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Abstract

This research addresses the estimation of measures of rare disaster concerns

from option prices. We propose a new smile construction approach to obtain

the required continuum of implied volatilities from discretely sampled

observations that are affected by microstructure noise. We extrapolate implied

volatilities of far out‐of‐the‐money options by modeling the tails of the risk‐
neutral return distribution (RND) ensuring that option prices do not admit

arbitrage. Our numerical analysis and empirical application show that the

RND‐based approach consistently outperforms standard techniques. It

substantially reduces estimation errors resulting in considerably higher

estimates of the rare disaster concern index ( ) when event risk is high.

KEYWORD S
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1 | INTRODUCTION

In the recent macrofinance literature, rare disaster risk is considered to explain the equity premium puzzle. Barro
(2006, 2009) obtains realistic equity risk premiums by adding disaster risk to the consumption process assuming that
the probability for rare disasters is constant. Stock returns are i.i.d. in this model. A caveat of this approach is that stock
volatility is too low. To obtain realistic stock volatilities, Wachter (2013) extends this model assuming stochastic
disaster probabilities and recursive preferences.1
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Disaster risk is also reflected in option prices. Among other things, this is highlighted by the establishment of the
Chicago Board Options Exchange (CBOE) skewness (SKEW) index derived from the implied volatility skew of S&P 500
options.2 Therefore, option prices can be used to estimate the (latent) amount of jump risk and thus reveal important
information on the current risk assessment of the market. Gao et al. (2018, 2019) propose the rare disaster concern risk
index , which can be estimated directly from option prices. This index builds on the jump and tail risk index
suggested by Kapadia and Du (2012) and measures—intuitively speaking—the difference between the quadratic
variation of stock price returns with and without event risk. However, to accurately calculate the a continuum of
option prices is required.

The focus of this paper is on the estimation of the rare disaster concern index when a continuum of option
prices is not available. In practice, this problem is particularly relevant for options on single stocks but also—to a lesser
extent—for index options. Single stock options are less liquidly traded than index options. For this reason, the range of
available strike prices of options on single stocks is smaller than for index options. This is critical for the estimated
since the index depends significantly on the prices of deep out‐of‐the‐money (OTM) put options. Therefore,
economically reasonable extrapolation techniques are required to estimate option prices beyond the available strike
range. Another consequence of lower trading volumes is more market‐microstructure noise that might lead to further
distortions of estimated . Robust inter‐ and extrapolation techniques are required to deal with such noise in prices.

This study provides three main contributions. First, we develop a new approach to the construction of a continuous
implied volatility smile from noisy option prices based on the risk‐neutral return distribution (RND).3 This approach is
needed to extrapolate far OTM put option prices required for the accurate estimation of the from the range of
available option prices. Inspired by Birru and Figlewski (2012), we model the tails of the RND using the Generalized
Extreme Value (GEV) distribution to extrapolate the implied volatilities of OTM options. This new optimization
approach makes sure that the transition between the extrapolated and observable part of the volatility smile is always
continuous. The extrapolation technique requires smoothing of observable implied volatilities. We use a cubic spline
with additional convexity constraints in the spirit of Fengler (2009). This ensures that the underlying RND is well‐
behaved in the presence of microstructure noise.

Second, we benchmark our RND‐tail‐modeling approach to standard extrapolation techniques from the literature.
These are endpoint volatility and linear extrapolation. Endpoint volatility assumes that the smile is flat beyond the
observable range of option prices. Linear extrapolation extends the range assuming a linear relation between
moneyness and implied volatilities. Both approaches are popular choices in the academic literature as well as in
practice. While endpoint volatility produces relatively high but stable estimation errors, linear regression proves to
be more accurate but highly unstable in the presence of microstructure noise. It turns out that the RND‐tail
extrapolation approach combines the favorable properties of both endpoint volatility and linear extrapolation. We show
that it (1) substantially mitigates the bias induced by endpoint volatility and (2) is considerably more robust to
microstructure noise than linear extrapolation. This proves particularly advantageous to the modeling of deep in‐ and
out‐of‐the‐money option volatilities. We find that RND‐tail modeling is the superior approach to the estimation of the

and similar metrics when event risk is high—the type of risk these metrics are supposed to measure.
Third, we empirically apply the RND‐based smile construction approach to options written on the set of FAANG

stocks.4 We mimic the two scenarios in the numerical analysis by considering a normal and a volatile trading day as
indicated by the volatility index (VIX). For three narrowed moneyness ranges, we construct volatility smiles using the
RND‐based approach, endpoint volatility, and linear regression. This allows us to compute the root mean square error
(RMSE) of extrapolated implied volatilities with respect to contracts outside these ranges. We find that RND‐tail
extrapolation matches the data considerably better than standard techniques. On the volatile trading day, the improved
accuracy of the RND‐based approach translates to estimates that exceed their counterparts using endpoint
volatility (linear regression) by 73.97% (18.29%) on average. Standard techniques tend to underestimate rare disaster
concerns when jump and tail risks are prevalent.

This study is related to the following strands of literature: First, Carr and Madan (1998), Demeterfi et al. (1999),
and Britten‐Jones and Neuberger (2000) as well as Bakshi et al. (2003) deal with model‐free option‐implied risk‐
neutral moments that can be computed from a continuous range of strike prices. In particular, Gao et al. (2018)
propose the rare disaster concern index ( ) that builds on the model‐free measure of jump and tail risk of

2For a detailed discussion on event risk and option prices, see, for example, Backus et al. (2011) and Seo and Wachter (2019).
3If there is no ambiguity, the abbreviation RND may either refer to the risk‐neutral probability density function (PDF) or to the RND in general.
4FAANG stands for the stocks of Facebook (Meta), Amazon, Apple, Netflix, and Google (Alphabet).
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Kapadia and Du (2012). Gao et al. (2019) extend this index to a global scale. Second, Ammann and Feser (2019),
Aschakulporn and Zhang (2022a), Aschakulporn and Zhang (2022b), Bliss and Panigirtzoglou (2002), Dennis and
Mayhew (2009), and Jiang and Tian (2005) study implementation errors in risk‐neutral moments. These emerge
from approximations that are required due to the lack of a continuous strike range in practice. Different
approaches to interpolation, smoothing, and extrapolation are proposed, for example, by Ait‐Sahalia and Lo
(1998), Carr and Wu (2009), Fengler (2009), or Jiang and Tian (2007). More recently, Aschakulporn and Zhang
(2022b) analyze numerical errors in Bakshi et al. (2003) risk‐neutral moments based on the parametric Duffie et al.
(2000) model calibrated to S&P 500 data. Moreover, Aschakulporn and Zhang (2022a) also propose an analytical

formula for the whole domain of option prices using the Gram–Charlier density. Muck (2022) considers
arbitrage‐free smile construction for FX options based on the Carr and Wu (2009) near‐term volatility dynamics.
Third, a large body of literature focuses on the estimation of the full RND from option prices. Shimko (1993)
combines the interpolation of implied volatilities by a quadratic polynomial with log‐normal tail extrapolation.
Bahra (1997) applies a cubic spline for smile interpolation and a mixture of two log‐normal distributions to
enhance RND‐tail modeling. More recently, Birru and Figlewski (2012) use the GEV distribution analyzed by Bali
(2003) to model the tails of the RND.

This study is organized as follows. Section 2 outlines how jump and tail risk can be extracted using option‐based
model‐free measures and discusses estimation errors induced by standard smile extrapolation techniques. Section 3
develops an arbitrage‐free implied volatility smile construction approach involving extrapolation by RND‐tail modeling
and interpolation and smoothing of observable implied volatilities. Section 4 introduces a benchmark model and
scenarios, conducts a numerical analysis of estimation errors for different extrapolation and smoothing techniques, and
performs a simulation study to shed light on the importance of microstructure noise. Section 5 empirically applies the
RND‐based smile construction approach to a set of individual stocks and compares its performance to standard
techniques for a normal and a volatile trading day. Section 6 concludes.

2 | INFORMATION ON JUMP AND TAIL RISK IN OPTION PRICES

In this section, we outline how jump and tail risk can be extracted from option prices. Section 2.1 deals with the model‐
free approach to recover risk‐neutral moments from option prices, summarizes the jump and tail risk measure of
Kapadia and Du (2012) and presents corresponding option‐based estimators as well as the rare disaster concern index

of Gao et al. (2018, 2019). Section 2.2 discusses the impact numerical implementation techniques may have on the
estimation of the and other option‐based risk measures.

2.1 | Extracting information from option prices

Event risk of stock returns can be extracted from option prices. In particular, it is reflected in the implied volatility skew
(Backus et al., 2011; Seo & Wachter, 2019). Statistically, Bakshi et al. (2003) (BKM) identify negative skewness and fat
tails of the RND as drivers of the typically asymmetric shape of the implied volatility smile.5 Thus, implied volatilities of
far OTM call and put options contain information on tail risk in the RND and on event risk in stock indices and
individual equities.

Kapadia and Du (2012) propose a measure of jump and tail risk that does not rely on specific parametric
assumptions. It builds on model‐free estimators from the literature that recover moments of the RND from OTM
option prices directly. Intuitively speaking, it is the difference between the quadratic variation of stock price
returns with and without event risk. The key insight is that—when there is no jump risk—both measures of
quadratic variation are identical for short maturities. To begin with, Bakshi et al. (2003) propose to estimate
(higher‐order) risk‐neutral moments from option prices. These include skewness, kurtosis, and the holding‐
period return variance

5Bakshi et al. (2003) point out that the RNDs of individual stocks and stock indices differ with respect to higher moments implied by the
corresponding option contracts.
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where St denotes the time‐t stock price that follows a potentially noncontinuous càdlàg process, E [·]t the time‐t
conditional expectation under the risk‐neutral measure , and T the time horizon of interest.6 Kapadia and Du (2012)
point out that the risk‐neutral holding‐period variance captures jump risk. For the entire class of Lévy processes, this
variance is an unbiased estimator of return quadratic variation:
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If volatility is stochastic, there is an approximation error that is negligible for short maturities, though.
Carr and Madan (1998), Demeterfi et al. (1999), and Britten‐Jones and Neuberger (2000) propose the integrated

variance of a continuous process as a measure of quadratic variation. It captures stochastic volatility but is only exact in
the absence of discontinuities. However, for the noncontinuous process St the corresponding estimator of quadratic
variation is biased. It is given by
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where St− is the stock price before any jump at time t . Even though the VIX is based on E S S[ln , ln ]T
c

0 , it is frequently
used as a general measure of quadratic variation.7 Kapadia and Du (2012) propose to use the difference between the
holding‐period return variance (1) and the VIX‐type estimator of quadratic variation (3) as their jump and tail risk
index
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Equation (4) can be computed using a replication portfolio of options. Gao et al. (2018, 2019) adopt the approach of
Kapadia and Du (2012) and obtain the annualized risk‐neutral holding‐period return variance using
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where r is the risk‐free interest rate with continuous compounding and C S K T( ; , )0 and P S K T( ; , )0 are the prices of
European‐style call and put options with strike price K and maturity date T .8 In contrast to the option‐based estimator
of Kapadia and Du (2012), is not centered with respect to the square of the risk‐neutral expected log return. Gao et al.
(2018) further replicate the VIX‐type integrated variance estimator E S S[ln , ln ]T

c
0 as
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6For simplicity, we consider the case t = 0 which can be generalized to arbitrary times t . For general t it is understood thatT is some future point in
time and that formulas that depend on the time span T t− must be adjusted accordingly.
7See, for example, Bollerslev et al. (2011), Carr and Wu (2009), or Jiang and Tian (2005).
8As we consider the case when t T= 0, denotes both the time when and until the option expires. For general t , time to expiration is usually different
from the option expiry T .
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In fact, the square‐root of (multiplied by 100) is equal to the CBOE VIX that is calculated from options on the
S&P 500 index.

We follow Gao et al. (2018) and focus on negative price deviations. They obtain downside versions of and by
constructing replication portfolios from European‐style OTM put options only:
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In analogy to Equation (4), the difference between − and − captures the risk of downside rare events. Gao et al.
(2018) label this difference the rare disaster concern index ( )
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They state that it serves as a forward‐looking measure for variations in disaster concerns and can be seen as the
current price of insurance against extreme future downside movements.

2.2 | Standard implementation techniques and ℝ estimation errors

The as well as , , −, and − require that option prices are available for a continuum of strike prices. Since
this prerequisite is not fulfilled in the market, the implementation of the replication portfolios requires the combined
application of different numerical approximation techniques. A growing literature analyzes the impact of
implementation errors on option‐based risk measures.9 They mainly consider truncation errors caused by a limited
moneyness range, curve fitting errors from interpolation or smoothing discretely spaced strike prices, and
measurement errors induced by microstructure noise.10

The majority of these studies focus on index option contracts in the usual moneyness range around the spot price
but rely on standard techniques for smile extrapolation. These include the endpoint volatility (flat extrapolation,
EndPoint) and linear regression (linear extrapolation, LinReg) approaches. First, endpoint volatility extends the smile
by assuming that implied volatilities remain constant at the outermost observable level (Gao et al., 2018, 2019; Jiang &
Tian, 2005). The steeper the “true” smile, the greater is the bias that is induced by this approximation. Second, linear
extrapolation estimates the slope of the smile at its outer strikes and uses the estimate to linearly extend the smile
beyond these points (Jiang & Tian, 2007). Approximation errors can result from the curvature of the smile or from
noisy estimates of the slope coefficients. Aschakulporn and Zhang (2022b) and Ammann and Feser (2019) consider
both approaches and point out that linear extrapolation reduces the bias induced by endpoint volatility but may
generate negative implied volatilities and is highly sensitive to microstructure noise. In a similar vein, Gao et al.
(2018, 2019) apply endpoint volatility to obtain their estimates of the .

Higher‐order moments and, in particular, tail and jump risk measures are prone to extrapolation errors. These can
translate to inaccuracies in metrics, like, the . The problem is typically aggravated for sparsely observed individual
options and can become a critical issue when model‐free metrics serve as inputs.11 The aforementioned standard
techniques are often considered as reasonable for smile construction due to their simplicity. However, a major caveat is

9Jiang and Tian (2005) conduct their analysis for the VIX‐type estimator of integrated variance. Dennis and Mayhew (2009) focus on the Bakshi et al.
(2003) risk‐neutral moment estimators and find that implementation errors may induce significant biases even if option prices are observed without
any noise. Ammann and Feser (2019) provide a comprehensive comparison of errors in option‐implied higher moments resulting from different
implementation techniques.
10Some studies also address discretization errors resulting from numerical integration (see, e.g., Jiang & Tian, 2005). We neglect this type of error
since we presume that interpolation yields a grid of option prices that is sufficiently dense to ensure highly accurate approximations.
11For example, the normal inverse Gaussian (NIG) distributions proposed by Eriksson et al. (2009) to approximate unknown RND build on model‐
free Bakshi et al. (2003) higher‐order moments. To extrapolate the volatility smile, Eriksson et al. (2009) rely on the simple endpoint volatility
approach, though. This assumes that implied volatility remains constant beyond the observable range.
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that the resulting prices may admit arbitrage. In particular, these procedures lead to inconsistencies between the tails
and the central part of the risk‐neutral density.

3 | RND ‐CONSISTENT SMILE CONSTRUCTION

In this section, we introduce an RND‐consistent smile construction approach that aims at improving estimates of tail
risk measures like the for illiquid and sparsely sampled option contracts. This ensures that option prices are free
from arbitrage. Section 3.1 briefly summarizes the one‐to‐one relation between option‐implied volatilities and the
underlying RND, Section 3.2 details the approach to smile extrapolation by RND‐tail modeling, and Section 3.3
discusses interpolation and smoothing procedures required to make the RND‐based approach applicable for a limited
set of observable option prices that are affected by microstructure noise.

3.1 | Option‐implied RND

There is a one‐to‐one relation between the implied volatility smile and the underlying RND. In particular, the wings of
the smile drive the tails of the RND. Under the assumption of no‐arbitrage, the RND is defined as the probability
distribution under the risk‐neutral measure .12 For example, the price of a European‐style put option with strike K
and maturity T can be expressed in terms of the RND:

P S K T e K S e K S f S dS( ; , ) = [( − ) ] = ( − ) ( ) ,rT
T

rT
K

T T T0
−

0
+ −

0
(9)

where f S( )T denotes the risk‐neutral PDF of the stock price St at expiration T . As shown by Breeden and Litzenberger
(1978), the cumulative distribution function (CDF) F S( )T and the density f S( )T evaluated at some strike K follow from
the first‐ and second‐order derivatives of the option price with respect to this strike:

F K e
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K

f K e
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K
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,

( ) =
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2
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2
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The CDF and PDF in Equation (10) can be approximated by finite differences. Consider N evenly spaced option
prices with strike prices K K K, , …, N1 2 in ascending order and let K K KΔ = −n n+1 . For some strike Kn we then get

F K e
P S K T P S K T

K

f K e
P S K T P S K T P S K T

K

ˆ ( ) =
( ; , ) − ( ; , )

2Δ
,
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( ; , ) − 2 ( ; , ) + ( ; , )

(Δ )
,

n
rT n n

n
rT n n n

0 +1 0 −1

0 +1 0 0 −1

2

(11)

where F Kˆ ( )n and f Kˆ ( )n are the approximated risk‐neutral CDF and PDF, respectively.

3.2 | RND‐tail modeling

In the following, we present the approach to smile extrapolation by RND‐tail modeling. We assume that option
prices are available for a dense grid of evenly spaced strike prices K K K, , …, N1 2 and that the moneyness range is

12 is an equivalent martingale measure with respect to the physical measure . The RND can be seen as the objective estimate of the underlying
probability distribution adjusted for investor risk‐preferences.
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limited. Further, the underlying RND implied by available option prices is well‐behaved. We focus on extrapolation
first. The handling of errors induced by strike spacing and microstructure noise is treated in the subsequent
Section 3.3.

Observable option prices do not imply specific distributional assumptions for the underlying RND. A tail‐modeling
approach must thus be sufficiently flexible to capture different stylized facts of the data. We follow Birru and Figlewski
(2012) and apply the GEV distribution. The GEV is highly flexible and nests the Gumbel, the Fréchet, and the reversed
Weibull distribution as special cases. It is characterized by three parameters that control location (μ), scale (σ), and
shape (ξ ). The parameter ξ determines the specific type of GEV and thus its tail behavior. The corresponding PDF
f x( )GEV and CDF F x( )GEV are given in Appendix A.1.

Our goal is to extrapolate implied volatilities such that the corresponding OTM option prices do not admit arbitrage.
Therefore, we require that the RND satisfies the probability axioms of Kolmogorov as well as the martingale property
(Brunner & Hafner, 2003). Specifically, the risk‐neutral density f S( )T must be nonnegative

f S S( ) 0 0T T≥ ∀ ≥ (12)

and integrate to one

 f S dS( ) = 1.T T
0

∞

(13)

Further, the martingale property requires that the RND prices options correctly when K = 0. As outlined by
Brunner and Hafner (2003), this implies that the risk‐neutral expectation of ST equals the current price of a forward
contract with maturity in T ,

S S e[ ] = .T
rT

0 0 (14)

The GEV can be used to model the right tail of the RND corresponding to OTM call options directly (Birru &
Figlewski, 2012). We connect the GEV tail to the RND implied by available option prices under two requirements. First,
consistent with Birru and Figlewski (2012), PDF and CDF values from the GEV and available option prices must
coincide at the connection strike price KN−1 to obtain well‐behaved RND tails. Second, to satisfy the martingale
property, the call option price at the outermost available strike price KN computed from the GEV tail C S K T( ; , )GEV N0

must be equal to the outermost available call option price C S K T( ; , )N0 . The second requirement is crucial to ensure
that at the connecting strike price KN GEV‐implied and observable implied volatilities are identical such that the
extrapolated volatility smile is actually continuous. This second requirement is a modification of Birru and Figlewski
(2012) who impose further restrictions on the PDF. Their approach does not guarantee a continuous volatility smile, as
outlined in Section 4.2, though.

The optimization problem for the right tail then reads

C S K T C S K T

f K f K

F K F K

arg min ( ( ; , ) − ( ; , ))

subject to ( ) = ˆ ( ),

( ) = ˆ ( ),

μ σ ξ
GEV N N

GEV N N

GEV N N

, ,
0 0

2

−1 −1

−1 −1

(15)

where

C S K T e S K f S dS( ; , ) = ( − ) ( ) .GEV N
rT

K
T N GEV T T0

−

N

∞

To model the left tail of the RND that corresponds to OTM put options the GEV must be defined on S− T and μ− .
Analogously, (1) PDF and CDF values from the GEV and available options must coincide at the connecting strike price
K2 and (2) the price of the put option with strike K1 implied by the GEV tail P S K T( ; , )GEV 0 1 must equal the outermost
available put price P S K T( ; , )0 1 . The left tail optimization problem reads accordingly
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P S K T P S K T

f K f K
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where

P S K T e K S f S dS( ; , ) = ( − ) (− ) .GEV
rT

K

T GEV T T0 1
−

0
1

1

3.3 | Interpolation and smoothing observed implied volatilities

The extrapolation outlined above cannot be applied to market data directly. In practice, option prices are affected by
microstructure noise and trading is limited to a discrete grid of unequally spaced and sparsely sampled strikes. For such
data, the finite‐differences approximation of the risk‐neutral PDF and CDF values at the connecting strikes K2 and KN−1

is either infeasible or significantly affected by noise. Interpolation and smoothing of the observed implied volatilities
are thus necessary.

One of the most popular techniques for solving this task is a natural cubic smoothing spline. While the smoothing
works well for financial applications in the implied volatility domain, the resulting RND can exhibit large spikes and is
highly sensitive towards the choice of the smoothing parameter (Figlewski, 2018). To ensure that suitable estimates of
option prices and risk‐neutral PDF and CDF values are available as inputs to our extrapolation approach, we enforce an
additional convexity constraint along the lines of Fengler (2009). This is achieved by imposing bounds on the second‐
order derivatives of the spline which, as pointed out by Dole (1999), act as strong constraints on the roughness of the
spline. Thus, the overall sensitivity towards the explicit smoothing parameter is reduced. While Fengler (2009)
developed this approach for option prices, we apply it to implied volatilities directly to obtain a smooth smile from
noisy observations. This is equivalent to assuming that the observable (central) part of the volatility smile is always
convex. We consider this restriction acceptable as it is mostly supported by the data and the main focus is on improving
the extrapolation of implied volatilities. Details on the cubic smoothing spline with additional convexity constraints can
be found in Appendix A.2.

4 | NUMERICAL ANALYSIS

In this section we numerically compare errors in estimates of risk‐neutral moment‐based measures that are obtained
using the RND‐tail‐modeling extrapolation approach to their counterparts resulting from standard techniques. We
focus on estimates of the rare disaster concern index , the quadratic variation , and the VIX‐type integrated
variance in our base case and crisis scenarios. Section 4.1 introduces the benchmark model and scenarios.
Section 4.2 addresses the RND‐tail‐modeling approach of Birru and Figlewski (2012) and unveils its shortcomings
within the scope of smile extrapolation. Section 4.3 deals with errors from approximating the integrals in Equations (5),
(6), and (8) based on limited ranges of strike prices that are extended by extrapolation. Section 4.4 considers the
combined error from truncation and strike spacing. Section 4.5 conducts a simulation study to analyze how random
noise in implied volatilities affects the estimation errors.

4.1 | Benchmark model and scenarios

Similar to Aschakulporn and Zhang (2022b), we assume that option prices are generated by the Duffie et al.
(2000) affine jump‐diffusion model with stochastic volatility and contemporaneous jumps (SVCJ). Thus, this
model is sufficiently rich to produce various shapes of potentially asymmetric volatility smiles.13 We calibrate the

13Similar models are used in related studies in the literature. For example, Ammann and Feser (2019) use the Bates (1996) model in their
comprehensive analysis of different implementation methods.
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SVCJ model on Apple's stock options on two different trading days to create a base case and a crisis
scenario.14 Figure 1 shows the two volatility smiles (left panel) alongside with the underlying risk‐neutral
densities (right panel) in the two scenarios. As indicated by the wings of the smiles and the density tails, the two
settings differ with respect to higher‐order risk‐neutral moments. Estimates of the Bakshi et al. (2003) risk‐
neutral moments are TVar = 0.1116∕ (annualized), Skew = −1.1993, and Kurt = 6.5872 in the base case and

TVar = 0.1157, Skew = −2.4563∕ and Kurt = 19.7374 in the crisis scenario.15 Thus, the crisis scenario implies
that the RND has more variance, is more left‐skewed, and is more leptokurtic than the one considered in the base
case. The implied risk‐neutral skewness matches observations of the CBOE SKEW index during normal and crisis
times. Moreover, the skewness is in line with Aschakulporn and Zhang (2022b) in both scenarios. Details on the
model and the two scenarios are given in Appendix A.3.

To obtain estimation errors with respect to the benchmark scenarios, we follow Ammann and Feser (2019) and
compute percentage errors for different risk‐neutral moment‐based measures:

 
100 ×

−
, = , , ,dense

dense

 





(17)

where  is the candidate estimate and dense is its benchmark obtained from the full range of SVCJ OTM option prices.
In our numerical implementation, we use a grid size of K SΔ = 0.1%0∕ and a spot moneyness range of [0.01, 1.99].
According to Aschakulporn and Zhang (2022a), skewness approximation errors are smaller than 10−3 for the applied
grid size provided a moneyness range of at least 3/4–4/3 of the forward price. Skewness is the main driver of the .
As defined in Equations (5), (6), and (8), and employ OTM put and call options whereas uses OTM puts
only. The percentage error depends on the size of dense . Table 1 shows the benchmark estimates. In the crisis scenario,

dense is almost twice as large as in the base case which must be considered when comparing the percentage metric
across different scenarios.

4.2 | Birru and Figlewski (2012) tail‐modeling approach

Before addressing our numerical study, we compare the modified smile construction approach outlined in
Section 3.2 to the one of Birru and Figlewski (2012). The most important difference is that Birru and Figlewski
(2012) model the right (left) tail of the RND by parameterizing the GEV according to the CDF at strike price KN−1

(K2). For the PDF, they choose the same options and another one with K n N, 2 < < − 1n . In addition to the
degrees of freedom in the selection of Kn, their approach does not guarantee that the outermost option prices at
strikes K1 and KN can be recovered by the modeled tails. As a consequence, implied volatilities do not match at the
connecting strikes K1 and KN . Hence, the smile is not continuous and RND tails violate no‐arbitrage constraints.
This can affect estimates significantly. For the case considered in Appendix A.4, their estimate exhibits
a percentage error of 32.84%. This compares to a percentage error of 7.14% when the modified approach is applied.
This suggests that the martingale property of the modified RND‐tail‐modeling approach is important yielding
more accurate estimates of the .

14We calibrate the SVCJ model on individual stock options since corresponding volatility smiles exhibit higher degrees of curvature compared with
volatility smirks of index options. For the identified trading days see Section 5.
15We obtain estimates of BKM risk‐neutral moments from a fine grid ( K SΔ = 0.1%0∕ ) of SVCJ OTM option prices across the full moneyness range
(K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈ ). Model‐generated risk‐neutral moments are computed using high‐accuracy trapezoidal integration. The
BKM moment estimators are defined by
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T0, 0, 0, 0,   ∕ ∕ ∕ and , ,T T T0, 0, 0,   are the payoffs of volatility, cubic, and quartic contracts as
specified in Bakshi et al. (2003).
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4.3 | Truncation

Table 2 shows estimation errors when available option prices are limited to moneyness ranges of ±25%, ±20%, and
±15% around the spot and extended by flat, linear, and RND‐tail extrapolation.16 In the available range, benchmark
option prices are sampled at a fine grid of K SΔ = 0.1%0∕ corresponding to 1981 equally spaced strikes for and and
991 for the . Keeping the grid size, the truncated ranges reduce the number of available strikes to 501 for ±25%

(251 for ), 401 for ±20% (201 for ), and 301 for ±20% (151 for ). Extrapolation is then used to recover the
range of 1981 (991) strikes. All estimates result from trapezoidal integration without interpolation or smoothing.
Intuitively, errors increase when the observable range of option prices becomes narrower. Without the usual strike
spacing or microstructure noise, extrapolation by RND‐tail modeling is superior to the standard methods in both
scenarios. This finding can be attributed to several reasons.

FIGURE 1 Base case and crisis benchmark scenario. The figure plots Black and Scholes (1973) volatility smiles (left panel) and
underlying risk‐neutral densities (right panel) implied by the SVCJ model detailed in Appendix A.3. The risk‐neutral density is
approximated using finite differences with a fine grid of K SΔ = 0.1%0∕ . The base case scenario emerges for κ θ σ= 1.1521, = 0.3437, =

ρ V λ μ σ μ0.6772, = −0.5882, = 0.0845, = 3.2642, = −0.0318, = 0.0273, = 0.2245t X X y , and ρ = −0.0921J . The crisis scenario differs in that
κ θ σ ρ V λ μ σ μ= 1.4333, = 0.3779, = 0.9892, = −0.6993, = 0.0669, = 0.1876, = 0.0473, = 0.2295, = 0.3962t X X y , and ρ = −0.6677J .
Dense‐grid estimates of the risk‐neutral BKM annualized variance, skewness, and kurtosis are TVar = 0.1116, Skew = −1.1993∕ , and
Kurt = 6.5872 in the base case and TVar = 0.1157, Skew = −2.4563∕ , and Kurt = 19.7374 in the crisis scenario. BKM, Bakshi,
Kapadia, and Madan; SVCJ, stochastic volatility and contemporaneous jump.

TABLE 1 Benchmark scenarios—Model‐free measures.

Gao et al. (2018)

dense dense ℝ dense

Base case 0.1117 0.1076 0.0057

Crisis 0.1158 0.1078 0.0095

Note: The table shows dense‐grid ( K SΔ = 0.1%0∕ ) benchmark estimates of the Gao et al. (2018) model‐free measures , , and for the base case and the
crisis scenarios. All estimates are computed from the full range of SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈ ( from OTM put
options only) using trapezoidal integration.

Abbreviations: OTM, out‐of‐the‐money; SVCJ, stochastic volatility and contemporaneous jump.

16Ammann and Feser (2019) show estimation errors for moneyness ranges (“domain half‐width”) of −10%, −50%, and −80% and report that
estimates become stable at −50%. In contrast, we focus on ranges between −25% and −15% as we consider these more realistic in light of

available data.

1816 | ALBERT ET AL.



First, endpoint volatility extends the truncated smiles using implied volatilities at the outermost strikes K1 and KN ,
only. The narrower the available range of option prices, the larger the error. Deviations from the benchmark smiles are
more important in the crisis scenario than in the base case since the steepness of the former leads to implied volatilities
and option prices that are too low. The tails of the underlying RND are underestimated which is more pronounced for
the left tail due to negative risk‐neutral skewness in the distribution. As the is computed based on OTM put
options only, the resulting asymmetric smile in the crisis scenario leads to estimation errors up to 56.55% compared
with 24.77% in the base case. With respect to truncation, endpoint volatility has the highest errors when computing the

. With endpoint volatility,  is the least accurate when there is a significant jump risk—the type of risk it is
supposed to measure.

Second, linear extrapolation determines the slope of the smile outside the available range from the two outermost
strikes on each side K K K, , N1 2 −1, and KN . The bias due to truncation is substantially reduced for all model‐free
measures in both scenarios. Due to the curvature of the benchmark smiles, errors increase when the moneyness range
becomes narrower. As the crisis scenario exhibits a higher degree of convexity, linear extrapolation generates errors up
to 37.15% compared with 3.67% in the base case. Linear extrapolation is thus superior to endpoint volatility when there
is no microstructure noise and strikes are densely sampled.

Third, RND‐tail‐modeling parameterizes the GEV based on the outermost option prices at the strikes K1 and KN as
well as on the PDF and CDF values of the RND at K2 and KN−1. In the base case, the GEV tails reproduce the less
curved implied volatility smile with small percentage errors. errors in absolute terms are slightly smaller
compared with those from linear extrapolation. In the crisis scenario, the steeper smile with a more pronounced degree
of curvature implies higher option prices that are reflected in the PDF and CDF of the RND. Due to its flexibility, the
GEV is capable to produce different shapes of the RND. This leads to considerably lower errors and a less severe impact
of the truncation range compared with standard extrapolation methods.

4.4 | Strike spacing

We extend the prior analysis to grids with a more realistic strike spacing. In addition to limiting the moneyness range,
we now assume equally spaced grids with K SΔ = 1%, 2%0∕ , and 5%. This further reduces the number of observable
contracts for the computation of and ( ) down to Ñ = 7 (Ñ = 4) for ±15% (−15%) and K SΔ = 5%0∕ . To
approximate the estimators defined in Equations (5), (6), and (8), we first apply natural cubic spline interpolation to the
observable implied volatilities. This generates a dense grid of strike prices. Due to the absence of microstructure noise,

TABLE 2 Estimation errors model‐free measures—Truncation.

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

Panel A: Base case scenario

EndPoint 1.6633 3.2640 5.8731 1.2830 2.6147 4.8715 8.7915 15.5398 24.7732

LinReg 0.0643 0.2564 0.8710 0.0409 0.1980 0.7628 0.4322 1.3784 3.6738

RND 0.0682 0.2000 0.1929 0.0506 0.1552 0.1109 0.4046 1.1134 1.4192

Panel B: Crisis scenario

EndPoint 10.0051 12.7714 16.1127 7.1999 9.5510 12.5204 41.4249 48.9764 56.5466

LinReg 2.8324 5.6067 9.1906 1.1288 3.2268 6.7437 15.8089 26.8983 37.1497

RND 0.1001 1.3119 3.9015 0.0666 0.8544 2.8208 2.2844 7.1419 16.3818

Note: The table shows percentage errors  100 × − dense dense  ∕ for = , , using endpoint volatility (EndPoint), linear regression (LinReg), and
RND‐tail (RND) extrapolation for the base case (Panel A) and crisis scenario (Panel B). dense is the respective benchmark computed from the full range of
SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈ ( from OTM put options only), and  is the estimate from the truncated and extrapolated
volatility smile. Errors are shown for observable moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%), [0.85, 1.15] (±15%) where

uses OTM put options only. dense and  follow from trapezoidal integration across dense grids of strikes with K SΔ = 0.1%0∕ .

Abbreviations: OTM, out‐of‐the‐money; RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.
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smoothing is not required.17 Then, extrapolation is applied along the lines of Section 4.3 and , , and are
computed using trapezoidal integration.

Table 3 shows the results. For simplicity, we assume that changing the grid size does not affect the outermost
strikes K K= ˜

1 1 and K K= ˜
N Ñ . As the natural cubic spline passes exactly through all observable implied volatilities, the

results for endpoint volatility are comparable to those in Table 2. For linear regression the impact of coarser strike grids
is also limited. The slope of the linear extrapolation is derived from the two outermost available strikes on each side of
the smile after interpolation. Errors are mainly determined by the interplay between the curvature of the benchmark
smile and the width of the observable moneyness range. Further, the natural cubic spline minimizes the curvature of
its piecewise polynomials which may lead to an underestimation of the curvature of the benchmark smile. As a
consequence, the impact of the strike spacing is stronger in the crisis scenario than in the base case.

Errors from RND‐tail modeling are more sensitive with respect to the strike spacing. In the base case, the
percentage errors increase slightly but remain smaller than those from linear extrapolation for almost every moneyness
range/strike spacing combination. In the crisis scenario, percentage errors are considerably lower and tend to increase
with the widening strike spacing up to the level of their linear extrapolation counterparts for K SΔ = 5%0∕ . Errors from
linear extrapolation are higher but remain at the same level for differently spaced strikes. The main reason for this
pattern in RND‐tail‐modeling estimation errors is that this extrapolation technique depends on risk‐neutral PDF and
CDF values. While implied volatilities at K K˜ =1 1 and K K˜ =N N˜ are not distorted, PDF and CDF values are highly
sensitive to the interpolation procedure at the connecting strikes K2 and KN−1. Small changes in the slope or curvature
of the smile affect the finite differences approximation of the PDF and CDF values which then enter the optimization
problem that determines the GEV parameters directly. Thus, RND‐tail modeling yields different errors in comparison
to the dense‐grid benchmark estimates.

In the absence of noise, linear or RND‐tail extrapolation should be preferred over endpoint volatility when
computing tail risk measures, like, the . In the crisis scenario, errors from RND extrapolation are smaller than
those generated by standard extrapolation methods. As metrics like the depend on the accuracy of extrapolation to
capture jump risk, RND‐tail modeling yields better results when the RND features negative skewness and excess
kurtosis.

4.5 | Microstructure noise

An obvious concern with respect to linear extrapolation is its high sensitivity to microstructure noise (see, e.g.,
Ammann & Feser, 2019). We, therefore, conduct a simulation study to shed light on the impact of noise on percentage
errors when endpoint volatility, linear, and RND‐tail extrapolation are applied to estimate , , and . For each
moneyness range and strike spacing we generate randomly perturbed implied volatilities σ̃ inoisy, according to

σ σ θη i N˜ = ˜ (1 + ), = 1, …, ,˜
i inoisy, (18)

where σ̃i are the Black and Scholes (1973) implied volatilities from SVCJ option prices in the base case and crisis
scenario, η ~ (0, 1) is a normally distributed random number, θ controls the amount of noise and σ̃ inoisy, are the
resulting noisy observations. This approach differs from the existing literature which adds noise to option prices rather
than to implied volatilities. The measurement errors generated by Equation (18) increase with the level of implied
volatility. This mimics the common observation that bid–ask spreads are usually wider for far OTM contracts. Figure 2
illustrates the benchmark implied volatility smiles in the base case and the crisis scenario with 95% confidence intervals
of noisy observations for θ = 2%. This implies that, for σ̃ = 30%i , for example, the perturbed σ̃ inoisy, will lie within a
bid–ask spread of about 2.35% or less with 95% probability ( 1.18%≤ for θ = 1% and 3.53%≤ for θ = 3%).18

Table 4 shows average estimation errors for , , and based on 1000 sets of perturbed implied volatilities
with microstructure noise when θ = 2%. Error standard deviations are given in parentheses. Tables A3 and A4 in the
appendix report the results for θ = 1% and 3%. As before, we vary the moneyness range and the strike spacing to study
how the interplay between different sources of error affects estimates obtained from endpoint volatility, linear

17As outlined in Appendix A.2, the natural cubic spline arises from Equation (A5) for λ = 0.
18For 40%, this spread amounts to 3.14≤ for θ = 2% ( 1.57%≤ for θ = 1% and 4.70%≤ for θ = 3%) with 95% probability.
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regression, and RND‐tail extrapolation. In a first step, cubic spline smoothing is applied to recover a dense grid of
strikes with K SΔ = 0.1%0∕ from the perturbed implied volatilities. We use the standard cubic smoothing spline for
endpoint volatility and linear extrapolation. For RND‐tail modeling, we enforce the additional convexity‐preserving
constraints. The benchmark estimates dense remain unchanged.

Without noise, estimation errors from endpoint volatility are generally higher than those from the other
extrapolation techniques. With noise, they increase only slightly and error standard deviations grow moderately with θ.
Simulated microstructure noise mainly affects linear regression and RND‐tail extrapolation. In the base case,
estimation errors from LinReg rise considerably on average compared with their RND counterparts, even though they

TABLE 3 Estimation errors model‐free measures—Strike spacing.

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

Panel A: Base case scenario

K SΔ = 1%0∕ Ñ = 51 Ñ = 41 Ñ = 31 Ñ = 51 Ñ = 41 Ñ = 31 Ñ = 26 Ñ = 21 Ñ = 16

EndPoint 1.6633 3.2640 5.8730 1.2830 2.6147 4.8714 8.7914 15.5397 24.7731

LinReg 0.0663 0.2705 0.9096 0.0417 0.2111 0.7998 0.4483 1.4320 3.7942

RND 0.0092 0.2456 0.6322 0.0029 0.1974 0.5871 0.0814 1.2084 2.3264

K SΔ = 2%0∕ Ñ = 26 Ñ = 21 Ñ = 16 Ñ = 26 Ñ = 21 Ñ = 16 Ñ = 13 Ñ = 11 Ñ = 8

EndPoint 1.6632 3.2638 5.8723 1.2830 2.6145 4.8707 8.7912 15.5392 24.7724

LinReg 0.0695 0.2950 0.9622 0.0440 0.2317 0.8477 0.4672 1.5475 3.9859

RND 0.0247 0.2910 0.7389 0.0138 0.3091 0.6806 0.1767 0.7691 2.7621

K SΔ = 5%0∕ Ñ = 11 Ñ = 9 Ñ = 7 Ñ = 11 Ñ = 9 Ñ = 7 Ñ = 6 Ñ = 5 Ñ = 4

EndPoint 1.6631 3.2610 5.8602 1.2830 2.6118 4.8574 8.7869 15.5305 24.7599

LinReg 0.0864 0.3483 1.1026 0.0552 0.2777 0.9750 0.5731 1.7828 4.5043

RND 0.0431 0.2395 0.9310 0.0254 0.2009 0.8484 0.2972 1.1229 3.5479

Panel B: Crisis scenario

K SΔ = 1%0∕ Ñ = 51 Ñ = 41 Ñ = 31 Ñ = 51 Ñ = 41 Ñ = 31 Ñ = 26 Ñ = 21 Ñ = 16

EndPoint 10.0051 12.7713 16.1125 7.1998 9.5509 12.5202 41.4247 48.9762 56.5464

LinReg 2.9197 5.7738 9.3434 1.1772 3.3819 6.8725 16.2173 27.4580 37.6026

RND 1.0707 4.4211 8.2642 0.6228 2.9938 6.0655 5.2882 19.9643 33.5352

K SΔ = 2%0∕ Ñ = 26 Ñ = 21 Ñ = 16 Ñ = 26 Ñ = 21 Ñ = 16 Ñ = 13 Ñ = 11 Ñ = 8

EndPoint 10.0047 12.7706 16.1112 7.1996 9.5502 12.5188 41.4237 48.9748 56.5451

LinReg 3.0473 5.9610 9.5065 1.2484 3.5554 7.0111 16.8278 28.0805 38.0727

RND 1.7007 5.0423 8.7383 1.0153 3.4406 6.4392 8.4553 22.5919 35.1688

K SΔ = 5%0∕ Ñ = 11 Ñ = 9 Ñ = 7 Ñ = 11 Ñ = 9 Ñ = 7 Ñ = 6 Ñ = 5 Ñ = 4

EndPoint 9.9999 12.7595 16.0892 7.1961 9.5403 12.4954 41.4049 48.9490 56.5220

LinReg 3.3686 6.4980 9.9807 1.3856 4.0447 7.4078 18.4582 29.8796 39.4845

RND 2.5009 5.9561 9.4676 1.4991 4.1168 7.0251 12.4445 26.2664 37.5623

Note: The table shows percentage errors  100 × − dense dense  ∕ for = , , using endpoint volatility (EndPoint), linear regression (LinReg), and
RND‐tail (RND) extrapolation for the base case (Panel A) and crisis scenario (Panel B). dense is the respective benchmark computed from the full range of
SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈ ( from OTM put options only), and  is the estimate from the truncated and extrapolated
volatility smile. Errors are shown for observable moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%), and [0.85, 1.15] (±15%), where

uses OTM put options only. dense follow from trapezoidal integration across dense grids of strikes with K SΔ = 0.1%0∕ .  are obtained by assuming that
options are available for strike grids with K SΔ = 1%, 2%, 5%0∕ corresponding to Ñ available contracts which are interpolated by a natural cubic spline to
achieve K SΔ = 0.1%0∕ .

Abbreviations: OTM, out‐of‐the‐money; RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.
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do not exceed those from endpoint volatility. Smiles based on linear regression generate the least stable results. In
terms of the errors' standard deviation, values are up to 201% for K SΔ = 2%0∕ and 20% moneyness range in the case of
the , while RND values are moderate. Differences in extrapolation techniques are even more pronounced in the
crisis scenario. estimation errors from EndPoint remain stable but are considerably larger than their LinReg and
RND counterparts. LinReg again generates the least stable results now with a standard deviation up to 224% for
K SΔ = 2%0∕ and 20% moneyness range in the case of the .
The large variations in LinReg error standard deviations in the presence of microstructure noise are due to two

contrary effects. First, an unfavorably perturbed implied volatility near the spline's boundary can have a substantial
impact on the slope between its outermost knots. Large deviations in this slope and thus estimation errors become
more likely. Second, the larger the strike spacing is, the more pronounced is the impact of smoothing. The influence of
a single unfavorably perturbed implied volatility near the boundary of the spline can be dampened by the roughness
penalty term. As implied volatilities are perturbed randomly, it is difficult to assess which effect will eventually prevail.
With the noise level increasing, extreme LinReg errors and error standard deviations become more likely. As already
stated by Ammann and Feser (2019), for example, linear extrapolation must be considered as highly unreliable in the
presence of microstructure noise. As this technique may yield misleading results, it should not be used in smile
construction for the estimation of tail risk metrics, like, the .

Our results show that RND‐tail extrapolation is considerably more robust with respect to microstructure noise than
linear extrapolation which can be attributed to its construction based on option prices and risk‐neutral PDF and CDF
values. This approach prevents large errors by ensuring that the underlying RND is well‐behaved in the sense that it is
positive and continuous. Average estimation errors and standard deviations are generally low. In line with
intuition, they increase in the level of the noise. For high microstructure noise and a narrow moneyness range of−15%
the advantage of RND‐tail modeling over endpoint volatility vanishes with coefficients of variation around 1. In these
limiting cases, endpoint volatility may be preferable as it represents the best estimate in the absence of reliable
information (e.g., the number of contracts available to smile construction is limited to 4 for K SΔ = 5%0∕ ). This may
explain why endpoint volatility is often considered as the method of choice in smile construction. In the crisis scenario,
average estimation errors from RND‐tail extrapolation are considerably smaller than those from endpoint volatility and
error standard deviations remain moderate. RND‐tail extrapolation can mitigate the bias induced by endpoint volatility

FIGURE 2 Confidence intervals simulated microstructure noise. The figure plots Black and Scholes (1973) implied volatility smiles in
the base case (left panel) and crisis scenario (right panel) alongside with the 95% confidence intervals for randomly perturbed observations
σ σ θη i N˜ = ˜ (1 + ), = 1, …, ˜

i inoisy, , where σ̃i are the benchmark implied volatilities generated by the SVCJ model and η ~ (0, 1) for θ = 2%.
The base case scenario emerges for κ θ σ ρ V λ μ= 1.1521, = 0.3437, = 0.6772, = −0.5882, = 0.0845, = 3.2642, = −0.0318,t X

σ μ= 0.0273, = 0.2245X y , and ρ = −0.0921J . The crisis scenario differs in that κ θ σ ρ V= 1.4333, = 0.3779, = 0.9892, = −0.6993, = 0.0669,t

λ μ σ μ= 0.1876, = 0.0473, = 0.2295, = 0.3962X X y , and ρ = −0.6677J . Dense‐grid estimates of the risk‐neutral BKM annualized variance,
skewness, and kurtosis are TVar = 0.1116, Skew = −1.1993∕ , and Kurt = 6.5872 in the base case and TVar = 0.1157,∕

Skew = −2.4563, and Kurt = 19.7374 in the crisis scenario. BKM, Bakshi, Kapadia, and Madan; SVCJ, stochastic volatility and
contemporaneous jump.
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TABLE 4 Average estimation errors , , —Microstructure noise (θ = 2%).

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

Panel A: Base case scenario

K SΔ = 1%0∕

EndPoint 1.7245 3.2877 5.9337 1.3490 2.6371 4.9308 8.8799 15.5541 24.9031

(0.7460) (0.7601) (0.8481) (0.6949) (0.7281) (0.8034) (1.6524) (1.7527) (2.0070)

LinReg 0.9436 2.1004 3.3834 0.8441 1.6344 2.7139 4.1488 12.1014 17.3491

(1.0575) (7.3974) (10.4656) (1.3565) (4.6544) (6.8053) (5.4505) (60.3711) (83.3280)

RND 0.7662 1.1462 2.0278 0.6740 0.9419 1.6808 3.0339 5.3631 9.1444

(0.6299) (1.2992) (2.0306) (0.5375) (0.9245) (1.4893) (3.0201) (8.7003) (12.2417)

K SΔ = 2%0∕

EndPoint 1.7788 3.2987 5.9019 1.4277 2.6477 4.8977 8.9102 15.6057 24.8691

(0.9631) (1.0605) (1.2002) (0.8755) (1.0158) (1.1445) (2.2484) (2.2933) (2.6485)

LinReg 1.4303 2.6492 3.4581 1.2488 2.0618 2.8319 6.7282 16.5746 16.5630

(2.7344) (20.3827) (5.2640) (2.0027) (10.7220) (3.8991) (20.2345) (200.9856) (33.4848)

RND 1.0566 1.3959 2.4659 0.9341 1.1659 2.0152 4.2326 6.4565 11.4825

(0.9705) (1.3217) (2.7167) (0.7778) (1.0112) (1.9238) (5.5587) (7.6908) (17.5472)

K SΔ = 5%0∕

EndPoint 2.0388 3.3801 5.9434 1.7509 2.7699 4.9194 9.0061 15.5989 25.1786

(1.3825) (1.6539) (1.7790) (1.2689) (1.5424) (1.7348) (3.2634) (3.3998) (3.3091)

LinReg 1.6892 2.1283 2.8492 1.5738 1.8471 2.3821 6.2011 9.5201 12.4604

(1.4931) (1.9624) (2.4454) (1.3518) (1.6141) (1.9505) (8.4019) (11.0144) (12.5932)

RND 1.5129 1.8935 2.5271 1.3856 1.6249 2.1231 5.3290 8.2590 11.2687

(1.2010) (1.5731) (2.2236) (1.0865) (1.3023) (1.7610) (5.4967) (8.0713) (12.0881)

Panel B: Crisis Scenario

K SΔ = 1%0∕

EndPoint 10.1264 12.8370 16.1891 7.3151 9.6159 12.5958 41.5612 49.0403 56.6415

(0.7565) (0.7359) (0.7966) (0.7355) (0.7179) (0.7751) (1.2707) (1.1748) (1.2229)

LinReg 5.5353 9.3647 11.7996 3.3473 6.4165 8.7549 27.8110 42.8380 47.6512

(15.6522) (18.8217) (17.2233) (8.3927) (11.1471) (10.5816) (99.1038) (108.0739) (94.4738)

RND 4.5607 6.8721 9.7103 3.0284 4.8884 7.2571 20.9241 29.1939 37.9253

(2.1024) (2.8439) (3.7165) (1.4859) (2.0446) (2.6680) (9.4762) (12.3837) (16.1471)

K SΔ = 2%0∕

EndPoint 10.1405 12.8401 16.1573 7.3334 9.6192 12.5632 41.5029 49.0343 56.6007

(1.0207) (1.0119) (1.1160) (0.9953) (0.9975) (1.0953) (1.6892) (1.5094) (1.5849)

LinReg 7.3170 9.3258 10.7803 4.6906 6.5702 8.0290 36.7359 43.4754 42.2453

(18.2264) (34.6330) (6.4968) (10.5451) (18.2972) (4.7217) (109.5680) (223.6443) (27.8208)

RND 4.7910 6.9982 9.4720 3.2182 4.9696 7.0668 21.7683 29.7649 37.0732

(2.3549) (3.1150) (3.7455) (1.6966) (2.2556) (2.8052) (10.4324) (13.5568) (15.1840)

(Continues)
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and is—at the same time—considerably more stable than linear extrapolation. In particular when event risk is high, it
is the superior approach to obtain accurate estimates of the and similar metrics.

5 | EMPIRICAL APPLICATION

In this section, we empirically analyze the RND‐based smile construction approach and outline its impact on
estimates for a normal and a volatile trading day. First, we compare the efficiency of the RND‐based

technique to that of standard approaches by constructing volatility smiles based on narrowed moneyness ranges.
To assess the accuracy of the different smile construction approaches, discarded contracts are used to compute
the RMSE of extrapolated implied volatilities. Second, we estimate the based on the full set of observable
and constructed OTM put options. Section 5.1 details the data and the estimation approach, the main results
are given in Section 5.2.

5.1 | Data and summary statistics

Analogous to the base case and crisis scenario in the numerical analysis, we identify a normal (May 22, 2019)
and a volatile trading day (May 20, 2020). While the normal day is characterized by a VIX level of 15, the volatile
day lies within the COVID pandemic and exhibits a VIX level of 28. To obtain a sufficient number of observable
contracts for our analysis, we focus on 30‐day quarterly options written on the highly liquid stocks of FAANG
stocks.19 This ensures that the number of OTM option contracts is sufficiently large to compute meaningful
RMSE. Raw options data are obtained from the OptionMetrics database which also provides European options
that are calculated from American options. Table 5 shows summary statistics for implied volatilities of FAANG
individual stock options for both observation dates. Almost all moments exhibit higher values on the volatile
day. The ratio of mean and median indicates a right‐skewed distribution of implied volatilites for both days.

Table 6 conveys information about the number of OTM contracts available in moneyness intervals of 0.05. The
number of OTM put options with a spot moneyness less than 0.75 is substantially higher on the volatile than on the

TABLE 4 (Continued)

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

K SΔ = 5%0∕

EndPoint 10.1426 12.8611 16.1838 7.3377 9.6483 12.5722 41.4850 48.9443 56.7468

(1.6413) (1.5928) (1.6389) (1.6317) (1.5876) (1.6504) (2.3303) (2.1869) (1.9497)

LinReg 5.3366 6.9507 10.0354 3.7445 4.7684 7.5110 25.7046 30.4975 38.9435

(4.7442) (4.0461) (3.6064) (3.6374) (3.0914) (2.9649) (22.4480) (16.7320) (11.3941)

RND 5.0353 6.8641 9.7635 3.4331 4.9098 7.3054 22.8725 28.8523 37.9672

(2.7462) (3.5065) (3.3383) (2.0259) (2.5905) (2.7144) (11.9799) (14.7157) (11.2561)

Note: The table shows simulation‐based averages (1000 runs) of percentage errors  100 × − dense dense  ∕ for = , , using endpoint volatility
(EndPoint), linear regression (LinReg), and RND‐tail (RND) extrapolation for the base case (Panel A) and crisis scenario (Panel B) with error standard
deviation in parentheses. dense is the respective benchmark computed from the full range of SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈

( OTM put options only) using trapezoidal integration over dense grids of strikes with K SΔ = 0.1%0∕ . Estimates  are obtained from randomly perturbed
implied volatility smiles σ σ η i N˜ = ˜ (1 + 0.02 ), = 1, …, ˜

i inoisy, , where σ̃i are Black and Scholes (1973) implied volatilities computed from SVCJ option prices and
η ~ (0, 1) .  are computed from extrapolated moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%), and [0.85, 1.15] (±15%) ( :

OTM put options only) based on cubic spline smoothing (RND: with convexity constraints) of strike grids with K SΔ = 1%, 2%, 5%0∕ .

Abbreviations: OTM, out‐of‐the‐money; RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.

19FAANG stocks did not pay any dividends within the periods under consideration.
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normal day. This reflects the fact that these contracts are often used as “crash insurances” in volatile market
conditions.

5.2 | Results

We apply RND‐tail extrapolation, endpoint volatility, and linear regression combined with cubic spline
smoothing (RND with convexity constraints) to construct full volatility smiles for moneyness ranges around the
spot of ±25%, ±20%, and ±15%, respectively. For OTM put options, we compute RMSE of extrapolated implied
volatilities with respect to their observable counterparts located outside the respective moneyness range. We
compare the accuracy of the different smile extrapolation techniques in the relevant domain for capturing rare
disaster concerns. estimates are then computed from the set of observable and constructed OTM put option
prices.

Table 7 shows the results. First, RMSEs of implied volatilities based on the RND approach are substantially
smaller than those based on standard techniques. This holds for all FAANG stocks and all three moneyness
ranges on both trading days. On average, RMSE of extrapolated volatilities differs between the RND approach
and endpoint volatility (linear regression) by 0.27 (0.05) for the normal and 0.37 (0.07) for the volatile day.
Furthermore, RMSE is robust with respect to the size of the available moneyness range with similar orders of
magnitude. This indicates that RND‐tail extrapolation is superior to endpoint volatility and linear regression
when brought to the data. Figure 3 illustrates the differences in smile construction for Apple and Google on the
normal and the volatile trading day. Discarded implied volatilities from OTM put options are more accurately
matched by the RND‐based approach than by its competitors. The improvement is even more pronounced for the
volatile trading day indicating that RND‐based smile construction is particularly advantageous when rare
disaster concerns may be present.

Second, RND‐based estimates on the volatile day are considerably higher than those from standard
techniques. This holds across all FAANG stocks and all three moneyness ranges. On average, estimates using the
RND approach exceed those from endpoint volatility (linear regression) by 0.0033 (0.0012) in absolute and
73.97% (18.29%) in relative terms on that day. For the normal day, the differences are less pronounced. On
average, RND‐based estimates still exceed those from endpoint volatility (linear regression) by 0.0010

TABLE 5 Summary statistics—Implied volatilities.

Mean SD Median Min Max

Panel A: May 22, 2019 (normal)

AAPL 0.4380 0.1337 0.4377 0.2656 0.8937

AMZN 0.4003 0.2477 0.2915 0.2205 1.3737

FB 0.4538 0.2707 0.3435 0.2160 1.2937

GOOG 0.3410 0.1893 0.2763 0.1840 1.0376

NFLX 0.5360 0.2945 0.3991 0.2855 1.4177

Panel B: May 20, 2020 (volatile)

AAPL 0.5939 0.3758 0.4500 0.2379 1.7140

AMZN 0.5380 0.2767 0.4429 0.2850 1.4074

FB 0.5693 0.2556 0.4594 0.3387 1.2458

GOOG 0.5330 0.2917 0.4320 0.2190 1.2514

NFLX 0.8303 0.6023 0.5682 0.3759 2.8537

Note: The table shows mean, standard deviation (SD), median, minimum (Min), and maximum (Max) for implied volatilities of 30‐day quarterly options
written on the FAANG stocks (Facebook [FB] [Meta], Amazon [AMZN], Apple [AAPL], Netflix [NFLX], Google [GOOG] [Alphabet]) on May 22, 2019 (Panel
A, normal) and May 20, 2020 (Panel B, volatile). Data are retrieved from OptionMetrics and individual stocks are identified by their ticker symbols.
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(0.0001) in absolute and 35.59% (4.87%) in relative terms. Given the higher accuracy of RND‐tail extrapolation,
we conclude that corresponding estimates are superior to their counterparts from standard techniques.
Endpoint volatility and linear regression tend to underestimate rare disaster concerns when jump and tail risks
are prevalent.

This is further illustrated by aligning the volatility smiles of Apple and Google in Figure 3 with the corresponding
estimates in Table 7. On both observation days, RND‐based extrapolated volatility smiles exhibit curvature and

clearly differ from those using endpoint volatility and linear regression. This only translates to substantial differences in
estimates on the volatile day, though. RND‐tail modeling takes curvature into account explicitly. This additional

flexibility allows one to incorporate higher implied volatilities of far OTM put options. When market volatility is high,
these contracts tend to be more expensive than on days with moderate volatility. As far OTM puts influence
estimates substantially due to the implicit weighting scheme in (8), small changes in their prices have a comparably
large impact.

TABLE 7 RMSE and estimates.

Panel A: May 22, 2019 (normal) Panel B: May 20, 2020 (volatile)

RMSE ℝ RMSE ℝ

Observable range −25% −20% −15% −25% −20% −15% −25% −20% −15% −25% −20% −15%

AAPL

EndPoint 0.1631 0.1585 0.1757 0.0052 0.0048 0.0041 0.5489 0.5822 0.6050 0.0063 0.0051 0.0041

LinReg 0.0471 0.0382 0.0492 0.0058 0.0058 0.0053 0.1729 0.1862 0.1932 0.0100 0.0091 0.0086

RND 0.0383 0.0295 0.0389 0.0058 0.0059 0.0053 0.0906 0.0858 0.0809 0.0118 0.0114 0.0113

AMZN

EndPoint 0.3925 0.3981 0.4108 0.0026 0.0023 0.0020 0.4103 0.4246 0.4361 0.0037 0.0032 0.0028

LinReg 0.1634 0.1492 0.1558 0.0029 0.0029 0.0027 0.1205 0.1269 0.1628 0.0051 0.0047 0.0040

RND 0.0927 0.0786 0.0851 0.0030 0.0030 0.0028 0.0526 0.0646 0.0769 0.0084 0.0058 0.0049

FB

EndPoint 0.4231 0.4452 0.4695 0.0029 0.0025 0.0021 0.4249 0.4318 0.4249 0.0064 0.0059 0.0052

LinReg 0.1542 0.1234 0.1632 0.0033 0.0035 0.0030 0.1612 0.1826 0.2459 0.0076 0.0072 0.0063

RND 0.0791 0.0533 0.0783 0.0035 0.0037 0.0031 0.1136 0.1276 0.2331 0.0078 0.0074 0.0064

GOOG

EndPoint 0.3178 0.3102 0.3129 0.0017 0.0015 0.0013 0.3861 0.4180 0.4416 0.0042 0.0036 0.0030

LinReg 0.0944 0.0894 0.0919 0.0022 0.0021 0.0020 0.1330 0.1186 0.1424 0.0057 0.0059 0.0050

RND 0.0643 0.0545 0.0584 0.0025 0.0024 0.0022 0.0898 0.0682 0.0856 0.0066 0.0077 0.0061

NFLX

EndPoint 0.4693 0.4944 0.5109 0.0050 0.0044 0.0037 0.9903 0.9967 0.9968 0.0072 0.0065 0.0056

LinReg 0.1535 0.1880 0.2433 0.0063 0.0057 0.0050 0.5626 0.6122 0.7448 0.0097 0.0086 0.0068

RND 0.0815 0.1128 0.1796 0.0066 0.0058 0.0050 0.3303 0.3806 0.7436 0.0106 0.0091 0.0068

Note: The table shows RMSE of extrapolated implied volatilities with respect to observable discarded OTM put options written on the FAANG stocks (Facebook
[FB] [Meta], Amazon [AMZN], Apple [AAPL], Netflix [NFLX], Google [GOOG] [Alphabet]) for May 22, 2019 (Panel A, normal) and May 20, 2020 (Panel B,
volatile). Volatility smiles are constructed using endpoint volatility (EndPoint), linear regression (LinReg), and RND‐tail (RND) extrapolation combined with
cubic spline smoothing (RND with convexity constraints) based on narrowed moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%),

and [0.85, 1.15] (±15%). RMSE and follow from OTM put options only which are indicated by the negative sign of the underlying moneyness range. We
compute from a dense grid of observable and constructed OTM put option prices using trapezoidal integration. KΔ is chosen such that observable strikes
are included as knots while ensuring K SΔ 0.1%0∕ ≤ . Individual stocks are identified by their ticker symbols.

Abbreviations: OTM, out‐of‐the‐money; RMSE, root mean square error; RND, risk‐neutral return distribution.
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6 | CONCLUSION

In this paper we develop a new arbitrage‐free RND‐based smile construction approach. Our main goal is to improve the
accuracy and stability of estimators of model‐free event risk measures, like, the rare disaster concern index (Gao
et al., 2018, 2019). These are commonly defined for a continuum of strike prices that is not available in practice. Thus,
numerical approximation techniques must be applied. As metrics like the significantly depend on deep OTM
options, biases induced by standard extrapolation methods can be critical when the underlying RND features high
kurtosis and negative skewness. Numerical and empirical analyses confirm that estimates based on standard
techniques are the least accurate when event risk is high—the type of risk this metric is supposed to capture.

Exploiting the one‐to‐one relation between option prices and the underlying RND, we extrapolate the implied
volatility smile by modeling the tails of the RND using the GEV distribution. We then match option prices and the RND
implied by the GEV tails and observable contracts to obtain the full smile. This new optimization approach ensures that
the transition between extrapolated and observable implied volatilities is always continuous. As this requires that the
underlying RND is well‐behaved, we interpolate observable implied volatilities using a cubic smoothing spline with
additional convexity constraints.

FIGURE 3 Empirical extrapolated volatility smiles. The figure plots extrapolated Black and Scholes (1973) implied volatility smiles for
option contracts on Apple (AAPL, top panels) and Google (GOOG, bottom panels) on the normal (left panels) and the volatile observation
day (right panels). On the basis of implied volatilities of observable contracts in a narrowed spot moneyness range of [0.80, 1.20]

(“Included”), volatility smiles are extrapolated by endpoint volatility (EndPoint), linear regression (LinReg), and RND‐tail (RND)
extrapolation after cubic spline smoothing (RND with convexity constraints). Implied volatilities of observable contracts outside the
moneyness range (“Discarded”) are plotted against extrapolated volatility smiles. Options data are obtained from OptionMetrics.
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The numerical analysis sheds light on how limited moneyness ranges and different strike spacing affect estimation
errors in the base case and the crisis scenario. Results from standard techniques are consistent with findings in the
literature. We analyze the impact of microstructure noise by performing a simulation study. In contrast to other studies
in the literature, we systematically investigate the interplay between different sources of error. It turns out that—due to
its flexibility—RND‐tail modeling shares the favorable properties of both endpoint volatility and linear extrapolation
without being affected by the major shortcomings of its competitors. It (1) substantially reduces the bias in far OTM
implied volatilities that are typically induced by endpoint volatility and (2) is considerably more robust to
microstructure noise than linear extrapolation.

We empirically verify our findings by looking at options on FAANG stocks on a normal and a volatile trading day
for narrowed moneyness ranges. RMSE of extrapolated implied volatilities with respect to those of discarded OTM put
options show that RND‐tail extrapolation matches the data considerably better than standard techniques. For the
volatile day, we find that estimates using the RND approach exceed those from endpoint volatility (linear
regression) by 0.0033 (0.0012) on average. Given the added accuracy of the RND approach, we conclude that endpoint
volatility and linear regression tend to underestimate rare disaster concerns when jump and tail risks are prevalent.
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APPENDIX A

A.1 | GEV distribution
The GEV distribution follows from the Fisher–Tippett–Gnedenko theorem. Assume that for a sequence of i.i.d. random
variables X( )i i 0∈ with maximum M X X= max{ , …, }n n1 there exist sequences of constants a b,n n with a > 0n such that
the normalized maximum converges in distribution to some nondegenerate random variable:

M b

a
X

−
*.n n

n

d
→

Then, this random variable follows a GEV distribution, X GEV μ σ ξ* ~ ( , , ). Its three parameters control location
(μ), scale (σ), and shape (ξ ). The corresponding PDF f x( )GEV and CDF F x( )GEV are given by

f x
σ
t x t x( ) =

1
( ) exp{− ( )},GEV

ξ+1 (A1)

where
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The support of the distribution varies depending on ξ such that

















)

(

x μ ξ

x ξ

x μ ξ

− , + for > 0,

(− , + ) for = 0,

− , − for < 0.

σ

ξ

σ

ξ

∈ ∞

∈ ∞ ∞

∈ ∞

(A3)

A.2 | Cubic smoothing spline with convexity constraints
Consider i N= 1, …, ˜ observable implied volatilities σ̃i with corresponding observable strikes K̃i (“knots”) where K K˜ =1 1

and K K˜ =N N˜ . A function g K( ) is called a natural cubic spline defined on K K[ ˜ , ˜ ]N1 ˜ if it is a cubic polynomial on every
subinterval K K[ ˜ , ˜ ]i i+1 , if g g, ′, and g″ are continuous at every knot K̃i, and if g g″ = ‴ = 0 at K̃1 and K̃ Ñ (Green &
Silverman, 1994). The function g can then be specified by

g K a b K K c K K d K K K K K( ) = + ( − ˜ ) + ( − ˜ ) + ( − ˜ ) for ˜ ˜ ,i i i i i i i i i
2 3

+1≤ ≤ (A4)

where a b c d, , ,i i i i ∈ are given constants. The natural cubic spline incorporates all available data points and is thus
suitable for interpolation. If the data are affected by microstructure noise, smoothing is required, though. By
incorporating a penalty for curvature which is controlled by the parameter λ > 0, the cubic smoothing spline results
from minimizing

 σ g K λ g K dK( ˜ − ( ˜ )) + ″( ) .
i

N

i i
K

K

=1

˜

2

˜

˜
2

N

1

˜

(A5)

The cubic smoothing spline defined by Equation (A5) can be formulated as a quadratic optimization program.
Convexity‐preserving bounds on the second‐order derivatives can be added as additional constraints. Define the N(2 ˜ − 2)‐
element column vectors y σ σ= ( ˜ , …, ˜ , 0, …, 0)N1 ˜

⊺ and ( )x g g γ γ= , …, , , …,N N1 ˜ 2 ˜−1
⊺, where g g K= ( ˜ )i i and γ g K= ″( ˜ )i i are the

values and second‐order derivatives of the spline at the knots K̃i. The optimization problem then reads







y x x
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arg min − +
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x
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⊺ ⊺
(A6)

where γ i N0 = 2, …, ˜ − 1i ≥ ∀ represents the convexity constraints. In is the identity matrix of dimension n and 0k l× is
a matrix of zeros with k rows and l columns. The matrices Q N N˜ ×( ˜−2)∈ and R N N( ˜−2)×( ˜−2)∈ are functions in the
knots K̃i.
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The elements qi j, of Q are specified using nonstandard indexing with i N= 1, …, ˜ and j N= 2, …, ˜ − 1 (e.g., the top

left element is q1,2 and the bottom right is qN N˜ , ˜−2). They are given by

q h q h h q h k N= , = − − , and = for = 2, …, ˜ − 1,k k k k k k k k k k−1, −1
−1

, −1
−1 −1

+1,
−1 (A7)

where h K K= ˜ − ˜
i i i+1 and q = 0i j, for  i j− 2≥ . For R, the indexing of its elements ri j, is also nonstandard with

i j N, = 2, …, ˜ − 1. They are given by

r h h k N

r r h k N

= ( + ) for = 2, …, ˜ − 1,

= = for = 2, …, ˜ − 2,

k k k k

k k k k k

,
1

3 −1

, +1 +1,
1

6

(A8)

and r = 0i j, for  i j− 2≥ . R is strictly diagonally dominant and thus positive‐definite.
The coefficients of the piecewise polynomial representation in Equation (A4) can be recovered by
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(A9)

Proofs and technical details are available in Green and Silverman (1994).
The smoothing parameter λ is determined by the “leave‐one‐out” cross‐validation approach.20 Details on this

standard procedure are available in Green and Silverman (1994).21

A.3 | SVCJ model and benchmark scenarios
Benchmark model: In the Duffie et al. (2000) affine jump‐diffusion model with SVCJs the dynamics of the stock price
under the risk‐neutral measure are

r λμ dt V dW e dN

dV κ θ V dt σ V dW ydN λμ dt

= ( − ) + + ( − 1) ,

= ( − ) + + − ,

dS

S X t t
S X

t

t t t t
V

t y

t

t

t

(A10)

where r denotes the constant risk‐free interest rate with continuous compounding andVt the stochastic variance which
is driven by a square‐root diffusion process with speed κ, long‐term mean θ, and diffusive volatility σ . The Brownian
motion of the stock price processWt

S and of the varianceWt
V have correlation ρ. Nt is a Poisson counter with intensity

λ. Given the occurrence of a contemporaneous jump, the variance rate jump size y is exponentially distributed with
mean μy while the price jump size X is normally distributed with mean μ ρ y+X J and variance σX , where ρJ denotes
the jump sizes correlation. The model's implementation is based on the characteristic function of log returns as
described in Aschakulporn and Zhang (2022b).

Benchmark scenarios: Table A1 states the parametrizations to create a base case and a crisis scenario. Parameters
result from model calibration on Apple's quarterly stock options with 30 days to expiration on two trading days. The
normal trading day (May 22, 2019) is characterized by a VIX level of 15 and is used for the base case scenario, while the
volatility trading day (May 20, 2020) exhibits a VIX level of 28 and refers to the crisis scenario. The error metric applied
for calibration is the relative RMSE. Spot price and risk‐free interest rate are chosen arbitrarily (S r= 100, = 0.02t ).

A.4 | Birru and Figlewski (2012) tail‐modeling approach
We compare the tail‐modeling approach of Birru and Figlewski (2012) to the RND‐tail extrapolation with respect to
modeled RND tails, volatility smile's continuity, and estimates. For the crisis scenario and a spot moneyness range

20The minimization of the cross‐validation score is carried out using the derivative‐free Matlab solver patternsearch.
21Fengler (2009) states that “leave‐one‐out” cross‐validation is not applicable in his setting. This is mainly due to the focus on the construction of the
entire volatility surface. As we limit our analysis to the cross section of strikes for a specific maturity, the parameter λ can be chosen optimally using
the aforementioned technique.
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of [0.8, 1.2] (±20%), we extend the RND implied by available option prices according to both tail‐modeling approaches
and extract fitted GEV parameters.

Figure A1 shows the RND with tails modeled by both techniques. While tails seem to be equivalent at first glance,
Table A2 indicates deviating GEV parameters. In particular, it is striking that the RND‐tail extrapolation yields higher
values for the shape parameter ξ than the proposed method of Birru and Figlewski (2012). As a consequence, our
approach assigns more probability mass to the RND tails which translates into higher option prices and implied
volatilities.

Figure A2 plots the extrapolated volatility smiles corresponding to the RNDs depicted in Figure A1. While the
higher extrapolated implied volatilities of the RND‐tail extrapolation concatenate the smile perfectly, the smaller
volatilities of Birru and Figlewski (2012) generate discontinuities at the outermost strikes which are not admissible

TABLE A1 Parameters of the SVCJ model in the benchmark scenarios.

Parameter Base case Crisis

κ 1.1521 1.4333

θ 0.3437 0.3779

σ 0.6772 0.9892

ρ −0.5882 −0.6993

Vt 0.0845 0.0669

λ 3.2642 0.1876

μX −0.0318 0.0473

σX 0.0273 0.2295

μy 0.2245 0.3962

ρJ −0.0921 −0.6677

Abbreviation: SVCJ, stochastic volatility and contemporaneous jump.

FIGURE A1 Modeled RND tails. The figure plots risk‐neutral probability densities with tails modeled according to Birru and Figlewski
(2012) (Birru/Figlewski‐RND, left panel) and RND‐tail extrapolation (RND, right panel). On the basis of benchmark option prices (crisis
scenario) generated by the SVCJ model, the risk‐neutral probability density inside the spot moneyness range of [0.8, 1.2] (“RND interior”) is
approximated using finite differences with a fine grid of K SΔ = 0.1%0∕ , while tails follow from the respective tail‐modeling approaches
(“RND tails”). RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.
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under considerations of no‐arbitrage. With respect to estimates, the higher option prices of the RND‐tail
extrapolation produce a percentage error of 7.14% only, whereas the error resulting from Birru and Figlewski (2012)
amounts to 32.84% due to tail underestimation. Hence, incorporating the martingale property in tail modeling is crucial
for smile extrapolation and estimation.

A.5 | Microstructure noise
See Table A3 and A4.

TABLE A2 GEV parameters.

Birru/Figlewski‐RND RND

Left tail Right tail Left tail Right tail

μ 98.4106 113.1404 92.1554 114.3723

σ 3.7050 0.1571 1.3680 0.0735

ξ 0.1477 0.5930 0.4102 0.7234

Note: The table shows the fitted location (μ), scale (σ ), and shape (ξ ) parameters of the generalized extreme value (GEV) distribution resulting from tail
modeling according to Birru and Figlewski (2012) and the risk‐neutral return distribution (RND) tail extrapolation for the left and the right tail, respectively.

FIGURE A2 Extrapolated volatility smiles. The figure plots extrapolated Black and Scholes (1973) implied volatility smiles resulting
from RND‐tail modeling according to Birru and Figlewski (2012) (Volatility Smile‐Birru/Figlewski, left panel) and the RND‐tail
extrapolation (Volatility Smile‐RND, right panel). Implied volatilities inside the spot moneyness range of [0.8, 1.2] (“Included”) result from a
dense grid ( K SΔ = 0.1%0∕ ) of benchmark option prices (crisis scenario) generated by the SVCJ model detailed in Appendix A.3.
Extrapolated implied volatilities follow from RND‐tail modeling according to the respective approaches (“Extrapolated”). RND, risk‐neutral
return distribution; SVCJ, stochastic volatility and contemporaneous jump.
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TABLE A3 Average estimation errors , , —Low microstructure noise (θ = 1%).

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

Panel A: Base case scenario

K SΔ = 1%0∕

EndPoint 1.7012 3.2864 5.9121 1.3159 2.6366 4.9115 8.8509 15.5648 24.8266

(0.3801) (0.3839) (0.4335) (0.3664) (0.3673) (0.4093) (0.8363) (0.8944) (1.0497)

LinReg 0.5183 0.9857 2.0870 0.4419 0.7885 1.7341 2.4604 4.9550 9.5963

(0.7701) (1.3968) (3.3704) (0.6094) (1.0190) (2.3628) (5.1290) (8.7475) (22.8086)

RND 0.4123 0.6915 1.4286 0.3558 0.5650 1.2120 1.7428 3.2716 6.1905

(0.3304) (0.5847) (1.0567) (0.2825) (0.4532) (0.8200) (1.4922) (3.2506) (5.6731)

K SΔ = 2%0∕

EndPoint 1.7170 3.2932 5.9010 1.3314 2.6424 4.8997 8.8637 15.5833 24.8071

(0.5159) (0.5332) (0.6073) (0.4953) (0.5142) (0.5782) (1.1316) (1.1621) (1.3563)

LinReg 0.6942 1.1152 2.1505 0.5966 0.9211 1.7618 3.1795 5.6135 9.7631

(0.8312) (2.0274) (1.9692) (0.6537) (1.4344) (1.5122) (5.1509) (14.2492) (10.4508)

RND 0.5560 0.8201 1.5849 0.4858 0.6770 1.3205 2.2690 3.8600 7.0678

(0.4622) (0.7235) (1.1855) (0.3870) (0.5610) (0.9155) (2.2955) (3.9959) (6.4612)

K SΔ = 5%0∕

EndPoint 1.7478 3.3239 5.9260 1.3869 2.6752 4.9158 8.9049 15.5652 24.9322

(0.8303) (0.8479) (0.8923) (0.7700) (0.8257) (0.8713) (1.6443) (1.7054) (1.6556)

LinReg 0.8359 1.1701 1.8271 0.7695 0.9844 1.5431 3.1140 5.4102 7.8458

(0.6438) (0.8974) (1.2811) (0.5949) (0.7387) (1.0707) (2.7168) (4.3407) (5.6660)

RND 0.7811 1.0207 1.5716 0.7133 0.8731 1.3390 2.7483 4.4782 6.7538

(0.6009) (0.7929) (1.1224) (0.5469) (0.6638) (0.9549) (2.4890) (3.7654) (5.0169)

Panel B: Crisis scenario

K SΔ = 1%0∕

EndPoint 10.0786 12.8149 16.1582 7.2686 9.5933 12.5665 41.5253 49.0340 56.5959

(0.3820) (0.3735) (0.4062) (0.3707) (0.3634) (0.3941) (0.6498) (0.6058) (0.6360)

LinReg 4.1408 7.1081 10.0933 2.1732 4.8478 7.4814 21.3348 31.3431 40.0307

(3.1412) (3.8905) (5.9449) (2.0832) (2.7409) (3.9039) (16.0767) (18.5504) (28.7684)

RND 3.7016 6.3486 9.2301 2.3872 4.4774 6.8945 17.4203 27.3164 36.1922

(1.6437) (2.1569) (2.3762) (1.1273) (1.5495) (1.8345) (7.3540) (9.2560) (8.4998)

K SΔ = 2%0∕

EndPoint 10.0857 12.8109 16.1429 7.2786 9.5902 12.5513 41.4899 49.0188 56.5702

(0.5139) (0.5100) (0.5656) (0.5008) (0.5020) (0.5539) (0.8540) (0.7677) (0.8174)

LinReg 4.3964 6.9066 9.6942 2.4957 4.6650 7.2166 22.1814 30.7372 37.9981

(3.5282) (4.7953) (3.2668) (2.5525) (3.3163) (2.5085) (17.1683) (23.7228) (11.8234)

RND 3.8484 6.2174 8.9844 2.5062 4.3853 6.7070 17.9930 26.6793 35.2845

(1.8467) (2.3825) (2.7854) (1.2749) (1.7273) (2.1484) (8.3838) (9.9900) (10.0058)

(Continues)
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TABLE A3 (Continued)

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

K SΔ = 5%0∕

EndPoint 10.0717 12.8128 16.1551 7.2676 9.5973 12.5570 41.4615 48.9577 56.6189

(0.8215) (0.7967) (0.8201) (0.8169) (0.7940) (0.8248) (1.1681) (1.0969) (0.9783)

LinReg 3.7330 6.2552 9.9318 2.1068 3.9585 7.4021 19.3556 28.3534 38.9690

(2.0138) (2.4416) (2.3826) (1.4431) (1.9045) (1.9460) (8.6599) (9.1856) (7.3694)

RND 3.9071 6.1680 9.6527 2.5752 4.3571 7.2166 18.1399 26.2519 37.6687

(2.0457) (2.4098) (2.2106) (1.4387) (1.8090) (1.7746) (9.1690) (9.4911) (7.3631)

Note: The table shows simulation‐based averages (1000 runs) of percentage errors  100 × − dense dense  ∕ for = , , using endpoint volatility
(EndPoint), linear regression (LinReg), and RND‐tail (RND) extrapolation for the base case (Panel A) and crisis scenario (Panel B) with error standard
deviation in parentheses. dense is the respective benchmark computed from the full range of SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈

( OTM put options only) using trapezoidal integration over dense grids of strikes with K SΔ = 0.1%0∕ . Estimates  are obtained from randomly perturbed
implied volatility smiles σ σ η i N˜ = ˜ (1 + 0.01 ), = 1, …, ˜

i inoisy, , where σ̃i are Black and Scholes (1973) implied volatilities computed from SVCJ option prices and
η ~ (0, 1) .  are computed from extrapolated moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%), and [0.85, 1.15] (±15%) ( :

OTM put options only) based on cubic spline smoothing (RND: with convexity constraints) of strike grids with K SΔ = 1%, 2%, 5%0∕ .

Abbreviations: OTM, out‐of‐the‐money; RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.

TABLE A4 Average estimation errors , , —High microstructure noise (θ = 3%).

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

Panel A: Base case scenario

K SΔ = 1%0∕

EndPoint 1.7811 3.2744 5.9319 1.4364 2.6265 4.9255 8.8964 15.5455 24.9815

(1.0372) (1.1321) (1.2582) (0.9450) (1.0729) (1.1942) (2.4616) (2.6138) (2.9313)

LinReg 1.4662 3.9642 4.9204 1.3481 2.8912 3.9267 6.4855 26.7617 27.4641

(2.3413) (22.9979) (20.5245) (3.3078) (12.9801) (13.6706) (13.4823) (214.3320) (174.9337)

RND 1.1256 1.5935 2.6546 0.9933 1.3158 2.1586 4.4013 7.4327 12.5426

(1.0173) (1.9345) (3.7510) (0.8302) (1.3569) (2.5380) (5.6708) (13.2398) (26.5127)

K SΔ = 2%0∕

EndPoint 1.9378 3.2944 5.8813 1.6274 2.6660 4.8721 8.9502 15.6349 24.9766

(1.2815) (1.5433) (1.7813) (1.1629) (1.4402) (1.6974) (3.3668) (3.4085) (3.9027)

LinReg 2.3895 3.4638 4.7285 2.0274 2.7937 3.9262 12.4619 20.6339 23.5885

(6.6998) (21.4363) (10.2468) (4.2360) (11.7641) (7.1874) (57.7489) (209.4360) (77.6022)

RND 1.5312 2.0469 3.4770 1.3589 1.7011 2.7862 6.0691 9.5897 16.9315

(1.3476) (2.4093) (4.8093) (1.1047) (1.7103) (3.2289) (7.4576) (16.4170) (34.2856)

K SΔ = 5%0∕

EndPoint 2.4981 3.5683 5.9276 2.2571 3.0338 4.9014 9.2839 15.6582 25.4695

(1.8474) (2.2205) (2.6359) (1.7211) (2.0363) (2.5499) (4.5248) (5.0581) (4.9632)

LinReg 2.6574 3.1201 3.9295 2.4814 2.7955 3.2886 10.1788 13.6906 17.7699

(3.2213) (3.1532) (4.4319) (2.6196) (2.8309) (3.2895) (24.0340) (18.7345) (26.8616)
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TABLE A4 (Continued)

ℝ

Observable range ±25% ±20% ±15% ±25% ±20% ±15% −25% −20% −15%

RND 2.2781 2.7757 3.5752 2.0729 2.3866 2.9950 8.3156 12.1442 16.4955

(1.8947) (2.4722) (3.7677) (1.6572) (1.9887) (2.7489) (10.2811) (13.9707) (24.5172)

Panel B: Crisis Scenario

K SΔ = 1%0∕

EndPoint 10.1588 12.8446 16.2009 7.3469 9.6234 12.6032 41.5716 49.0304 56.6937

(1.1290) (1.0972) (1.1717) (1.0981) (1.0707) (1.1433) (1.8899) (1.7465) (1.7696)

LinReg 8.7758 15.1291 13.5901 5.3931 9.7540 9.9695 47.1965 78.2070 56.8042

(62.5362) (70.2588) (34.1502) (28.9650) (36.3139) (19.9224) (440.2742) (455.7391) (201.2402)

RND 5.1005 7.3219 10.1877 3.4458 5.2289 7.6042 23.0896 30.8821 39.8171

(2.5112) (3.2555) (4.1925) (1.8123) (2.3522) (2.9795) (11.0520) (14.3327) (18.7555)

K SΔ = 2%0∕

EndPoint 10.1751 12.8503 16.1430 7.3671 9.6273 12.5422 41.4998 49.0391 56.6489

(1.5225) (1.5097) (1.6552) (1.4849) (1.4895) (1.6267) (2.5150) (2.2428) (2.3341)

LinReg 13.3271 15.4141 12.5762 8.2689 9.9186 9.4182 73.4822 83.7409 50.7033

(66.5418) (148.9089) (17.5108) (32.8188) (65.7805) (11.4687) (450.4826) (1085.8793) (91.3701)

RND 5.4608 7.6316 10.2239 3.7321 5.4401 7.5951 24.4190 32.3435 40.2989

(2.8070) (3.7293) (5.0016) (2.0733) (2.6680) (3.5361) (12.2218) (16.8888) (22.6497)

K SΔ = 5%0∕

EndPoint 10.1768 12.8832 16.1581 7.3696 9.6688 12.5250 41.4812 48.9300 56.9045

(2.4568) (2.3914) (2.4630) (2.4399) (2.3841) (2.4865) (3.4929) (3.2731) (2.9312)

LinReg 7.8106 8.2221 10.6668 5.8368 6.0722 7.9760 37.2716 35.4562 41.4469

(12.4583) (7.8450) (5.3707) (8.2431) (5.5818) (4.1756) (68.9000) (38.6688) (20.0501)

RND 5.8443 7.6818 10.0315 4.0681 5.5237 7.4869 26.4100 32.2697 39.2160

(3.3941) (4.4302) (4.4810) (2.5800) (3.2397) (3.5726) (14.3142) (19.4865) (16.6956)

Note: The table shows simulation‐based averages (1000 runs) of percentage errors  100 × − dense dense  ∕ for = , , using endpoint volatility
(EndPoint), linear regression (LinReg), and RND‐tail (RND) extrapolation for the base case (Panel A) and crisis scenario (Panel B) with error standard
deviation in parentheses. dense is the respective benchmark computed from the full range of SVCJ OTM option prices K S K S[0.01, 1], [1, 1.99]put 0 call 0∕ ∈ ∕ ∈

( OTM put options only) using trapezoidal integration over dense grids of strikes with K SΔ = 0.1%0∕ . Estimates  are obtained from randomly perturbed
implied volatility smiles σ σ η i N˜ = ˜ (1 + 0.03 ), = 1, …, ˜

i inoisy, , where σ̃i are Black and Scholes (1973) implied volatilities computed from SVCJ option prices and
η ~ (0, 1) .  are computed from extrapolated moneyness ranges [K S K S,put

min
0 call

max
0∕ ∕ ] of [0.75, 1.25] (±25%), [0.8, 1.2] (±20%), and [0.85, 1.15] (±15%) ( :

OTM put options only) based on cubic spline smoothing (RND: with convexity constraints) of strike grids with K SΔ = 1%, 2%, 5%0∕ .

Abbreviations: OTM, out‐of‐the‐money; RND, risk‐neutral return distribution; SVCJ, stochastic volatility and contemporaneous jump.
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