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Abstract

We study how researchers can apply machine learning

(ML) methods in finance. We first establish that

the two major categories of ML (supervised and

unsupervised learning) address fundamentally differ-

ent problems than traditional econometric approaches.

Then, we review the current state of research on ML in

finance and identify three archetypes of applications:

(i) the construction of superior and novel measures,

(ii) the reduction of prediction error, and (iii) the

extension of the standard econometric toolset. With

this taxonomy, we give an outlook on potential future

directions for both researchers and practitioners. Our

results suggest many benefits of ML methods com-

pared to traditional approaches and indicate that ML

holds great potential for future research in finance.
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1 | INTRODUCTION

Artificial intelligence is increasingly entering our day‐to‐day life with impressive applications:
face detection enables safe and efficient airport travel, voice recognition allows for seamless
communication with personal assistants on smartphones and smart home devices, and ever
more firms are using chatbots for quick customer support. Almost everyone interacts with
modern artificial intelligence many times per day.

The main technology behind artificial intelligence is machine learning (ML). ML methods
enable machines to conduct such complex tasks as detecting faces, understanding speech, or
answering messages. Given the power of ML technology, it is natural to ask whether ML
methods can also be applied elsewhere. This paper addresses the use of ML to solve problems in
finance research.

Several overview papers indicate the potential of ML in finance. Varian (2014) describes ML
as an appropriate tool in the economic analysis of big data and presents some ML methods with
examples in economics. He further hints at potential ML applications in econometrics.
Mullainathan and Spiess (2017) identify prediction problems as the main use case of ML in
economics and present different categories of existing and potential future applications. Athey
and Imbens (2019) illustrate the most relevant ML methods from an econometric perspective.
They also provide an overview of ML's potential beyond pure prediction, especially for causality
in economic questions.

While the usage of ML in finance research is still in its infancy, the number of applications
that exploit the potential of ML has grown tremendously over the last few years. In 2018, the
number of ML publications more than tripled compared to the yearly average of the years 2010
to 2017. In 2019, the increase was already more than fivefold. In 2020, the increase was almost
sevenfold, and in 2021, there were almost 11 times as many publications using ML than before.
Even though the universe of ML applications in finance has greatly expanded recently, it is still
mostly unclear where and how to apply ML to solve research problems in finance.

The contribution of this paper is threefold. First, we present a high‐level primer on ML for
financial economists. We illuminate the different types of ML, their purposes and
functionalities, and the available methods for each type. Given our focus on finance, we place
special emphasis on the difference between traditional econometric methods and ML. We also
demonstrate the benefits of ML over traditional linear methods (particularly for prediction
problems) by applying ML to a high‐dimensional asset pricing problem in finance. Our
introduction allows researchers in the field to quickly grasp the essentials of ML that are
relevant for applications in finance without assuming any prior knowledge of ML.

Second, we construct a taxonomy of current and future ML applications in finance. Given
the increasing number of recent studies, earlier classifications do not capture existing
applications well. We review the up‐to‐date literature in the field and divide it into three
distinct archetypes. Our taxonomy allows researchers to better understand the current state of
the literature and how different contributions relate to each other. Furthermore, it serves as
guidance for future ML applications in finance.

Third, we study future prospects of ML applications in finance. We systematically analyse
ML applications in finance and how their publication success differs by research field (asset
pricing, corporate finance, financial intermediation, household finance) and application type.
Our results not only suggest a high potential for ML applications in general but also provide
researchers with indications of the most promising future directions.
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Traditional econometrics aims to provide causal explanations for economic phenomena by
analysing relationships between economic variables. ML, in contrast, allows researchers to obtain
unique insights from high‐dimensional data. There are two major types of high‐dimensional data
for which ML offers benefits over traditional methods such as linear regression. First, ML can deal
with high‐dimensional, numerical data, that is, data consisting of a high number of variables
relative to the number of observations. Such high‐dimensional data arises if there is a plethora of
economically relevant variables or if nonlinearities and interaction effects play an important role.
ML methods leverage the informational content of such data for predictions with small out‐of‐
sample prediction errors. Second, in contrast to traditional methods, ML allows the exploitation of
unconventional data (such as text, images, or videos), which are inherently high‐dimensional. ML
methods can extract economically relevant information from such data, which then serves as a
starting point for further economic analyses.

ML is strongly related to the concept of big data. Big data consists of a high number of
observations, a high number of variables, or both (Stock & Watson, 2020, p. 515). In general,
data with a high number of observations improve the accuracy of ML predictions (in a similar
way to how they improve the precision of parameter estimates of ordinary least squares [OLS]
regressions). If the data exhibit a high number of variables (relative to the number of
observations), ML outperforms simpler, traditional methods such as linear regression. Applying
ML to data with high numbers of observations and variables combines both benefits as it can
yield high prediction accuracy as well as outperformance over traditional methods.

Based on our review of the finance literature, we classify ML applications into three distinct
archetypes: (1) construction of superior and novel measures, (2) reduction of prediction error in
economic prediction problems, and (3) extension of the existing econometric toolset.

First, researchers can use ML to construct superior and novel measures. For instance, when
applied to exploit unconventional data, the extracted information can serve as a superior or
novel measure of an economic variable. SuperiorML measures may exhibit lower measurement
error and, therefore, can enable more precise estimates of economic relationships than
traditional measures can. Novel ML measures enable analyses with previously unmeasurable
economic variables.

Second, researchers can use ML to reduce prediction error in economic prediction
problems. For instance, the fundamental problem of pricing financial or real assets is the
prediction of adequate market prices. Given that a main functionality of ML is prediction, ML
methods can provide better results than traditional approaches in solving such economic
prediction problems.

Third, researchers can use ML to extend the existing econometric toolset. Econometric tools
often contain a prediction component. For instance, the first stage of an instrumental variable
design is effectively a prediction problem. ML methods can enhance such existing econometric
tools by improving the performance of their prediction component. Furthermore, some ML
methods themselves directly serve as new econometric tools. For instance, ML‐based clustering
methods extend the set of existing clustering methods from econometrics.

To demonstrate the benefits of ML over traditional methods at a typical prediction problem,
we apply ML to real estate asset pricing, which is particularly relevant in the areas of household
finance and real estate economics.1 Real estate asset pricing is an inherent high‐dimensional
problem due to the large number of property characteristics, nonlinearities, and interaction

1Our exemplary application cannot yield generalisable results about the performance of ML compared to traditional methods, but
illustrates how to apply ML to a typical problem in finance with high‐dimensional data.
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effects (for instance, a kitchen's marginal value likely interacts with house type, e.g., luxury
apartment vs. standard single‐family house.) We predict real estate asset prices in the German
residential housing market using various ML methods (which exploit the large number of
individual property characteristics in our data set) and compare their accuracy with estimates
from traditional hedonic pricing (linear regression with the OLS estimator). Figure 1 illustrates
our key results. The two charts compare the actual property prices with the OLS estimates
(chart on the left) and with the price predictions of our best‐performing ML method (chart on
the right, boosted regression trees). On average, the price predictions from the ML approach are
much closer to the actual prices than the OLS estimates. The difference in pricing accuracy is
especially pronounced at the upper end of the price range: while the OLS estimates show large
deviations from the actual prices, the ML‐based price predictions are much closer.

In the final part of our paper, we conduct a bibliometric analysis and examine the
publication success of articles published in major finance journals during the 2010–2021 period.
Specifically, we address the following questions: (1) How important is ML as a novel
methodology for research in finance? (2) What is the methodological purpose of ML (beyond
prediction) in its applications for research in finance? (3) How do these findings differ across
the various subfields in finance?

We find that although ML is a relatively new method in finance research, it has already
found broad acceptance in the scientific community. The share of ML papers has grown in
recent years and accounts for approximately 3%–4% of the publications in the top three finance
journals (The Journal of Finance, Journal of Financial Economics, The Review of Financial
Studies) in 2021. This share is similar for somewhat lower‐ranked journals. Furthermore, our
analysis reveals that the two main areas of finance—financial markets/asset pricing and
banking/corporate finance—leverage the potential of ML in fundamentally different ways.
While the literature in the field of financial markets/asset pricing tends to apply ML to

FIGURE 1 Comparison of the accuracy of hedonic pricing (OLS) and ML in predicting real estate asset
prices. This figure depicts the accuracy of traditional hedonic pricing (OLS) and ML in predicting real estate
asset prices in the German residential housing market. On average, the ML‐based price estimates are much
closer to the actual prices than the OLS estimates are. The benefit of ML is most pronounced at the upper end of
the price range, where OLS performs especially poorly.
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economic prediction problems, most publications in the fields of banking and corporate finance
use ML to construct superior and novel measures. Interestingly, publications in the highest‐
ranked journals use ML disproportionally often to construct superior and novel measures. This
effect is especially large within the fields of banking and corporate finance. Our results indicate
a particularly large potential of applying ML to unconventional data to construct superior and
novel measures for topics related to financial institutions and corporate finance.

Overall, our results suggest a promising future for ML applications in finance. The many
benefits of ML over traditional econometric methods, the strong and consistent increase in the
number of ML publications in the last few years, and the widespread usage of ML by studies
published in the highest‐ranked journals of the profession leave little reason to expect
otherwise.2

Our paper is related to a growing literature focused on ML applications in finance. For
instance, there is a small number of finance textbooks that either survey specific areas of
finance in which ML techniques have recently emerged (e.g., Nagel, 2021, for asset pricing; De
Prado, 2018, for asset management) or provide mathematical foundations for ML in
quantitative finance (e.g., Dixon et al., 2020). The aim of these important contributions is to
show how to carefully adapt ML techniques and how to deal with the specific characteristics of
certain subfields in finance—with a particular focus on financial markets. Our perspective on
ML is clearly different from the ones used in these important contributions as our interest lies
in detecting promising ML applications beyond (prediction problems in) financial markets. We
also add to a small number of survey papers that review the applications of ML in finance.
These studies differ from ours in their use of classification techniques, scope, and focus. One
group of surveys uses (mostly) automated techniques, such as textual analysis (Aziz et al., 2022)
or citation‐based approaches (Goodell et al., 2021), to classify ML applications across all finance
subfields into application areas (such as risk forecasting or financial fraud). Another group of
surveys adopts a more selective perspective and manually reviews either ML applications in
certain subfields of finance, such as risk management (Aziz & Dowling, 2019), or applications
of specific ML methods, such as deep learning (Ozbayoglu et al., 2020). Our study differs from
these studies, which focus on application areas (i.e., where ML is applied), in that we classify
the literature based on the methodological purpose of ML in finance (i.e., how ML is applied).
This somewhat different angle—based on our novel taxonomy—allows us to uncover a
frequently overlooked (but promising) group of ML applications in finance: While many of the
existing surveys (tend to) focus on ML for prediction purposes, we show that two other types of
ML applications are gaining importance: the construction of superior and novel measures and
the extension of the existing econometric toolset for finance research. Furthermore, we also
manually review all these ML papers instead of relying on automated techniques that might
miss important context. Additionally, to the best of our knowledge, none of the existing reviews
examines ML applications in finance with a bibliometric performance analysis based on the
publication success of existing work by research field and methodological purpose.

The remainder of this paper is organised as follows. Section 2 gives a high‐level introduction
to ML together with an illustrative application of ML to a typical problem in finance. In
Section 3, we present the three archetypes of ML applications and review the corresponding

2ML has received considerable attention not only from finance academia but also from practitioners. Table A1 in the appendix presents a
selection of public announcements of large institutions (such as banks, insurance companies, and asset management firms) that make
use of ML in their day‐to‐day business operations (e.g., HSBC and Deutsche Bank apply ML to predict and detect fraudulent
transactions). These practice use cases mostly centre around prediction problems (the second archetype in our taxonomy).
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literature. Section 4 outlines the most promising future directions for applying ML in finance.
Section 5 concludes the paper.

2 | FUNDAMENTALS OF ML

In this section, we provide a primer of ML to lay the groundwork for subsequent chapters. Our
focus is on the mechanics of the different types of ML, the problems for which ML has proven
to be well suited for solving, and the methods with widespread use in the finance literature. We
also emphasise the differences between ML and traditional econometric methods.

Most studies in empirical finance aim at analysing economic relationships between
economic variables. A typical example is an analysis of how certain factors affect the capital
structure or how regulatory changes affect the expectations of economic agents. Traditional
econometric methods provide estimates β̂ for the direction and strength of these factors.

ML, in contrast, serves different purposes. Instead of providing direct insights into the
relationships between economic variables, ML tends to serve as a method for prediction or for data
structure inference. Methods for prediction take the given observations to infer estimates for the
dependent variable ŷ of new observations based on their covariates X . For instance, the observed
prices and property characteristics in the real estate market could be used to predict the prices of
previously unobserved properties based on their characteristics. The first major type of ML,
supervised learning, encompasses methods to make such predictions (see Section 2.1).

Methods for data structure inference derive structural information from given data X . A
typical example is the identification of clusters in the data to learn how different observations
relate to each other. The second major type of ML, unsupervised learning, comprises such methods
to arrive at structural information from data (see Section 2.2).

Table 1 gives an overview of the differences between traditional econometrics and these two
major types of ML, supervised and unsupervised learning. Most importantly, the three approaches
serve different purposes. As explained above, traditional econometrics aims at extracting economic
relationships (Samuelson & Nordhaus, 2009, p. 5) and thus solves so‐called β̂ ‐problems
(Mullainathan & Spiess, 2017). Supervised learning provides predictions; thus, it is mainly
intended to solve so‐called ŷ ‐problems (Mullainathan & Spiess, 2017). Unsupervised learning
infers the data structure from given data without a special y‐variable; thus, it solves X ‐problems.

The three approaches also differ with regard to their general methodology. Every approach
makes use of data. In traditional econometrics, there is a dependent variable y and multiple
independent variables X . In ML jargon, such data are called ‘labelled data’, as there is a special
label y for each observation (which is the dependent variable y in regression jargon). The
dominant method in traditional econometrics is linear regression, mainly due to its flexibility and
interpretability. Linear regression with the OLS estimator provides an explanatory model in the
form of a regression line and different metrics of statistical significance, such as t‐values and
p‐values. Finally, these results can indicate causal relationships between economic variables.

Supervised learning also relies on labelled data. The special label y represents the target
variable to be predicted based on the predictor variables X . Applying a supervised ML method on
the given data yields a prediction model as well as estimates for its expected prediction
performance. The prediction model can then be used to make out‐of‐sample predictions, that is,
predictions of the value of the target variable of previously unobserved examples based on their
characteristics.
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Unsupervised learning relies on unlabelled data, which is the defining distinction between
unsupervised and supervised learning in the literature (Hastie et al., 2009, pp. 485–486).
Unlabelled data means that there is no label y (i.e., no dependent variable y in regression
jargon); all variables are considered ‘equal’. Applying an unsupervised ML method to the given
data yields a data structure model and data structure characteristics. Finally, both results can be
used to infer structural information from the data.3

In the following sections, we describe the two major categories of ML—supervised and
unsupervised learning—in more detail and give an overview (whose coverage is naturally
selective) of the relevant methods for each category. Then, we provide an illustrative
application of ML to a typical problem from the field of household finance: the prediction of
real estate prices. Finally, we discuss limitations, caveats, and drawbacks of ML.

2.1 | Supervised learning

Supervised learning aims at making out‐of‐sample predictions with high prediction
performance. To accurately assess the expected prediction performance on previously unseen
observations, the given data are divided into training data and test data. Then, a supervised ML
method is applied to the training data to build a prediction model. Finally, applying the
prediction model to the test data yields an estimate of the expected out‐of‐sample prediction
performance.

To build a prediction model, various supervised ML methods of differing complexity have
been developed. In general, more complex methods tend to enable higher prediction
performance but reduce interpretability. Figure 2 gives an overview of common methods of
supervised ML arranged by typical prediction performance and interpretability.

The simplest method is linear regression with the OLS estimator. OLS provides excellent
interpretability. However, its out‐of‐sample prediction performance has turned out to be generally
weak. One way to improve the prediction performance of the linear OLS model would be to add
nonlinear transformations and interactions of the original predictor variables to the model
specification. In many cases, however, it is ex ante unclear which nonlinearities and interactions
are actually relevant. Including all possible combinations is generally difficult since it results in an
exorbitant number of variables that can quickly exceed the number of observations. In many cases,
the sheer size of the resulting data sets would also lead to computational problems.

Since OLS (under certain conditions) is the best linear unbiased estimator (BLUE), one way
that has been proposed to improve the prediction performance is to allow for bias. In contrast to
explanation problems, prediction problems aim to achieve maximal prediction performance;
thus, they do not require unbiasedness of variable coefficients. Regularised linear methods offer
a way to systematically introduce bias to improve OLS prediction performance (Hastie et al.,
2009, pp. 61–79). More specifically, regularisation means that such methods shrink the
coefficients of the predictor variables to increase prediction performance.4 The most common
method for regularised linear regression is the least absolute shrinkage and selection operator

3While supervised and unsupervised learning are arguably the most important categories of ML, there also exist other categories of ML
that are less common but relevant for specific applications: reinforcement learning for sequential decision problems (Sutton & Barto,
2018), semisupervised learning for problems with mostly unlabelled training data (Zhu, 2005), and active learning for problems with
costly training data (Settles, 2009).
4The introduction of bias can increase prediction performance because of the bias‐variance tradeoff. See, for instance, Hastie et al. (2009,
pp. 37–38, 219–228) for technical details.
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(LASSO). LASSO works similarly to OLS but introduces bias by adding a penalty term in its
optimisation function to penalise large variable coefficients with little informational content.
The specific functional form of the penalty term drives irrelevant coefficients to zero. Hence,
LASSO is often used for variable selection in addition to pure prediction and also provides
relatively good interpretability.

In addition to LASSO, there are other regularised linear methods that differ with regard to
the functional form of the penalty term. Ridge regression uses a penalty term that does not drive
coefficients to exactly zero and is therefore less interpretable. However, ridge regression often
provides superior prediction performance compared to LASSO. Elastic net regression combines
the two methods (Zou & Hastie, 2005). Its penalty term is a linear combination of the penalty
terms of LASSO and ridge regression to incorporate their respective strengths.

In contrast to the linear methods just discussed, more complex ML methods automatically
consider relevant nonlinearities and interaction effects. For numerical data, tree‐based ML
methods are widespread (Hastie et al., 2009, pp. 305–334). The simplest tree‐based method is
the decision tree, which also acts as the building block of all other tree‐based methods. Panel A
in Figure 3 depicts a simplified decision tree trained for house price prediction. It consists of
nodes at which the tree splits depending on the value of a certain predictor variable. Decision
trees typically contain multiple layers of nodes, so they implicitly consider interactions between
multiple variables. When the tree reaches a leaf node, that is, a node after which there is no
further split, the tree returns a prediction value. Given that the relevant predictor variables and
thresholds are directly observable in the splits, decision trees are characterised by relatively high
interpretability.5

FIGURE 2 Overview of common methods in supervised ML arranged by typical prediction performance
and interpretability. This figure gives an overview of the most common methods in supervised ML. The methods
differ by complexity: more complex methods typically achieve higher prediction performance but are less
interpretable. For numerical data, less complex methods tend to work well, while unconventional data (such as
text, images, or videos) often require more complex methods.

5For more details on decision trees, see, for example, Loh (2011).
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Random forests combine multiple decision trees (Breiman, 2001). More specifically, the
random forest method repeatedly draws bootstrap samples from the given data and builds a
separate decision tree from each sample. The prediction of a random forest is then the average
prediction value of the different trees. Random forests typically achieve much higher prediction
performance than single decision trees but are inherently less interpretable.

Boosted regression trees extend the concept of random forests to further improve their
prediction performance (Hastie et al., 2009, pp. 353–358). Instead of combining many
independent decision trees, the boosted regression tree method builds the trees iteratively and
considers which observations the previous trees could not predict well. Boosted regression trees
typically not only outperform random forests but are often among the winning algorithms in
data science competitions, which highlights their state‐of‐the‐art prediction performance level.

While tree‐based ML methods and, in particular, boosted regression trees achieve state‐of‐the‐
art prediction performance with numerical data, neural networks often excel with
unconventional data such as text, images, or videos. Panel B in Figure 3 depicts a small
neural network. A neural network consists of two components: neurons (arranged in so‐called
layers) and links between neurons (Hastie et al., 2009, pp. 389–415). The links describe the flow
of data between the neurons. First, a neural network's input layer receives the predictor
variables, for instance, pixel‐level image data. Then, the hidden layers iteratively process the
data and deliver them to the output layer, which returns the final prediction value. In its most
basic version, a neuron first calculates a weighted sum of the data that arrive from the neurons
of the previous layer (the weights are determined endogenously during the training process).
Then, it applies a nonlinear function (e.g., a logistic function) to this weighted sum. Finally, the
neuron sends the result of this calculation to all neurons of the next layer to which it is
connected. The number of layers, the number of neurons in each layer, the links between
neurons, and the functional forms of the nonlinear functions are (exogenously) specified by the
designer of the neural network and depend on the given problem. Neural networks used in real
applications can be very large with many hidden layers and thousands of neurons and links.
Furthermore, they do not have to be fully connected, so not every neuron of a layer necessarily
needs to forward its output to every neuron of the next layer. Various architectures have been
proposed to build neural networks. One of the simplest architectures is the feed‐forward
network: neurons come in their most basic variant, and no backlinks exist so that data simply

FIGURE 3 Illustrations of a decision tree and a neural network. This figure depicts a decision tree (Panel A)
and a neural network (Panel B). The decision tree was trained for house price prediction. It reaches its prediction
decision by evaluating the value of certain predictor variables at each split. Neural networks consist of multiple
layers of neurons through which the given data are processed. The shown neural network uses a simple feed‐
forward architecture, which means that data only flow from left to right.

1666 | EUROPEAN
FINANCIAL MANAGEMENT

HOANG AND WIEGRATZ



flow from left to right.6 Due to their high complexity, neural networks are inherently difficult to
interpret. In general, very little information can be inferred from the hidden layers, which
represent the learned knowledge of a neural network. Improving the interpretability of neural
networks is subject to ongoing research in computer science.

In addition to the methods just discussed, there are older ML methods that (compared to
newer methods) typically achieve worse prediction performance and/or provide lower
interpretability, such as the naïve Bayes method (Rish, 2001), which uses Bayes' theorem to
classify observations into categories, or support vector machine (SVM) methods (Hastie et al.,
2009, pp. 417–455). We refer the interested reader to the mentioned literature for more details
on these methods.

2.2 | Unsupervised learning

The purpose of unsupervised learning is data structure inference. Since the data structure
subsumes many different types of information, we divide the methods of unsupervised learning
into different subcategories. The two most common subcategories in unsupervised learning are
clustering and dimensionality reduction.

In clustering, observations are grouped in a way that results in high within‐group similarity
and low cross‐group similarity. Various kinds of clustering methods have been proposed. First,
centroid‐based methods form clusters by arranging the observations around multiple central
points (so‐called centroids). After the initial positioning of the centroids, iterative updates of
their position yields increasingly suitable clusters. A common example of a very early but still
heavily used centroid‐based method is K‐means (MacQueen, 1967). Second, density‐based
methods build clusters depending on the differing density in the space of observations. In other
words, they group observations with many similar observations nearby into clusters. An
example of a density‐based clustering method is DBSCAN from Ester et al. (1996), which is also
one of the most widely applied clustering methods. Third, distribution‐based methods assign
observations to clusters based on whether they likely belong to the same statistical distribution.
Hence, these methods require knowledge of the distribution of the underlying data process in
advance. For normally distributed data, Gaussian mixture models are widespread (Rasmussen,
1999). Finally, hierarchical methods construct clusters that consider the hierarchical
relationship in the data. They start with initial clusters, where each cluster consists of a
single observation. Then, they iteratively combine smaller clusters into larger clusters to build a
hierarchy. A common method for hierarchical clustering is BIRCH (Zhang et al., 1996).

Dimensionality reduction aims at increasing the information density of the given data by
decreasing their dimensionality while retaining most of the inherent information. There are
various methods for dimensionality reduction, of which we cover only the two most common
ones. First, methods based on principal component analysis (PCA) derive linear combinations of

6Advanced neural networks employ more complex neurons and architectures. Recurrent neural networks (RNNs) are designed for
sequential data such as text (Medsker & Jain, 2001). The special architecture of RNNs allows hidden‐layer neurons to accumulate
information over multiple related observations (for instance, words in a sentence). There are different possibilities for designing this
information storage mechanism. Widespread design examples are gated recurrent units (GRU) and long short‐term memory (LSTM).
Convolutional neural networks (CNNs) are another type of advanced neural networks whose general architecture fits well with visual
data such as images and videos (Albawi et al., 2017). Simply put, their hidden layers represent trainable filters that iteratively detect
increasingly complex structures. The architecture of CNNs is typically highly customised toward a specific application. Adequately
designed CNNs show outstanding performance for tasks such as face detection or general image recognition.
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the original variables (‘principal components’) that cover as much of the data's variance as
possible. While the basic variant of PCA is inherently linear, nonlinear generalisations also
exist. For more details on the different PCA‐based methods, see, for instance, Hastie et al.
(2009, pp. 534–552). Second, methods based on neural networks reduce dimensionality with
special architectures. A widely used method is the autoencoder neural network (Goodfellow
et al., 2016, pp. 499–523). An autoencoder consists of an encoder network that creates a
condensed representation of the input data and a subsequent decoder network that
reconstructs the original data from the condensed representation. A special bottleneck layer
connects the encoder and decoder networks to train them on given data. If the autoencoder is
able to reconstruct the original data well, then the condensed data representation in the
bottleneck layer has successfully retained most of the information in the data while reducing its
dimensionality.

In addition to clustering and dimensionality reduction, further subcategories of unsupervised
learning exist but are (to date) used somewhat less often for applications in finance. Association
rule mining tries to identify relations between variables (Agrawal et al., 1993). For instance, it
can learn from customer purchase data which products are often bought together. Outlier
detection tries to find observations that substantially differ from the remaining data. While
many traditional methods for outlier detection exist, ML‐based methods often provide superior
performance, especially in high‐dimensional settings (Domingues et al., 2018). Methods in
synthetic data generation try to generate new data that satisfy certain requirements. Generative
adversarial networks, for instance, use neural networks to create new, synthetic data that
closely mimic the given training data (Goodfellow et al., 2020). Their neural network
architecture makes them especially useful for unconventional data, for example, to create
artificial images that are similar to existing images.

2.3 | Application: Real estate price prediction

To illustrate the differences between ML methods and more traditional approaches, we now
apply ML to the problem of real estate price prediction. The prediction of real estate prices is a
particularly good example to illustrate the benefits of ML to solve problems in finance for three
reasons. First, real estate is one of the most important asset classes in the economy. In the
United States, the total value of real estate assets is comparable to the size of the equities and
fixed income markets combined. For most households, real estate is the greatest source of
wealth. The Global Financial Crisis in 2007/2008 exemplified how spillover effects from the real
estate sector can destabilise economies around the world. Consequently, the reduction of
prediction errors in the area of real estate pricing is of particular economic importance. Second,
real estate assets show a high level of heterogeneity (each property is unique), which makes real
estate pricing challenging. Third, the high number of property characteristics variables as well
as potentially relevant nonlinearities and interaction effects makes real estate pricing an
inherently high‐dimensional problem, where ML provides unique benefits over traditional
methods. The traditional approach to derive price estimates for individual properties is hedonic
pricing. Hedonic pricing first regresses the property characteristics on the observed property
prices with OLS to obtain a linear pricing model. Then, this model can produce price estimates
for new, previously unobserved properties. It is also possible to interpret the regression
coefficients as the characteristics' shadow prices. However, hedonic pricing relies on an
inherently linear model and therefore does not directly consider nonlinearities and interaction
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effects. For instance, we can assume relevant interactions between lot size and location: an
additional m² in lot size for a property in a city centre is likely worth more than in a suburb.
While we could manually add such specific effects to the linear model, there may exist a
plethora of unknown nonlinear and interaction effects. By ignoring these effects, the linear
model of hedonic pricing potentially leaves important information contained in the data
unexploited. ML methods, in contrast, automatically consider nonlinearities and interactions.
Therefore, supervised ML can potentially generate price predictions that exhibit lower pricing
error than the linear model from hedonic pricing. In the following, we study whether and how
ML provides superior price estimates for individual real estate assets.

We exploit a comprehensive collection of more than four million residential real estate
listings in Germany between January 2000 and September 2020 from the five major real estate
online platforms and major newspapers.7 The data set contains offer prices and all relevant
individual property characteristics (floor area, number of rooms, construction year, location, lot
size, etc.). We use these data to train different ML models for the prediction of individual
property prices and compare these models with the linear OLS model from hedonic pricing.
Panel A in Figure 4 shows the key result of our analysis.8 ML methods strongly improve the
accuracy of price predictions over the OLS baseline. Our best‐performing ML method, boosted
regression trees, dramatically increases out‐of‐sample R2 to 77%, compared to 40% for OLS;
thus, it almost doubles the amount of explained price variation. On average, the predictions
from boosted regression trees deviate from the actual prices by approximately 27%, compared to
44% for OLS. In monetary terms, the superior prediction performance of boosted regression

FIGURE 4 Prediction performance and average pricing errors of hedonic pricing (OLS) and ML methods.
Panel A depicts the prediction performance (R²) of traditional hedonic pricing (OLS) compared to different ML
methods. While most ML methods outperform OLS, the boosted regression trees method performs best by far
and almost doubles the OLS performance. Panel B shows the average pricing error (measured by mean absolute
error [MAE]) for the best‐performing ML method, boosted regression trees, and for the OLS baseline in the five
price quintiles. In all quintiles, the boosted regression trees method significantly outperforms OLS. The
reduction in pricing error from ML is most pronounced in the highest price quintile, where OLS performs
relatively poorly.

7According to the data provider, the data set covers more than 95% of the public listings during the given period.
8See the online appendix for more details on the sample and our methodology.
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trees corresponds to an average pricing error of approximately 94,000 EUR, compared to
176,000 EUR for OLS. Since the mean property price in our sample is 393,000 EUR, the
improvements in pricing accuracy from ML are not only statistically significant but also
economically large.

While the improvements in pricing accuracy induced by ML are already impressive on
average, their benefits become even more pronounced at the upper end of the price range.
Panel B in Figure 4 depicts the prediction performance of the best‐performing ML method,
boosted regression trees, compared to that of OLS in the five property price quintiles. The
boosted regression trees method outperforms OLS in all quintiles. While OLS performs worst at
the extremes of the price range, ML is especially useful in reducing the pricing error for the
most expensive properties. In the highest price quintile, the boosted regression trees method
lowers the average pricing error to 24%, compared to 50% for OLS. In monetary units, the
superior prediction performance of boosted regression trees relative to that of OLS corresponds
to a reduction in the average pricing error by more than 240,000 EUR in the highest price
quintile. Given that the average property price in the top quintile is approximately 884,000
EUR, the improvements in pricing power from ML are dramatic. Our results indicate that
nonlinearities and interaction effects are relevant in real estate pricing and especially important
for the most expensive properties.

Our results demonstrate the benefits of using ML to reduce the prediction error in economic
prediction problems. ML can yield a statistically and economically significant reduction in
prediction error compared to traditional linear regression with OLS in addressing the problem
of real estate price prediction. The already large benefits of ML on average further increase for
assets at specific price ranges. Hence, ML methods not only improve prediction accuracy in
general but also especially for observations where traditional approaches struggle.9

2.4 | Limitations, caveats, and drawbacks of ML

While the results from our illustrative application of ML to real estate asset pricing show the
benefits of ML over traditional methods for problems with high‐dimensional data, there also
exist limitations, caveats, and drawbacks of using ML. In the following, we discuss three
important aspects in detail.

First, ML methods tend to exhibit low interpretability. While ML models can produce
predictions with low prediction error, it is often not directly observable how the algorithm has
generated its results. Hence, ML is generally not suited for problems that require a deep
understanding of the economic determinants of the prediction target. Nevertheless, the quickly
advancing field of interpretable ML tries to offer solutions to the model interpretability problem
with several kinds of approaches (see, for instance, Burkart & Huber, 2021, for an overview of
the available methods).

9Our real estate asset pricing example is primarily meant to illustrate the advantages of ML over traditional methods for a problem with
high‐dimensional data. Nevertheless, it represents (to the best of our knowledge) the first application of ML to real estate pricing for an
entire major economy, spanning a comprehensive data set of all real estate listings—both, online and offline—for a sample period of
more than 20 years. Our data set contains more than four million observations, which far exceeds the scale of prior work. Most existing
studies in the real estate asset pricing literature apply ML to predict individual house prices in narrow regions within different countries,
such as the United States (Mullainathan & Spiess, 2017; Park & Bae, 2015; Pérez‐Rave et al., 2019), France (Tchuente & Nyawa, 2022),
Spain (Rico‐Juan & Taltavull de La Paz, 2021), the Netherlands (Guliker et al., 2022), Turkey (Erkek et al., 2020), Hong‐Kong (Ho et al.,
2021), and Colombia (Pérez‐Rave et al., 2019). In addition to predicting individual real estate prices, a small group of studies uses ML to
predict the general price level in the real estate market (Milunovich, 2020; Yu et al., 2021).
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Second, ML generally requires large data sets. Data sets can be large in two dimensions: the
number of relevant variables and the number of observations. ML offers benefits over
traditional methods for prediction tasks if the number of relevant variables is large relative
to the number of observations. At the same time, ML usually provides good prediction
performance only if there is a high number of observations on which an ML model can be
trained. Unfortunately, large‐scale data are not always available for many research questions in
finance. In some cases, using ML models that have already been pretrained with large amounts
of comparable data can solve this problem. Such pretrained models exist for many common ML
tasks, such as textual analysis or face recognition, so researchers can directly apply them to the
problem at hand independent of the amount of available data. In addition, the general trend
toward increasing data collection in all aspects of life should more and more alleviate the
data problem.

Finally, using ML often has high computational costs. Compared to traditional methods
such as linear regression, training ML models requires significantly more time and computing
power. The problem typically becomes worse with more sophisticated ML methods. In
particular, neural networks with complex architectures typically have the highest computa-
tional costs. As a result, using cloud computing services often becomes necessary to deal with
this problem.

3 | TAXONOMY OF ML APPLICATIONS IN FINANCE

An increasing number of finance papers that use ML in at least some part of their study go on
to be published. However, many researchers are still unaware of how and where to apply ML in
the field of finance. In this section, we present a taxonomy of existing ML applications, which
serves multiple purposes. First, it outlines where ML can add value in finance research. Second,
it provides a systematic overview of existing ML applications in the field of finance. Third, it
enables a better understanding of new contributions and how they relate to the existing
literature. Finally, it may guide researchers in discovering possible applications and thus may
facilitate new ML studies in finance.

As explained above, ML solves different problems compared to traditional econometric
methods. The workhorse model of finance research, linear regression with OLS, has one major
objective: identification of causal relationships between economic variables to explain
economic phenomena. In contrast, ML provides predictions that minimise prediction error
or infers structural information from given data.

To survey the ML literature in finance, we first identify ML‐related papers in major journals
in finance, the NBER working paper series, and the Financial Economics Network of the SSRN
preprint repository; then, we search for ML method names and their variations (e.g., LASSO,
random forest, etc., see Section 2). We study these papers and categorise the ML research
strategies in these papers into the following three distinct archetypes:

(1) Construction of superior and novel measures: Xy β ε= + .
(2) Reduction of prediction error in economic prediction problems: y f Xˆ = ( ) .
(3) Extension of the existing econometric toolset: MLy βX ε and= +       .

Studies of the first archetype use ML to construct a superior or novel measure for one of the
independent variables X . The main analyses of these papers still largely rely on a traditional

HOANG AND WIEGRATZ EUROPEAN
FINANCIAL MANAGEMENT

| 1671



(linear) model, which is estimated, for example, with OLS. Studies of the second archetype
use ML to reduce the prediction error of predictions ŷ in economic prediction problems.
Supervised ML methods achieve superior prediction performance by using flexible functional
forms f (*) in the prediction model. Studies of the third archetype use ML to extend the existing
econometric toolset. ML methods either serve as new econometric methods themselves or
optimise some part of a traditional econometric method. In the following subsections, we
review the literature related to each of the three archetypes of ML applications in finance in
detail.10

3.1 | Construction of superior and novel measures

The first archetype of ML applications in finance is the construction of superior and novel
measures. Studies of this archetype use ML to extract information from high‐dimensional,
unconventional data such as text, images, or videos and construct a numerical measure of an
economic variable. For textual data, traditional approaches use word counts based on domain‐
specific dictionaries.11 For image and video data, only human assessments have been available
for a long time. ML‐based approaches provide easier and, at the same time, more powerful
access to the information contained in unconventional data. All types of ML methods are
applicable: predictions from supervised learning, data structure information from unsupervised
learning, and results from other types of ML can be used to construct measures of economic
variables.

The superior or novel measure finally serves as an independent variable in the main
analysis of an economic relation. Using superior measures (i.e., with lower measurement error
than existing measures) reduces attenuation bias, which leads to more precise estimates of the
parameters describing an economic relationship. Novel measures enable new analyses with
previously unmeasurable economic aspects. In the main analysis, most studies that construct
ML‐based measures apply traditional econometric methods such as linear regression with OLS.

Table 2 presents a selection of studies that use ML to construct superior or novel measures.
In the following, we present them in three categories: (1) measures of sentiment, (2) measures
of corporate executives' characteristics, and (3) measures of firm characteristics.

3.1.1 | Measures of sentiment

Measures of sentiment describe beliefs of people, usually on a positive–negative scale. Most
studies in this subcategory construct measures of sentiment from textual data. There are
multiple approaches to construct a one‐dimensional (positive vs. negative) measure of
sentiment from textual data. Loughran and McDonald (2011) present a dictionary approach to
derive sentiment from financial texts. More specifically, they count negative words based on a
finance‐specific word list. Dictionary approaches, however, miss the context of words within a
sentence (Loughran & McDonald, 2016). In contrast, flexible ML‐based approaches can

10Given the quickly evolving nature of the field, our review is necessarily selective regarding some ML applications. For instance, we
may not consider important papers outside of the ‘standard’ finance domain, such as genuine computer science papers that apply ML to
specific finance problems. Finally, our manual review is to a certain degree subjective, especially compared to automated review
techniques (such as textual analysis [Aziz et al., 2022] or citation‐based approaches [Goodell et al., 2021]).
11See Loughran and McDonald (2016) for an overview of mostly traditional text analytics methods in accounting and finance.
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TABLE 2 Overview of studies that use ML to construct superior and novel measures

This table reports an overview of the relevant studies in finance that apply ML to construct superior and novel
measures. There are three main categories: measures of sentiment, measures of corporate executives’
characteristics, and measures of firm characteristics.

Category Subcategory Measures

Measures of Sentiment Stocks – Investor sentiment in social media
– Sentiment in news
– Sentiment in analyst reports
– Sentiment in annual reports

Sovereign Debt – Sentiment in news

Products – Consumer sentiment in social media
– Expert sentiment in product‐

technology articles

Measures of Corporate
Executives’ Characteristics

Personality Traits – Big Five scores
– Risk tolerance

Beliefs – Confidence in expressing opinions

Emotions – Facial emotions (e.g., happiness,
sadness, anger, fear, disgust)

– Verbal emotions (e.g., positive,
negative, warmth, ability)

– Vocal emotions (e.g., valence,
arousal, happiness, sadness)

Actions and Working Patterns – Answer avoidance in conference calls
– Working style (high‐ vs. low‐level

activities)
– Communication style

Quality – Expected shareholder support

Looks – (Facial) Attractiveness
– (Facial) Trustworthiness
– (Facial) Dominance
– (Facial) Masculinity

Measures of Firm
Characteristics

Financial Characteristics and
Risk Exposures

– Financial constraints
– Risk exposures (e.g., COVID‐19,

cybersecurity)

Corporate Culture – Cultural values (e.g., innovation,
integrity, teamwork)

– Gender culture
– Board responsibilities

Connectedness – Political connectedness
– Venture capital communities
– Mutual fund voting behaviour
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consider not only the context of words within a sentence but also how different sentences
interrelate with each other. For an extensive review of sentiment with traditional econometric
and ML‐based approaches, see Algaba et al. (2020).

Sentiment exists for many topics and is derived from many sources. In finance, our interest
mainly lies in the aggregate sentiment of markets such as the stock market, which is the most
common target of ML‐based measures of sentiment. The majority of the relevant studies use
measures of sentiment for stocks to study their effect on future stock returns and various
financial reporting numbers.

There are multiple studies that construct a measure of investor sentiment from social
media. Antweiler and Frank (2004) use the ML methods naïve Bayes and SVM to classify user
posts on the Yahoo Finance message board as positive or negative. Then, they aggregate their
classifications to construct a measure of stock market sentiment. Renault (2017) similarly
classifies user posts on the finance‐focused social network StockTwits to construct a measure of
investor sentiment. Vamossy (2021) also relies on StockTwits but measures investor emotions
by extracting different emotional states from user posts with textual analysis based on deep
learning. The studies by Sprenger et al. (2014), Bartov et al. (2018), Giannini et al. (2018), and
Gu and Kurov (2020) derive investor sentiment from user posts on Twitter. Liew and Wang
(2016) also apply ML to extract sentiment information from Twitter but for pre‐IPO sentiment.

In addition to social media, news articles are another source of sentiment for stocks. Barbon
et al. (2019) enhance the naïve Bayes method to build a sentiment variable based on firm‐
specific news. Ke et al. (2019) implement a customised ML‐based approach that specialises in
extracting information relevant for stock returns. Their method then allows them to extract a
measure of sentiment for stocks from Dow Jones Newswire articles. Similarly, Boudoukh et al.
(2019) also analyse Dow Jones Newswire articles but focus on the saliency of firm‐specific
news. Manela and Moreira (2017) deviate from the traditional measures of sentiment that use a
positive–negative scale. Instead, they construct a measure of stock market uncertainty from
Wall Street Journal front‐page articles. von Beschwitz et al. (2020) study how ML‐based news
analytics (i.e., computer algorithms that investors use to interpret financial news) affect stock
prices, trading volumes, and liquidity. Calomiris and Mamaysky (2019) use ML to measure
sentiment from country‐level news articles and study how it affects returns and volatilities. In
addition to the analysis of text, Obaid and Pukthuanthong (2022) apply ML to news photos to
derive a measure of sentiment for stocks and find that it can act as a substitute of text‐based
measures.

Other studies use analyst reports or annual reports for measures of sentiment. Huang et al.
(2014) apply the naïve Bayes method to analyst reports to construct a measure of stock
sentiment. Azimi and Agrawal (2021) apply deep learning methods to 10‐Ks to measure
sentiment and study its effect on abnormal returns and trading volumes.

While most studies that construct ML‐based measures of sentiment consider sentiment for
stocks, Cathcart et al. (2020) study sentiment for sovereign debt markets. More specifically, they
leverage news sentiment information from Thomas Reuters News Analytics to investigate the
impact of media content on sovereign credit risk.

Beyond sentiment for financial markets, two studies examine sentiment for products. Tang
(2018) uses a commercial service to create a measure of consumer sentiment based on Twitter
posts. The subsequent main analysis studies the effect of consumer sentiment on firm sales.
Nauhaus et al. (2021) construct a measure of expert sentiment from articles concerning specific
technology domains and then study how it affects firms' capital allocation among the business
units engaged in these domains.
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3.1.2 | Measures of corporate executives' characteristics

The prominent role of a firm's leadership and its large implications has led to a vast amount of
finance literature that studies various aspects of corporate executives. Related to this stream of
the literature, ML enables the construction of superior and novel measures of executives’
characteristics. While most measures in this category rely on textual data, there are also some
studies that construct measures from analysing images and videos.

Multiple studies construct ML‐based measures of executives' personality traits. Gow et al.
(2016) use ML to extract CEOs' Big Five personality scores (agreeableness, conscientiousness,
extraversion, neuroticism, and openness to experience) from the Q&A part of conference call
transcripts. Then, the authors use the extracted scores to analyse the effect of personality on
financing choices, investment choices, and operating performance. Similarly, Hrazdil et al.
(2020) determine the Big Five personality scores of CEOs and CFOs by using the commercial
service IBM Watson Personality Insights. From these scores, they construct a novel measure of
executives' risk tolerance to analyse its effect on audit fees.

Other studies construct measures of executives' own beliefs. For instance, Du et al. (2019)
apply ML to mutual fund managers' letters to shareholders to construct a measure of managers'
level of confidence in expressing opinions. Their main analysis then studies the effect of
confidence on future performance.

Recent advances in ML also enable studies that construct measures of executives' emotions.
Akansu et al. (2017) apply ML‐based face‐reading software to videos of CEOs during press
interviews to extract facial emotions and quantify CEO mood. They measure emotions such as
anger, disgust, fear, happiness, sadness, or surprise and study their effect on firm performance.
Hu and Ma (2021) use ML to construct measures of startup founders' emotions during investor
pitch videos. More specifically, they measure three dimensions of emotions: facial emotions,
verbal emotions, and vocal emotions. Finally, they analyse the effect of the three dimensions on
the probability of obtaining a venture capital investment. Breaban and Noussair (2018) use ML‐
based face‐reading software to extract the emotional state of traders in an experimental setting.

Another stream of the literature addresses executives' actions and working patterns. Barth
et al. (2020) propose an ML‐based measure of the degree to which executives obstruct the flow
of information during earnings conference calls by giving so‐called nonanswers to investors'
and analysts' questions. Bandiera et al. (2020) apply ML to CEO survey data to construct a
measure of CEO working style. More specifically, their measure captures whether a given CEO
performs more low‐level or more high‐level activities. Then, this novel measure enables the
authors to study firm‐CEO assignment frictions. Choudhury et al. (2019) construct a measure of
executives' communication style by applying ML to transcripts and videos from interviews of
emerging market CEOs. Dávila and Guasch (2022) construct a measure of entrepreneurs'
nonverbal communication style during pitch presentations with ML‐based computer vision
software and analyse its relation to firm valuations and funding success rates.

The study by Erel et al. (2021) uses ML to measure director quality. They predict the
(excess) level of directors’ shareholder support over the first 3 years of tenure using various ML
methods. By interpreting these predictions as a measure of director quality, the authors study
firms’ decision‐making process in the selection of corporate directors.

Finally, the large amount of image data freely available on the internet allows many studies
to systematically exploit the information that the looks of corporate executives—in particular,
their facial traits—may contain. Hsieh et al. (2020) extract a measure of trustworthiness from
executives' business headshot images. More specifically, they detect and use certain facial
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features (such as eyebrow angle or face roundness) to predict perceived trustworthiness. Their
main analysis studies the effect of executives' trustworthiness on audit fees. Peng et al. (2022)
leverage the social network LinkedIn and apply ML to profile photos of sell‐side analysts to
construct measures of trustworthiness, dominance, attractiveness, etc. Kamiya et al. (2019) use
ML to first measure the width‐to‐height ratio of CEOs' faces from portrait photos and then infer
a measure of facial masculinity to study its effect on firms' riskiness.

3.1.3 | Measures of firm characteristics

Studies in the third category construct measures of firm characteristics with ML methods. The
first subcategory consists of measures of firms' financial characteristics and risk exposures.
Buehlmaier and Whited (2018) apply ML to annual reports to construct a measure of financial
constraints. Their ML‐based measure achieves superior performance compared to the existing
measures. Hanley and Hoberg (2019) construct a measure of aggregate risk exposure in the
financial sector from individual banks' annual reports by using a commercial ML‐based service.
They use their measure to study the effect of financial sector risk on banks' stock returns and
volatility as well as bank failure. Li et al. (2021a) apply ML‐based textual analysis methods to
construct measures of firms' exposure and response to COVID‐19 based on the information
from earnings calls. Alan et al. (2021) measure firm‐level cybersecurity risk with ML‐based
methods from computational linguistics. More generally, Lima and Keegan (2020) provide
an overview on how ML‐based textual analysis can be applied to social media to assess
cybersecurity risk.

ML can also help to study corporate culture. Li et al. (2021b) extract aspects of corporate
culture from conference call transcripts with ML and build measures of five different corporate
culture values. Using these measures allows them to analyse the effect of corporate culture on
firm policies such as executive compensation and risk‐taking. Furthermore, they study the
effect on firm performance metrics such as operational efficiency and firm value. Adams,
Akyol, et al. (2021) apply ML to firms' reports to a gender‐equality agency to construct multiple
measures of corporate gender culture. Their novel measures allow them to systematically study
how firms treat female employees. Adams, Ragunathan, et al. (2021) apply ML‐based textual
analysis to extract boards' and board committees' responsibilities and meeting frequencies.

Finally, the capabilities of ML enable the construction of novel measures of firms'
connectedness. Mazrekaj et al. (2021) apply ML to construct a measure of firms' political
connections, which helps identify potential conflicts of interest. Bubna et al. (2020) study
venture capital syndications and create a measure of venture capital relatedness. More
specifically, they cluster venture capital firms using ML to identify syndication groups and
study their effect on startup maturation and innovation. Bubb and Catan (2021) apply
clustering methods from unsupervised learning to mutual funds' proxy votes to determine to
which voting parties they belong.

3.2 | Reduction of prediction error in economic prediction problems

Studies of the second archetype of ML applications in finance apply ML to reduce prediction
error in economic prediction problems. While many problems in economics require the
identification of causal relationships between economic variables, some problems directly

1676 | EUROPEAN
FINANCIAL MANAGEMENT

HOANG AND WIEGRATZ



require prediction. ML can reduce the prediction error in such problems, that is, generate more
accurate predictions than simpler approaches such as fitted values from linear regression
with OLS.

Predictions can be generated from numerical data as well as unconventional data such as
text, images, or videos. Since the purpose of ML in this category is to minimise prediction error
in economic prediction problems, by definition, only supervised ML is directly applicable here.
Given the large number of available ML methods, most studies use a multitude of different
methods to assess which method works best on the given data. Applying supervised ML
methods finally results in predictions of an economic variable, which directly helps in solving
an economic prediction problem.12

Table 3 gives an overview of the relevant studies that use ML in economic prediction
problems to reduce prediction error. In the following, we present these studies in the three
categories of (1) prediction of asset prices and trading mechanisms, (2) prediction of credit risk,
and (3) prediction of firm outcomes and financial policy.

3.2.1 | Prediction of asset prices and trading mechanisms

The prediction of asset prices and trading mechanisms is of central importance in studying
capital markets. ML can reduce the prediction error in various types of prediction problems. We
distinguish among predictions in the following seven different subcategories: equities, bonds,
foreign exchange, derivatives, general market prices, investors, and market microstructure.

The most common ML‐based prediction in the subcategory of equities is the prediction of
future stock returns, which is closely related to the field of cross‐sectional asset pricing.
Rasekhschaffe and Jones (2019) provide an overview of the use of ML for predicting the cross‐
section of stock returns and the selection of individual stocks. Martin and Nagel (2022)
emphasise the challenges of cross‐sectional asset pricing with high‐dimensional data. Gu et al.
(2020) directly predict future stock returns based on firm characteristics, historical returns, and
macroeconomic indicators. They use ML methods with varying complexity ranging from
regularised linear models to neural networks. Furthermore, they analyse which predictor
variables are the most informative in predicting the cross‐section of stock returns. Rossi (2018)
predicts future stock returns and future stock volatility based on established predictor variables
from Welch and Goyal (2008). The studies by Moritz and Zimmermann (2016), Kelly et al.
(2019), Gu et al. (2021), and Freyberger et al. (2020) all predict future stock returns based on
firm characteristics and historical returns. However, they differ with respect to the specific ML
methods applied. Grammig et al. (2020) construct a hybrid approach that combines traditional
methods based on financial theory with ML to predict future excess stock returns. Chinco et al.
(2019) apply LASSO to predict ultra‐short‐term future stock returns based on the cross‐section
of ultrashort‐term historical returns. Akyildirim et al. (2021) use various ML methods to predict
intraday excess returns based on high‐frequency order and trade information. Amel‐Zadeh
et al. (2020) predict abnormal stock returns around earnings announcements based on financial
statement variables. They use LASSO, random forests, and neural networks and analyse which
financial statement variables are the most informative. Chinco et al. (2021) use ridge regression

12Most studies only focus on the predictions themselves. However, there are also some studies that try to analyse how the predictor
variables affect the predictions. While most ML models do not allow for direct observation of how the algorithm generates its
predictions, methods from the field of interpretable ML try to ‘open the black box’ (see, e.g., Murdoch et al., 2019).
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to determine the probability of encountering stock return anomalies. Feng et al. (2020) propose
an ML‐based method to evaluate the contribution of the plethora of potential risk factors in
explaining stock returns. Two studies focus on financial market volatility: Kogan et al. (2009)
predict future stock volatility based on annual reports; Osterrieder et al. (2020) predict the

TABLE 3 Overview of studies that use ML in economic prediction problems

This table reports an overview of relevant studies in finance that apply ML in economic prediction problems to
reduce prediction error. There are three main categories of economic prediction problems for which ML is
relevant: prediction of asset prices and trading mechanisms, prediction of credit risk, and prediction of firm
outcomes and financial policy.

Category Subcategory Prediction targets

Prediction of asset prices and
trading mechanisms

Equities – Stock returns
– Stock volatility
– Stock covariance
– Equity risk premium

Bonds – Future excess returns of US treasury
bonds

Foreign exchange – Direction of changes in exchange rates

Derivatives – Prices of options on index futures
– Prices of general derivatives

General financial claims – Stochastic discount factor
– Financial crises

Investors – Mutual fund performance
– Retail investors' portfolio allocations

and performance

Market microstructure – Lifespan of trading orders
– General microstructure variables

Prediction of credit risk Consumer credit risk – General consumer default
– Credit card delinquency and default
– Bill payment in developing countries
– Credit card repayment patterns

Real estate credit risk – Mortgage loan risk
– Commercial real estate default

Corporate credit risk – Firms' credit rating changes
– Corporate bankruptcy
– Fintech loan default
– Recovery rates of corporate bonds

Prediction of firm outcomes and
financial policy

Financial outcomes – Capital structure
– Earnings

Corporate misconduct – Accounting fraud
– Regulatory violations

Startups' success – Startup acquisitions
– Startup valuations and success

probabilities
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intraday volatility index VIX from option prices. Rossi and Timmermann (2015) use ML to
study how stock returns and economic activity are related. They apply boosted regression trees
to predict covariances between stock returns and a daily economic activity index.

In addition to predictions of individual stock returns, ML can reduce the prediction error in
predicting aggregate stock market behaviour, particularly the equity risk premium. Jacobsen
et al. (2019) predict the equity risk premium based on established stock market predictor
variables from Welch and Goyal (2008) with an ensemble of multiple ML models. Routledge
(2019) predicts the equity risk premium from macroeconomic indicators and FOMC texts.
Adämmer and Schüssler (2020) extract topics discussed in general news articles with ML to
predict the equity risk premium.

Some studies predict certain aspects of bonds. For instance, Bianchi et al. (2021) apply
various ML methods to predict future excess returns of US treasury bonds from general yield
data and macroeconomic indicators.

In the subcategory of foreign exchange, the study by Colombo et al. (2019) applies SVM to
predict the direction of changes in exchange rates based on indicators of market uncertainty.

Other studies use ML to price derivatives, which is also an early application of ML in
finance. Hutchinson et al. (1994) price options on the S&P 500 future based on the Black‐
Scholes variables with an early variant of neural networks. Similarly, Yao et al. (2000) price
options on the Nikkei 225 future. In more recent work, De Spiegeleer et al. (2018) find that ML
methods can price derivatives much faster than advanced mathematical models while
achieving only slightly worse accuracy.

Instead of focusing on certain asset classes, there are also studies concerning general
financial claims. Two studies directly predict the stochastic discount factor. Chen et al. (2019)
use generative adversarial networks based on deep neural networks with different predictors,
such as firm characteristics, historical returns, and macroeconomic indicators. Kozak et al.
(2020) develop a custom ML method based on Bayesian priors to predict the stochastic discount
factor from firm characteristics and historical returns. The study by Oh et al. (2006) applies ML
to detect and predict financial crises from financial market volatility. Similarly, Coffinet and
Kien (2019) develop an ML toolkit to detect banking crises.

In addition to asset prices and returns, prediction problems also arise in studies concerning
retail and professional investors' trading decisions and performance. Li and Rossi (2020) apply
boosted regression trees to predict mutual funds' performance, which then allows for fund
selection. Rossi and Utkus (2020) study which type of retail investors benefit (the most) from
robo‐advising. More specifically, they apply boosted regression trees to predict changes in
investors' portfolio allocations and performance.

Finally, some studies focus on predicting certain aspects of the market microstructure with
ML. McInish et al. (2019) apply random forests to predict the lifespan of orders based on order
characteristics and market data. Easley et al. (2021) predict a variety of variables relevant for
market participants, such as bid‐ask spreads, changes in volatility, and sequential return
correlations from established microstructure measures with random forests.

3.2.2 | Prediction of credit risk

Credit risk is a typical economic prediction problem: its ultimate goal is to know which
prospective borrowers will eventually default. As such, ML can lower prediction errors and
improve decision making, such as in loan origination. We divide the current literature
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concerning ML‐based predictions of credit risk into the following three subcategories:
consumer credit risk, real estate credit risk, and corporate credit risk.

Studies on consumer credit risk apply ML to make default predictions for any type of
consumer credit. Albanesi and Vamossy (2019) study general consumer credit default. They use
advanced ML methods such as boosted regression trees and deep neural networks to derive
more accurate predictions from credit bureau data compared to standard credit scoring models.
Furthermore, they analyse which predictors are the most relevant and how the different
predictors affect the predictions. Similarly, Tantri (2021) predicts consumer credit default with
boosted regression trees based on borrower and loan characteristics data and finds that using
ML‐based default predictions can improve lending efficiency. Khandani et al. (2010) predict
consumer credit card default based on transaction data and traditional credit bureau data.
Similarly, Butaru et al. (2016) predict credit card default but consider more general account
data and macroeconomic indicators. They both use tree‐based ML methods that automatically
consider nonlinearities and interactions between predictor variables. Butaru et al. (2016) also
attempts to identify which predictor variables drive default predictions. Björkegren and Grissen
(2018, 2020) focus on bill payment and apply random forests to mobile phone metadata to
predict the payment of consumer bills in developing countries. The ability to make credit risk
predictions based on easily obtainable data from mobile phones can help unbanked people in
developing countries without a credit score obtain access to loans. Slightly different from the
studies above, Gathergood et al. (2019) use credit card transaction data to predict credit card
repayment patterns. They predict not whether customers pay their credit card bills but how
customers split repayment on multiple cards with different interest rates. They also apply
various ML methods and analyse which predictors are most informative.

Whenever algorithm‐based decisions affect people, algorithmic bias is a potential issue.
Since ML‐based predictions of consumer credit risk directly affect credit approval decisions, it is
necessary that the algorithm does not discriminate against people based on attributes such as
gender or race. The literature does not paint a uniform picture of whether ML reduces or
increases bias in consumer credit decisions. Rambachan, Kleinberg, Ludwig, et al. (2020)
and Rambachan, Kleinberg, Mullainathan, et al. (2020) argue that discrimination by algorithms
crucially depends on the given data. Since algorithms base their decisions on the data on which
they have been trained, they might propagate biases present in the data. Fuster et al. (2022)
apply ML to a concrete data set to create an ML model for credit decisions. They find that ML
increases the disparity between and within different groups relative to simpler methods. In
particular, it disadvantages Hispanic and Black borrowers compared to traditional approaches.
Hence, awareness of the potential discrimination by ML‐based algorithms is required if their
predictions influence decisions that directly affect people, such as lending.

On the other hand, there are also studies showing that ML use can decrease bias in
consumer credit decisions. Based on a theoretical model, Philippon (2019) shows how
algorithms can reduce discrimination in credit markets. Dobbie et al. (2021) train an ML model
to maximise expected profit from credit applications and find that the resulting lending
decisions eliminate bias. Kleinberg et al. (2018) show that including problematic variables, such
as gender and race, in ML models can actually reduce discrimination. To conclude the
discussion concerning algorithmic bias in consumer credit risk, to date, there is no uniform
picture in the literature. Some studies find that using ML to determine consumer credit risk
increases bias, while other studies find that it decreases bias.

The second subcategory of ML‐based credit risk predictions, real estate credit risk, involves
the risk of mortgages and commercial real estate loans. Sadhwani et al. (2021) use deep neural
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networks to predict mortgage loan risk from mortgage origination and performance data and
macroeconomic indicators. They also analyse which predictor variables are the most important
and how they affect the predictions. Cowden et al. (2019) use various ML methods to predict
commercial real estate default based on property characteristics.

Corporate credit risk is another area in which ML can provide superior credit risk predictions.
Jones et al. (2015) predict firms' credit rating changes based on firm fundamentals, analyst
forecasts, and macroeconomic indicators. Tian et al. (2015) and Sermpinis et al. (2022) directly
predict corporate bankruptcy from firms' financial statements and market data. Lahmiri and
Bekiros (2019) similarly predict bankruptcy from firm fundamentals but additionally include
general risk indicators. They use more sophisticated neural networks. Croux et al. (2020) apply
LASSO to predict fintech loan default from loan and borrower characteristics as well as
macroeconomic indicators. In contrast to the above studies, Nazemi and Fabozzi (2018) focus on
the time after credit default and predict the recovery rates of corporate bonds based on bond and
industry characteristics and macroeconomic indicators with various ML methods.

3.2.3 | Prediction of firm outcomes and financial policy

The analysis of the determinants of specific firm outcomes (e.g., capital structure), as an
important subject of study in the field of corporate finance, can also be the target of ML‐based
predictions. We divide the current literature in this category into the following three
subcategories based on the specific target of the prediction: financial outcomes, corporate
misconduct, and startups' success.

Two studies use ML to predict different financial outcomes. Amini et al. (2021) study firms'
capital structure as a typical problem in corporate finance. They predict corporate leverage
based on the standard capital structure determinants in the literature (Frank & Goyal, 2009)
with various ML methods. Furthermore, they analyse which determinants are actually
informative for capital structure and how they influence the predictions in detail. The study by
van Binsbergen et al. (2020) applies random forests to predict firms' future earnings based on
their accounting data, macroeconomic data, and analyst forecasts.

Corporate misconduct represents another typical prediction problem in the category of firm
outcomes and financial policy. The most common type of corporate misconduct studied in the
literature is accounting fraud. While traditional approaches can be used to predict accounting fraud
(such as the Beneish, 1999 model of earnings manipulation), some studies argue that ML can
provide superior prediction accuracy. Bao et al. (2020) apply boosted regression trees to raw financial
statement variables to predict accounting fraud. They find that ML‐based predictions outperform
simpler existing fraud models. Brown et al. (2020) also predict accounting fraud by applying ML‐
based textual analysis to firms' annual reports. They further analyse which topics are the most
informative and how they affect fraud predictions. Bertomeu et al. (2021) use boosted regression
trees to predict material misstatements based on a large set of potential predictor variables. In
addition to accounting fraud, Campbell and Shang (2022) apply textual analysis and ML to predict
general violations of regulatory rules from firms' employee reviews on websites such as Glassdoor.

Finally, studies in the field of entrepreneurial finance use ML to predict startups' success.
Xiang et al. (2012) apply ML‐based textual analysis to predict startup acquisitions based on
firms' fundamental data and firm‐specific news. Similarly, Ang et al. (2022) predict startups'
valuations and their probabilities of success with ML‐based textual analysis and boosted
regression trees.
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3.3 | Extension of the existing econometric toolset

Studies of the third archetype of ML applications extend the existing econometric toolset. Many
commonly used econometric methods contain a prediction component. For instance, the first
stage of instrumental variable regression with 2SLS is effectively a prediction problem, as only
the fitted (predicted) value of the instrumented variable enters the second stage. ML methods
can provide superior predictions and hence improve the capabilities of such econometric
methods. On the other hand, some ML methods already serve similar purposes as existing
econometric methods. For instance, clustering is a known problem in econometrics and in ML.
ML‐based methods often provide superior performance, so they can directly extend the
econometric toolset. Table 4 gives an overview of the literature on ML‐based econometric
methods. We distinguish between causal ML that uses ML for the estimation of treatment
effects and other isolated applications of ML in econometrics. Within the category of causal
ML, we further divide the literature into ML‐enhanced methods for instrumental variable
regression, novel methods of causal trees and causal forests, and other approaches related to
causal ML. In the following, we briefly review the corresponding literature.

3.3.1 | Causal ML

While traditional econometric methods aim for causality, ML methods are designed for
prediction or for data structure inference. The field of causal ML tries to combine the

TABLE 4 Overview of ML‐based methods that extend the existing econometric toolset

This table reports the different categories of ML‐based methods that extend the existing econometric toolset.
The largest category is causal ML for the estimation of treatment effects. ML enhances existing methods, such
as instrumental variable regression, or introduces new methods, such as causal trees and causal forests. ML also
provides other methods relevant for the estimation of treatment effects, such as verifying the balance between
treatment and control groups. The second category includes special applications of ML in econometric
approaches in addition to treatment effects, such as the generation of simulated data.

Category Subcategory Approaches

Causal ML Instrumental variable regression – 2SLS first stage with LASSO, ridge regression,
or neural networks

Causal‐tree based methods and
applications

– Causal trees
– Causal forests
– Applications of causal forests

Other causal ML – Direct prediction of treatment effects
– ML‐based propensity score
– Balance verification between treatment and

control groups
– Counterfactual prediction

Special Applications – Predictive power of economic theories
– Completeness of economic theories
– Handling of imbalanced data
– Generation of artificial data
– ML‐augmented preanalysis plans
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advantages of both to create superior econometric methods suitable for causality and especially
for the estimation of treatment effects. The most developed methods within causal ML are ML‐
enhanced instrumental variable regression and the novel methods of causal trees and forests.

As noted before, ML can directly improve the first stage of instrumental variable regression.
By providing better predictions for the instrumented variable, the coefficient of determination
R² of the first stage improves, resulting in more precise estimates in the second stage. Concrete
implementations of this idea already exist for different ML methods, including LASSO (Belloni
et al., 2012), ridge regression (Carrasco, 2012; Hansen & Kozbur, 2014), and neural networks
(Hartford et al., 2017). However, Angrist and Frandsen (2022) argue that ML‐enhanced
instrumental variable methods might not be superior to existing specialised approaches in
selecting instrumental variables.

For the estimation of treatment effects with ML, causal trees and causal forests are other
well‐developed methods. The seminal work by Athey and Imbens (2016) introduced the causal
tree approach, which uses tree‐based ML methods to partition data into subpopulations with
different magnitudes of treatment effects. Causal forests proposed by Athey and Wager (2019)
extend this concept by using an entire ensemble of causal trees. Some studies apply causal
forests to concrete problems in finance. Gulen et al. (2020) apply causal forests to estimate
heterogeneous treatment effects of debt covenant violations on firms' investment levels.
O'Malley (2021) estimates the treatment heterogeneity of a legislative change in home
repossession risk on mortgage default with causal forests.

In addition to causal trees and causal forests, other approaches use ML to improve the
estimation of treatment effects. Lee et al. (2010) estimate the propensity score with ML.
Mullainathan and Spiess (2017) suggest the use of ML to verify the balance between treatment
and control groups. They argue that if it is possible to predict the treatment assignment with
ML, then the split into treatment and control groups cannot be balanced. However, this idea
works in only one direction: it is possible to infer imbalance but not balance by applying ML to
predict the treatment assignment (since the chosen ML methods may not be powerful enough
to predict the treatment assignment of imbalanced data). Chernozhukov et al. (2017, 2018)
directly calculate treatment effects from ML‐based predictions of treatment assignment and
outcome. Finally, Athey et al. (2019) predict the counterfactual with ensemble methods to
estimate treatment effects from panel data.

3.3.2 | Special applications of ML in econometrics

While causal ML for the estimation of treatment effects is currently the most developed
application of ML in econometrics, there are various special applications of ML in econometrics
that also extend the existing econometric toolset.

Above, we presented how ML can create measures of economic variables. By generalising
this concept, ML can also construct a predictability measure of entire economic theories.
Peysakhovich and Naecker (2017) introduce the notion that ML can be used to derive an upper
bound of the predictive power of theories: the explainable variation in the dependent variable
in a given data set with ML methods. Fudenberg et al. (2019) extend this idea to construct a
completeness measure for economic theories. They calculate completeness by comparing two
prediction errors: the error achieved from using the model and variables hypothesised by
economic theory and the error achievable with ML. In general, different data sets contain
different levels of information, so they allow different levels of predictability. By comparing
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prediction errors to those achievable with ML methods, it is possible to create a fairer and more
informative measure for a comparison of different economic theories.

A different problem relevant in econometrics as well as in ML is imbalanced data. For
instance, in loan performance data, actual defaults are much rarer than uneventful repayments.
Sigrist and Hirnschall (2019) combine ML with traditional econometric methods to address
such problem types. More specifically, they use boosted regression trees to enhance the
traditional Tobit model. They also illustrate the advantages of their method in a concrete
problem by applying it to loan defaults in Switzerland.

In the field of simulation, Athey et al. (2021) use generative adversarial networks instead of
traditional Monte Carlo methods to simulate data that more closely mimic real data. They
illustrate their method by using simulated data for performance comparisons across different
econometric estimators. Adams, Kräussl, et al. (2021) use deep neural networks to generate
artificial paintings to study gender discrimination in art prices.

Finally, Ludwig et al. (2019) introduce ML‐augmented preanalysis plans to avoid p‐hacking.
They augment standard linear regression with new regressors from ML. The new regressors
aggregate many potentially relevant variables into a single index. Hence, their method avoids the
otherwise necessary prespecification of concrete analysis choices in standard preanalysis plans.

4 | FUTURE PROSPECTS OF ML IN FINANCE

The benefits of ML over traditional methods as illustrated above together with the existing but
still limited number of ML applications in finance suggest a still mostly untapped potential for
future research. However, it is unclear whether the usage of ML methods will actually gain
broad popularity in the finance community. Furthermore, prospective users of ML need to
know whether ML applications can also reach the most prestigious journals of the profession or
if they tend to be published only in specialty journals. Finally, the different application
categories of ML described by our taxonomy and the wide variety of research fields in finance
make it difficult to pinpoint exactly where the most promising applications of ML in finance
research lie. In this section, we give indicative answers to these questions by systematically
analysing the existing finance literature that already uses ML methods. In particular, we
investigate the publication success of such papers and how it differs by research field and
application type. Our results may not only indicate the future prospects of ML in finance but
also show where and how researchers can apply ML to maximise its future potential.

4.1 | Sample of finance research papers that apply ML

For a systematic analysis of the existing finance research that applies ML, we begin by
constructing a sample of relevant publications. We build our sample by focusing on research
papers that have been published in major finance journals. As our starting point, we choose
the 45 most highly ranked finance journals (categories A+, A and B) of the journal ranking
of the German Academic Association of Business Research (VHB‐JOURQUAL3).13 Then,

13In an alternative approach, we choose the 37 journals that are ranked as 4*, 4 or 3 within the finance category of the AJG 2018 ranking
of the Chartered Association of Business Schools. Those ranks are largely comparable to the A+, A and B ranks of the VHB‐
JOURQUAL3 ranking. Our results remain qualitatively unchanged when using this alternative set of journals.
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we visit each journal website and download all papers that have been published in the years
2010 to 2021 and that contain any of the following keywords either in the title, abstract,
or full text:

– General ML‐related terms: ‘machine learning’, ‘big data’, ‘artificial intelligence’
– ML method categories: ‘supervised learning’, ‘unsupervised learning’, ‘reinforcement

learning’, ‘semisupervised learning’
– Specific ML methods: ‘lasso’, ‘ridge’, ‘elastic net’, ‘decision tree’, ‘random forest’, ‘boosted

regression trees’, ‘gradient boosting’, ‘support vector machine’, ‘support vector classifica-
tion’, ‘support vector regression’, ‘neural network’, ‘naïve bayes’

We read each paper in this initial sample and manually exclude papers that do not use
machine learning in any part of their analysis (for instance, if they mention the keyword(s)
above only while describing the work of others). Finally, we arrive at a sample that consists of
346 papers.

To investigate possible differences in publication success by research field and
application type, we classify each paper in both dimensions. For the classification by
research field, we make use of JEL codes.14 In the few cases where EconLit provides no JEL
codes or if none of the provided codes fall into the financial economics code range (G), we
instead use author‐provided JEL codes obtained directly from the papers. We then classify
each paper in our sample into exactly one of the five JEL subfields within financial
economics (G1–G5 code range).15 Since some papers carry multiple JEL codes, we manually
classify 68 papers in our sample for which the subfield assignment is ambiguous. In
29 cases, we can resolve the ambiguity by choosing the subfield according to the majority of
a paper's JEL codes. In the remaining 39 cases, we manually assign the most appropriate
subfield.

Regarding the classification by application type, we inspect each paper's methodology in
detail and then classify it into one of the three archetypes of our taxonomy described in
Section 3: (i) superior and novel measures, (ii) economic prediction problems, and (iii) new
econometric tools.

4.2 | How promising are ML applications in finance?

To provide indications of the future prospects of ML applications in finance, we first analyse
the journals in which the existing ML applications have been published. Figure 5 illustrates the
large growth in the usage of ML. In 2018, the number of publications that used ML more than
tripled compared to the previous years' average. In 2019, the increase was more than fivefold. In
2020, there were almost seven times as many publications using ML than before, and in 2021
we found an almost elevenfold increase in the number of published ML papers.

While the strong growth in the number of finance publications that apply ML over the last
few years shows a clear trend toward an increasing usage of ML, the question of whether ML

14To obtain the JEL codes of the papers in our sample, we use the EconLit database from the AEA. The JEL codes from EconLit are
assigned by professional staff, ensuring systematic classification criteria and maximal coverage (Falk & Andre, 2021).
15JEL codes are structured hierarchically and consist of one letter and two digits (e.g., G35), where the letter refers to the general field in
economics (e.g., G for financial economics), the first digit describes the subfield (e.g., G3 for corporate finance), and the second digit
determines the specific area within a subfield (e.g., G35 for payout policy).
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applications have the potential to be published in the most prestigious journals of the
profession remains unanswered. Panel A in Table 5 shows how the number of ML publications
has evolved over time by journal rank. In the years until 2017, the few early ML applications
were published mostly in journals ranked as B. Since 2018, however, a significant portion of the
ML publications appeared in the highest‐ranked journals. To control for the fact that there exist
many more lower‐ranked than higher‐ranked journals (and thus publications in the respective
journals), Panel B reports the share of ML publications relative to the total number of
publications that major finance journals of different ranks published each year. The results
show that the strong increase in the number of ML publications was not driven by a general
increase in the number of papers that journals of any rank have published; similar to the
absolute numbers, the relative share of publications that use ML has increased similarly in total
and for each journal rank.16 In 2021, there are no meaningful differences in the relative share of
ML publications across journal ranks: approximately 3%–4% of the publications used ML in
2021 independent of the journal rank.17

Our results in this section give two main indications of the future prospects of ML in
finance. First, there is steady and robust growth in the number of finance publications that
apply ML. It is likely that this trend will continue with even more ML applications in the years
ahead. The benefits of ML illustrated above and the continuing increase in relevance of ML
outside of academia also leave little reason to expect otherwise. Second, researchers who apply
ML in finance can reasonably expect their papers to have the potential to reach the highest‐
ranking journals of the profession. Not only are there currently numerous examples of ML
applications in such journals, but their relative share has now reached a level that is
comparable to lower‐ranked journals. Hence, these results may suggest a bright and promising
future for ML applications in finance.

FIGURE 5 Number of relevant publications in finance that apply ML by year. This figure depicts how the
number of papers that apply ML and have been published in major finance journals has evolved over time. Since
2018, we observe a strong increase in ML publications compared to the average of the previous years.

16We conduct two‐sample t‐tests for the differences between the 2010–2017 share of ML papers across journals of the three different
journal categories (A+, A, and B). In the 2010–2017 period, we detect a statistically significant difference between the share of ML
papers in B ranked journals (0.5%) and that in A+ and A ranked journals (0.2%/0.3%) at the 5% level. In the 2018‐2021 period, this
statistically significant difference disappears.
17Notably, the total number of publications also includes theory papers and other methodologies. The share of ML papers among
empirical studies would be even higher.
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4.3 | Which kinds of ML applications in finance are most promising?

In the previous section, we showed that ML applications have seen strong time‐series growth in
the most prestigious finance journals over the last several years. We now move on to the question
of what makes certain applications more promising than others with regard to publication success.
To answer this question, we first investigate differences in the distribution of ML publications by
research field and across journal ranks; and then, subsequently apply the classification from our
taxonomy (see Section 3) as a third dimension (methodological purpose) to the analysis.

In Table 6, we begin with examining the distribution of ML publications by research field.
Column 1 shows that most ML publications (to date) belong to the general financial markets
(G1) category (71.1%), which consists of asset pricing and related areas. Considerably fewer ML
publications have been published in the fields of financial institutions and services (G2, 13.6%)
and corporate finance and governance (G3, 14.2%). There is a very small share of ML
publications in behavioural finance (G4, 0.9%) and household finance (G5, 0.3%).

To account for heterogeneity in the distribution of all published finance papers by research
field, we compare the distribution of ML publications to that of all publications in major
finance journals. This comparison is crucial if the general financial markets (G1) category also
represents the largest field in major finance journals. If so, the previous result could be simply
driven by a large number of publications that belong to the general financial markets category
(G1). Therefore, Column 5 shows the distribution of all (2010–2021) publications across
fields,18 which we then compare with the distribution of ML publications across fields. Visual
inspection of Columns 1 and 5 already suggests that even after accounting for research field
effects, ML papers are significantly more likely in the general financial markets category
compared to other fields. A Pearson χ2‐test, which tests for systematic differences of two
distributions with categorical variables, confirms this observation at every plausible level of
significance (see last row of Table 6). In additional analyses using z‐tests for differences in
proportions, Column 9 shows that the distribution of ML publications is much more
concentrated with a substantially higher share of ML (relative to all) papers in the field of
general financial markets (G1: 71.1% vs. 47.1%, z‐stat: 8.84) and a lower share of papers in the
fields of financial institutions and services (G2: 13.6% vs. 25.4%, z‐stat: −5.03) and corporate
finance and governance (G3: 14.2% vs. 27.3%, z‐stat: −5.44). In the fields of behavioural finance
(G4) and household finance (G5), the sample sizes are too small to draw any economically
meaningful conclusions. We repeat our analysis for each of the three journal ranking categories
(A+ , A and B) in Columns 10–12 and find qualitatively similar results.

Second, we examine the distribution of ML publications by the methodological purpose (see
our taxonomy, Section 3). Table 7 (Panel A, Column 1) shows the distribution for the full
sample of ML publications across all fields. A large majority of publications (69.1%) apply ML to
reduce the prediction error in economic prediction problems. Using ML to construct superior
and novel measures is much less widespread on average (25.1%). Very few finance publications
(5.8%) use ML to extend the econometric toolset.19 Columns 2‐4 reveal that there is strong
heterogeneity by journal rank. Specifically, publications in the highest‐ranked journals (A+)
use ML disproportionally more often to construct superior and novel measures compared to

18We obtain data for all finance publications in the 45 major finance journals (ranked as A+, A, or B according to the VHB‐JOURQUAL3
rating) for the years 2010 to 2021 from EconLit. We classify each paper into one of the five JEL subfields within financial economics
(G1–G5 code range) with the procedure described in Section 4.1.
19Note that the number of papers in our sample that apply ML to extend the econometric toolset is low mainly because we only consider
papers from finance journals and therefore ignore contributions from the econometrics literature.
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TABLE 7 Distribution of ML applications in finance by application type for the entire sample and for
publications in the different journal ranks

This table reports the distribution of ML research applications in major finance journals by application type
from our taxonomy. Panel A reports the results across all research fields. Panel B reports the results for each
research field separately. The first column reports the results for the entire sample, while Columns 2–4 report
the results separately for publications in journals ranked as A+, A, and B. a, b, or c denote statistical
significance of differences in proportions at the 5% level for the groups ‘A+ versus A’, ‘A+ versus B’ and ‘A
versus B’, respectively.

All A+ A B

(1) (2) (3) (4)

Panel A: Distribution of application types

n= 346 n= 39 n= 62 n= 245

Superior and novel measures 25.1% 56.4%a, b 32.3%a, c 18.4%b, c

Economic prediction problems 69.1% 38.5%a, b 62.9%a, c 75.5%b, c

New econometric tools 5.8% 5.1% 4.8% 6.1%

Panel B: Distribution of application types in each research field

General financial markets (G1) n= 246 n= 26 n= 33 n= 187

Superior and novel measures 22.0% 38.5%b 33.3%c 17.6%b, c

Economic prediction problems 71.1% 57.7% 63.6% 74.3%

New econometric tools 6.9% 3.8% 3.0% 8.0%

Financial institutions and services (G2) n= 47 n= 5 n= 20 n= 22

Superior and novel measures 29.8% 80.0%a, b 30.0%a 18.2%b

Economic prediction problems 66.0% 0.0%a, b 65.0%a 81.8%b

New econometric tools 4.3% 20.0%b 5.0% 0.0%b

Corporate finance and governance (G3) n= 49 n= 8 n= 9 n= 32

Superior and novel measures 32.7% 100.0%a, b 33.3%a 15.6%b

Economic prediction problems 65.3% 0.0%a, b 55.6%a 84.4%b

New econometric tools 2.0% 0.0% 11.1% 0.0%

Behavioural finance (G4) n= 3 n= 0 n= 0 n= 3

Superior and novel measures 100.0% NA NA 100.0%

Economic prediction problems 0.0% NA NA 0.0%

New econometric tools 0.0% NA NA 0.0%

Household finance (G5) n= 1 n= 0 n= 0 n= 1

Superior and novel measures 0.0% NA NA 0.0%

Economic prediction problems 100.0% NA NA 100.0%

New econometric tools 0.0% NA NA 0.0%
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publications in lower‐ranked journals (56.4% vs. 32.3% and 18.4%). These differences are
statistically significant at the 5% level using z‐tests for differences in proportions between
journal rank categories. On the other hand, economic prediction problems are less prevalent in
the highest‐ranked journals (38.5% vs. 62.9% and 75.5%), which is again statistically significant.

To detect differences in the publication success of application types across research fields, we
repeat the previous analysis for each research field separately in Panel B of Table 7. Specifically,
we are interested in identifying systematic patterns across research fields, for example, if superior
and novel measures are more likely to be successful in specific fields of finance. As Panel B,
Column 1 shows, superior and novel measures are disproportionally more often used in the
financial institutions (G2) and corporate finance (G3) literatures (29.8% and 32.7% vs. 25.1%).
Interestingly, within these two fields, publications in journals ranked as A+ (Column 2) almost
exclusively use ML to construct superior and novel measures (80.0% and 100.0%).

4.3.1 | Analysis by citations

To further corroborate our findings, we analyse citations as an alternative measure of publication
success.20 We obtain the number of citations from Web of Science (as of 19 Sep 2022) for each ML
publication in our sample and compare it to the average number of citations for all papers published
in major finance journals. Given that a paper's number of citations (as of 19 Sep 2022) naturally
depends on the time since publication, we demean the number of citations in the following way: for
each ML publication in our sample, we calculate excess citations, which is the difference between a
paper's actual number of citations and the average number of citations of all publications in major
finance journals from the same year.21 We then study differences in excess citations by research field
and application type and conduct t‐tests against the null hypothesis that excess citations are
statistically indistinguishable from zero (i.e., there are no differences in citation counts between ML
publications and all publications from a given year). Table 8 shows our results. Overall, ML
publications receive 3.0 more citations than the average publication in major finance journals from
the same year, which is statistically significant at the 10% level. Across application types,
publications that use ML to construct superior and novel measures receive 10.2 more citations than
general publications in major finance journals, which is highly significant at the 1% level. Across
fields, ML publications in corporate finance/governance receive 7.6 more citations than general
publications in major finance journals, which is significant at the 5% level. Finally, publications that
apply ML to construct superior and novel measures related to corporate finance/governance show
the highest potential with regard to citation count as they receive 24.2 more citations, which is also
highly significant at the 1% level. Given that the average ML publication in our sample has been
cited 16.2 times, these effects are not only statistically significant but also economically large.22,23

20We thank an anonymous referee for encouraging this analysis.
21We obtain citation data to calculate average citation counts per year from Web of Science.
22In untabulated analyses, we account for possible unobserved year‐level heterogeneity in citation growth across fields (for instance, if
citations after publication grow stronger in certain fields) by demeaning citation counts by year‐and‐field averages. Our results are
qualitatively and statistically similar when conducting this alternative analysis.
23A second possible alternative to analysing total citation counts is to analyse the ranking of journals that cite ML publications. In
untabulated analyses, we show that publications that use ML to construct superior and novel measures tend to be cited from
higher‐ranked journals. Again, this effect is especially pronounced in the field of corporate finance and governance. These additional
analyses of citations thus support our main findings. The detailed results are available from the authors upon request. We thank an
anonymous referee for suggesting this analysis.
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In sum, the results from the citation analysis are consistent with the results from the previous
analysis using journal ranks and thus provide corroborating evidence.

Our findings in this section yield three important conclusions. First, the usage of ML to
construct superior and novel measures seems to be one application type with strong future
potential. While most publications to date apply ML to economic prediction problems, papers
that use ML for superior and novel measures have appeared in higher‐ranked journals and
receive more citations. Second, papers that apply ML in the field of corporate finance and
governance seem to benefit from ML's ability to produce superior and new measures. Finally,
the scarcity of existing research in the fields of behavioural finance and household finance
indicates another attractive avenue for future ML applications.

5 | CONCLUSION

In this paper, we studied the question of how researchers can leverage ML technology in
finance. First, we established that different types of ML solve different problems than
traditional linear regression with OLS. While the properties of OLS are beneficial for
explanation problems, supervised ML is the superior method for prediction problems. As we
illustrated with a real estate asset pricing prediction problem, ML‐based price predictions can
achieve substantially lower pricing errors than OLS.

In the second part of this paper, we developed the following taxonomy of ML applications in
finance: (1) construction of superior and novel measures, (2) reduction of prediction error in
economic prediction problems, and (3) extension of the existing econometric toolset. This

TABLE 8 Mean excess citations of ML publications relative to all publications in major finance journals

This table reports the mean excess citations of ML publications by field and application type. Excess citations
are defined as the difference between actual citations and the average number of citations for all publications in
major finance journals from the same year. Citation data come from Web of Science as of 19 Sep, 2022. ***, ** or
* denote statistical significance at the 1%, 5% or 10% level.

All types

Superior and
novel
measures

Economic
prediction
problems

New
econometric
tools

Full Sample n= 346 3.0* 10.2*** 1.2 −7.0*

By field

General financial
markets (G1)

n= 246 2.3 9.3** 1.1 −8.0**

Financial institutions
and services (G2)

n= 47 2.4 1.0 3.7 −8.2

Corporate finance and
governance (G3)

n= 49 7.6** 24.2*** −0.9 13.7

Behavioural
finance (G4)

n= 3 −5.3** −5.3** NA NA

Household
finance (G5)

n= 1 −1.5 NA −1.5 NA
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taxonomy serves multiple purposes. First, it enables a systematic review of the existing ML
literature in finance. Second, it enables a better understanding of new contributions and how
they relate to the existing literature. Finally, it may guide researchers in discovering possible
applications and thus may facilitate new ML studies in finance.

In the final part, we provided indications of the future prospects of ML applications in finance by
analysing the ML papers published in major finance journals. Over the last few years, there has been
a strong growth in the number of ML applications in finance, and many of these applications reached
the highest‐ranked journals of the profession. Our results suggest that ML may become even more
widespread in finance research in the coming years. They also indicate a particularly large potential
of applying ML to unconventional data to construct superior and novel measures of topics related to
the field of corporate finance and governance. The fields of behavioural and household finance may
also offer a mostly untapped potential for ML in future research.
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APPENDIX

TABLE A1 Selection of public announcements of large financial institutions using ML in their day‐to‐day
business operations

This table reports a selection of newswires and press releases from Nexis Uni that contain public
announcements of large financial institutions using ML in their day‐to‐day business operations.

Company
Release
date Source Extract

Axa 21 Jul 2021 MarketLine
NewsWire

‘AXA UK has launched a new machine learning
tool to accelerate as well as improve the
accuracy of complex property claims’

Bank of America 13 Jan 2022 PR Newswire ‘Bank of America today announced the launch
of CashPro Forecasting, a tool that uses
artificial intelligence (AI) and machine
learning (ML) technology to more accurately
predict future cash positions across clients'
accounts’

Blackrock 11 Apr 2016 ENP Newswire ‘BlackRock investment teams […] utilise
technology‐based tools and research
methodologies such as machine learning,
natural language processing, scientific data
visualisation and distributed computing to
produce sustainable alpha.’

Deutsche Bank 23 Sep 2022 MarketLine
NewsWire

‘The solution leverages artificial intelligence and
specified rules to calculate the risk value for
each transaction. […] Our worldwide
network and the use of machine learning
techniques allow us to deploy a global data
set to reduce fraud.’

HSBC 6 Nov 2019 Malaysia
Economic News

‘HSBC has been able to deal promptly with any
anomalous or suspicious transaction
through the adoption of new technologies
namely Artificial Intelligence (AI) and
machine learning.’
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TABLE A1 (Continued)

Company
Release
date Source Extract

J.P. Morgan Asset
Management

17 Dec 2021 PR Newswire ‘J.P. Morgan Asset Management has recently
launched its first mutual fund employing a
data science‐driven investment process […].
The investment process is driven by machine
learning […]’

State Street 18 Jul 2018 Business Wire ‘State Street Corporation (NYSE: STT) today
announced the launch of State Street
VerusSM, a mobile‐first application that
makes connections between news coverage
and investors' holdings through the
application of big data, machine learning,
natural language processing and human
intelligence. Verus is designed to help
investment professionals in the front office
gain greater insights, mitigate risk, and
generate alpha’.

State Street 22 Jun 2021 Business Wire ‘State Street Corporation today announced it
will implement a cloud‐based, machine
learning technology to transform private
markets processing and document
management’.
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