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Abstract
We consider a periodic review single-item inventory model under stochastic demand.
Every m periods, in the regular order period, fixed order costs are K. In the periods
in-between, the intraperiods, higher fixed order costs of L > K apply. The literature on
optimal inventory policies under fixed order costs does not account for these time-
dependent fixed order costs. By generalizing existing proofs for optimal inventory
policies, we close this gap in inventory theory. The optimal inventory policy is complex
in the regular order period and in the intraperiods, a period-dependent (s, S) policy is
optimal. We describe and prove this optimal policy based on the notion of K-convexity
and the optimal ordering behavior in the presence of non–K-convex cost functions. In
a numerical study, we find that a major driver of the optimal policy is a forward-buying
effect that shifts the probability of ordering from the intraperiods to the regular order
period. The cost differences between the optimal and a pure period-dependent (s, S)
policy are, however, small.

K E Y W O R D S
inventory control, K-convexity, proof of optimality, varying fixed cost

1 INTRODUCTION

In the context of stochastic inventory control, the opti-
mality of (s, S) policies under rather general assumptions
is widely known. Although generalizations in many direc-
tions (e.g., random discounts, Markovian demands) have
been established for more applications, one crucial assump-
tion of existing results is that fixed costs do not increase
over time (or at least not in their expectation) (see
Iglehart, 1963; Scarf, 1959; Sethi & Cheng, 1997; Veinott
& Wagner, 1965). This assumption is, however, violated in
several practical problems.

To reduce the complexity of changes in delivery times in
the retail industry, stores or product groups are frequently
assigned to a fixed delivery schedule, for example, one deliv-
ery per week. This fixed delivery schedule is set to exploit
economies of scale concerning the fixed costs of order han-
dling in the warehouse and the transport costs to all stores
(e.g., Gaur & Fisher, 2004). Within a store, however, goods
might run out between two scheduled deliveries and have
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to be reordered. As these orders will not be optimally syn-
chronized with the orders of other stores, higher fixed costs
per order occur. As a generalization of the retail problem
above, consider the joint replenishment problem where order
schedules of several products are synchronized to purchase
them jointly, resulting in a low share of fixed order costs
per individual product. Consequently, a cyclic cost structure
is present whenever managers are allowed to place single
orders in between those schedules. Another example is the
spare parts replenishment process of an original equipment
manufacturer to its dealers. To minimize fixed costs, deal-
ers are asked to order in bulk only once per week on a fixed
day. However, due to the critical nature of spare parts, small
“express” orders are regularly ordered in between. Naturally,
those small orders incur larger fixed costs per order as nei-
ther picking processes in the warehouse nor transportation
tours are highly utilized. This setting includes order sys-
tems with deterministic discount opportunities, where fixed
costs are known to drop and increase cyclically, for exam-
ple, when a vendor offers reduced fixed order costs for
end-of-season sales.
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By explicitly considering that fixed costs might increase
over time, we arrive at a generalization of existing research
regarding the (s, S) policy (e.g., of Sethi & Cheng, 1997). We
assume cyclical fixed order costs, where a cycle consists of
multiple discrete periods, for example, 1 week. In that cycle,
there is one regular order period, where low fixed order costs
of K apply. All other periods in that cycle (so-called intrape-
riods) have higher fixed order costs of L. We show that the
optimal policy is not necessarily an (s, S) policy, but of a more
complex type in the order period with low fixed costs. The
policy is of (sj, Sj) type in all other periods (with j being an
index for the intraperiods).

In particular, we answer the following research ques-
tions:

(RQ1) How does the optimal policy look like in the presence
of cyclical varying fixed costs?

(RQ2) What drives the complex policy structure in the
regular order period?

(RQ3) What is the benefit of having the option to order in
the intraperiods rather than only in the regular order
period?

(RQ4) What is the (cost) impact of the complex order struc-
ture in the regular order period in comparison to an
(s, S) type of policy?

The remainder of this paper is structured as follows. We
give an overview of the relevant literature in Section 2. In Sec-
tion 3, we state the problem formally. We describe and prove
the optimal order policy in Section 4 and extend the findings
in Section 5. In Section 6, we provide numerical insights on
the behavior of the optimal policy and Section 7 concludes
the paper.

2 LITERATURE REVIEW

After Arrow et al. (1951) introduced the stochastic inven-
tory control problem and the (s, S) policy, many publications
dealt with proving optimality for similar control settings. The
basic inventory problem considers a single-stage and single-
item problem where fixed order costs prevail. The seminal
paper of Scarf (1959), directly extending Arrow et al. (1951)
and introducing K-convexity, and Veinott and Wagner (1965),
Song and Zipkin (1993), or Sethi and Cheng (1997) gener-
alize these findings (e.g., for Markovian demands, positive
lead times). For a definition of K-convexity, see, for exam-
ple, Porteus (2002), and for a survey of extensions of optimal
(s, S) policies in the discrete-time setting, see Perera and
Sethi (2023b), and in the continuous-time setting, Perera and
Sethi (2023a). However, existing results require fixed costs
to be either constant or at least nonincreasing in their val-
ues over time (or in their expected values of state-dependent
fixed order costs for the Markovian case). Perera et al. (2018)
show that optimality of the (s, S) policy also holds for very
different cost functions, such as multiple setup costs, piece-
wise concave costs, and so forth, but only with the same cost

structure over time and in a continuous review setting, where
demands occur unit-sized and inventory levels are changing
in unit-sized steps. However, in our periodic review setting,
inventory levels might change in larger steps between peri-
ods, and fixed costs change over time. Hence, their results
cannot be applied and the proof of optimality for the (s, S)
policy under more general cost functions remains nontrivial.

The above-mentioned publications under periodic review
use K-convexity in their proofs. If K-convexity is not given,
other notions have been used in the inventory control lit-
erature. In the area of capacity expansion/reduction and
cash balancing problems, (K1,K2)-convexity (Ye & Duenyas,
2007) and weak-(K1,K2)-convexity (Semple, 2007) have
been introduced. These problems have in common that
there are two different fixed costs for buying and selling.
The optimal policies obtained are to some degree similar to
the optimal policy found in our case, in that they include
multiple buying and selling areas. However, those notions
do not apply to problems with cyclic fixed order costs as
the decision causing the fixed costs is taken in the same
period for both, buying and selling. Also, fixed costs are
assumed to be nonincreasing over time. Chen and Simchi-
Levi (2004) introduce sym-K-convexity to characterize the
optimality of an (s, S, p) policy for integrated inventory con-
trol and price setting with additive random demand, again
assuming nonincreasing fixed costs. Simchi-Levi et al. (2014)
extend the symmetric K-convexity along with properties
on symmetric max(Q,K)-convex functions. Similar to this
symmetric max(Q,K)-convexity, we prove that in our set-
ting general L-convexity prevails even if K-convexity is not
given (under L > K). Porteus (1971) introduced quasi − K-
convexity for concave increasing order costs. This can be
applied to problems with multiple suppliers and different
fixed and variable order costs. As opposed to our setting, all
supply options are available in every period, which leads to
the same order cost structure for all periods. Gallego and
Sethi (2005) extend K-convexity to order decisions placed
for multiple products. In their approach, joint replenishment
effects can be obtained when multiple products are ordered
together and thus K-convexity is expanded to the ℝn space.
An approach for finding optimal order policies, in the case
where convexity-based properties are not given, especially in
highly dimensional inventory control systems (such as perish-
able inventory or dual sourcing systems with long lead times),
is asymptotic analysis. See, for example, Goldberg et al.
(2021) for a survey on the application of asymptotic analysis
for (among others) dual sourcing problems and Zhang et al.
(2020) for an application in perishable inventory under fixed
order costs, resulting in near-optimal simple heuristics.

In the dual sourcing literature, Johansen and Thorstenson
(2014) include different fixed costs for the regular and emer-
gency order mode and propose an (s,Q) policy for the regular
and an (s, S) policy for the emergency order mode. They use
a policy iteration algorithm to obtain optimal parameters, yet
do not provide analytical proofs for an optimal policy. Chiang
(2003) integrates fixed costs as being zero either for both
or at least for the regular supply mode. The resulting policy
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has two order-up-to levels (one for the regular and one for
the emergency supply) and a reorder point for both modes.
Moinzadeh and Nahmias (1988) assume different fixed costs
for the two supply modes in a continuous review setting with
lost sales. They suggest a heuristic with separate reorder
points and lot sizes for both modes in a (Q1,Q2,R1,R2) pol-
icy, which achieves good results in case fixed costs are high
and a stock-out penalty is low. Jain et al. (2011) apply vary-
ing fixed costs for both supply modes that differ in their lead
time and characterize the complex optimal order policy. They
indicate that this complex policy reduces to an (s, S) policy
when the difference in fixed order costs of choosing one order
mode over the other is negligible. They numerically show
that the employment of a pure (s, S) strategy yields good
approximations. The difference to our problem is that both
order modes are available in all periods and that it is allowed
to split orders between both modes, whereas in our setting,
only one order mode is available at any given point in time.

Another related research area is the single-item inventory
problem with random discount opportunities in a continuous
review setting. In this scenario, it is assumed that possibil-
ities with reduced costs for ordering (fixed and/or variable
costs) occur randomly. Federgruen et al. (1984) assume that
combined orders of multiple products occur randomly based
on an exponential distribution and thus, for a single item,
order costs are also reduced randomly due to economies of
scale. Simple, yet not necessarily optimal, policies are of
an (s, c, S) type, where s and S are used as reorder point
and order-up-to level. Parameter c states a can-order point
that is considered when a random discount opportunity is at
hand. Hurter and Kaminsky (1968) introduce an inventory
problem with random discount opportunities and provide an
algorithm to determine the optimal parameters for an (s, c, S)
policy. The optimal policies when variable and fixed order
costs are changing for discount orders are of (r,R, d,D) type
with reorder points (order-up-to levels) r (R) for the regular
and d (D) for the discount orders (see Feng & Sun, 2001).
However, all papers in the area of random discount opportu-
nities have in common that demand is (compound) Poisson
and the discount might happen at any time, thus they do not
have a cyclic cost structure. We analyze a case where dis-
counts appear deterministically and only apply to the fixed
costs. Also, our setting is not limited to Poisson demand.
This is why the above papers cannot be directly extended to
our setting. In fact, we show that an (r,R, d,D) is not opti-
mal in case of general demand structures and a deterministic
discount opportunity.

Zipkin (1989) investigates optimal order policies under
periodically changing variable costs, which results in a
period-dependent base-stock policy. Our paper extends this
direction by focusing on cyclical changing fixed order costs.
In another continuous review setting with varying fixed costs
for two supply modes with differing lead times, Jain et al.
(2010) find the optimal parameters for a (Q, r) policy. A split
of orders between the two supply modes is only preferable
if the additional fixed costs from the second order are out-
weighed by savings of otherwise higher holding and variable

costs of a single order. We observe a similar trade-off of
expected holding against expected fixed order costs when we
split orders over time in our setting. In Jain et al. (2010), the
decision on either supply mode can be done simultaneously
(i.e., in the same state of information). In our setting, the sec-
ond supply mode is only available at a different point in time,
given a different state of information.

3 PROBLEM FORMULATION

We consider a finite planning horizon with n = 1, … ,N dis-
crete order cycles, each covering m periods. Later we will
generalize to the infinite horizon problem. Orders are placed
at the beginning of each period and arrive instantaneously,
followed by random demand Ξ with realization 𝜉 and proba-
bility density 𝜙. Lead time is assumed to be zero (we relax
this assumption in Section 5.1). In the following analyses
and proofs, we describe the cost functions and Bellman equa-
tions that assume continuous distributions, but the same holds
for discrete distributions (similar to Kalymon, 1971). There
are two different fixed order costs. K applies in the regular
order period every m periods and fixed order costs L (K < L)
occur in the intraperiods j ∈ {1, … ,m − 1}. Let the period-
dependent fixed order costs Kj = L for all j = 1, … ,m − 1,
Km = K and, for the convenience of writing, Km+1 = K1 = L.
Variable costs c are incurred for any item ordered. They do
not differ between the two order modes. Positive inventory at
the end of the period incurs holding costs of cH per unit and
period and any demand that cannot be fulfilled is backlogged
at a cost cP per unit and period. 0 < 𝛼 ≤ 1 is the one-period
discount factor.

Let x be the inventory on hand before and y the inventory
on hand after ordering. The expected single-period holding
and penalty cost function (y) is

(y) = ∫
y

0
cH(y − 𝜉)𝜙(𝜉)d𝜉 + ∫

∞

y
cP(𝜉 − y)𝜙(𝜉)d𝜉. (1)

For any given cycle n, period j, and inventory state before
ordering x, the optimal inventory after ordering y minimizes
variable and fixed order costs, expected single period hold-
ing and penalty cost as well as (discounted) expected costs of
acting optimally in all future periods, starting with the next
period in state y − 𝜉 (see Porteus, 2002, for the case with con-
stant fixed order costs). We define this optimal expected costs
fn,j as

fn,j(x) = min
y≥x

{
c(y − x) + 𝛿(y − x)Kj + (y)

+ 𝛼 ∫
∞

0
f𝜃(n,j)(y − 𝜉)𝜙(𝜉)d𝜉

}
∀j = 1, … ,m,

where 𝛿(a) = 1 if a > 0, and 0 otherwise and 𝜃(n, j) ={
(n,j+1) for j≤m−1

(n+1,1) for j=m
is a one-period time shift operator that either
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points to the next period in a cycle or the first period of the
next cycle. We furthermore rewrite the optimal expected
costs fn,j(x) as

fn,j(x) = −cx + min

{
gn,j(x),min

y>x

{
Kj + gn,j(y)

}}
∀j = 1, … ,m, where (2)

gn,j(y) = cy + (y) + 𝛼 ∫
∞

0
f𝜃(n,j)(y − 𝜉)𝜙(𝜉)d𝜉

∀j = 1, … ,m. (3)

The optimal decision for inventory state x in cycle n and
period j is found by determining the minimum of gn,j(x) and
the minimizing value of gn,j(y) to the right of x, that is, y > x,
plus the fixed order costs. Hence, we can limit our investiga-
tions regarding the optimal policy by investigating functions
gn,j as in Scarf (1959) and Porteus (2002). As we consider a
finite horizon problem, let fN,m+1 = −cx be a terminal value
function that is charged at the end of period m in cycle N.
This terminal value function represents the charge that is
incurred for any leftover inventory or backlogged demand at
the end of the finite time horizon, that is, all positive inven-
tory is salvaged and all backlog has to be produced at the unit
cost c.

4 OPTIMAL POLICY

To fully describe the optimal policy, we define terminol-
ogy and critical points along a continuous function g(x).
Note that we characterize the general behavior of a cost
function and thus refrain from period-specific indices at
this point. For a visual representation of these points, see
Figure 1.

Let a set of order areas I describe an order policy for the
defined problem. An order area i ∈ I is defined by a reorder

F I G U R E 1 Illustration of critical points on function g(x) to define
order area i. [Color figure can be viewed at wileyonlinelibrary.com]

point a
i
, a stay-put point āi, and an order-up-to level a∗i . If

the inventory level drops below the reorder point, an order
is placed to fill inventory to the order-up-to level, but only
in case the inventory level does not drop to a level below
the stay-put point and above the reorder point of the next
order area.

In Figure 1, we see that a∗i is the minimizer of the func-
tion on the shown interval from 0 to a∗i . When observing the
interval (−∞,∞), the minimizer a∗i is equal to the global
minimum M, where M = minx∈(−∞,∞) g(x). Note that a∗i =
M for all i ∈ I|āi ≤ M, that is, the global minimum M rep-
resents the order-up-to level for all order areas to the left
of M. To be more precise on a∗i , define it as the minimizer
of any interval to the right of reorder point a

i
with a∗i :=

arg minx∈[a
i
,∞] g(x). This definition is necessary, as there

might be an interval on g(x) where a∗i is not the global min-
imum, which is the case if an order area appears to the right
of M.

Focusing on the interval [a
i
, a∗i ] in Figure 1, we observe the

known behavior of order policies under K-convex functions.
An order is beneficial if g(x) ≥ g(a∗i ) + K, indicated by the
shaded areas. āi is the first point left of a∗i where this is true,
indicating the reorder point. Define āi := arg max{a

i
≤ x ≤

a∗i : g(y) ≥ g(a∗i ) + K for all a
i
≤ y ≤ x}. Now, going further

to the left in the interval ]āi−1, ai
[, it is not optimal

to order as g(x) < g(a∗i ) + K. Hence a
i

is the last point,
where it is still beneficial to order, indicating the stay-put
level. We define a

i
:= arg min{āi−1 < x ≤ ∞ : g(x) ≥ g(y) +

K, y = arg minz∈[x,∞] g(z)}. The stay-put level is different
from the traditional (s, S) order policies, where it does not
exist. We furthermore introduce A as the level below which it
is always optimal to order, defined as A = mini∈I{āi} and Ā
as the level above which it is never optimal to order, defined
by Ā = maxi∈I{āi}. For technical purposes, let a

0
:= −∞.

Definition 1. Critical Points

(i) M = minx∈[−∞,∞] g(x).
(ii) a

i
:= arg min{āi−1 < x ≤ ∞ : g(x) ≥ g(y) + K, y =

arg minz∈[x,∞] g(z)}.
(iii) a∗i := arg minx∈[a

i
,∞] g(x).

(iv) āi := arg max{a
i
≤ x ≤ a∗i : g(y) ≥ g(a∗i ) +

K for all a
i
≤ y ≤ x}.

(v) a
0

:= −∞.
(vi) A = mini∈I{āi}.

(vii) Ā = maxi∈I{āi}.

To characterize the optimal policy, we use Definition 1
to show that a function, which might not be K-convex,
still is L-convex (for a formal definition of K-convexity, see
Supporting Information EC.1).

Proposition 1. Let L and K be nonnegative, with L ≥ K,
and g : R → R be an L-convex continuous function such that
limx→+∞ g(x) = +∞. Let g∗ = minx∈(−∞,∞) g(x) > −∞.
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Then, h(x) is the optimal cost function after ordering in the
regular order period and k(x) in the intraperiods, where

(i) h(x) ≡ miny≥x,−∞<y<∞[K𝛿(y − x) + g(y)] =⎧⎪⎪⎨⎪⎪⎩

K + g(M) x < A

K + g(a∗i ) i ∈ I, x ∈ (a
i
, āi)

g(x) i ∈ I, x ∈ [āi−1, ai
]

g(x) Ā ≤ x

⎫⎪⎪⎬⎪⎪⎭
and h : R → R

is continuous;
(ii) h is L-convex on (−∞,∞), following the general logic

of Simchi-Levi et al. (2014);
(iii) k(x) ≡ miny≥x,−∞<y<∞[L𝛿(y − x) + g(y)] ={

L + g(S) x < s

g(x) s ≤ x < ∞

}
and k : R → R is

continuous;
(iv) k is L-convex on (−∞,∞).

Proof. See Supporting Information EC.2.1. □

When we apply Proposition 1 to cost functions (3) and
(2), (i) introduces the optimal ordering decisions in the
regular order period, and (ii) proves that L-convexity is pre-
served under this policy. Based on the preserved L-convexity,
the standard arguments as in Scarf (1959) and Sethi and
Cheng (1997) to show that an (s, S) policy is optimal in the
intraperiods apply.

Theorem 1.

(i) In the regular order period m of order cycle n, there exist
critical points such that, for a given inventory state x, the
optimal inventory after ordering is

yn,m =

⎧⎪⎪⎨⎪⎪⎩

Mn x ∈ (−∞,A
n
)

a∗n,i i ∈ In, x ∈ (a
n,i
, ān,i)

x i ∈ In, x ∈ [ān,i−1, an,i
]

x x ∈ [Ān,∞).

(ii) For all intraperiods j = 1, … ,m − 1 of order cycle n,
there exists an optimal (sn,j, Sn,j) policy, such that, for
a given inventory state x, the optimal inventory after
ordering is

yn,j =

{
Sn,j x ∈ [−∞, sn,j)

x x ∈ [sn,j,∞).

Proof. See Supporting Information EC.2.2. □

The proof for the intraperiod policy uses Proposition 1 and
the basic properties of K-convexity of Scarf (1959) and Sethi
and Cheng (1997). It proves by induction that L-convexity is
given in every cycle and intraperiod and thus an (s, S) pol-
icy is optimal. Note that we need parameters for all order

cycles. Hence, we add index n to the parameters defined in
Definition 1.

5 EXTENSIONS

5.1 Positive constant lead times

For positive constant lead times 𝜆 ≥ 1, we follow the argu-
mentation in Scarf (1959) and define xk as the stock to be
delivered in period k = 1, 2… , 𝜆 − 1. Furthermore, x̂ = x +∑𝜆−1

k=1 xk is the inventory position before ordering, z is the
amount ordered in the current period, and ŷ = x̂ + z is the
inventory position after ordering. Define

̂(ŷ) = 𝛼𝜆 ∫
∞

0
…∫

∞

0
(ŷ −

𝜆∑
i=1

𝜉i)𝜙(𝜉1)…𝜙(𝜉𝜆)d𝜉1 … d𝜉𝜆.

We can now replace x̂ for x, ŷ for y, and ̂ for  in the for-
mulation of the optimal expected costs fn,j in (2) and (3). As
ŷ and x̂ have no impact on the properties of the cost function
and ̂ is convex (since  is convex), the same argumentation
as in Section 4 applies to arrive at the optimality of the same
policy structure as described in Theorem 1, dependent on x̂.

5.2 Generic fixed costs changes

For a generic change of fixed costs Kj ≥ 0 ∀j ∈ 1, … ,m,
intraperiods’ fixed costs are not bound to be equal within a
cycle and might even fall below the regular order costs. This
covers cyclical and nondecreasing costs within one cycle. For
any period j with the largest fixed costs maxj{Kj} = L, we can
follow Proposition 1 to show L-convexity for fn,j. In any other
period, we know that Kj ≤ L, and hence we can use Proposi-
tion 1.(ii) to show that again L-convexity is given, however
obviously not Kj-convexity. Using the backward induction
logic as in Supporting Information EC.2.2, L-convexity is
preserved and thus for all periods with arg maxj{Kj} = L,
the (s, S) policy of Theorem 1.(ii) is optimal, while for all
other periods (also respective intraperiods), the more complex
order policy of Theorem 1.(i) applies.

Now, assume that fixed costs are increasing from
one cycle to the next, for example, Kn,j < Kn+1,k ∀n ∈
1, … ,N − 1, j, k ∈ 1, … ,m. In that case, the largest fixed costs
over the whole time horizon will appear in the last cycle N,
that is, L = maxj{KN,j}. While we can show that L-convexity
is still preserved in all periods and cycles, only the last
cycle N will order under the fixed costs of L and an optimal
(s, S) policy. Hence, in all other cycles, we observe the more
complex order policy of Theorem 1.(i).

In case of nonincreasing fixed cost values over all
periods and cycles (more precisely, if Kn,j ≥ 𝛼K𝜃(n,j) ∀j ∈
1, … ,m, n ∈ 1, … ,N), the conditions of existing optimality
proofs of period-dependent (s, S) policies of, for example,
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F I G U R E 2 Illustration of the forward-buying effect (Observation 1). [Color figure can be viewed at wileyonlinelibrary.com]

Sethi and Cheng (1997) hold. Hence period-dependent (s, S)
policies for all periods and cycles are optimal.

In Supporting Information EC.4, we show that the results
of Section 4 further hold for the infinite horizon case in
Supporting Information EC.4.1 and for Markov-modulated
demands and Markov-modulated fixed costs in Supporting
Information EC.4.2.

6 NUMERICAL STUDY

We numerically investigate the optimal order policies to
answer research questions (RQ2)–(RQ4). We focus on high-
lighting the effects of forward-buying, the value of the
intraperiod option, and the impact of the multiple order areas.
Assuming 𝛼 = 1, we hence optimize under the average cost
criterion. Uncertain demands are assumed to be either bino-
mial or negative binomial and are selected by and fitted to
the first two moments as in Adan et al. (1995). To capture the
usage of the intraperiods’ order option, we define Pi as the
steady-state probability of ordering under the condition that
the system is currently in an intraperiod. For our numerical
investigations, we introduce the (Opt|m) policy as a bench-
mark, which always only orders in the regular order period,
that is, every m periods. For details on the algorithms, see
Supporting Information EC.3.

Observation 1. The multiple order areas in the regular
order period are driven by a forward-buying effect. This
effect describes the ordering of more units in the regular
order period to reduce the probability of having to order in
the intraperiods.

Figures 2a–c illustrate this ordering behavior with changes
in holding costs cH ∈ {0.8, 1, 8} and Figures 2d–f with
decreases in the fixed order costs of the intraperiods L ∈
{55, 30, 17}. The average demand is 𝜇 = 15 and the coeffi-
cient of variation is CV = 0.1. The cycle length m = 3, c = 0,
and cP = 40. In Figures 2a–c, we set K = 20 and L = 50 and
in Figures 2d–f, cH = 1 and K = 10.

In Figure 2a with cH = 0.8, we observe one order area
which represents an (s, S) policy, with s = 45 and S = 50. The
probability of ordering when the system is in an intraperiod
is 0.01%. Hence, the policy will order as much as needed at
the regular order period to (nearly) never order in the intrape-
riods. The other extreme can be found in Figure 2c, where
we again see a classic (s, S) policy, with s = 14 and S = 17.
In an intraperiod, the probability of ordering is nearly 100%.
Hence, the regular order period does not engage in forward-
buying at all, due to higher holding costs. Figure 2b shows the
multiple order areas for the case with cH = 1. The probability
of ordering in an intraperiod is 1.1%. Hence, the order in the
regular order period covers the demand of the intraperiods in
some, but not all, cases.

Similar behavior is exhibited for decreasing intraperiod
order costs. In Figure 2d, where L is substantial, orders are
primarily placed during the regular order period to exploit the
cheaper option. However, in Figure 2e, where L is reduced,
multiple order areas are observed, as forward-buying only
covers the likelihood of ordering during an intraperiod to a
certain extent. In contrast, as shown in Figure 2f, the cost
premium of L decreases to a level where forward-buying to
avoid an intraperiod order is not beneficial anymore.

Observation 2. The intraperiod order option provides the
largest cost benefits when the order cycle length is not
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TA B L E 1 Cost increase of (Opt|m) to the optimal policy
(Observation 2).

TBO L∕K = 1 L∕K = 1.1 L∕K = 1.2

0.25m 165.79% 149.56% 135.20%

0.5m 29.66% 25.34% 22.17%

0.75m 5.31% 1.35% 0.30%

1m 0.38% 0.05% 0.02%

1.25m 0.16% 0.03% 0.01%

1.5m 1.40% 0.01% 0.00%

1.75m 3.57% 0.00% 0.00%

2m 5.49% 0.02% 0.00%

well aligned with the optimal time between orders (TBO =√
2K∕(cH𝜇)) based on the fixed costs of the regular order

option. Furthermore, the benefit decreases linearly if fixed
costs increase, that is, the decrease is not accelerating with
higher cost premiums.

We observe the value of having additional order
options to the regular order period in Table 1. Here,
we set cH = 1 and alter K and L. We set K to
represent different values of the TBO, with TBO ∈
{0.25m, 0.5m, 0.75m, 1m, 1.25m, 1.5m, 1.75m, 2m} and set
L ∈ {K, 1.1K, 1.2K}. As before, m = 3, 𝜇 = 15, CV = 0.1,
c = 0, and cP = 40.

The largest cost differences between (Opt|m) and the opti-
mal policy can be found in Table 1 when TBO is much smaller
than the order cycle. In these cases, even a 10% or 20% cost
premium for ordering in the intraperiod will diminish the sav-
ings rather linearly and not with an accelerating decrease at
higher cost premiums. If TBO > m, a positive value of using
the optimal policy can only be found when L equals K, that
is, there is no cost premium for ordering in the intraperiod.
This shows that the additional order options in the intraperiod
might counteract a misaligned order cycle length and provide
significant cost savings when fixed costs point to ordering
more often than the cycle length.

Observation 3. Multiple order areas occur most likely when
demand uncertainty is low and the cycle length is large. The
benefit of multiple order areas in the regular order period
against an (sj, Sj) policy is negligible.

We conduct a full factorial design with a variation in
𝜇 ∈ {5, 15}, CV ∈ {0.1, 0.2, 0.3}, cH ∈ {0.5, 1, 1.5}, cP =
40, m ∈ {2, 3, 4}, K = 20, and L ∈ {30, 50, 70, 90} and com-
pare the optimal policy with the best (sj, Sj) policy. We select
these parameters to focus on the effects of multiple order
areas for illustration purposes. In our numerical study of 216
instances, 19 demonstrated multiple order areas in the opti-
mal order policy during regular order periods (i.e., |I| > 1;
see Table 2).

The multiple order areas were most prominent with high 𝜇
and cycle length m and low CV . Increasing stochasticity (i.e.,
higher CV) increases the costs of holding (safety) inventory

TA B L E 2 Number of instances with multiple order areas |I|
(Observation 3).

𝝁 m cH CV L∕K

5 15 2 3 4 0.5 1 1.5 0.1 0.2 0.3 1.5 2.5 3.5 4.5

1 101 96 69 66 62 68 64 65 59 66 72 46 46 52 53

|I| 2 6 10 3 4 9 4 5 7 10 6 7 7 1 1

3 1 2 2 1 3 3 1 1 1

to cover demand in intraperiods, reducing the attractiveness
of forward-buying and the possible appearance of multiple
order areas. Additionally, the number of order areas never
exceeds the number of periods in the order cycle (|I| ≤ m),
indicating that the presence of multiple order areas is linked
to the forward-buying effect of fully satisfying the demand
of additional intraperiods. Therefore, with an increase in m,
more order areas may appear.

The impact of higher 𝜇 can be explained by the trade-off
between fixed order costs and holding costs as L∕K rises. If
L∕K = 1.5, multiple order areas occur more frequently for
lower 𝜇, while for larger L∕K ∈ {2.5, 3.5, 4.5}, they occur
more frequently when 𝜇 is large. This suggests that mul-
tiple order areas arise only if the fixed costs differences
between the order modes are counterbalanced by holding
costs required to meet future demand, as corroborated by
Observation 1 in Figures 2d–f.

The occurrence of multiple order areas (i.e., |I| > 1)
does not exhibit a clear pattern when varying cH and
L∕K. For cH ∈ {0.5, 1, 1.5}, the number of instances with|I| > 1 increases from 4 to 8, but then drops to 7. For
L∕K ∈ {1.5, 2.5}, the number of instances with |I| > 1
remains constant at 8, indicating that L∕K has no dis-
cernible effect. However, for L∕K ∈ {3.5, 4.5}, the number
of instances with |I| > 1 decreases to 2 and 1, respectively.
These findings show that the occurrence of multiple order
areas is driven by the trade-off and thus the combination
of holding costs and fixed cost differences, hence alter-
ing a single parameter does not produce a straightforward
impact.

However, in the instances where multiple order areas were
observed, the deviations from the optimal (sj, Sj) policy were
negligible, with the maximum cost difference being only
0.03%. This is evident when examining the optimal policies
and steady-state probabilities during regular order periods,
as the multiple order areas occurred in states with negligi-
ble steady-state probability, making them almost transient
and having minimal impact on the long-term average cost
of the infinite horizon problem. Similar performance results
were reported in Jain et al. (2011), where the cost differ-
ences between an (s, S) policy and the optimal policy were
also small, averaging 0.029%.

Observation 4. Optimal values for sj and Sj in the intrape-
riods do not monotonically decrease or increase within an
order cycle.
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F I G U R E 3 Example values for sj, Sj for each intraperiod of the order
cycle (Observation 4), with m = 10, cH = 1, cP = 40, K = 750, L = 1275
(i.e., TBO = 1), 𝜇 = 15,CV = 0.1. [Color figure can be viewed at
wileyonlinelibrary.com]

An illustration of the aforementioned effect can be found
in Figure 3.

The value of S progressively decreases until it experiences
a sharp increase. The reduction in S during the initial periods
is a result of covering the demand until the subsequent regular
order period. This, in turn, enhances the likelihood of placing
an order during that period rather than during an intrape-
riod, thereby exploiting the fixed costs difference. However,
in intraperiods 8 and 9 in Figure 3, it is advantageous to main-
tain inventory levels sufficient to satisfy the entire demand for
the subsequent order cycle to avoid placing two orders within
the same cycle.

7 CONCLUSION

We investigated inventory control policies where, at regular
order periods, orders can be placed at lower fixed costs than
in the intraperiods in between. We summarize our findings to
the research questions (RQ1)–(RQ4).

(RQ1) How does the optimal policy look like in the presence
of cyclical varying fixed costs?

We proved the optimality of an (sj, Sj) inventory pol-
icy for the intraperiods. The optimal policy in the regular
order period, although complex, can be described by mul-
tiple order areas. Comparing it to a policy that potentially
requires a different order logic for every inventory state, we
showed that the order policy contains a certain structure,
which allows rule-based decision making for managers (see
Theorem 1).

(RQ2) What drives the policy structure in the regular
order period?

The cost differences between benchmarks and the optimal
policy reveal a forward-buying effect, which redirects orders

from the intra- to the regular order period. This effect drives
the policy structure in the regular order period toward (s, S)
structures or the more complex policy with multiple order
areas (see Observation 1).

(RQ3) What is the benefit of having the option to order in the
intraperiods rather than only in the regular order period?

The option of ordering in an intraperiod is especially valu-
able when the length of the order cycle is not well aligned
with the optimal TBO. As long as the TBO corresponds to
the order cycle or is larger, the benefits of the intraperiod
order option are small. However, benefits can be large if the
TBO is much smaller than the order cycle. While a cost pre-
mium for the intraperiod order option reduces the benefits, it
will only have a linear effect and not an accelerating negative
impact on the total cost, when cost premiums are rising (see
Observation 2).

(RQ4) What is the (cost) impact of the complex order struc-
ture in the regular order period in comparison to an (s, S) type
of policy?

Cost differences between the complex order structure to an
(s, S) type of policy are negligible if the parameters of the
(s, S) policy are period-dependent (see Observation 3).

For further research, it would be interesting to investigate
the case of an expedited lead time for the more expensive
order option, as in, for example, Jain et al. (2011) and inves-
tigate the situation where the more expensive sourcing option
has a base capacity, which can be exceeded at a cost premium,
as in Gijsbrechts et al. (2022).
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