynamic constraints
reduce to respective initial conditions g0(y0) = h0, x0 = h0, and x0 = h0(u0).

In addition to global equality constraints one might also consider local equality
constraints as in Steinbach (2002). In the above NLPs these would take the respective
forms

elj (y j) = 0, j ∈ V , (implicit) (5a)

elj (x j , u j) = 0, j ∈ V , (outgoing) (5b)

eli j (xi , u j) = 0, elj (x j) = 0, j ∈ V . (incoming) (5c)

To avoid unnecessary technical complexity we assume that local constraints are mod-
eled as global constraints. Specific discussions will be added where the distinction is
relevant. Again for simplicity we consider range constraints in the form cR(y) ≥ 0
rather than lower and upper constraints as in Steinbach (2002), cR(y) ∈ [r−, r+].

2.2 Tree-sparse KKT systems

We solve the NLP (1) by an interior-point method, handle bounds directly, and convert
range constraints to cR(y) − s = 0 using slacks s ≥ 0. Then, every iteration leads to
a KKT system of the following form, where slack increments Δs have already been
eliminated: ⎡

⎢
⎢
⎣

H + Φ GT FT (Fr)T

G
F
Fr −Ψ −1

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

Δy
−Δλ

−Δμ

−Δv

⎞

⎟
⎟
⎠ = −

⎛

⎜
⎜
⎝

f
h
eV
ψ

⎞

⎟
⎟
⎠ . (6)

Here G, F, Fr correspond to dynamic, global, and range constraints, respectively,
and Φ ≥ 0, Ψ > 0 are diagonal barrier matrices. Elimination of Δv from the last
equation, FrΔy + Ψ −1Δv = −ψ , then yields a system of the form

123

Optimization techniques for tree-structured nonlinear problems 413

⎡

⎣
H̄ GT FT

G
F

⎤

⎦

⎛

⎝
Δy

−Δλ

−Δμ

⎞

⎠ = −
⎛

⎝
f
h
eV

⎞

⎠ , (7)

where H̄ = H + Φ + (Fr)TΨ (Fr). If we solve the NLP by an active-set based SQP
method, every active-set sub-iteration also produces a KKT system of the form (7),
except that the barrier matrices vanish (yielding H̄ = H) and that F may contain
additional rows from active inequality constraints. It is an essential feature of all three
tree-sparse NLP forms that the additional terms in H̄ (IPM) or in F (SQP) preserve
the original block structure.

Next we consider the separable or partially separable Lagrangians of the three tree-
sparse NLP forms and the resulting specializations of the KKT system (6), which are
all straightforward extensions of the material in Steinbach (2002). The specific forms
of the Lagrangians are needed for the Quasi-Newton updates in Sect. 3 whereas the
KKT systems are needed for the inertia correction in Sect. 4.

2.2.1 Implicit tree-sparse KKT system

The Lagrangian of the implicit tree-sparse NLP (with η j = (η−
j , η+

j) and h0 constant)
reads

L(y, λ, v, μ, η) = −λT
0 h0 +

∑

j∈V
L j (y j , λ j , λS(j), v j , μ, η j) (8)

where

L j (y j , λ j , λS(j), v j , μ, η j) = φ j (y j) + λT
j g j (y j) −

∑

k∈S(j)

λT
k hk(y j)

− vTj r j (y j) − μT e j (y j)

− (η−
j)T (y j − y−

j) − (η+
j)T (y+

j − y j).

With barrier parameter β and e = (1, . . . , 1)T in suitable dimension, the resulting
barrier matrices and vectors are

Φ j = Diag(y+
j − y j)

−1
Diag(η+

j) + Diag(y j − y−
j)

−1
Diag(η−

j),

ϕ j = η+
j − η−

j − β
(
Diag(y+

j − y j)
−1 − Diag(y j − y−

j)
−1

)
e,

Ψ j = Diag(r j)
−1 Diag(v j),

ψ j = r j − βDiag(v j)
−1e.

Let ζ generically denote the dual variables appearing in the Lagrangian L or its com-
ponents L j . Then the relevant partial derivatives of the Lagrangian read

Hj = ∇2
y j y jL j (y j , ζ), f j = ∇y jL j (y j , ζ),

G j = ∇yi h j (yi), Pj = ∇y j g j (y j),

123

414 J. Hübner et al.

Fj = ∇y j e j (y j),

Fr
j = ∇y j r j (y j),

and we further abbreviate

Ĥ j = Hj + Φ j , f̂ j = f j − ϕ j , eV =
∑

j∈V
e j (y j).

This yields the following KKT system (6) in node-wise representation, where we omit
Δ’s on all increments and write y j , λ j , v j , μ for simplicity:

Ĥ j y j + PT
j λ j −

∑

k∈S(j)

GT
k λk − FT

j μ − (Fr
j)

T v j + f̂ j = 0, j ∈ V , (9a)

G j yi − Pj y j + (h j − g j) = 0, j ∈ V , (9b)

Fr
j y j + Ψ j

−1v j + ψ j = 0, j ∈ V , (9c)
∑

j∈V
Fj y j + eV = 0. (9d)

The construction of H ,G, F, Fr and Φ,Ψ from the node contributions proceeds
exactly as in Steinbach (2002), also for the following explicit tree-sparse NLP variants.

2.2.2 Outgoing tree-sparse KKT system

The Lagrangian of the outgoing tree-sparse NLP (with ξ j = (ξ−
j , ξ+

j) and h0 again
constant) reads

L(x, u, λ, v, μ, η, ξ) = −λT
0 h0 +

∑

j∈V
L j (x j , u j , λ j , λS(j), v j , μ, η j , ξ j) (10)

with

L j (x j , u j , λ j , λS(j), v j , μ, η j , ξ j) = φ j (x j , u j) + λT
j x j −

∑

k∈S(j)

λT
k hk(x j , u j)

− vTj r j (x j , u j) − μT e j (x j , u j)

− (η−
j)T (x j − x−

j) − (η+
j)T (x+

j − x j)

− (ξ−
j)T (u j − u−

j) − (ξ+
j)T (u+

j − u j).

Here, the barrier matrices and vectors are

Φx
j = Diag(x+

j − x j)
−1

Diag(η+
j) + Diag(x j − x−

j)
−1

Diag(η−
j),

Φu
j = Diag(u+

j − u j)
−1

Diag(ξ+
j) + Diag(u j − u−

j)
−1

Diag(ξ−
j),

123

Optimization techniques for tree-structured nonlinear problems 415

ϕx
j = η+

j − η−
j − β

(
Diag(x+

j − x j)
−1 − Diag(x j − x−

j)
−1

)
e,

ϕu
j = ξ+

j − ξ−
j − β

(
Diag(u+

j − u j)
−1 − Diag(u j − u−

j)
−1

)
e,

Ψ j = Diag(r j)
−1 Diag(v j),

ψ j = r j − βDiag(v j)
−1e,

and the partial derivatives of the Lagrangian read

Hj = ∇2
x j x jL j (x j , u j , ζ), (11a)

J j = ∇2
x j u j

L j (x j , u j , ζ), K j = ∇2
u j u j

L j (x j , u j , ζ), (11b)

f j = ∇x jL j (x j , u j , ζ), d j = ∇u jL j (x j , u j , ζ), (11c)

G j = ∇xi h j (xi , ui), E j = ∇ui h j (xi , ui), (11d)

Fr
j = ∇x j r j (x j , u j), Dr

j = ∇u j r j (x j , u j), (11e)

Fj = ∇x j e j (x j , u j), Dj = ∇u j e j (x j , u j). (11f)

Thus, with

Ĥ j = Hj + Φx
j , K̂ j = K j + Φu

j ,

f̂ j = f j − ϕx
j , d̂ j = d j − ϕu

j ,

h̄ j = h j (xi , ui) − x j , eV =
∑

j∈V
e j (x j , u j)

we obtain the KKT system (6) in node-wise representation, again with Δ’s omitted:

Ĥ j x j + J Tj u j + λ j −
∑

k∈S(j)

GT
k λk − FT

j μ − (Fr
j)

T v j + f̂ j = 0, j ∈ V , (12a)

J j x j + K̂ j u j −
∑

k∈S(j)

ET
k λk − DT

j μ − (Dr
j)
T v j + d̂ j = 0, j ∈ V , (12b)

G j xi + E jui − x j + h̄ j = 0, j ∈ V , (12c)

Fr
j x j + Dr

ju j + Ψ j
−1v j + ψ j = 0, j ∈ V , (12d)

∑

j∈V
Fj x j + Dju j + eV = 0. (12e)

2.2.3 Incoming tree-sparse KKT system

For the incoming tree-sparse NLP the Lagrangian finally reads

L(x, u, λ, v, μ, η, ξ) =
∑

j∈V

(L j (x j , λ j , v j , μ, η j) + Li j (xi , u j , λ j , vi j , μ, ξ j)
)

(13)

123

416 J. Hübner et al.

with

L j (x j , λ j , v j , μ, η j) = φ j (x j) + λT
j x j − vTj r j (x j) − μT e j (x j)

− (η−
j)T (x j − x−

j) − (η+
j)T (x+

j − x j)

and

Li j (xi , u j , λ j , vi j , μ, ξ j) = φi j (xi , u j) − λT
j h j (xi , u j)

− vTi j ri j (xi , u j) − μT ei j (xi , u j)

− (ξ−
j)T (u j − u−

j) − (ξ+
j)T (u+

j − u j).

Here, the barrier matrices and vectors are

Φx
j = Diag(x+

j − x j)
−1

Diag(η+
j) + Diag(x j − x−

j)
−1

Diag(η−
j),

Φu
j = Diag(u+

j − u j)
−1

Diag(ξ+
j) + Diag(u j − u−

j)
−1

Diag(ξ−
j),

ϕx
j = η+

j − η−
j − β

(
Diag(x+

j − x j)
−1 − Diag(x j − x−

j)
−1

)
e,

ϕu
j = ξ+

j − ξ−
j − β

(
Diag(u+

j − u j)
−1 − Diag(u j − u−

j)
−1

)
e,

Ψi j = Diag(ri j)
−1 Diag(vi j),

ψi j = ri j − βDiag(vi j)
−1e,

Ψ j = Diag(r j)
−1 Diag(v j),

ψ j = r j − βDiag(v j)
−1e,

and the partial derivatives of the Lagrangian read

K j = ∇2
u j u j

Li j (xi , u j , ζ), J j = ∇2
xi u j

Li j (xi , u j , ζ), (14a)

Hi j = ∇2
xi xiLi j (xi , u j , ζ), Hj = ∇2

x j x jL j (x j , ζ) +
∑

k∈S(j)

Hjk, (14b)

d j = ∇u jLi j (xi , u j , ζ), f j = ∇x jL j (x j , ζ) +
∑

k∈S(j)

∇x jL jk(x j , uk, ζ), (14c)

E j = ∇u j h j (xi , u j), G j = ∇xi h j (xi , u j), (14d)

Fr
i j = ∇xi ri j (xi , u j), (14e)

Dr
j = ∇u j ri j (xi , u j), Fr

j = ∇x j r j (x j), (14f)

Dj = ∇u j ei j (xi , u j), Fj = ∇x j e j (x j) +
∑

k∈S(j)

∇x j e jk(x j , uk). (14g)

Again, with

K̂ j = K j + Φu
j , Ĥ j = Hj + Φx

j ,

123

Optimization techniques for tree-structured nonlinear problems 417

d̂ j = d j − ϕu
j , f̂ j = f j − ϕx

j ,

h̄ j = h j (xi , u j) − x j , eV =
∑

j∈V

(
ei j (xi , u j) + e j (x j)

)

we obtain the KKT system (6) in node-wise representation with Δ’s omitted:

J j xi + K̂ j u j − ET
j λ j − (Dr

j)
T vi j − DT

j μ + d̂ j = 0, j ∈ V , (15a)

Ĥ j x j +
∑

k∈S(j)

J Tk uk + λ j −
∑

k∈S(j)

GT
k λk (15b)

−
∑

k∈S(j)

(Fr
jk)

T v jk − (Fr
j)

T v j − FT
j μ + f̂ j = 0, j ∈ V , (15c)

G j xi + E ju j − x j + h̄ j = 0, j ∈ V , (15d)

Fr
i j xi + Dr

ju j + Ψi j
−1vi j + ψi j = 0, j ∈ V , (15e)

Fr
j x j + Ψ j

−1v j + ψ j = 0, j ∈ V , (15f)
∑

j∈V
D ju j +

∑

j∈V
Fj x j + eV = 0. (15g)

3 Tree-sparse Quasi-Newton updates

Standard interior-point methods are second-order methods, i.e., they use local infor-
mation given by the Hessian of the LagrangianL. In many applications, the evaluation
of second-order derivatives is prohibitively expensive and one is interested in using
Quasi-Newton updates that approximate the Hessian.

For the following let an initial point y(0) and an initial approximation B(0) of the
Hessian∇2

yyL(y, ζ) be given, where ζ again denotes all relevant dual variables. Then,
omitting the current iteration index k and denoting iteration k + 1 by superscript “+”,
three standard approaches of updating the Hessian approximations are the symmetric
rank-two BFGS update rule

B+ = B − BssT B

sT Bs
+ ggT

gT s
, (16)

the symmetric rank-one (SR1) update formula

B+ = B + rrT

rT s
, (17)

and the somewhat less popular PSB rule

B+ = B + rsT + srT

sT s
− (rT s)ssT

(sT s)2
, (18)

123

418 J. Hübner et al.

where the iteration data is given by

s := y+ − y, g := ∇L(y+, ζ+) − ∇L(y, ζ+), r := g − Bs. (19)

An overview of Quasi-Newton methods for unconstrained and constrained opti-
mization can be found, e.g., in Dennis and Moré (1977), Dennis and Schnabel
(1996), Fletcher (2013), Nocedal and Wright (2006) and the references therein.
General-purpose implementations of algorithms using Quasi-Newton approaches for
constrained nonlinear optimization include, e.g., KNITRO (Byrd et al. 2006, 2000) and
SNOPT (Gill et al. 2002).

3.1 Quasi-Newtonmethods for tree-sparse problems

Standard update formulas like (16)–(18) produce dense Hessian approximations that
destroy the specific block structure of the tree-sparse NLPs. Quasi-Newtonmethods in
large-scale optimization should generally not alter the sparsity pattern too much, i.e.,
the Hessian update strategy should keep additional fill-in at a minimum level. Such
sparse Quasi-Newton approaches for unconstrained and constrained optimization are
considered repeatedly in the literature; see, e.g., Fletcher (1995), Gill et al. (1984),
Liu and Nocedal (1989), Lucia (1983), Powell and Toint (1981), Toint (1981).

In fact, the tree-sparse NLPs are designed such that their block structure is
entirely preserved by suitable block-sparse Hessian approximations. The key idea
is to apply the update formulas node-wise rather than globally, which goes back
to multiple shooting SQP methods for deterministic optimal control problems
(Bock and Plitt 1985). As an additional benefit the updates have much higher rank.

Before we explicitly discuss tree-sparse Quasi-Newton updates for specific control
forms we briefly review the concept of (partially) separable functions. A function
ϕ : Rn → R is called partially separable if it can be written as

ϕ(y) =
M∑

i=1

ϕi (yI (i)),

where each function ϕi depends only on a subset of the variables that is indexed by
I (i) ⊆ {1, . . . , n} for i = 1, . . . , M . We call the function ϕ (completely) separable if,
in addition, I (i) ∩ I (j) = ∅ for all i �= j .

Quasi-Newton methods for arbitrary partially separable functions have first been
developed in Griewank and Toint (1982a, b).

3.2 Tree-sparse Hessian updates for outgoing control problems

For tree-sparse NLPs in outgoing control form the Lagrangian (10),

L(x, u, λ, v, μ, η, ξ) = −λT
0 h0 +

∑

j∈V
L j (x j , u j , λ j , λS(j), v j , μ, η j , ξ j),

123

Optimization techniques for tree-structured nonlinear problems 419

is completely separable with respect to the primal node variables, y j = (x j , u j),
j ∈ V . Thus, its Hessian is block-diagonal, and each block ∇2

y j y jL j (y j , ζ) can be
approximated individually by some Bj obtained with the same update formula based
on

s j = y+
j − y j ,

g j = ∇y jL j (y
+
j , ζ+) − ∇y jL j (y j , ζ

+),

r j = g j − Bj s j .

Here, Bj approximates the diagonal block (without barrier terms)

∇2
y j y jL j (y j , ζ) =

[
Hj J Tj
J j K j

]

, (20)

where the subblocks Hj , J j , and K j are given in (11). The overall Hessian approxi-
mation (again without barrier terms) is then given by

∇2
yyL(y, ζ) ≈ Diag({Bj } j∈V).

Finally note that, since the Lagrangian (8) of the implicit NLP form is also com-
pletely separable, it admits analogous individual updates of the diagonal blocks
∇2
y j y jL j (y j , ζ) = Hj . No communication is needed in the distributed code.

3.3 Tree-sparse Hessian updates for incoming control problems

The Lagrangian of tree-sparse NLPs in incoming control form,

L(x, u, λ, v, μ, η, ξ) =
∑

j∈V

(Li j (xi , u j , λ j , vi j , μ, ξ j) + L j (x j , λ j , v j , μ, η j)
)
,

is composed of two types of node functions, Li j and L j as given in (13). In contrast to
the outgoing control case, this Lagrangian is only partially separable with respect to
the primal node variables y j = (u j , x j). Thus, by setting yi j = (xi , u j), the overall
Hessian ∇2

yyL will be approximated by the sum of updates Bi j ≈ ∇2
yi j yi jLi j and

Bj ≈ ∇2
x j x jL j , j ∈ V , whose subblocks overlap in part as detailed below.

We obtain the node-wise approximations

Bi j ≈ ∇2
yi j yi jLi j (xi , u j , ζ) =

[
Hi j J Tj
J j K j

]

, (21)

where Hi j , J j , and K j are defined in (14). In a distributed code, Bi j has to be sent to
the process that holds Bi . The approximations of the Hessians of L j are given by

Bj ≈ ∇2
x j x jL j (x j , ζ) =: H̃ j . (22)

123

420 J. Hübner et al.

The approximations Bi j and Bj are updated by applying, for instance, one of the
update rules (16)–(18) where the respective differences of the iterates are

si j =
(
x+
i − xi

u+
j − u j

)

, s j = x+
j − x j , (23)

the corresponding differences of the gradients of the Lagrangian are

gi j =
(

∇xiLi j (x
+
i , u+

j , ζ+) − ∇xiLi j (xi , u j , ζ
+)

∇u jLi j (x
+
i , u+

j , ζ+) − ∇u jLi j (xi , u j , ζ
+)

)

, (24a)

g j = ∇x jL j (x
+
j , ζ+) − ∇x jL j (x j , ζ

+), (24b)

and, finally, ri j = gi j − Bi j si j and r j = g j − Bj s j .
To illustrate the resulting block structure, we consider a simple tree with root 0 and

successors S(0) = {1, 2}. In this case, the Hessian of the Lagrangian (13) has the form

∇2
yyL(y, ζ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K0

H0 J T1 J T2
J1 K1

H1
J2 K2

H2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with variables (u0, x0, u1, x1, u2, x2) and

H0 = H̃0 + H01 + H02, H1 = H̃1, H2 = H̃2. (25)

Hence, the subblocks K j and H̃ j are placed on the diagonal corresponding to the
respective variables u j and x j . Moreover, each subblock Hi j is added to H̃i , and J j
and J Tj are placed on the anti-diagonals corresponding to the variable pair (xi , u j).

4 Tree-sparse inertia correction

Recall that the search direction in an interior-point method for NLP (1) is computed
from system (7). Hence the reduced KKT matrix has to be invertible. In addition, to
guarantee a descent direction, the Hessian H̄ has to be positive definite on the null-
space of the constraints matrix. These conditions are satisfied if and only if the reduced
KKT matrix

Ω =
[
H̄ CT

C 0

]

with H̄ ∈ R
n×n, C =

[
G
F

]

∈ R
m×n (26)

has n positive and m negative eigenvalues (Nocedal and Wright 2006), i.e.,
inertia(Ω) = (n,m, 0). Therefore, when necessary, the inertia condition is enforced
by replacing Ω with

123

Optimization techniques for tree-structured nonlinear problems 421

Ω(δc, δr) =
[
H̄ + δc I CT

C −δr I

]

, δc, δr ≥ 0, (27)

as follows. If C (and hence Ω) is rank-deficient, the associated zero eigenvalues are
shifted into the negative region by choosing a fixed small value δr > 0 (regularization).
Then, if Ω(0, δr) has less than n positive eigenvalues, δc is increased repeatedly until
Ω(δc, δr) has the desired inertia (convexification). For details see Schmidt (2013),
Vanderbei and Shanno (1997), Wächter and Biegler (2006).

For the inertia correction of the tree-sparse NLPs, additional structural properties
of the associated factorizations of Ω come into play. First, in the implicit tree-sparse
KKT system the general regularization −δr I in (27) splits into independent regular-
izations for each dynamics equation (9b) and for the global constraints (9d), which
are applied to certain symmetric Schur complement blocks Y j ≥ 0 and X∅ ≥ 0 (see
Steinbach 2001) by factorizing Y j + δr I > 0 (or X∅ + δr I > 0) unless Y j > 0
(or X∅ > 0). Thus, any rank deficiencies in C are handled locally, and the local
refactorizations do not require any communication in the distributed code.

On the other hand, the general regularization−δr I would destroy the block structure
of the tree-sparse KKT systems in outgoing or incoming control form since in both
cases the factorization makes use of the fact that the matrix blocks to the right of G
and below GT are zero. These factorizations can only handle a regularization of the
global constraints, not the dynamics,

Ω∗(δc, δr) =
⎡

⎣
H̄ + δc I GT FT

G 0 0
F 0 −δr I

⎤

⎦ . (28)

While at first thought this might appear as a drawback, it is actually an advantage:
with explicit dynamics (3b) or (4b), the term−x j creates identity blocks−I along the
diagonal ofG.HenceG has always full rankby construction, and a regularization needs
only be considered for F . A closer look at the tree-sparse KKT solution algorithms
reveals that full rank of F is equivalent to X∅ > 0 (where X∅ can be shown to be the
Schur complement of the projection of F on N (G), with X∅ ≥ 0). This is checked in
the very last block operation: the Cholesky factorization of X∅, cf. step 18 of Table 1
for the incoming control case. Thus, if a regularization is required, only X∅ + δr I > 0
needs to be refactorized while the by far more expensive initial part of the factorization
can be retained. Again there is no extra communication.

Second, to preserve sparsity, each tree-sparse factorization needs a stricter condition
than the inertia condition above: while rank(C) = m is required as before, H̄ must be
positive definite on the null space N (G) rather than on N (C) = N (G) ∩ N (F). This
is because all three factorizations form the Schur complement X∅ of the projection
of F on N (G). The stricter condition can easily be incorporated into the convexifica-
tion heuristic since positive definiteness of H̄ + δc I on N (G) is checked during the
factorization. Of course, in problems without global constraints we have F ∈ R

0×m

and there is no difference.
The structural details of the tree-sparse convexification are more involved than for

the regularization. Positive definiteness of H̄ + δc I on N (G) is equivalent to positive

123

422 J. Hübner et al.

Table 1 Operations of KKT solution algorithm for incoming control

Factorization ↓ Inward subst. ↓ Outward subst. ↑
1: K j+=Φu

j −vi j ← Ψi j (−vi j)

2: Hj+=Φx
j −v j ← Ψ j (−v j)

3: K j+=Dr
j
T Ψi j D

r
j d j+=Dr

j
T Ψi j ri j −vi j+=Dr

j u j

4: J j+=Dr
j
T Ψi j F

r
i j

5: Hi+=Fr
i j
T Ψi j F

r
i j fi+=Fr

i j
T Ψi j ri j −vi j+=Fr

i j xi

6: Hj+=Fr
j
T Ψ j F

r
j f j+=Fr

j
T Ψ j r j −v j+=Fr

j x j

7: K j+=ET
j Hj E j d j+=ET

j (Hj h j + f j) −λ j+=Hj x j

8: K j → L j L
T
j

9: J j+=ET
j HjG j x j+=E j u j

10: Hi+=GT
j HjG j fi+=GT

j (Hj h j + f j) x j+=G j xi

11: Fi+=FjG j eV +=Fj h j −λ j+=FT
j (μ)

12: Dj+=Fj E j

13: Dj ← Dj L
−T
j h j ↔ f j

14: J j ← L−1
j J j d j ← L−1

j d j u j ← −L−T
j u j

15: Hi−=J Tj J j fi−=J Tj d j u j+=J j xi

16: Fi−=Dj J j

17: XV +=Dj D
T
j eV −= Djd j u j+=DT

j (−μ)

18: X∅ → LLT −μ = L−1e∅ −μ ← L−T (−μ)

In step 18, X∅, e∅ denote XV , eV after finishing (“removing”) every node j ∈ V in step 17. See Steinbach
(2002) for details

definiteness of properly modified blocks K j in every node, see steps 3 and 7 in Table 1.
Thus, if this does not hold, the Cholesky factorization of some modified block K j will
fail (step 8), andΩ∗(δc, δr) has to be refactorized from scratch with an increased value
of δc.

In order to avoid refactorizations of the entire matrix, different convexification
parameters δcj can be used in each node j to modify the local Hessian blocks,

(Hj , K j) → (Hj + δcj I , K j + δcj I) or (Hj , K j) → (Hj , K j + δcj I). (29)

This way, only local refactorizations are needed. However, in contrast to the uniform
shift of all eigenvalues of H̄ by δc, individual local shifts δcj may produce a highly
inhomogeneous change of the subproblem’s geometry. As a remedy, one may also
consider combined global and local convexifications, as suggested in Hübner (2016).
This allows for a wide range of possible heuristics that we do not want to explore here.

Let us finally discuss the inertia correction with local equality constraints. In all
tree-sparse factorizations, these constraints are eliminated by local projections at the
very beginning of the algorithm, under the assumption that the Jacobians of eli j , e

l
j

123

Optimization techniques for tree-structured nonlinear problems 423

in (5) have full rank. This produces a projected KKT system without local constraints
which has precisely the form (9), (12), or (15). If any of the local constraints may
require a regularization, this procedure has to be modified as follows. All potentially
rank-deficient local constraints are modeled as global constraints. However, it turns
out that each of them augments the Schur complement X∅ ≥ 0 mentioned above
with an independent diagonal block Xl

j ≥ 0. Thus, similar to the implicit case, the
general regularization splits into independent local regularizations that are applied
immediately when reaching the respective block by factorizing Xl

j +δr I > 0 (or X∅+
δr I > 0) unless Xl

j > 0 (or X∅ > 0). Local regularizations are again automatically
independent, require no communication, and in contrast to the convexifications a
refactorization of Ω∗(δc, δr) from scratch is never needed.

5 Case studies

The main goal of this section is to show that the tree-sparse Hessian updates and
the tree-sparse inertia correction work efficiently: they provide natural extensions of
the existing tree-sparse algorithms to deal with nonconvexity and with unavailable or
expensive second-order derivatives.

In Sect. 5.1 and 5.2 we consider robust moving horizon control problems for a
double integrator and a bioreactor, respectively. These examples are both noncon-
vex. The second problem does not provide explicit evaluations of the Hessian of the
Lagrangian, so we use a Quasi-Newton approach based on the tree-sparse Hessian
updates of Sect. 3. All optimization problems are solved using the interior-point code
Clean::IPM (Schmidt 2013) with a tree-sparse KKT solver. The KKT solver incorpo-
rates the proposed inertia correction heuristic of Sect. 4 to address nonconvexity.

Moving horizon controllers (MHC) compensate random disturbances of a process
by measuring or estimating the current disturbance in regular intervals and solving a
dynamic optimization problem over a certain prediction horizon T to determine the
current corrective action. Robust MHC incorporate an explicit stochastic model of
future disturbances up to some stochastic horizon Ts ≤ T whereas standard MHC
simply ignore future disturbances (Ts = 0).

5.1 Nonlinear double integrator

In this case study, we consider a moving horizon controller (MHC) for stabilizing
a perturbed nonlinear double integrator. The dynamics is given by the discrete time
model proposed in Lazar et al. (2008),

x1(t + 1) = x1(t) + x2(t) + 1

40

(
x1(t)

2 + x2(t)
2
)

+ 1

2
u(t) + d(t), (30a)

x2(t + 1) = x2(t) + 1

40

(
x1(t)

2 + x2(t)
2
)

+ u(t). (30b)

Herein, the state (x1, x2) is driven by the control u ∈ [−2, 2], and the first state x1 is
perturbed by some dynamic disturbance d with nominal value dnom = 0. The task is

123

424 J. Hübner et al.

Fig. 1 Moving horizon control of the double integrator (left) and scenario tree with prediction horizon
T = 3 and stochastic horizon Ts = 2 (right)

to keep the system close to its reference point, (x∗
1 , x

∗
2) = (0, 0). In the absence of

disturbances, the reference state (x∗
1 , x

∗
2) is a fixed point of the dynamics (30).

As in Lucia and Engell (2012), the disturbance may take one of three values,
d(t) ∈ {−0.05, 0, 0.05}, with respective probabilities 0.2, 0.4, and 0.4. Again as in
Lucia and Engell (2012), the objective is

φL(x, u) = (x − x∗)T Q(x − x∗) + Ru2 (31)

with Q = I and R = 0.15, a standard quadratic tracking functional with control
costs. At each sampling time, the double integrator receives a control signal u(t)
from the MHC and the random disturbance d(t) is observed. The resulting new state
(x1(t + 1), x2(t + 1)) is then sent back to the controller; see Fig. 1.

5.1.1 Tree-sparse formulation

The moving horizon optimization problem that is solved at each sampling time to
determine the control signal u includes the dynamic model (30) and the cost (31). We
formulate it as a tree-sparse NLP in outgoing control form with probability-weighted
node objectives

φ j (x j , u j) = p j (x
T
j Qx j + Ru2j), j ∈ V , (32)

dynamics

h j (xi , ui) =
[
1 1
0 1

]

xi +
(
1/2
1

)

ui + ‖xi‖22
40

(
1
1

)

+
(
d j

0

)

, j ∈ V \{0}, (33)

and simple control bounds
u j ∈ [−2, 2], j ∈ V . (34)

123

Optimization techniques for tree-structured nonlinear problems 425

Fig. 2 Progress of average states of perturbed double integrator for three initial states with deterministic
MHC (Ts = 0, T = 3)

The initial state x̂0 is given as h0 = x̂0. A possible scenario tree is shown in Fig. 1.

5.1.2 Control towards reference point

In a first test, we evaluate the performance of the deterministic controller (Ts = 0) for
bringing the system from three given initial states close to the reference point (x∗

1 , x
∗
2).

The MHC uses the prediction horizon T = 3 and analytic second-order derivatives.
We generate random disturbances at t = 1, . . . , 10 and apply the MHC for 10 time
steps. For each initial value, this is repeated 50 times with different series of random
disturbances. Figure 2 shows the mean values of the states over the 10 time steps. For
each of the three initial states, the mean values come very close to (x∗

1 , x
∗
2) within the

first 5 time steps, which confirms the proper operation of the controller.

5.1.3 Hold the reference point with minimal costs

In the second test series, the performance of the robust controller is tested for keeping
the perturbed system close to the initial state (x∗

1 , x
∗
2) over 20 time steps. Here we

consider prediction horizons T = 3 and T = 10 with respective stochastic horizons
Ts ∈ {0, 1, 2, 3} and Ts ∈ {0, 1, 2, 3, 5, 7}. Againwe use analytic second-order deriva-
tives, and each test is run with the same set of 50 series of random disturbances at
t = 1, . . . , 20. Figure 3 illustrates the resulting averages of accumulated costs, states,
and control over 20 steps. We observe that the 10 different controllers determined by
(T , Ts) show visible differences in the mean values of u and x2 only during the first
five time steps (with an average control of zero at t = 5). Moreover, the length of the
prediction horizon has no visible influence: the plots for T = 3 and T = 10 combined
with Ts ∈ {0, 1, 2, 3} look exactly identical. A close examination of the data reveals
that differences after t = 5 and between T = 3 and T = 10 are indeed very small
with values in the order of 10−4 to 10−3.

The average accumulated costs (top of Fig. 3) demonstrate that the performance of
the controller improves when uncertainties are included. Adding uncertainties in the

123

426 J. Hübner et al.

Fig. 3 Progress of double integrator: averages of accumulated costs, of states x1, x2, and of control u for
prediction horizons T = 3 (left) and T = 10 (right) with several stochastic horizons Ts

123

Optimization techniques for tree-structured nonlinear problems 427

first time step, i.e., increasing Ts from 0 to 1, reduces the resulting costs at the final
step t = 20 by approximately 9%. Increasing the stochastic horizon to Ts = 2 leads
to a further cost reduction of approximately 3%. Larger stochastic horizons (Ts > 2)
have no significant effect on the costs. The cost reductions are obtained by balancing
the disturbances in the first 5 time steps of the process. The control signal is adjusted to
reduce the deviation of x1 from the reference state x∗

1 = 0. This reduces the costs due
to deviations of x1 and increases the costs due to deviations of x2 and due to nonzero
control signals. In other words, within the critical first 5 time steps, the incurred costs
are “moved” from state x1 to state x2 and to the control u. This strategy pays off in the
further process where the costs due to u and x2 are identical for all considered values
of Ts while the costs due to x1 depend on its value at time step 5.

5.1.4 Exact Hessians versus approximations

Here we solve the robust control problem (32)–(34) with a fixed prediction horizon
T = 12 and increasing stochastic horizons Ts ∈ {1, . . . , 12}. We measure the total
time for IPM solution and for evaluating the NLP data with either analytic Hessians
or SR1 updates or PSB updates. Each test is run 50 times for different initial states,
and the averages of IPM solution time, NLP evaluation time, and iteration counts
are measured, see Fig. 4. The problem sizes are given in Table 2 together with total
runtimes of the IPM with analytic Hessian evaluations. All computations are carried
out on a single core of a workstation with 48 GiB of RAM and 12X5675 cores running
at 3.07 GHz.

Let us first consider the case of analytic Hessian evaluations. The average number
of iterations is almost independent of Ts , which indicates a certain “scalability” of
the stochastic model. The NLP evaluation time is lower than with both Quasi-Newton
updates, thus analytic Hessians are cheaper than approximations in this problem.
Finally we note that the constraints matrices cannot become rank-deficient and thus
the regularization remains inactive for all 12 values of Ts and all 50 initial values.

With SR1 updates we observe the lowest iteration counts of all three Hessian ver-
sions on small problems (Ts < 8) but the highest iteration counts on large problems
(Ts > 9). The convexification is again inactive in all runs, which indicates that the
tree-sparse SR1 updates provide good Hessian approximations.

With PSB updates, the iteration count varies with Ts but remains significantly
smaller than with analytic Hessians. This yields the smallest total runtimes on large
problems (Ts > 9) although the NLP evaluation time per iteration is significantly
larger than for analytic Hessians. Surprisingly, most runs require a convexification to
solve the optimization problems.

5.2 Nonlinear bioreactor

This case study is concerned with a robust nonlinear moving horizon controller that
keeps a bioreactor in a steady state of production. The problem is proposed as a bench-
mark in Ungar (1990) and has been studied, e.g., in Lucia and Engell (2012), Lucia
et al. (2012). The plant consists of a continuous flow stirred tank reactor containing

123

428 J. Hübner et al.

Fig. 4 Double integrator: average IPM performance vs.stochastic horizon Ts for different algorithm con-
figurations

a mixture of water and cells. The latter consume nutrients and produce (desired and
undesired) products as well as more cells. The volume of the mixture is constant and
its composition is adjusted by a water stream that feeds nutrients into the tank at the
inlet and that contains nutrients and cells at the outlet. The dynamic model of the
bioreactor is given by the ODE system

ẋ1 = f1(x1, x2, v) = −x1v + x1(1 − x2)e
x2/γ , (35a)

ẋ2 = f2(x1, x2, v) = −x2v + x1(1 − x2)e
x2/γ 1 + β

1 + β − x2
, (35b)

where x1 and x2 are dimensionless amounts of cell mass and nutrient, respectively,
and v is the flow rate of the water stream. The respective physical bounds are

x1(t), x2(t) ∈ [0, 1], v(t) ∈ [0, 2]. (36)

The ODE system (35) describes the rates of change in the amounts of cells x1 and
nutrients x2, respectively, that result from the respective amounts −x1v and −x2v
leaving the tank and from the metabolism of the cells. The cell growth is represented

123

Optimization techniques for tree-structured nonlinear problems 429

Table 2 Double integrator: problem sizes and average IPM solution times with analytic Hessian evaluations

Ts Nodes Scenarios Variables Equalities Bounds Time (s)

1 37 3 111 74 222 0.00

2 103 9 309 206 618 0.01

3 283 27 849 566 1698 0.01

4 769 81 2307 1538 4614 0.04

5 2065 243 6195 4130 12 390 0.09

6 5467 729 16 401 10,934 32,802 0.24

7 14,215 2187 42,645 28,430 85,290 0.62

8 36,085 6561 108,255 72,170 216,510 1.63

9 88,573 19,683 265,719 177,146 531,438 4.14

10 206,671 59,049 620,013 413,342 1,240,026 9.56

11 442,867 177,147 1,328,601 885,734 2,657,202 22.07

12 797,161 531,441 2,391,483 1,594,322 4,782,966 39.50

by x1(1 − x2)ex2/γ , where γ is the uncertain nutrient consumption parameter with
nominal value γ nom = 0.48. The rate of cell growth β depends very mildly on the
composition of the mixture in the tank. We regard it as constant, βnom = 0.02.

When feeding nutrients to the bioreactor with a constant flow rate v, the system has
a Hopf bifurcation at a certain flow rate vH that depends on the values of γ and β. For
v < vH, System (35) stabilizes at a unique fixed point (x∗

1 , x
∗
2) whereas it becomes

unstable for v ≥ vH. For the nominal parameter values, the Hopf bifurcation occurs
at the flow rate vH = 0.829. This value decreases with an increasing value of γ or a
decreasing value of β as shown in Fig. 5.

The desired steady state of production, (x∗
1 , x

∗
2) ≈ (0.1236477, 0.8760318), is

close to the Hopf bifurcation and is obtained for the constant flow rate v∗ = 0.769
with nominal parameter values. The parameter γ is assumed to be normally distributed
with small variance, γ ∼ N (γ nom, 0.005). As in Lucia and Engell (2012), standard
quadratic costs are applied that penalize deviations from the reference state x∗

1 with
the factor 200 and changes of the flow rate with the factor 75.

5.2.1 Tree-sparse formulation

The optimization problem for the bioreactor is formulated as a tree-sparse NLP with
incoming control (4). State variables x j ∈ R

3 consist of the two states x1, x2, and
the flow rate v of the ODE system (35). The control u j ∈ R models the change of
the piecewise constant flow rate v at time t(i), yielding dynamics x j = g j (xi , u j) =
(w j (xi , u j), xi,3 + u j) where

w j (xi , u j) =
(
xi,1
xi,2

)

+
∫ t(j)

t(i)

(
f1(x1(t), x2(t), xi,3 + u j)

f2(x1(t), x2(t), xi,3 + u j)

)

dt . (37)

123

430 J. Hübner et al.

Fig. 5 Hopf bifurcations of the bioreactor for varying parameters γ and β

Here the flow rate is modeled as a state variable since its difference u j = x j,3 − xi,3
enters into the objective,

φi j (xi , u j) = p j

2
Ru2j , φ j (x j) = p j

2
(x j − x̄∗)T Q(x j − x̄∗),

with R = 75, Q = Diag(200, 0, 0), and x̄∗ = (x∗
1 , x

∗
2 , 0). Finally, physical

bounds (36) are incorporated as simple state bounds, x−
j = (0, 0, 0) and x+

j =
(1, 1, 2).

It turns out that with increasing stochastic horizon Ts the robust control problem
becomes extremely hard to solve due to the highly nonlinear dynamics. Therefore we
use as scenario tree a simple fan (Ts = 1) with ns scenarios, see Fig. 6.

5.2.2 Keep a steady state of production

In the following, we consider 13 instances of the benchmark problem differing in the
prediction horizon T or in the number of scenarios ns . The reactor is started in the
reference state and run for 40 s with a sampling interval of 100 ms. At each sampling
time, the plant receives a new control signal from the MHC and the random value of γ

123

Optimization techniques for tree-structured nonlinear problems 431

Fig. 6 Process control of the bioreactor (left) and scenario tree with prediction horizon T = 3 and ns = 5
scenarios (right)

is sampled, see Fig. 6. Thus, each test run requires solving 400 optimization problems.
Each of those tests is run 50 times with different series of random disturbances. We
compute variances of the cell mass x1 and averages of accumulated costs, of x1, and
of the flow rate v.

As in Sect. 5.1, the tree-sparse NLPs are solved using Clean::IPM where solutions
of the IVP (37) are computed using a semi-implicit extrapolation method (Bader and
Deuflhard 1983). The Hessians are approximated by tree-sparse SR1 updates, which
turned out to be the most reliable choice here. All computations in this section have
been executed on a single core of a workstation with 16 GiB of RAM and an Intel(R)
Core i7-3770 quad-core processor running at 3.40 GHz.

In some test runs, the IPM does not converge for all 400 optimization problems,
which demonstrates the difficulty of these problems. To keep the results comparable,
we exclude all test runs that do not succeed in each of the 13 benchmark instances. In
the end we are left with solutions for 28 of the 50 disturbance series.

The results are given in Figs. 7 and 8. The plots show averages of accumulated
costs (upper left), of the cell mass x1 (upper right), the variance of x1 (lower left),
and average flow rates (lower right) vs. time. Two situations are shown in the figures.
First, in Fig. 7, the bioreactor is regulated using deterministic optimization problems
(ns = 1) and an increasing prediction horizon T . Second, in Fig. 8, the MHC uses
stochastic optimization problems with fixed prediction horizon (T = 5) and a varying
number of scenarios ns . In both situations, increasing the free tree parameter (T or ns)
improves the performance of the controller. The average accumulated costs decrease
monotonously, which is achieved by damping the effect of the perturbation on the cell
mass x1. After experiencing disturbances, x1 oscillates about the reference state x∗

1 .
The amplitude of this oscillation is reduced by adjusting the flow rate v, which reduces
the costs caused by the deviations of x1.

The results in Fig. 7 show that a certain minimal prediction horizon is required to
produce a significant effect. Using the value T = 5 reduces the costs by less than 5%

123

432 J. Hübner et al.

Fig. 7 Performance of the bioreactor for deterministic problems (ns = 1) with increasing prediction
horizons (T)

Fig. 8 Performance of the bioreactor for stochastic problems with fixed prediction horizon T = 5 and
increasing number of scenarios ns

123

Optimization techniques for tree-structured nonlinear problems 433

Table 3 Problem sizes, IPM solution times (s) and NLP evaluation times (s) of the problems in Fig. 9

Case T ns Var. Equ. Bnd. Iter. IPM NLP

1 100 1 404 303 606 8 0.015 0.011

2 5 51 1024 768 1536 9 0.037 0.028

3 10 3 124 93 186 6 0.005 0.003

Fig. 9 Bioreactor: large
prediction horizon vs.large
number of scenarios

in comparison to T = 1 whereas the value T = 10 yields a reduction of more than
60%. However, increasing T further yields no significant improvement. The value
T = 20, for instance, produces a reduction of only 65%.

The results in Fig. 8 show that the robust control approach with its explicit model
of uncertainties improves the controller performance. The total costs are reduced by
7% with ns = 3, and by 70% with ns = 81. Of course, each additional scenario
causes higher computational effort while the relative reduction of costs per scenario
decreases. For instance, we have 3.5% reduction of costs per scenario for ns = 3 and
0.88% per scenario for ns = 81.

The results of Figs. 7 and 8 show that the goal of reducing the costs is achieved in
both situations. However, increasing the number of scenarios ns is computationally
more expensive than enlarging the prediction horizon T , as can be seen in Table 3.
The optimization problems of case 1 (T = 100 and ns = 1) are significantly smaller
and solved faster than those of case 2 (T = 5 and ns = 51), although the two cases
produce almost identical costs as shown in Fig. 9. Finally, case 3 in Table 3 represents
a fair compromise between the length of the prediction horizon (T = 10) and the
number of scenarios (ns = 3). In Fig. 9 we see that this compromise produces the
smallest costs and, moreover, has the smallest optimization problems among the ones
listed in Table 3. It is solved 3 times faster than case 1 and 9 times faster than case 2.
Thus we conclude that a suitably designed robust controller can be significantly more
efficient than a deterministic controller.

6 Conclusion

We have seen that the concept of tree-sparse optimization problems (Steinbach 2002)
extends directly from convex problems with polyhedral constraints to the fully non-

123

434 J. Hübner et al.

linear and nonconvex NLP case. The required structural assumptions are satisfied
whenever the nonlinear constraint functions possess mild separability properties.
Moreover, interior-pointmethodswith a tree-sparseKKT solver are directly applicable
to the general case by introducing straightforward structure-specific specializations to a
standard inertia correction procedure. Finally, the Lagrangian is separable or partially
separable in all three tree-sparse NLP variants so that the Hessian can be approx-
imated by structure-preserving Quasi-Newton update formulas when second-order
derivatives are unavailable or too expensive. The effectiveness of these techniques
has been demonstrated on two robust model predictive control problems with ODE
dynamics. Altogether, our problem formulation and our solution approach exploit the
specific structure of tree-sparse problems in a natural way.

Although we have not demonstrated this here, it is easily seen that the distributed
implementation presented in Hübner et al. (2017) extends as well to the NLP case
considered in this paper: the function and derivative evaluations, possibly with Quasi-
Newton updates, and the tree-sparse inertia correction parallelize similar or easier than
the KKT solver. Our techniques are also directly applicable in an active set-based SQP
framework such as Rose (2018): here we can again use the tree-sparse KKT solver,
except that the implementation requires some overhead for the changing active set.

Acknowledgements Open Access funding provided by Projekt DEAL. This research has been performed
as part of the Energie Campus Nürnberg and supported by funding through the “Aufbruch Bayern (Bavaria
on the move)” initiative of the state of Bavaria.

Funding Funding was provided by Bayerisches Staatsministerium für Wirtschaft undMedien, Energie und
Technologie (Grant No. EnCN).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bader G, Deuflhard P (1983) A semi-implicit midpoint rule for stiff systems of ordinary differential equa-
tions. Numer Math 41:373–398. https://doi.org/10.1007/BF01418331

Berger AJ, Mulvey JM, Rothberg E, Vanderbei RJ (1995) Solving multistage stochastic programs using
tree dissection. Technical Report SOR-95-07. Princeton University, USA

Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer, Berlin. https://doi.org/10.
1007/978-1-4614-0237-4

Blomvall J, Lindberg PO (2002) A Riccati-based primal interior point solver for multistage stochastic
programming. Eur J Oper Rese 143(2):452–461. https://doi.org/10.1016/S0377-2217(02)00301-6

Blomvall J (2003) A multistage stochastic programming algorithm suitable for parallel computing. Parallel
Comput 29(4):431–445. https://doi.org/10.1016/S0167-8191(03)00015-2

Bock HG, Plitt KJ (1985) A multiple shooting algorithm for direct solution of optimal control problems.
In: Gertler J (ed) Proceedings of the 9th IFAC world congress, Budapest, Hungary, 1984, vol IX.
Pergamon Press, Oxford, UK, pp 242–247. https://doi.org/10.1016/S1474-6670(17)61205-9

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01418331
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1016/S0377-2217(02)00301-6
https://doi.org/10.1016/S0167-8191(03)00015-2
https://doi.org/10.1016/S1474-6670(17)61205-9

Optimization techniques for tree-structured nonlinear problems 435

Byrd RH, Gilbert J-C, Nocedal J (2000) A trust region method based on interior point techniques for
nonlinear programming. Math Program 89(1):149–185. https://doi.org/10.1007/PL00011391

Byrd RH, Nocedal J, Waltz RA (2006) KNITRO: an integrated package for nonlinear optimization. In:
Large scale nonlinear optimization, 35–59, 2006. Springer, pp 35–59. https://doi.org/10.1007/0-387-
30065-1_4

Carpenter TJ, Lustig IJ, Mulvey JM, Shanno DF (1993) Separable quadratic programming via a primal-dual
interior point method and its use in a sequential procedure. ORSA J Comput 5(2):182–191. https://
doi.org/10.1287/ijoc.5.2.182

Czyzyk J, Fourer R, Mehrotra S (1995) A study of the augmented system and column-splitting approaches
for solving two-stage stochastic linear programs by interior-point methods. ORSA JComput 7(4):474–
490. https://doi.org/10.1287/ijoc.7.4.474

Dennis JE, Moré JJ (1977) Quasi-Newton methods, motivation and theory. SIAMRev 19(1):46–89. https://
doi.org/10.1137/1019005

Dennis JE, SchnabelRB (1996)Numericalmethods for unconstrained optimization and nonlinear equations,
vol 16. SIAM. https://doi.org/10.1137/1.9781611971200

Fletcher R (1995) An optimal positive definite update for sparse Hessian matrices. SIAM JOptim 5(1):192–
218. https://doi.org/10.1137/0805010

Fletcher R (2013) Practical methods of optimization. Wiley, New York. https://doi.org/10.1002/
9781118723203

Gill PE, Murray W, Saunders MA, Wright MH (1984) Sparse matrix methods in optimization. SIAM J Sci
Stat Comput 5(3):562–589. https://doi.org/10.1137/0905041

Gill PE,MurrayW,SaundersMS (2002) SNOPT: anSQPalgorithm for large-scale constrained optimization.
SIAM J Optim 12(4):979–1006. https://doi.org/10.1137/S1052623499350013

Gondzio J,GrotheyA (2006)Direct solution of linear systemsof size 109 arising in optimizationwith interior
point methods. In: Wyrzykowski R, Dongarra J, Meyer N, Wasniewski J (eds) Parallel processing and
applied mathematics, vol 3911. Lecture notes in computer science. Springer, Berlin, pp 513–525.
https://doi.org/10.1007/11752578_62

Gondzio J, Grothey A (2007) Parallel interior-point solver for structured quadratic programs: application
to financial planning problems. Ann Oper Res 152(1):319–339. https://doi.org/10.1007/s10479-006-
0139-z

Gondzio J, Grothey A (2009) Exploiting structure in parallel implementation of interior point methods for
optimization. Comput Manag Sci 6(2):135–160. https://doi.org/10.1007/s10287-008-0090-3

Griewank A, Toint PL (1982a) Partitioned variable metric updates for large structured optimization prob-
lems. Numer Math 39(1):119–137. https://doi.org/10.1007/BF01399316

Griewank A, Toint P (1982b) On the unconstrained optimization of partially separable functions. In: Powell
M (ed) Nonlinear optimization 1981. Academic press, Cambridge, pp 301–312

Hübner J (2016)Distributed algorithms for nonlinear tree-sparse problems. Ph.D. Thesis. GottfriedWilhelm
Leibniz Universität Hannover

Hübner J, SteinbachMC,SchmidtM(2017)Adistributed interior-pointKKTsolver formultistage stochastic
optimization. INFORMS J Comput 29(4):612–630. https://doi.org/10.1287/ijoc.2017.0748

Jessup ER, Yang D, Zenios SA (1994) Parallel factorization of structured matrices arising in stochastic
programming. SIAM J Optim 4(4):833–846. https://doi.org/10.1137/0804048

Kall P,Wallace SW (1994) Stochastic programming.Wiley-interscience series in systems and optimization.
Wiley, New York

Lazar M, De La Peña DM, Heemels W, Alamo T (2008) On input-tostate stability of min-max nonlinear
model predictive control. Syst Control Lett 57(1):39–48. https://doi.org/10.1016/j.sysconle.2007.06.
013

LiuDC, Nocedal J (1989) On the limitedmemory BFGSmethod for large scale optimization.Math Program
45(3):503–528. https://doi.org/10.1007/BF01589116

Lubin M, Petra CG, Anitescu M (2012) The parallel solution of dense saddle-point linear systems arising in
stochastic programming. OptimMethods Softw 27(4–5):845–864. https://doi.org/10.1080/10556788.
2011.602976

Lucia A (1983) An explicit Quasi-Newton update for sparse optimization calculations. Math Comput
40(161):317–322. http://www.jstor.org/stable/2007377

Lucia S, Engell S (2012) Multi-stage and two-stage robust nonlinear model predictive control. Nonlinear
Model Predict Control 45(17):181–186. https://doi.org/10.3182/20120823-5-NL-3013.00015

123

https://doi.org/10.1007/PL00011391
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1287/ijoc.5.2.182
https://doi.org/10.1287/ijoc.5.2.182
https://doi.org/10.1287/ijoc.7.4.474
https://doi.org/10.1137/1019005
https://doi.org/10.1137/1019005
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/0805010
https://doi.org/10.1002/9781118723203
https://doi.org/10.1002/9781118723203
https://doi.org/10.1137/0905041
https://doi.org/10.1137/S1052623499350013
https://doi.org/10.1007/11752578_62
https://doi.org/10.1007/s10479-006-0139-z
https://doi.org/10.1007/s10479-006-0139-z
https://doi.org/10.1007/s10287-008-0090-3
https://doi.org/10.1007/BF01399316
https://doi.org/10.1287/ijoc.2017.0748
https://doi.org/10.1137/0804048
https://doi.org/10.1016/j.sysconle.2007.06.013
https://doi.org/10.1016/j.sysconle.2007.06.013
https://doi.org/10.1007/BF01589116
https://doi.org/10.1080/10556788.2011.602976
https://doi.org/10.1080/10556788.2011.602976
http://www.jstor.org/stable/2007377
https://doi.org/10.3182/20120823-5-NL-3013.00015

436 J. Hübner et al.

Lucia S, Finkler T, Basak D, Engell S (2012) A new robust NMPC scheme and its application to a semi-
batch reactor example. In: Proceedings of the international symposiumon advanced control of chemical
processes, pp 69–74. https://doi.org/10.3182/20120710-4-SG-2026.00035

Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Berlin. https://doi.org/10.1007/
978-0-387-40065-5

Powell M, Toint PL (1981) The Shanno–Toint procedure for updating sparse symmetric matrices. IMA J
Numer Anal 1(4):403–413. https://doi.org/10.1093/imanum/1.4.403

Rose D (2018) An elastic primal active-set method for structured QPs. Ph.D. Thesis. Leibniz Universität
Hannover

Schmidt M (2013) A generic interior-point framework for nonsmooth and complementarity constrained
nonlinear optimization. Ph.D. Thesis. Gottfried Wilhelm Leibniz Universität Hannover

Schweitzer E (1998) An interior random vector algorithm for multistage stochastic linear programs. SIAM
J Optim 8(4):956–972. https://doi.org/10.1137/S105262349528456X

Steinbach MC (2001) Hierarchical sparsity in multistage convex stochastic programs. In: Uryasev SP,
Pardalos PM (eds) Stochastic optimization: algorithms and applications. KluwerAcademic Publishers,
Dordrecht, pp 385–410. https://doi.org/10.1007/978-1-4757-6594-6_16

Steinbach MC (2002) Tree-sparse convex programs. Math Methods Oper Res 56(3):347–376. https://doi.
org/10.1007/s001860200227

Toint PL (1981) A note about sparsity exploiting quasi-Newton updates. Math Program 21(1):172–181.
https://doi.org/10.1007/BF01584238

Ungar LH (1990) A bioreactor benchmark for adaptive network-based process control. In: Miller WT III,
Sutton RS, Werbos PJ (eds) Neural networks for control. MIT Press, Cambridge, pp 387–402. http://
dl.acm.org/citation.cfm?id=104204.104221

Vanderbei RJ, Shanno DF (1997) An interior-point algorithm for nonconvex nonlinear programming. Com-
put Optim Appl 13:231–252. https://doi.org/10.1023/A:1008677427361

Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math Program 106(1):25–57. https://doi.org/10.1007/s10107-
004-0559-y

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.3182/20120710-4-SG-2026.00035
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1093/imanum/1.4.403
https://doi.org/10.1137/S105262349528456X
https://doi.org/10.1007/978-1-4757-6594-6_16
https://doi.org/10.1007/s001860200227
https://doi.org/10.1007/s001860200227
https://doi.org/10.1007/BF01584238
http://dl.acm.org/citation.cfm?id=104204.104221
http://dl.acm.org/citation.cfm?id=104204.104221
https://doi.org/10.1023/A:1008677427361
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y

	Optimization techniques for tree-structured nonlinear problems
	Abstract
	1 Introduction
	2 Tree-sparse optimization
	2.1 Tree-sparse NLPs
	2.2 Tree-sparse KKT systems
	2.2.1 Implicit tree-sparse KKT system
	2.2.2 Outgoing tree-sparse KKT system
	2.2.3 Incoming tree-sparse KKT system

	3 Tree-sparse Quasi-Newton updates
	3.1 Quasi-Newton methods for tree-sparse problems
	3.2 Tree-sparse Hessian updates for outgoing control problems
	3.3 Tree-sparse Hessian updates for incoming control problems

	4 Tree-sparse inertia correction
	5 Case studies
	5.1 Nonlinear double integrator
	5.1.1 Tree-sparse formulation
	5.1.2 Control towards reference point
	5.1.3 Hold the reference point with minimal costs
	5.1.4 Exact Hessians versus approximations

	5.2 Nonlinear bioreactor
	5.2.1 Tree-sparse formulation
	5.2.2 Keep a steady state of production

	6 Conclusion
	Acknowledgements
	References

