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MODELING INTERREGIONAL PATIENT MOBILITY: THEORY AND EVIDENCE
FROM SPATIALLY EXPLICIT DATA∗

By Michael Irlacher, Dieter Pennerstorfer, Anna-Theresa Renner, and Florian Unger

Johannes Kepler University Linz, Austria; Johannes Kepler University Linz, Austria; Vienna
University of Technology, Austria; University of Göttingen, Germany

This article provides theory and evidence on the spatial determinants of regional patient flows. We develop
a theoretical model that explains a patient’s choice to consult a general practitioner by a measure of spatial
accessibility. We empirically test this gravity-type model using regional patient flows and detailed data on the
spatial distribution of residents and physicians in Austria. Our measure of spatial accessibility is a crucial de-
terminant of patient flows that substantially increases the explanatory power of regular gravity models. Coun-
terfactual simulations show heterogeneous effects of exiting physicians on health-care accessibility and patient
mobility.

1. introduction

Equitable access to health care is crucial to ensure the fundamental human right to health
for all (WHO, 2008). However, the possibility to use medical services differs substantially
across patients and regions. Recently, the often cited policy goal of equitable accessibility to
critical health-care infrastructure (UNDP, 2015) has been challenged by observed or expected
shortages in the number of primary care physicians, especially in rural areas (WHO, 2018).
These shortages are commonly attributed to a wave of retirement of the so-called “baby-
boom” generation (OECD, 2016).1 At the same time, there is a reluctance of younger physi-
cians to settle in rural areas (Ono et al., 2013) despite the increasing demand of the aging pop-
ulation. Scarce physician supply directly affects patient well-being through lower service ca-
pacity as well as increased travel times and costs. The aim of this article, therefore, is to eval-
uate the role of regional differences in accessibility of primary health-care providers for pa-
tient mobility.

In a broader context, economic interactions across space are influenced by the distribution
of demand and supply factors. In order to evaluate how goods, services, and people sort across
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geographic space, an influential body of literature builds on gravity models that highlight the
important role of trade and travel costs (often termed “bilateral resistance”).2 Although grav-
ity models have been successful to explain trade and migration flows across countries and re-
gions, recent contributions show that gravity and congestion forces determine commuting pat-
terns even at a subregional level (Ahlfeldt et al., 2015; Monte et al., 2018). As regional hetero-
geneity in the distribution of supply and demand is a key driver behind those flows, it is impor-
tant to exploit detailed information at the finest possible scale. This is especially true for the
health-care market, where patients have strong preferences for proximity, and physicians’ ca-
pacity constraints are often binding, such that they might serve a limited number of patients
only or provide lower quality if demand is high. Both mechanisms increase patient mobility by
diverting patients away from their closest provider. Hence, this article introduces a measure of
“spatial accessibility” that incorporates the geographic distribution of demand and supply fac-
tors as well as congestion forces within regions to predict interregional patient flows.

We estimate a theory-guided gravity equation of patient flows that accounts for regional
heterogeneity in accessibility of general practitioners (GPs). In our theoretical framework, we
model a patient’s choice to consult a physician in a particular region. Notably, our measure of
accessibility does not only depend on distances between regions, but rather takes into account
the intraregional distribution of both potential patients and physicians, as well as congestion
at the physician level. The model implies a gravity-type equation that predicts the probability
of a patient to see a physician in a particular region. This probability increases with a higher
accessibility measure and is also influenced by the accessibility of all other regions. Patients’
decisions do not depend on prices because, in our empirical application to a public health-care
system, service fees are fixed and covered, for example, by social insurance contributions. We
further demonstrate that under restrictive assumptions, namely, abstracting from intraregional
heterogeneity and congestion forces, our model nests a standard gravity equation with only bi-
lateral distance. This approach guides our empirical analysis, where we investigate the impor-
tance of our measure of spatial accessibility relative to bilateral indicators of travel costs, like
interregional distance or travel time.

In the empirical analysis, we test the theoretical model’s implications by analyzing patient
mobility across Austrian regions. In order to generate a measure of spatial accessibility, we ap-
ply a variant of the two-step floating catchment area (2SFCA) method, developed in the field
of applied geography (see Radke and Mu, 2000). Our measure is based on very detailed infor-
mation regarding the spatial distribution of the residential population (demand) and the exact
locations of all GPs (supply) in Austria, instead of on endogenous factors such as actual uti-
lization of health services or GP quality. To the best of our knowledge, we are the first to es-
timate a theory-based gravity equation with a measure of spatial accessibility, especially in the
context of health care.3 Our results show that spatial accessibility is an important determinant
of patient mobility and considerably improves the explanatory power of the gravity model.
Notably, accounting for spatial accessibility renders the main variable of interest in the grav-
ity literature—namely, interregional distance—insignificant.

Our approach allows predicting changes in patient mobility following supply-side shocks,
which would not be possible in a standard gravity framework that only relies on bilateral re-

2 The gravity equation has become the standard approach in modeling trade flows, see Tinbergen (1962) for an
early application; Anderson (1979), Eaton and Kortum (2002), and Anderson and van Wincoop (2003) for other in-
fluential contributions in this field; and Yotov et al. (2016) for an introduction and an overview. Furthermore, gravity
models have been used to investigate flows of foreign direct investments (Anderson, 2011; Lay and Nolte, 2017) or
equity investments (Portes and Rey, 1998, 2005), and to analyze commuting patterns (Persyn and Torfs, 2016) or stu-
dent mobility (Beine et al., 2018), among other areas. In the field of health economics, Levaggi and Zanola (2004) and
Fabbri and Robone (2010) have applied gravity models to investigate interregional patient flows.

3 Measures of spatial accessibility relying on the 2SFCA method are typically used to accurately quantify the acces-
sibility of locally produced and consumed services in a descriptive way. Empirical contributions in this context aim to
detect under-served areas (Luo and Wang, 2003; Luo and Qi, 2009; Radke and Mu, 2000) or to relate differences in
accessibility across neighborhoods to the socio-economic status of their residents (Dai and Wang, 2011; Pennerstorfer
and Pennerstorfer, 2021).
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sistance. Market exits or relocations of outpatient GPs affect the accessibility measures and
thus welfare, which consequently influences patients’ choices which doctors to consult. In a
first set of simulations, we document heterogeneous changes in spatial accessibility within re-
gions, depending on the exact locations of physicians leaving the market. Guided by our the-
ory, this heterogeneity translates into regional variation in patient flows: If physicians leav-
ing the market are clustered in space, bordering regions are strongly affected, whereas patient
mobility is only moderately influenced if the same number of GPs leaving the market is scat-
tered throughout the region. In a second set of simulations, we evaluate the effect of the re-
tirement of public GPs on accessibility if these exiting physicians are only replaced in certain
regions (rural versus urban). These counterfactual analyses are of high policy relevance for
countries with a public health-care system, as demographic change and rural exodus of physi-
cians tend to deteriorate equitable access to health-care services.

We contribute to recent developments of (quantitative) spatial economics (Ahlfeldt et al.,
2015, 2020; Dingel and Tintelnot, 2020; Heblich et al., 2020; Monte et al., 2018) by integrating
the concept of spatial accessibility in a gravity framework. Ahlfeldt et al. (2015) rely on com-
puted travel times based on the transportation network and self-reported travel times to es-
timate a gravity equation of commuting flows across Berlin districts. Using distances between
counties’ centroids, Monte et al. (2018) analyze a gravity framework of commuters applied to
U. S. data. Both studies use the regression results for their subsequent counterfactual analysis.
As welfare and policy implications depend on these estimates, it is crucial to take into account
information on the measure of bilateral resistance in as much detail as possible.4

Although the health-care sector is a highly policy-relevant industry, empirical contributions
on spatial aspects are still relatively scarce. The empirical literature on patient mobility—
which has been referred to as “revealed accessibility” (Joseph and Bantock, 1982)—has fo-
cused mainly on hospital services (Avdic, 2016; Balia et al., 2018; Bruni et al., 2008; Congdon,
2000, 2001; Fabbri and Robone, 2010; Levaggi and Zanola, 2004; Smith et al., 2018). The few
studies investigating outpatient services are either conducted in the United States (see, e.g.,
Dai, 2010; LaVela et al., 2004; Schmitt et al., 2003), or are descriptive in the sense that po-
tential accessibility is not used to predict utilization patterns (such as Bauer and Groneberg,
2016; Joseph and Bantock, 1982). Those contributions using an econometric framework to
model patient mobility usually calculate Euclidean or travel distances between regions as in-
dicators of spatial accessibility (e.g., Balia et al., 2018; Fabbri and Robone, 2010; LaVela et al.,
2004; Schmitt et al., 2003). We contribute to this literature by highlighting the important role
of spatial accessibility in a theory-guided estimation of patient flows, where we exploit supply
and demand information at a finer spatial scale than interregional flow data.

Our approach of augmenting a gravity model with a measure of spatial accessibility is not
limited to the health-care market, but is also relevant for other applications where exact loca-
tions of demand (e.g., consumers of goods and services, importers, workplaces, students) and
supply (e.g., producers, service providers, exporters, workers, universities) are important. Al-
though country-level data might be sufficient for analyzing trade in goods (at least for reason-
ably small countries), even information at a subnational level (like U. S. states or EU NUTS 1
regions) might not be accurate enough for investigating trade in services, commuting patterns,
or patient mobility. In these cases, our approach can contribute to standard econometric mod-
els based on bilateral distance by improving the explanatory power of these models.

The remainder of the article is organized as follows: Section 2 introduces the concept of
spatial accessibility in a theoretical model of patient flows. Section 3 describes the empirical
strategy, including the calculation of the measure of spatial accessibility and the econometric
model specifications. Moreover, it details the data sources and the variables used in the em-
pirical analysis. Finally, the regression and simulation results are presented and discussed in
Section 4, whereas Section 5 concludes.

4 Recent contributions in the trade literature highlight the importance of intranational trade costs (Agnosteva
et al., 2019; Coşar and Demir, 2016; Donaldson, 2018).
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2. theory

2.1. Institutional Background. Our analysis focuses on GPs in the public outpatient sector,
who are responsible for primary health care in Austria.5 In order to theoretically model re-
gional patient flows, some information about the underlying institutional setting is helpful at
this point. Patients are free to choose their health-care provider without restrictions regard-
ing the utilization of services outside their own district or state. Patients can decide to see a
different GP quarterly without any cuts in cost coverage. The choice of provider within Aus-
tria for these so-called “first contacts” (i.e., the first contact within a given quarter of the year)
with a GP is not restricted by financial considerations for the patient (Bachner et al., 2018).
As argued by Pohlmeier and Ulrich (1995), it is therefore plausible to assume that the patient
freely chooses whether and where to seek care (provider and location) for the initial contact
with a GP, whereas supply-side inducement is more likely for follow-up and specialist visits.
On the supply side, the number of public (i.e., contracted) physicians in a region is strictly
regulated. Based on the number of insured individuals (i.e., potential patients), each social
health insurance fund negotiates a placement plan (Stellenplan) with the regional chambers
of physicians (Landesärztekammern) for each political district. The negotiated distribution of
these contracted outpatient physicians is required by law to take into account differences in
regional infrastructure, such that each insured person has a choice between at least two out-
patient physicians who can be reached within a reasonable travel time (Renner, 2019; Stepan
and Sommersguter-Reichmann, 2005). However, although the number of public physicians is
strictly regulated at the district level, physicians are free to locate anywhere within that dis-
trict. Austrian outpatient physicians are paid based on a mix of contact capitation and fee-for-
service according to fixed tariffs that do not differentiate between physician locations (i.e., be-
tween urban and rural regions). One important (financial) incentive for physicians to locate in
remote areas is that they are allowed to run an on-site pharmacy if there is no pharmacy in
their municipality or within a 6-km radius of their practice. This enables them to directly dis-
pense the prescribed medication to their patients and earn a mark-up.6 Despite this additional
source of income, there is an increasing shortage of public physicians willing to locate in ru-
ral areas.

Apart from public physicians, there are also private physicians practicing in the outpatient
sector. These private providers do not have a contract with a social health insurance fund,
hence, patients have to make out-of-pocket payments for the provided services.

2.2. Theoretical Measure of Spatial Accessibility. We operationalize the concept of spatial
accessibility by the so-called 2SFCA method (see, e.g., Radke and Mu, 2000). To guide our
empirical approach and gain intuition of the underlying mechanisms, we first construct the
theoretical counterpart of the 2SFCA method in this section. Subsequently, we integrate this
measure of spatial accessibility in a spatial model along the lines of Monte et al. (2018). Our
model implies a gravity equation for patient flows and brings forth novel testable predictions
to be confronted with data in the empirical part in Section 3.

Guided by the institutional background, we employ a theoretical measure of spatial acces-
sibility, which incorporates proximity between potential patients7 and physicians as well as
congestion forces. We consider one country (Austria), which is divided into a finite number
of regions S. One region s is endowed with a fixed measure of physicians, Ls > 0, and a fixed
number of patients, Ks > 0. Each patient k chooses to see a physician l in a destination region
d, who provides the highest utility, which depends on several determinants. In this section, we

5 Note that pediatricians are considered specialists in Austria and are therefore not included in our analysis.
6 In 2019, around 21% of all public outpatient physicians had an on-site pharmacy.
7 For brevity, and because almost every resident will eventually become a patient when seeking care at a primary

care provider, we will use “potential patient” and “patient” interchangeably in Section 2. In describing our empirical
analysis, we make a clear distinction between patients’ observed contacts (endogenous) and their places of residence
(exogenous).
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focus on one central aspect of utility, which is spatial accessibility.8 Intuitively, our approach
can be characterized as follows. We start from the perspective of an individual patient and
consider the determinants that affect the service provision of a specific GP. We then aggregate
the individual measures at the regional level, as we are ultimately interested in modeling pa-
tient flows across regions. In line with the idea of the 2SFCA method, our measure of spatial
accessibility is constructed in two steps.

In a first step, we model a physician’s service provision level, which we denote by Rl . It de-
pends on two components: (i) the number of patients within a GP’s catchment area and (ii)
the respective distances to each of the patients within this area. In line with our empirical
counterpart, we assume the following functional form:

Rl = 1∑
k f (distlk)

,(1)

where f (distlk) is a function that decreases in the distance between patient k and physician l.
The catchment area includes all patients within a specified distance.9 For patients outside this
area, the distance function is defined as f (distlk) = 0, such that their weight is zero in Equa-
tion (1). A physician’s service provision level thus depends negatively on the number of pa-
tients within a GP’s catchment area. Intuitively, a higher number of patients reduces the time
allocated to one patient (e.g., due to a lower frequency of follow-up visits) and hence the qual-
ity of the medical service. Given the number of other patients, this “congestion” force plays
a larger role when distances to these patients within the catchment area are short (because a
larger fraction of the other patients will consider the respective GP).

Note that in Equation (1) we do not account for differences in need of potential patients
within the catchment area when calculating the service provision level and give every resident
the same weight (conditional on the distance between physicians and potential patients). Fur-
thermore, we do not consider a physician’s service quality (when calculating the service pro-
vision level) and hence assume that GPs offer homogeneous quality. Differences in need and
service quality can easily be incorporated in the empirical model by giving potential patients
or physicians different weights when calculating the service provision level Rl .10

In the second step, we take the perspective of a patient k living in region o, and determine
the accessibility of physicians in region d, denoted by Akod. Using the service provision level
of physician l, as shown in Equation (1), weighted by the respective distance between a pa-
tient and a GP, and summing over all physicians in region d, we obtain:

Akod =
∑
l∈Ld

Rl f (distkl ) =
∑
l∈Ld

f (distkl )∑
k f (distlk)

.(2)

Again, f (distkl ) is a decreasing function of distance between patient k and physician l, which
implies that a given level of service provision by physician l increases the spatial accessibility
to a larger extent when distances are short. Summing over all distance-weighted service pro-
vision levels of physicians determines the accessibility of region d. Note that this accessibil-
ity measure is based on relatively exogenous characteristics (the location of both physicians
and residents) instead of endogenous variables like actual utilization of health services or GP
quality (e.g., opening hours).11 Our approach is thus in the spirit of Kessler and McClellan

8 The detailed utility function will be described in the subsequent section.
9 In the empirical analysis, we specify an inverse power function for f (distlk), and set the distance of the catchment

area at 100 km. See Subsection 3.2 for details.
10 We account for different needs according to the sex–age group of the patients in one of the sensitivity analyses

(see Subsection 4.3 for details).
11 A relatively high accessibility level implies a high physicians density (relative to the local population) and hence,

more intense competition. This could lead to increases in quality (e.g., opening hours) and thus in actual utilization of
health services.
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(2000) to explain actual patient mobility (patients’ endogenous choices) by exogenous factors
(in our case: spatial accessibility). The empirical implementation of Equation (2) will be dis-
cussed in Section 3 in detail. Before we introduce our measure of accessibility in a spatial eco-
nomics model, we summarize its main components and intuition as follows.

Interpretation. From the perspective of patient k, the accessibility of physicians in region d
(Akod)

(i) increases in the number of accessible physicians within region d (i.e., those physicians
where f (distkl ) > 0);

(ii) increases in the service provision level (Rl) of all physicians in region d, which itself de-
pends on the number and proximity of all other patients within the catchment area; and

(iii) decreases with the distance between patient k and all physicians in region d.

Note that our accessibility measure in Equation (2) captures regional differences. In Ap-
pendix A.1.2, we show a variant of our model that focuses on physician-specific accessibility.

In the following section, we embed the concept of physicians’ accessibility from Equa-
tion (2) into a spatial model that implies a gravity equation for patient flows across regions.
Although the residence of patients is fixed, they are geographically mobile to choose the re-
gion that offers the maximum utility for seeing a doctor.12

2.3. Patients’ Preferences. In modeling the preference structure of patients, we focus on
determinants that influence the accessibility of physicians in a region and abstract from fur-
ther components of utility.13 The preferences of a patient k, who lives in region o and consults
a physician in region d, captures a composite amenity measure:

Ukod = akodAkod,(3)

which consists of two parts. As a first component, patients in o have idiosyncratic tastes for
seeing a doctor in d denoted by akod. These shocks imply that patients have different prefer-
ences regarding physicians across locations. In modeling this heterogeneity in preferences, we
follow Monte et al. (2018) and Heblich et al. (2020) by assuming that the amenity shocks akod

are drawn from a Fréchet distribution14:

God(a) = e−Moda−ε

,(4)

where the scale parameter Mod determines the average amenities of living in region o and see-
ing a physician in region d. Amenities include all factors that affect the ease of traveling but
are not captured by distance (e.g., availability of public transportation or quality of the road
network).15 The shape parameter ε > 1 reflects the dispersion of amenities. Hence, it controls
the sensitivity of location decisions with respect to economic variables and—importantly in
our case—with respect to spatial accessibility, which enters preferences as a second compo-
nent.16 For given idiosyncratic tastes for region d, patients prefer seeing a doctor there when
accessibility of the region is high. Put differently, heterogeneous amenity shocks ensure that

12 As we focus on cross-sectional data in the empirical analysis, we abstract from residential location choice
over time.

13 In an earlier working paper version (Irlacher et al., 2021), we follow the recent spatial economics literature
and assume a Cobb–Douglas–type utility function over consumption and housing (see Redding and Rossi-Hansberg,
2017, and Redding, 2022).

14 The use of extreme value distributions has been shown to be useful to derive gravity equations of international
trade (Eaton and Kortum, 2002) and of commuting flows (Monte et al., 2018).

15 The role of amenities is discussed in more detail in Subsection 3.2.
16 The smaller the shape parameter ε, the greater the heterogeneity in idiosyncratic amenities, and the less sensitive

are location decisions with respect to other variables.
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patients make different choices about their doctor’s region when faced with the same accessi-
bility measure. In line with the institutional background described above, these decisions are
not affected by direct costs of consulting GPs.17

Remark 1. Note that bilateral (iceberg) traveling costs between regions o and d do not en-
ter explicitly in the utility function, but are subsumed in our spatial accessibility measure. In
Subsection 2.5, we show under which restrictive assumptions this approach nests a standard
gravity equation featuring bilateral distance between o and d as a proxy for bilateral travel-
ing costs.

In a next step, we use the probabilistic nature of our model to derive a gravity equation of
regional patient flows.

2.4. Gravity Equation of Patient Flows. Each patient chooses a physician in the region that
offers the maximum utility:

Uk = max {Ukod; d ∈ S}.(5)

The probability that a patient in region o derives the maximum utility from seeing a doctor in
region d is:

λkod = Pr[Ukod ≥ max{Ukos; s �= d}].(6)

Note that this decision depends on the accessibility of physicians in this region and how dis-
tant the patient is to those doctors relative to other patients. As utility in Equation (3) is a
monotonic function of idiosyncratic amenities akod that follow a Fréchet distribution, its max-
imum is also Fréchet distributed: Gkod(U ) = e−�kodU−ε

, where �kod = ModAε
kod. We use this

property together with the fact that the probability in Equation (6) can be written as λkod =∫∞
0 �s�=dPr(Ukos ≤ U )dGkod(U ), which leads to a gravity-type equation for patient flows18:

λkod = ModAε
kod∑

s MosAε
kos

=
Mod

(∑
l∈Ld

f (distkl )∑
k f (distlk )

)ε

∑
s Mos

(∑
l∈Ls

f (distkl )∑
k f (distlk )

)ε .(7)

A patient from region o is more likely to consult a physician in region d if the average ameni-
ties Mod are larger. Although this bilateral component is specific to the region pair, the ac-
cessibility measure Akod differs across patients from the same origin region o and captures
heterogeneity in spatial accessibility of doctors. The Fréchet shape parameter influences the
relative importance of spatial accessibility. A larger ε implies that idiosyncratic amenities are
less dispersed and accessibility becomes more important in determining patient flows. Accord-
ing to Equation (7), each patient from region o faces different distances to physicians located
in destination d. Note that a standard gravity framework with only bilateral costs does not
take into account this heterogeneity. The term

∑
s MosAε

kos captures “multilateral resistance,”
which is patient-specific and includes average amenities as well as physicians’ accessibility of
all possible destinations. This term captures general equilibrium adjustments in addition to the
direct effects of accessibility. In particular, changes in accessibility between two regions will
also affect patient flows between all other regions. Although we control for multilateral re-
sistance through fixed effects in the empirical analysis, these general equilibrium adjustments
will be considered as endogenous variables in our counterfactual analysis in Subsection 4.4.

17 In Appendix A.1.2, we briefly discuss the role of physician-specific prices.
18 The derivation of the gravity equation for patient flows is shown in Appendix A.1.1.
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To focus on the patient’s choice of physicians, we have abstracted from commuting and
hence workplace decisions in the theoretical model. In the empirical part, we discuss the role
of commuting at the end of Subsection 3.2 and control for commuting flows in the regression
analysis of patient mobility.

2.5. Relation to a Standard Gravity Equation. In order to highlight the role of spatial ac-
cessibility in determining patient flows across regions, we show under which restrictive as-
sumptions our framework collapses to a standard gravity equation. In a first step, we shut
down spatial heterogeneity within regions by assuming that all physicians and patients are lo-
cated in one point, respectively.19

Restrictive Assumption 1. There is no intraregional heterogeneity in distances between pa-
tients, that is, all patients (physicians) of one region are located in one point.

This assumption implies that the measure of accessibility only captures information on
interregional distances. Hence, intraregional differences of distances between patients and
physicians are not taken into account. In this case, the service provision level in Equation (1)
is identical for all physicians in destination d and reduces to Rd = 1/[

∑
z Kz f (distdz)]. Note

that Equation (1) takes into account all patients and their individual distances, including intra-
and interregional heterogeneity. In contrast, the simplified version abstracts from intrare-
gional distances. Hence, from the perspective of region d, this simplified measure only sums
over all potential origin regions z, as all patients within an origin z, Kz, face the same dis-
tance. From the perspective of a patient in origin o, the accessibility measure under Restric-
tive Assumption 1 can be written as follows: Ar1

od = LdRd f (distod). Inserting the service provi-
sion level leads to

Ar1
od = Ld f (distod )∑

z Kz f (distdz)
.(8)

Compared to Equation (2), the accessibility measure is identical for all patients from one re-
gion. As a second step, we additionally assume that all patients within the catchment area of a
physician affect the service provision level to the same degree, irrespective of their actual dis-
tance.

Restrictive Assumption 2. Congestion only depends on the number of physicians relative to
patients, that is, all patients within a catchment area enter into the service provision measure with
the same weight.

With this second assumption, the accessibility measure in Equation (8) simplifies to

Ar2
od = Ld f (distod )∑

z Kz
.(9)

Note that the latter measure only considers origins z for which f (distdz) > 0 in Equation (8).
This implies that all patients within the catchment area enter with a weight of one, irrespective
of their distance. Inserting Equation (9) into the gravity equation (7), we obtain

λod =
Modκ

−ε
od

(
Ld∑
z Kz

)ε

∑
s Mosκ

−ε
os

(
Ls∑
s Ks

)ε ,(10)

19 Note that this does not have to be the same point. Here, it is only important to assume that all patients of one
region have identical distances to physicians of a particular region.
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where κod = 1/[ f (distod )] represents bilateral (iceberg) traveling costs, which would reduce
patients’ utility as in a commuting framework à la Monte et al. (2018). Equation (10) resem-
bles a standard empirical specification of the gravity equation with both destination as well as
origin fixed effects and a measure of bilateral distance as a proxy for traveling costs. This anal-
ysis has shown that our augmented framework nests the standard gravity model as a special
case. Moreover, we conclude that bilateral distance should not play a role in determining re-
gional patient flows once we drop Restrictive Assumptions 1 and 2 and make use of our spa-
tial accessibility measure. To summarize, our theoretical analysis highlights two main implica-
tions, which are stated in the following propositions.

Proposition 1. Controlling for multilateral resistance and average amenities, patient flows be-
tween regions o and d are determined by a measure of spatial accessibility, which captures in-
traregional distances and congestion forces. A higher accessibility measure Akod increases the
probability that a patient k located in o consults a physician in d.

Proposition 2. Accounting for spatial accessibility implies that bilateral distance no longer
predicts interregional patient flows. The augmented gravity equation nests a standard frame-
work if intraregional heterogeneity (i) in distances between patients and physicians and (ii) in
the measure of congestion is not taken into account.

Based on these propositions, the goal of the following empirical analysis is to determine
the relevance of our refined accessibility measure compared to a standard gravity approach.
In particular, the regression analysis enables us to quantify the relative importance of the two
main ingredients in our spatial accessibility measure, namely intraregional heterogeneity (Re-
strictive Assumption 1) and congestion forces (Restrictive Assumption 2).

3. empirical strategy

In this section, we first outline how to empirically test the propositions of the theoretical
model. Subsequently, we describe the available data on patient mobility and discuss how we
utilize information on different levels of spatial aggregation to generate variables explaining
interregional patient flows.

3.1. Analyzing Patient Flows. In order to test the theoretical model, we start with the
gravity-type equation for patient flows (7), summarizing the probability that patient k living in
region o consults a physician in region d, that is, λkod = ModAε

kod/
∑

s MosAε
kos. Taking the log-

arithm of this equation gives

log(λkod ) = ε log(Akod ) + log(Mod ) − log

(∑
s

MosAε
kos

)
.(11)

The term
∑

s MosAε
kos captures multilateral resistance and can be accounted for by patient-

level fixed effects. As we observe the patients’ destination choices only at the regional level,
we take regional aggregates of both patients’ decisions and accessibility levels in Equa-
tion (11). We thus aggregate the probabilities of consulting a physician in region d, λkod, over
all patients in region o and analyze the number of patients yod = ∑

k λkod (patient flow), as
outlined in the following regression equation:

log(yod ) = γ0 + γ1 log(Aod ) + γ2 log(Mod ) + τo + μd + εod.(12)

We aggregate individual accessibility measures to derive the respective variable at the district
pair level (i.e., Aod = ∑

k Akod). The variable Mod indicates the average amenities of living in
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region o and consulting a GP in region d (see Subsection 3.2 for details). τo and μd denote di-
rectional regional fixed effects, accounting for all kinds of push and pull factors as well as mul-
tilateral resistance. Although we do not account for intraregional differences in physicians’
service quality, the regional fixed effects control for quality differences across districts. γ0, γ1,
and γ2 are the parameters to be estimated and εod indicates the error term.

Following the empirical literature applying gravity models (see, in particular, Santos Silva
and Tenreyro, 2006; Yotov et al., 2016), we estimate Equation (12) using a Poisson pseudo-
maximum-likelihood (PPML) estimator, which allows us to include the endogenous variable
(patient flows yod) in levels instead of in logarithms.20 This approach acknowledges that pa-
tient flows are count data and circumvents the problem that the logarithm of zero is unde-
fined. The endogenous variable on patient mobility includes intraregional patient flows (i.e.,
patients who utilize health care in their district of residence). Inference is based on a ro-
bust sandwich covariance matrix estimator to account for potential heteroskedasticity in the
error term. This approach yields unbiased results even in the presence of overdispersion
(Wooldridge, 1999).21

3.2. Data and Variables. The dependent variable yod is based on a data set comprising all
patient flows between the 115 political districts in the Austrian public outpatient sector in
2016, amounting to 13,225 observations (including intradistrict patient flows).22 An analysis at
a lower level of regional aggregation is impeded, because information on health-care utiliza-
tion is highly sensitive and thus restricted at a spatially (more) disaggregated level.

These data were provided by the Main Association of the Austrian Insurance Funds. We
follow Pohlmeier and Ulrich (1995) and treat each patient’s first consultation of a GP in each
quarter as a “first contact,” and all other consultations as “follow-up visits.”23 We count the
number of first contacts with a public GP in each quarter as a measure of patient mobility
from the origin district o (patient’s district) to the destination district d (physician’s district).
We restrict the measure of health-care utilization to first contacts instead of including follow-
up visits, because in case of the former the decision whether and where to go lies entirely
within the discretion of the patient, whereas the latter might be influenced by the GP recom-
mending a follow-up visit (i.e., self-referral). In total, 21,268,245 first contacts with public GPs
were recorded during the entire year of 2016, which corresponds to 0.62 contacts per capita
per quarter. Of these around 21 million contacts, almost 3 million (about 14%) occurred out-
side the patients’ districts of residence.

In order to explain patient mobility, we utilize data from various sources that are available
at different levels of spatial aggregation. In order to calculate the measure of spatial accessi-
bility based on the 2SFCA method, we exploit spatially highly granular data on the residential

20 The Poisson model specifies that each patient flow yod is drawn from a Poisson distribution, and that the ex-
pected patient flow is given by E(yod ) = exp(γ0 + γ1 log(Aod ) + γ2 log(Mod ) + τo + μd ). See Greene (2003) for de-
tails. Note that this Poisson model provides the same interpretation of the parameters as in the log-log-specification
outlined in Equation (12).

21 We prefer a Poisson over a hurdle or a zero-inflated Poisson model, because zero and positive patient flows are
the result of the same qualitative process (see, e.g., the discussion in Greene, 2003). Both outcomes are determined by
individual choices without institutional barriers. In fact, although more than half of the patient flows comprise 20 or
less individuals, only 4.7% of all flows are exactly zero.

22 Our analysis is restricted to contacts with public GPs. Contacts with private GPs are not routinely collected by
the social insurance funds as these constitute private transactions between the patient and the physician. Further, the
city of Vienna is divided into 23 districts. The districts Eisenstadt, Rust, and Eisenstadt-Umgebung had to be aggre-
gated due to data limitations.

23 We are aware that misclassifications are possible if an episode of care goes beyond the end of a quarter. We are
able to identify first contacts in our data set because the social health insurance funds’ reimbursement rates to pub-
lic physicians are higher if it is a patient’s first visit within a year’s quarter. The reason for the higher fee-for-service
is to compensate the higher effort, as first contacts are usually more (time-)consuming for physicians than follow-up
visits. See also the discussion in Pohlmeier and Ulrich (1995), who face a similar issue in distinguishing between first
contacts and follow-up visits. We address this issue again in the sensitivity analysis (see Subsection 4.3).
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Figure 1

map of residential population at 250 × 250 meter grid-cell level

population and the physicians’ locations.24 Data on the residential population were collected
by the Austrian Statistical Office (Statistics Austria) in 2015 and are provided at the grid-cell
level. The grid cells are independent of administrative boundaries and the size of one cell is
250 m × 250 m. Each person is assigned to exactly one cell based on their postal address. This
provides very detailed information about the spatial distribution of the population, as one
square kilometer (square mile) is represented by 16 (41) cells. The spatial distribution of the
population is illustrated in Figure 1.

Information on all outpatient physicians was obtained in June 2017 through a web-scraping
routine that collects data from the Web sites of all state-level chambers of physicians
(Landesärztekammern).25 These data include the physicians’ exact locations (addresses and
geocodes), their specializations, and whether they hold contracts with health insurance funds.
We restrict the sample to all GPs and differentiate between public and private ones. A pub-
lic GP is defined as a physician who holds a contract with at least one of the Austrian health
insurance funds. All other outpatient GPs are classified as private. The spatial distribution of
public GPs is illustrated in Figure 2.

The spatial accessibility of all physicians located in region d for patient k is stated in Equa-
tion (2). The distance between patient k and physician l, distkl = distlk, is calculated as the Eu-
clidean distance between the centroids of the grid cells hosting patient k and physician l, re-
spectively.26 The distance to a GP located in the same grid cell is set to 125 m to approximate
the travel distance within one grid cell. Note that this approach is also applied to calculate
the accessibility measure for physicians located within the patients’ districts of residence (i.e.,
when o = d).

We use a simple inverse power function f (distlk) = dist−β

lk to calculate the measure of spa-
tial accessibility, which is one of the most popular distance decay functions (Kwan, 1998). We
therefore follow recent applications of the two-stage floating catchment area method (see,
e.g., Dai, 2010; Dai and Wang, 2011; Delamater, 2013), arguing that a continuous distance de-

24 See Bergs and Budde (2022) for an overview of the recent increase in the availability of small-scale spatial data.
25 The data were collected by the dwh GmbH (http://www.dwh.at/) within the K-Projekt DEXHELPP (http://www.

dexhelpp.at/). Detailed description of the web-scraping process can be found in Wastian et al. (2018) and Rippinger
et al. (2019).

26 We do so because information on the spatial distribution within grid cells is not available (for patients), and for
computational reasons (for GPs).

http://www.dwh.at/
http://www.dexhelpp.at/
http://www.dexhelpp.at/
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Figure 2

map of public gp locations

cay function can capture changes in spatial accessibility better than binary (applied in Luo and
Wang, 2003; Radke and Mu, 2000) or discrete ones (adopted by Luo and Qi, 2009) used in
earlier versions of this method. The catchment area is set to 100 km, and thus f (distlk) = 0 if
the distance between patient and physician exceeds this threshold value.27 Individual accessi-
bility measures are aggregated at the district pair level, that is, Aod = ∑

k Akod. The parameter
β of the inverse power function will be determined endogenously by the data (see Subsection
4.1). If two districts are far away, the spatial accessibility Aod = 0 and the logarithm is unde-
fined. We follow Battese (1997) and replace the undefined values by log(Aod ) = 0, and include
a dummy variable in the regressions, indicating whether missing values are imputed.

It is important to emphasize that the distance decay function f (distlk) = dist−β

lk is convex
and decreases with distance. The accessibility measures of all residents of one region to physi-
cians in another district are thus higher on average compared to the accessibility calculated
at the average distance, a characteristic known as Jensen’s inequality (Jensen, 1906). Calcu-
lating the accessibility measure based on the average distance between two regions therefore
underestimates the average accessibility. The difference—and thus the error when relying on
district–pair–level indicators—is large if distance is important (i.e., the distance decay param-
eter β is large), if the distribution of the residential population and the GP locations are spa-
tially dispersed, and if the distance between two regions is small. If the distance between two
regions is large, the intraregional distribution of patients and physicians is less relevant.

In addition to the particular measure of spatial accessibility outlined above, we also use
simplified versions of this index. In a first step, we abstract from intraregional heterogeneity
(see Restrictive Assumption 1 in Subsection 2.4). Based on the distribution of the population
and the physicians, we calculate the population-weighted centroid and the physician-weighted
centroid for each region, and use the Euclidean distance between these two locations as a
measure of distod. Using this distance enables us to calculate a simplified accessibility mea-
sure, denoted by Ar1

od, following Equation (8). If we further assume that the level of con-
gestion only depends on the number of physicians relative to patients within the catchment
area (Restrictive Assumption 2), the logarithm of the accessibility measure simplifies to a

27 Restricting the catchment area to 100 km is to some extent arbitrary. However, estimating the relationship be-
tween patient flows and distance nonparametrically suggests that patient flows are not significantly different from
zero at this distance (see Figure A.1 in Appendix A.2.1).
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region–pair–specific function of distance, in addition to variables captured by origin and des-
tination fixed effects (see Equations 9 and 10). When applying both restrictive assumptions,
we use the Euclidean distance between the regions’ population-weighted centroids as a mea-
sure of distod.28 In order to obtain a measure for the average distance within each district, we
randomly draw 10,000 pairs of locations (grid cells) of each district and take the average Eu-
clidean distance between these location pairs.

We do not directly observe the variable Mod in Equation (12) indicating the average level of
amenities of living in region o and seeing a physician in region d. We therefore initially follow
Ahlfeldt et al. (2015) and assume that this variable is composed of an origin-specific part M̃o

and a destination-specific part M̂d in a multiplicative way, such that log(Mod ) = log(M̃oM̂d ) =
log(M̃o) + log(M̂d) is controlled for by the regional fixed effects.

However, the average amenities Mod could also include a bilateral component that influ-
ences the ease of traveling not captured by distance (or travel time). For example, conditional
on travel distance and time, patients may find it more comfortable to travel by train than by
bus, might prefer a direct train connection over connections necessitating to change trains, or
value public transport modes providing (free) Wi-Fi.29 We thus follow Monte et al. (2018) in
an alternative model specification and use commuter flows as indicators of bilateral amenities
Mod, because these (unobserved) bilateral amenities are expected to influence both commuter
and patient flows.30

Furthermore, working in a particular region might increase the workers’ preferences of
choosing a physician there as well, because marginal travel costs are likely to be small when
seeing a GP close to the workplace. Commuting patterns are available at the district–pair
level and are collected by Statistics Austria in 2015. These data include employees working
in their districts of residence (“within-district commuters”). As commuting flows are zero for
some district pairs, we again replace log(Mod ) = 0 in these cases and include a dummy vari-
able, indicating that the respective values have been imputed.

Summary statistics for all relevant variables of our analysis are presented in Table 1.

4. empirical results

In this section, we start by discussing how we select the necessary parameters to calculate
the spatial accessibility measures. We then present the results of the econometric analysis and
several sensitivity checks. Based on these regression results, we investigate counterfactual sce-
narios to illustrate how changes in the supply (and thus accessibility) of GP services affect
spatial accessibility and patient mobility.

4.1. Selection of Distance Function. In order to specify the distance decay function
f (distlk) = dist−β

lk for calculating the accessibility measure Aod, we have to determine the
appropriate parameter β. Ideally, we could draw on patient-level data and model the in-
dividual patients’ choices of their physicians, similar to Kessler and McClellan (2000) and
Gowrisankaran et al. (2018) in modeling patients’ hospital choices, and derive the parameter
β from these estimates. Lacking these data, we estimate Equation (12) with the spatial ac-
cessibility measures Ar1

od and Aod, respectively, as well as regional fixed effects τo and μd as
regressors. We vary the exponential parameters β for the distance decay function f (distlk)

28 In the sensitivity analysis, we use car travel times instead of Euclidean distances. In order to calculate driving
times, a local open source routing machine, based on a street network from Die Geofabrik, was used. See https:
//www.geofabrik.de/ and http://project-osrm.org/ for details.

29 Schmid et al. (2019) provide empirical evidence that time travel costs differ substantially between different trans-
port modes, and Bounie et al. (2019) estimate the travelers’ valuations of mobile phone and internet networks when
using public transport.

30 We use aggregated commuter flows instead of commuter shares as a proxy for average amenities Mod . Note that
the corresponding parameter estimated γ̂2 is identical in both variants, due to taking the logarithm of Mod in addition
to including regional fixed effects.

https://www.geofabrik.de/
https://www.geofabrik.de/
http://project-osrm.org/
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Table 1
summary statistics

Variable Mean Std. Dev. Min Max N

Patient flows (yod) 1,608.19 16,978.59 0.00 541,193.00 13,225
Residential population 74,602.51 42,600.17 11,332.00 273,107.00 115
Number of public GPs 35.50 18.06 5.00 114.00 115
Number of private GPs 40.73 39.90 6.00 281.00 115
Spatial accessibility based on 2SFCA method

Public GPs (Aod)
with f (distlk) = dist−5

lk 0.31 3.69 0.00 113.97 13,225
with f (distlk) = dist−2.8

lk 0.31 3.62 0.00 113.49 13,225
with f (distlk) = dist−0.3

lk 0.31 0.91 0.00 34.77 13,225
Public GPs, Restrictive Assumption 1 (Ar1

od)
with f (distod ) = dist−5

od 0.31 2.84 0.00 114.00 13,225
with f (distod ) = dist−2.1

od 0.31 2.04 0.00 112.43 13,225
with f (distod ) = dist−0.3

od 0.31 0.94 0.00 27.54 13,225
Public GPs normalized (Anrm

od )
with f (distlk) = dist−5

lk 648.72 7,544.97 0.00 267,704.90 13,225
with f (distlk) = dist−2.8

lk 648.72 7,092.97 0.00 258,833.40 13,225
with f (distlk) = dist−0.3

lk 648.72 1,903.17 0.00 66,553.40 13,225
Private GPs (Apri

od )
with f (distlk) = dist−5

lk 0.35 5.27 0.00 280.92 13,225
with f (distlk) = dist−2.8

lk 0.35 5.09 0.00 279.64 13,225
with f (distlk) = dist−0.3

lk 0.35 1.43 0.00 85.68 13,225
Distance

Euclidean distance (in km) between
population-weighted centroids (distod) 172.32 116.20 0.50 551.08 13,225
geographical centroids (distgeo

od ) 172.21 115.62 0.50 548.66 13,225
Driving time by car (in min, ttod) 179.23 105.06 0.50 525.51 13,225

Number of commuters (Mod) 304.42 2,286.39 0.00 94,802.00 13,225

Note: In order to obtain a measure for the average distance within each district we randomly draw 10,000 pairs of lo-
cations (grid cells) within each district and take the average Euclidean distance between these location pairs. In or-
der to estimate the average travel time within a district, we first perform a linear regression of travel time on the
Euclidean distance for all district pairs where o �= d, and then use the results to predict travel times within districts
(o = d). Variable on commuters includes within-district commuters.

and choose the value providing the best goodness-of-fit. Table A.1 in Appendix A.2.1 re-
ports different indicators regarding the fit of the model, namely, the Akaike information cri-
terion (AIC), the Bayesian information criterion (BIC),31 and the value of the log-likelihood
function, but suppresses the parameter estimates for brevity. With this approach, we follow
the guidelines outlined in Cameron and Trivedi (2005, pp. 278 ff.) for discriminating between
nonnested models within the likelihood framework.32 All these indicators suggest calculating
the spatial accessibility measures Ar1

od and Aod with a distance decay function of f (distlk) =
dist−2.1

lk and f (distlk) = dist−2.8
lk , respectively.33

31 AIC = −2 · LL + h · npar, where LL indicates the value of the log-likelihood function, npar represents the num-
ber of parameters in the model, and h = 2. For calculating the BIC, h is set to the logarithm of the number of obser-
vations.

32 Empirical studies using information criteria to select models or variables are manifold, including applications to
select the distributional form of the error term in duration models (Diaby et al., 2014), the optimal number of classes
in latent class models (Choi and Mokhtarian, 2020), or the optimal number of time-lags in time-series models (Loy
et al., 2021).

33 Alternatively, we could choose different values for the distance decay parameter β (and hence different values
for Aod) in each model specification to optimize the values for AIC, BIC, and the log-likelihood function. However,
this would make it difficult to compare parameter estimates between different models. We therefore stick with a sin-
gle value for β for each of the accessibility measures Aod and Ar1

od , but show that the regression results are robust to
smaller and larger values of the distance decay parameter β. See Table A.2 and Table A.3 in Appendix A.2.2 for de-
tails.
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Table 2
main analysis—regression results

Model 0 Model 1 Model 2 Model 3

Population-weighted distance, log(distod ) −2.798∗∗∗
(0.353)

Accessibility of GPs after RA1, log(Ar1
od ) 1.307∗∗∗

(0.198)
Accessibility of GPs, log(Aod ) 0.616∗∗∗ 0.425∗∗∗

(0.003) (0.009)
Number of commuters, log(Mod ) 0.489∗∗∗

(0.019)
Constant 18.178∗∗∗ 9.278∗∗∗ 9.849∗∗∗ 6.434∗∗∗

(1.281) (0.696) (0.024) (0.145)
Origin fixed effects Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes

Number of obs. 13,225 13,225 13,225 13,225
Log-likelihood −25,995,758 −24,757,597 −780,106 −549,204
BIC 51,993,698 49,517,387 1,562,404 1,100,620
AIC 51,991,975 49,515,656 1,560,674 1,098,874

Note: All models estimate inter-regional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. Ar1

od indicates the spatial ac-
cessibility measure under Restrictive Assumption 1 (RA1), that is, when all patients (all physicians) of one region are
located in one spot. If explanatory variables are zero and the logarithm is undefined, dummy variables are included
that take the value one in these cases and zero otherwise. Standard errors are reported in parenthesis and are based
on a robust sandwich covariance matrix estimator. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

In general, a higher parameter β is associated with a steeper distance decay, implying that
proximity becomes more important and that GPs further away contribute less to the spatial
accessibility measure.34 Figure A.2 in Appendix A.2.1 shows the spatial distribution of the ac-
cessibility measure at the individual level, Ako = ∑

d Akod, for β = 2.8 and β = 0.3, illustrat-
ing that accessibility is more evenly distributed across space for lower parameter values. If β

takes a very high value, the spatial distribution of accessibility levels becomes congruent with
the distribution of GP locations in Figure 2. The summary statistics of the dyad-specific acces-
sibility measure Aod for different values of β, reported in Table 1, underpin this observation,
as the variation of the accessibility measure increases with β.

4.2. Regression Results. In our base model (Model 0), which closely follows the standard
gravity framework and, hence, applies the Restrictive Assumptions 1 and 2 (see Equations 9
and 10), we only include the distances between population-weighted centroids in addition
to origin and destination fixed effects. In the next specification (Model 1), we use the “sim-
ple” spatial accessibility measure, Ar1

od, for public GPs based on Restrictive Assumption 1,
that is, when we ignore intraregional heterogeneity (see Equation 8). In Model 2, we relax
both restrictions, but assume that the average amenities Mod are composed of an origin- and
a destination-specific part and are therefore captured by regional fixed effects. Finally, in the
main model specification (Model 3), we add inter- and intraregional commuter flows as a
proxy for average bilateral amenities Mod. Table 2 summarizes the regression results for the
four models outlined above, with the spatial accessibility measures based on the distance de-
cay functions selected in Subsection 4.1. All model specifications include directional (origin
and destination) regional fixed effects.

Model 0 resembles the standard gravity equation and includes the population-weighted
centroid-to-centroid Euclidean distance as the only dyad-specific variable. The estimated
parameter is significantly negative, suggesting that a 1% increase in distance is associated

34 With β = 2.8, doubling the distance between a patient and a GP location decreases the physician’s contribution
to the accessibility measure by about 86%.
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Table 3
sensitivity analysis—additional control variables

Model 3a Model 3b Model 3c

Accessibility of GPs, log (Aod ) 0.425∗∗∗ 0.425∗∗∗ 0.456∗∗∗
(0.009) (0.009) (0.026)

Number of commuters, log (Mod ) 0.483∗∗∗ 0.489∗∗∗ 0.497∗∗∗
(0.018) (0.020) (0.020)

Population-weighted distance, log (distod ) −0.023
(0.021)

Accessibility of private GPs, log (Apriv
od ) −0.034

(0.026)
Constant 6.536∗∗∗ 6.434∗∗∗ 6.407∗∗∗

(0.153) (0.145) (0.147)
Origin fixed effects Yes Yes Yes
Destination fixed effects Yes Yes Yes
Dummy for same federal state No Yes No

Number of obs. 13,225 13,225 13,225
Log-likelihood −548,740 −549,197 −546,277
BIC 1,100,614 1,094,783 1,099,700
AIC 1,098,862 1,093,023 1,097,948

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. Standard errors are reported in parenthesis and are based on a robust sandwich covariance matrix estima-
tor. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

with 2.80% lower patient flows. Substituting the population-weighted distance with the sim-
ple accessibility measure (Model 1) slightly improves the goodness-of-fit (according to BIC,
AIC, and the log-likelihood value) and shows that a 1% increase in accessibility is associ-
ated with a 1.31% increase in patient mobility. Using an accessibility measure based on the
2SFCA method (Model 2) greatly improves the model’s explanatory power according to our
goodness-of-fit measures.35 The elasticity of patient flows with respect to accessibility of pub-
lic GPs takes a point estimate of 0.62, which is significantly positive at the 0.1% level. In
Model 3, when including commuters as a proxy for average amenities between two districts,
the coefficient on accessibility of public GPs decreases to 0.43, but is still significantly differ-
ent from zero. A 1% increase in the number of commuters is associated with 0.49% higher
patient flows between districts. The goodness-of-fit measures show that the full model, which
is based on the theoretical framework outlined in Section 2, has the highest explanatory
power compared to all other presented specifications. We thus find strong empirical evidence
in support of Proposition 1, namely, that spatial accessibility is an important determinant of
patient mobility.

4.3. Sensitivity Analysis. The parameter estimates on the relationship between spatial ac-
cessibility and patient mobility are remarkably robust to a number of sensitivity analyses, cov-
ering potential limitations of the main empirical specification.

Additional control variables: We first include additional explanatory variables, as reported
in Table 3. We test Proposition 2 by adding the population-weighted distance to our preferred
specification (i.e., Model 3, reported in Table 2), to see whether this affects the coefficient γ1

of the main explanatory variable, Aod. Including both the accessibility measure and distance
in one regression (see Model 3a in Table 3) shows that the parameter estimate on distance,
distod, is negligibly small and not significantly different from zero, whereas the estimated co-

35 As the AIC and BIC are difficult to interpret, we also calculate McFadden’s adjusted R2, which increases from
0.70 in Model 0 to 0.99 in Model 3. However, as for nonlinear models the interpretation of such pseudo-R2s is dis-
puted (see Cameron and Trivedi, 2005, for a discussion), these figures must be interpreted cautiously.
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efficient of Aod is virtually unaffected. Compared to Model 0, the point estimate of distod de-
clines (in absolute values) from −2.80 to −0.02 and thus by more than 99%. As suggested
by our theoretical model and the resulting Proposition 2, the mere distance between districts
does neither significantly nor substantially contribute to explaining patient mobility, once we
include our measure of spatial accessibility (based on rich information on the locations of pa-
tients and physicians).

To account for other potential covariates, we add a dummy variable that equals one if the
patient’s district and the physician’s district are in the same state, and zero otherwise (Model
3b). Even though the borders of the nine federal states in Austria do not restrict patients in
their choice of physicians, they might impose other barriers (e.g., public transport providers
differ between states). Furthermore, the Austrian outpatient sector is not limited to public
GPs, but also includes those who do not have a contract with one of the public health insur-
ance funds, so-called private GPs (“Wahlärzte”). Patients might prefer a private GP over a
public one either to reduce waiting time, receive increased consultation length, or because pri-
vate physicians also practice at the local hospital and refer to their outpatient office following
an inpatient treatment. To account for a potential substitution effect between public and pri-
vate physicians, we add the same accessibility measure based on the 2SFCA method for pri-
vate physicians (Model 3c). The parameter estimates on the accessibility of public GPs, Aod,
and on commuters, Mod, are hardly affected by including additional explanatory variables and
only change by a small and statistically insignificant amount. As expected, the accessibility of
private GPs, Apriv

od , is negatively associated with patient flows in the public sector, although the
coefficient is not significantly different from zero.

Accounting for differences in demand: In the main analysis, we only consider the patients’
places of residence (relative to a GP’s location) when calculating the service provision level Rl

in Equation (1) as an (inverse) indicator of congestion. However, the need for health-care ser-
vices varies substantially between different sociodemographic groups of patients. Utilization
rates for sex–age cohorts (as indicators for different demand levels), reported in Table A.4 in
Appendix A.2.3, show that the average number of consultations ranges from 2.3 (for girls be-
low 10 years) up to 30.5 (for females aged 90 or older), suggesting that different age cohorts
contribute to the congestion of GPs to very different degrees.36

To account for differences in demand, we weight all patients based on the average num-
ber of consultations of the respective sex–age cohort (in addition to the patients’ distance to
the respective GP) when calculating the service provision level Rl . We use data available at
the grid-cell level that contain information on the age distribution (for both males and fe-
males) of the residential population in 10-year intervals.37 The weights are based on utilization
rates at the national level and are thus independent of local accessibility. The corresponding
accessibility measure Aweight

od is much smaller (and averages only 0.04 compared to 0.31), be-
cause patients consult public physicians about eight times per year on average. However, the
correlation coefficient between the unweighted and the weighted accessibility measure, Aod

and Aweight
od , is as high as 0.9986. Although the distribution of potential patients across space

is very uneven, making the accessibility measure Aod superior to the mere distance between
the regions’ centroids, the demographic composition of the population is rather homogeneous.
Thus, accounting for the sex–age composition of the population does not substantially im-

36 These weights are based on the number of consultations in 2017, because data on health-care utilization disaggre-
gated by sex–age cohorts for 2016 are unavailable to us.

37 We utilize a slightly different data source to calculate the service provision level Rl based on sex–age cohort-
specific weights. While the main analysis is based on the population census from January 1, 2015, this sensitivity anal-
ysis uses data from the labor market statistics from October 31, 2014. Both data sets are register-based data and are
collected by Statistics Austria, but the labor market statistics reports the age distribution of the population in a more
disaggregated way, which is important for this sensitivity analysis. If the number of inhabitants in one grid cell is three
or less, demographic information is not reported due to privacy concerns. This information is thus unavailable for
about 1% of the population. For these individuals, the weights are based on the average number of GP consultations
of the entire population.
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Table 4
sensitivity analysis—patients weighted by utilization rates

Model 2a Model 3d Model 3e Model 3f

Accessibility of GPs, log (Aweight
od ) 0.617∗∗∗ 0.422∗∗∗ 0.422∗∗∗ 0.434∗∗∗

(0.003) (0.009) (0.008) (0.024)
Number of commuters, log (Mod ) 0.496∗∗∗ 0.491∗∗∗ 0.503∗∗∗

(0.019) (0.018) (0.020)
Population-weighted distance, log (distod ) −0.023

(0.021)
Accessibility of private GPs, log (Apriv

od ) −0.014
(0.025)

Constant 11.160∗∗∗ 7.278∗∗∗ 7.381∗∗∗ 7.239∗∗∗
(0.024) (0.160) (0.166) (0.161)

Origin fixed effects Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes

Number of obs. 13,225 13,225 13,225 13,225
Log-likelihood −810,447 −548,837 −548,361 −548,405
BIC 1,623,087 1,099,886 1,098,943 1,099,041
AIC 1,621,357 1,098,141 1,097,190 1,097,281

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. The accessibility measure Aweight

od is based on a service provision level with patients weighted by the aver-
age number of GP consultations of the patients’ sex–age cohort in 2017. Standard errors are reported in parenthesis
and are based on a robust sandwich covariance matrix estimator. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

prove the model, despite the large differences in utilization between young and old residents.
Consequently, using the weighted accessibility measure Aweight

od , as reported in Table 4, gives
virtually identical results compared to using the unweighted index Aod.38

Identifying first contacts: So far, we have investigated patient mobility based on initial con-
tacts, which we identify as a patient’s first consultation of a public physician within a given
quarter of the year. However, episodes of care do not end at the end of a quarter, and follow-
up visits within one care episode might be (misleadingly) considered as a first contact by this
approach. As we do not observe individual care episodes to identify first contacts more pre-
cisely, we have to rely on first visits within a quarter as a proxy for (unobserved) initial con-
tacts. In order to show that our results are not driven by this (potentially imprecise) identifi-
cation of first contacts, we investigate patient mobility based on all 63,080,600 consultations of
public GPs in Austria in 2016 (compared to 21 million first visits within a quarter). The results,
provided in Table 5, show that the main findings are robust to this modification. The point es-
timates on spatial accessibility Aod are slightly larger, but not significantly different from the
corresponding parameter estimates based on only first contacts (within the quarter), reported
in Tables 2 and 3. Further, the main conclusion that our proposed model is superior to the
standard gravity model in predicting patient flows remains valid.

Travel time to proxy travel costs: In the empirical literature on commuting behavior, it
is well-established that travel costs are better proxied by travel time than by (Euclidean or
travel) distance (see, e.g., Glaeser and Kahn, 2004).39 Ideally, we could draw on travel times
instead of Euclidean distances between grid cells to construct our accessibility measure Aod.
This approach is impeded by the large number of grid cells (roughly 1.3 million in Austria),

38 Note that the respective parameter estimates of this sensitivity analysis are directly comparable to the coeffi-
cients reported in Tables 2 and 3, despite the smaller values of Aweight

od , because the accessibility measures are included
in logarithmic form in all models.

39 Van Ommeren and Dargay (2006) estimate that the ratio between pecuniary and time travel costs is as low as
0.14. This result suggests that travel time is a very good proxy of overall travel costs. When investigating the city struc-
ture of Berlin, Ahlfeldt et al. (2015) also use travel times between city blocks as indicators of commuting costs.
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Table 5
sensitivity analysis—patient mobility based on all gp consultations

Model 0a Model 1a Model 2b Model 3g Model 3h

Pop.-weighted distance, log(distod ) −2.877 ∗∗∗ −0.027
(0.389) (0.020)

Accessibility of GPs after RA1, log(Ar1
od ) 1.342 ∗∗∗

(0.215)
Accessibility of GPs, log(Aod ) 0.635 ∗∗∗ 0.441 ∗∗∗ 0.441 ∗∗∗

(0.003) (0.009) (0.009)
Number of commuters, log(Mod ) 0.497 ∗∗∗ 0.490 ∗∗∗

(0.020) (0.019)
Constant 19.430 ∗∗∗ 10.283 ∗∗∗ 10.849 ∗∗∗ 7.373 ∗∗∗ 7.497 ∗∗∗

(1.379) (0.708) (0.024) (0.152) (0.163)
Origin fixed effects Yes Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes Yes

Number of obs. 13,225 13,225 13,225 13,225 13,225
Log-likelihood −79,573,737 −75,508,968 −2,018,316 −1,422,017 −1,420,327
BIC 159,149,656 151,020,128 4,038,824 2,846,245 2,842,875
AIC 159,147,934 151,018,398 4,037,094 2,844,500 2,841,122

Note: All models estimate inter-regional patient flows (all consultations rather the first contacts) by using a Poisson
pseudo-maximum-likelihood (PPML) estimator and include origin- (patient-) and destination- (physician-) regional
fixed effects. Ar1

od indicates the spatial accessibility measure under Restrictive Assumption 1 (RA1), that is, when all
patients (all physicians) of one region are located in one spot. If explanatory variables are zero and the logarithm is
undefined, dummy variables are included that take the value one in these cases and zero otherwise. Standard errors
are reported in parenthesis and are based on a robust sandwich covariance matrix estimator. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

and the extremely time-consuming calculation of travel times between all of them. Further-
more, the empirical literature based on data from the United Kingdom suggests that Eu-
clidean distance, driving time, and driving distance to emergency departments are highly cor-
related, and that straight-line distance as a proxy for perceived accessibility and reported driv-
ing time to hospitals is as good as GIS-based unimpeded travel time (Fone et al., 2006; Haynes
et al., 2006). Although in our sample, the correlation between the population-weighted Eu-
clidean distance and the driving time by car between the regions is as high as 0.96, we
investigate the sensitivity of our results when using travel time ttod instead of the Euclidean
distance distod.

The corresponding results are reported in Table 6. Including travel time as the only ex-
planatory variable in addition to regional fixed effects (Model 0b) shows that the association
of travel time with patient mobility is significantly negative, with a point estimate of −3.32.
Using travel time instead of Euclidean distance between population-weighted centroids (see
Model 0 in Table 2) increases the model’s fit, suggesting that in our case travel time is in-
deed a better proxy for travel costs than distance. When we include the driving time instead
of distance in addition to spatial accessibility Aod and the number of commuters Mod, as sum-
marized in Model 3i in Table 6, the estimated coefficient of travel time remains significantly
negative. Although distance—consistent with the predictions of our theoretical model, sum-
marized in Proposition 2—does not contribute to explaining patient mobility once we include
our measure of spatial accessibility Aod, considering driving time between district centroids
adds some explanatory power. However, the parameter estimate on spatial accessibility, Aod,
is again significantly positive, the point estimate decreases slightly from 0.43 (when we include
distance instead of travel time, see Model 3a in Table 3) to 0.33, whereas the point estimate on
travel time declines substantially (in absolute terms) from −3.32 to −0.44.

Alternatives to account for multilateral resistance: The starting point of our empiri-
cal analysis was the gravity-type equation (7) for the probability of a patient consult-
ing a physician in a particular district, λkod = ModAε

kod/
∑

s MosAε
kos. Although the de-

nominator can be captured by individual fixed effects after a logarithmic transforma-
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Table 6
sensitivity analysis—travel time to proxy travel costs

Model 0b Model 3i

Travel time by car in minutes, log (ttod ) −3.319∗∗∗ −0.436∗∗∗
(0.040) (0.023)

Accessibility of GPs, log (Aod ) 0.331∗∗∗
(0.009)

Number of commuters, log (Mod ) 0.509∗∗∗
(0.016)

Constant 19.932∗∗∗ 7.645∗∗∗
(0.257) (0.125)

Origin fixed effects Yes Yes
Destination fixed effects Yes Yes

Number of obs. 13,225 13,225
Log-likelihood −4,525,502 −456,483
BIC 9,053,186 915,187
AIC 9,051,464 913,434

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. Standard errors are reported in parenthesis and are based on a robust sandwich covariance matrix estima-
tor. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

tion, the multilateral resistance term is not precisely (but only approximately) accounted
for by regional fixed effects when we aggregate individual probabilities at a regional
level. In general, log[E(yod )] = log(

∑
k λkod ) = log[

∑
k(ModAε

kod/
∑

s MosAkos)] �= log(Mod ) +
log(Aod ) − log(

∑
s MosAε

os), with Aod = ∑
k Aε

kod, because the denominator is patient-specific
and depends on the exact location of patient k within region o. We address this issue in two
ways: First, we account for multilateral resistance at an individual level and normalize the in-
dividual spatial accessibility Anrm

kod = Akod/
∑

d Akod, such that
∑

d Anrm
kod = 1 for all patients, re-

sulting in bilateral accessibility levels Anrm
od = ∑

k Anrm
kod (see Model 3j reported in Table 7). Sec-

ond, we calculate the multilateral resistance mlro = ∑
s

∑
k MosAkos, and include this term as

an additional explanatory variable.
As the multilateral resistance term is origin specific, we exclude regional fixed effects at this

level, but include the population size of the patient’s region instead. We neglect destination
fixed effects in one specification (Model 3k), but take these dummy variables into account in
an alternative variant (Model 3l), as reported in Table 7. The parameter estimate of the nor-
malized measure of spatial accessibility Anrm

od is significantly positive, and the point estimate
of 0.46 is similar to the one of the nonnormalized accessibility measure Aod in Model 3, re-
ported in Table 2. If we include a variable for the multilateral resistance term instead of re-
gional fixed effects, the explanatory power of the model declines somewhat, but the parame-
ter estimates of our measure of spatial accessibility Aod remains virtually unaffected, irrespec-
tive of excluding (Model 3k) or including destination fixed effects (Model 3l). The parameter
estimates of the multilateral resistance term are significantly negative in both model specifica-
tions, indicating that patient flows to one region decrease with the spatial accessibility and av-
erage amenities of other regions.

Alternative distance decay for private GPs: Finally, we use alternative distance decay func-
tions to calculate the accessibility measure for private GPs, Apriv

od , and apply different βs for
the inverse power function f (distlk) = dist−β

lk . We do so because we did not endogenously de-
termine the optimal β for the calculation of Apriv

od , as we did for Aod in Subsection 4.1. As re-
ported in Models 3m to 3p in Table 8, the estimated coefficients for the spatial accessibility to
public GPs, Aod, remain significantly positive and vary only slightly.
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Table 7
sensitivity analysis—alternatives to account for multilateral resistance

Model 3j Model 3k Model 3l

Accessibility of GPs, log(Aod ) 0.464∗∗∗ 0.446∗∗∗
(0.024) (0.009)

Accessibility of GPs (normalized), log(Anrm
od ) 0.460∗∗∗

(0.009)
Number of commuters, log(Mod ) 0.768∗∗∗ 0.373∗∗∗ 0.424∗∗∗

(0.014) (0.050) (0.018)
Multilateral resistance term, log(mlro) −0.163∗∗∗ −0.087∗∗

(0.019) (0.027)
Population (in logs) 0.528∗∗∗ 0.365∗∗∗

(0.045) (0.055)
Constant 0.503∗∗∗ 1.502∗∗ 3.120∗∗∗

(0.073) (0.483) (0.491)
Origin fixed effects Yes No No
Destination fixed effects Yes No Yes

Number of obs. 13,225 13,225 13,225
Log-likelihood −586,600 −1,024,787 −642,870
BIC 1,175,410 2,049,640 1,286,888
AIC 1,173,665 2,049,587 1,285,982

Note: All models estimate inter-regional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator. If explanatory variables are zero and the logarithm is undefined, dummy variables are included that take the
value one in these cases and zero otherwise. Standard errors are reported in parenthesis and are based on a robust
sandwich covariance matrix estimator. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 8
sensitivity analysis—alternative distance decay for private gps

Model 3m Model 3n Model 3o Model 3p
β = 0.5 β = 1.0 β = 1.5 β = 2.0

Accessibility of GPs, log (Aod ) 0.447∗∗∗ 0.461∗∗∗ 0.475∗∗∗ 0.471∗∗∗
(0.009) (0.013) (0.019) (0.025)

Accessibility of private GPs, log (Apriv
od ) −0.213∗∗∗ −0.155∗∗∗ −0.127∗∗∗ −0.079∗

(0.020) (0.031) (0.038) (0.038)
Number of commuters, log (Mod ) 0.494∗∗∗ 0.496∗∗∗ 0.500∗∗∗ 0.500∗∗∗

(0.020) (0.020) (0.019) (0.019)
Constant 6.536∗∗∗ 6.618∗∗∗ 6.624∗∗∗ 6.513∗∗∗

(0.148) (0.160) (0.172) (0.162)
Origin fixed effects Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes

Number of obs. 13,225 13,225 13,225 13,225
Log-likelihood −536,988 −542,289 −543,914 −545,442
BIC 1,076,206 1,086,808 1,090,058 1,093,114
AIC 1,074,446 1,085,048 1,088,298 1,091,354

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. Standard errors are reported in parenthesis and are based on a robust sandwich covariance matrix estima-
tor. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Using a less pronounced distance decay function (i.e., a smaller β) to calculate Apriv
od results

in significantly negative parameter estimates for this variable, indicating that private and pub-
lic GPs can be considered as substitutes. Furthermore, the point estimates for Apriv

od are larger
(in absolute terms) for smaller values of β. This, together with the improved goodness-of-fit
statistics, suggests that the ideal β for calculating private GPs’ accessibility is smaller than that
for calculating public GPs’ accessibility, indicating that proximity is relatively less important
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when choosing a private health-care provider. This seems plausible, as consulting a private
physician—contrary to a public one—usually requires out-of-pocket payments, likely leading
to a differentiation of physicians in quality (especially in terms of time spent with the patient)
and pricing.

4.4. Simulation of Counterfactual Scenarios. Based on the regression results, we can pre-
dict the effects of supply-side shocks, such as the exit, entry, or relocation of public GPs
on spatial accessibility and thus on welfare. Changes in spatial accessibility affect patients’
choices about which physician to consult, and thus inter-regional patient mobility. To illustrate
this, we conduct two sets of simulation experiments: First, we focus on one district and evalu-
ate the impact of several physicians relocating or leaving the market, and second, we evaluate
the effect of the exit of GPs who are already past the statutory retirement age. The first simu-
lation exercise serves as an illustration of the predictive properties of our model, whereas the
second highlights how our model can support evidence-based policymaking.

4.4.1. Simulation for illustration of model properties. In the first simulation exercise, we fo-
cus on the district St. Veit, indicated by gray shading in Figure 2, because this is a typical rural
region with difficulties of attracting outpatient GPs: The district has about 55,000 inhabitants
and lacks an urban agglomeration, its population has declined over the last decades, and the
share of the elderly is high. Furthermore, the spatial distribution of the population within the
region and the transport connections to neighboring districts are quite heterogeneous, at least
partly due to topographical reasons. The district hosts 32 GPs and less than 10% of the popu-
lation consults a physician outside their region of residence. St. Veit has strong economic ties
with neighboring regions in the south-west: 18% of the employed residents of St. Veit com-
mute to the federal state’s capital Klagenfurt, and about 2.6% to Klagenfurt Land as well as
Feldkirchen. The shares of commuters to the other districts bordering St. Veit are much lower
(between 0.2% and 1.1%), whereas 65% work in their own district.

In four counterfactual scenarios, we investigate the effects of supply-side shocks in this dis-
trict on spatial accessibility and thus on patient mobility. Specifically, we simulate changes in
patient flows (i) if the 16 GPs of the northern part of this region leave the market (scenario
1), (ii) if the 16 GPs of the southern part leave the market (scenario 2), (iii) if 16 randomly
selected GPs leave the market (scenario 3), or (iv) if the number of GPs remains unaffected,
but 16 randomly selected GP locations are dissolved, whereas the remaining 16 locations host
two GPs (scenario 4). The district of St. Veit, its neighboring regions, the GP locations, and
the spatial distribution of the population are illustrated in Figure 3.

The change in the number or locations of physicians influences the accessibility measure
Akod to physicians in St. Veit and thus the patients’ accessibility levels Ako = ∑

d Akod. The im-
pact on accessibility at the patient level is displayed in Figure 4 for these four scenarios. The
effect on spatial accessibility is higher the closer patients are located to physicians leaving the
market and diminishes with distance, but is not confined by regional borders.40 Note that the
way these supply-side shocks affect accessibility across space is directed by the distance decay
function f (distlk) = dist−β

lk , determined endogenously by the data. Following Equation (3), a
change in spatial accessibility leads to a proportional change of a patient’s utility, and can thus
be interpreted as the welfare effect due to variations in the service provision level of primary
health care. Intuitively, there are two reasons for a decline in welfare if physicians leave the
market: First, patients have to travel further on average to consult a GP. Second, the remain-
ing physicians in the vicinity are more congested and service quality declines. Although the
number of first contacts with a GP is not affected due to the construction of the model (since
it is assumed that each patient chooses the physician with the highest utility), it should be

40 Whereas Figure 4 reports the relative change in accessibility, Table A.5 in Appendix A.2.4 summarizes the av-
erage change in accessibility at the regional level, indicating large differences in the average effects for the different
scenarios under scrutiny (for residents of both St. Veit and its neighboring regions).
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Notes: Map section displays the distribution of the population and all public GP locations in and close to the dis-
trict of St. Veit. The dashed line separates the 16 northern from the 16 southern GPs of St. Veit. In four simulation
experiments, we evaluate the effects on patient mobility if the 16 northern GPs leave the market (scenario 1), if the
16 southern GPs leave the market (scenario 2), if 16 randomly selected GPs leave the market (scenario 3), or if the
number of GPs remains unaffected, but 16 randomly selected GP locations are dissolved, whereas the remaining 16
locations host two GPs (scenario 4).

Figure 3

baseline for simulation experiments

noted that “more heavily congested” physicians may well lead to a smaller number of consul-
tations due to fewer follow-up visits.

The changes in accessibility affect the patients’ choices of their GPs and therefore patient
mobility. This is of high policy relevance, because replacing physicians who are retiring may
be particularly difficult in some parts of a region (in our application: in the thinly populated
northern area of the district). As a baseline scenario, we calculate the expected probability of
each individual to consult a GP in a particular district, based on the gravity-type equation for
patient flows (7) and on the parameter estimates of Model 3, reported in Table 2:

λ̂kod = Mγ̂2
odAγ̂1

kd∑
s Mγ̂2

osAγ̂1
ks

.(13)

Aggregating the probabilities of individual patients at the district–pair level results in esti-
mated patient flows, serving as a benchmark for comparison with our counterfactual scenarios.
The change in the number or locations of physicians affects the accessibility measure Akod to
physicians in St. Veit and thus patient flows from other districts to St. Veit. It also influences
outward-bound patient mobility via the multilateral resistance term, because physicians in
St. Veit will be more “congested” and consulting physicians in other districts becomes rela-
tively more attractive. Although we focus on the effects of these four counterfactual scenarios
on patient flows from and to St. Veit to keep the discussion concise, we are aware that patient
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Notes: Figures illustrate changes in spatial accessibility at the individual level, Ako = ∑
d Akod , relative to the baseline

scenario (in %), if the 16 northern GPs leave the market (scenario 1), if the 16 southern GPs leave the market (sce-
nario 2), if 16 randomly selected GPs leave the market (scenario 3), and if the number of GPs remains unaffected, but
16 randomly selected GP locations are dissolved, whereas the remaining 16 locations host two GPs (scenario 4).

Figure 4

results of simulation experiments—expected change in aggregate accessibility

mobility between region–pairs other than St. Veit are also influenced due to changes in the
multilateral resistance term. These general equilibrium adjustments are reported in patient
flow matrices (see Tables A.6 to A.9 in Appendix A.2.4).

The expected effects of these four scenarios on patient flows from and to St. Veit are illus-
trated in Figure 5 and shown in the table below the map. If 16 physicians in the north of the
district leave the market, nearly 6,000 additional residents of St. Veit see a GP in a region out-
side their district of residence (scenario 1). The share of inhabitants of St. Veit consulting GPs
outside their district of residence thus increases by nearly 11 percentage points (pp). Patient
inflows are expected to decline, but by a much smaller amount in absolute terms (by about
800 patients). If the 16 physicians in the south leave the market (scenario 2), the effects are
generally much larger: 15,000 (27 pp) additional residents of St. Veit switch to GPs located in
other districts, mostly to the districts in the south-west. Patient inflows decline substantially by
4,600, mostly attributable to the south-western neighbors. Most of the patients from other re-
gions, who do not choose a physician in St. Veit anymore due to large-scale market exits, pick
a GP in their district of residence in both counterfacutal scenarios (between 60% and 88%;
see Tables A.6 and A.7 in Appendix A.2.4 for details).

Some aspects of these results are worth highlighting: First, the effects of scenario 2 are
much larger compared to scenario 1. Second, the implications of market exits of GPs in the
south on patient mobility are heavily concentrated to the south-western regions, which are
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Notes: Map section displays the simulation results of market exits of GPs in the district of St. Veit (shaded gray)
on patient mobility. Black bars indicate the change in the number of patients from St. Veit to the respective district,
whereas gray bars indicate the change in the number of patients from the respective district to St. Veit. Expected ef-
fects on patient mobility between other district pairs are not displayed. The first pair of bars indicates the expected
effect on patient mobility if the 16 northern GPs leave the market (scenario 1), the second pair illustrates the im-
pact if the 16 southern GPs leave the market (scenario 2), the third pair depicts the consequences if 16 randomly
selected GPs leave the market (scenario 3), and the fourth pair displays the influence if the number of GPs remains
unaffected, but 16 randomly selected GP locations are dissolved, whereas the remaining 16 locations host two GPs
(scenario 4). The corresponding figures are provided in the table below the figure. Figures in a) denote the expected
change in patient mobility over the total population in St. Veit in percentage points (pp).

Figure 5

results of simulation experiments—expected change in patient mobility
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also more strongly affected than the neighboring districts in the north-east if the physicians in
the north leave the market (scenario 1). The substantial differences between these two scenar-
ios are mainly due to intraregional heterogeneity: If the southern GPs leave the market, the
inhabitants affected most strongly (i.e., patients living close to these physicians) are mainly
located in the very south of the St. Veit district. For these patients, physicians in the densely
populated regions in the south-west are good substitutes, and many of them are expected
to choose a doctor there. Additionally, the strong economic ties between these two regions
(indicated by a large number of commuters) make them even more attractive. In scenario 1
(when the northern GPs leave the market), many of the most strongly affected patients are
located close to the geographical centroid of the region. In this case, physicians in the south-
ern part of their district of residence or even in the bordering regions in the south-west (due
to strong economic ties) are often better alternatives than GPs in the thinly populated region
bordering St. Veit in the north.

If the physicians leaving the market are randomly selected (scenario 3), the effects on pa-
tient mobility are much smaller: Patient flows from St. Veit to other districts increase by only
2,800 (5 pp), and inflows from other districts decline by less than 1,000 patients. Although the
utility of patients declines due to a lower quality of the medical service (because the GPs are
more “congested,” see Figure 4), proximity seems to outweigh this reduction in service qual-
ity for most patients. If the number of GP locations declines while the number of physicians
remains unaffected (scenario 4), patient outflows increase marginally by about 700 people. As
the GPs are less congested, patient inflows increase slightly.

The counterfactual scenarios in this section illustrate that the pure number (or the share) of
physicians leaving the market is a poor proxy to evaluate the effects on (aggregated) patient
mobility, and to determine which other regions are also influenced by this supply-side shock.
In the scenarios investigated, the number of patients choosing a doctor in a district where half
of the physicians exit the market may decline by a total of 19,600 (scenario 2) or by merely
3,700 (scenario 3), depending on the exact locations of these physicians, the spatial distribu-
tion of the population, and the attractiveness of GPs in neighboring regions as viable alterna-
tives.

Note that we would not be able to investigate these counterfactual scenarios in a standard
gravity model when relying on cross-sectional data only, because regional fixed effects would
absorb the impact of the (region-specific) number of GPs. Excluding regional fixed effects
or utilizing panel data would enable us to estimate the relationship between patient mobility
and the number of physicians, and thus to predict the effects of GPs leaving the market on
patient flows. However, even in this case information on intraregional heterogeneity is not ac-
counted for, and differentiating between scenarios 1, 2, and 3 (where only the exact locations
of the exiting GPs within a region differ) would not be possible. The counterfactual scenarios
presented here highlight that this intraregional heterogeneity is of key importance to explain
patient mobility.

4.4.2. Simulation of the retirement and replacement of public GPs. In the second set of sim-
ulations, we focus on scenarios with high policy relevance and evaluate the market exit (with-
out replacement) of public GPs who are 65 years or older, that is, who have already reached
the statutory retirement age. In 2017, this was the case for 307 physicians, or about 7.5% of
all public outpatient GPs in Austria.41 Because the policy goal of equal accessibility to crit-
ical health-care infrastructure is especially challenged in rural areas, we distinguish between
urban and rural regions and focus on patients with poor accessibility to public GPs. In particu-
lar, we simulate what share of patients will end up with low accessibility if all public GPs over

41 Demographic information on outpatient GPs is available at the municipal level and not at the individual level for
data protection reasons. The age distribution of physicians in a municipality is therefore randomly assigned to these
physicians. Nevertheless, the data are relatively accurate because the municipalities are mostly small regional units
with an average of 4,000 inhabitants and 40 km2.
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Table 9
results of simulation experiments—expected change in population with low accessibility

Population Public GPs ≥ 65 Population with Low Accessibility
(Total) (Total) (Share) (Share) � Share Based on Scenarios

1 2 3 4

Urban 2,224,732 113 12.90 1.95 +0.24 +0.00 +0.17 +0.09
Intermediate 2,636,821 81 6.25 1.69 +0.36 +0.11 +0.02 −0.05
Rural 3,717,736 113 5.92 20.71 +2.77 +2.60 +0.02 −0.90
Total 8,579,289 307 7.52 10.00 +1.37 +1.16 +0.06 −0.38

Note: All shares are in percentages, and all changes in shares are in percentage points. We define that patients have
poor accessibility to public physicians if they fall below the first decile of the spatial accessibility measure Ako for
the current number and spatial distribution of public physicians. In all four scenarios, all public GPs aged 65 or older
leave the market. In scenario 1, none of these GPs are replaced by new physicians. In scenario 2 (scenario 3), only
exiting GPs in rural (urban) regions are not replaced. In scenario 4, exiting GPs in urban regions are not replaced, ex-
iting GPs in intermediate regions are replaced by one physician, and exiting GPs in rural regions are replaced by two
physicians (at the location of the exiting GPs).

65 years retire and (i) are not replaced by new practitioners in any region (scenario 1), (ii) are
not replaced in rural regions (scenario 2), (iii) are not replaced in urban regions (scenario 3),
and (iv) are replaced by two physicians, but only in rural regions (scenario 4). The first two
scenarios represent a laissez faire approach of the government, where either no new physi-
cians can be hired for the unfilled positions or the few physicians entering the market prefer
to practice in urban areas, leaving the rural positions unfilled. The last two scenarios, on the
other hand, reflect what would happen if the government took a more active role in recruiting
GPs for unfilled positions in the countryside, or even incentivizing group practices after the
retirement of a rural GP.42

For our simulations, we categorize regions as urban if the population density of the munic-
ipality is above 2,000 residents per km2, and as rural if the population density is below 190.43

All other regions are classified as “intermediate” (i.e., neither urban nor rural). Further, we
consider patients as having relatively low accessibility to public GPs if they fall within the first
(i.e., the lowest) decile of our spatial accessibility measure Ako based on the initial number
and spatial distribution of public physicians. Of the 307 GPs aged 65 years or older, 113 are
in urban areas and 113 are in rural regions, as indicated in Table 9. Although the shares of
residents from urban or intermediate regions with low accessibility are less than 2%, more
than 20% of all residents of rural areas face relatively poor spatial accessibility. This sharp dif-
ference is not necessarily due to a different ratio of physicians to patients in rural and urban
regions, but rather due to the importance of spatial proximity to the physician, which is more
difficult to ensure in regions with low population density.

In the first scenario of these simulation experiments, all GPs aged 65 and older retire (i.e.,
exit the market) and are not replaced by a new physician. As a result, the share of patients
with low levels of spatial accessibility increases by 1.37 pp from 10% to 11.37% (see Table 9).
The increase is largest in rural regions (+2.77 pp), whereas we expect a smaller increase in ur-
ban (+0.24 pp) and intermediate areas (+0.36 pp). When only physicians in rural (scenario 2)
or urban regions (scenario 3) retire without a successor, the corresponding region type is the
most affected. However, the exit without replacement of rural GPs increases the share of pa-
tients with low spatial accessibility by 2.60 pp in those areas, whereas the impact of the exit of
physicians in urban regions on the respective population is much smaller (+0.17 pp). The to-

42 National policies to increase service provision in rural areas include subsidizing parts of the initial investments
and costs associated with taking over a practice (as implemented by some provinces in Austria), allowing physicians
to employ other physicians to improve work–life balance of rural physicians (as implemented in Austria in 2019) or
differentiating tariffs between urban and rural physicians.

43 We set the threshold density to 190 to ensure that the number of public GPs aged 65 or older is the same for ru-
ral and urban regions. This is important for simulating scenario 4, as described below.
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tal increase in low accessibility is also higher in scenario 2 (+1.16 pp) compared to scenario 3
(+0.06 pp). In the final simulation experiment (scenario 4 in Table 9), all 113 public GPs in ur-
ban regions who are at least 65 years old retire and are not replaced, whereas in rural areas all
retired GPs are replaced and an additional 113 GPs enter the market, holding the total num-
ber of GPs (aggregated across all regions) constant. For simplicity, we assume that they enter
in the same location as the retiring physicians in rural areas. As a result, the share of patients
in urban areas with poor spatial accessibility is expected to increase by 0.09 pp, whereas this
share decreases by 0.90 pp for patients in rural areas. It should be noted that the total share of
patients with poor accessibility (−0.38 pp) could be further reduced if the locations of the new
rural GPs are chosen more carefully.

Our simulations predict that a “do-nothing” policy approach adversely affects rural areas,
where the share of the population with poor accessibility to public GPs would grow even
larger. Conversely, if policies successfully encourage GPs to fill open positions in rural instead
of urban areas, the overall share of patients with low accessibility would decline. This high-
lights the applicability of our model to evaluate and compare the impact of specific govern-
ment interventions on welfare and equality related to the access to health-care services.

5. conclusion and outlook

We estimate a theory-guided gravity equation of patient flows and highlight the important
role of spatial accessibility. Compared to gravity frameworks with only bilateral resistance
such as distance or travel time, our measure of spatial accessibility takes into account intrare-
gional heterogeneity of supply and demand as well as congestion forces at the physician level.
We introduce this concept into a spatial economics model and estimate a gravity equation of
patient flows across regions. The analysis is based on spatially detailed data of the residential
population at the grid-cell level and the exact locations of all GPs in Austria. Spatial acces-
sibility has a significantly positive effect on patient mobility and predicts patient flows more
accurately than usually applied measures of bilateral resistance. Moreover, we show that the
coefficient of bilateral distance becomes insignificant when controlling for spatial accessibil-
ity. Our results are illustrated by simulating the effects of GPs leaving the market or changing
their locations. This counterfactual analysis would not be possible relying on a standard grav-
ity model without these accessibility measures. We show that the number of patients choos-
ing a physician in a different region does not only depend on the size of the shock (i.e., the
number of physicians leaving the market), but also on the exact locations where these shocks
occur. Our counterfactuals document heterogeneous changes in spatial accessibility within re-
gions, which induces patients to switch to other districts. As this “congests” physicians and
thus reduces service quality, the negative effects on service provision following market exits
in one region spill over to other, predominantly neighboring, regions. We further highlight the
policy relevance of our research by simulating the effects of retirement and (non)replacement
of GPs over 65 years on the health-care accessibility in rural versus urban regions. Simulations
such as these can be used, for example, to inform national and regional governments about
the welfare consequences of supply-side interventions in the physician market.

Our approach of augmenting a gravity model with measures of spatial accessibility is not
limited to the health-care market. As long as indicators of demand and supply are available
at a finer spatial scale than bilateral flow data, similar measures of spatial accessibility that go
beyond bilateral distance can be calculated and used to analyze determinants of various flow
variables. This is especially relevant in research fields where data privacy concerns are high or
data are simply not recorded at a disaggregated level. A possible application of our approach
could be to use spatially explicit information on plant locations and the distribution of work-
ers to simulate the short-term effects of mass layoffs (e.g., following plant closures) on com-
muting patterns. Due to lower demand for labor, the remaining nearby plants become more
“congested,” and it becomes more difficult for laid-off workers to find jobs in the remaining
plants of that region, which affects interregional worker mobility. Thus, our approach is best
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applicable to analyze short-term changes in economic interactions, especially if entry barriers
for suppliers (e.g., of jobs or services) exist either because market entry is publicly regulated
or very time- and resource intensive, and if changing residence is associated with high costs
and therefore impedes immediate moving. Although we are interested in short-run changes
of mobility, it is left for future research to account for long-run consequences such as endoge-
nous location decisions of supply and demand.

appendix A

A.1 Theoretical Appendix.

A.1.1 Derivation of gravity equation for patient flows. Starting from Equation (6) in the
main text, we derive the gravity equation for patient flows as shown in Equation (7). We as-
sume that Ukod = U . The probability that Ukod will be the highest utility is given by the proba-
bility that Ukos ≤ U for all s �= d: �s�=dPr(Ukos ≤ U ) = �s�=dGkos(U ). Inserting the utility func-
tion (3) and using the Fréchet distribution (4) leads to

Gkod(U ) = e−�kodU−ε

,(A.1)

where �kod = ModAε
kod. In a next step, we use the Fréchet distribution to rewrite the joint

probability

�s�=dPr(Ukos ≤ U ) = �s�=de−�kodU−ε = e−�koU−ε

,(A.2)

where �ko = ∑
s�=d MosAε

kos. The latter equation shows the joint probability that all other des-
tination choices lead to a weakly smaller utility than Ukod = U . We take into account all possi-
ble realizations of Ukod, where the probability that Ukod = U is given by

dGkod(U ) = εModAε
kodU−ε−1e−ModAε

kodU−ε

dU.(A.3)

This allows us to rewrite the probability of choosing destination d (when located in origin o)
as follows:

λkod =
∫ ∞

0
�s�=dPr(Ukos ≤ U )dGkod(U )

=
∫ ∞

0
e−�koU−ε

εModAε
kodU−ε−1e−ModAε

kodU−ε

dU.

(A.4)

Solving the integral leads to the following expression:

λkod = ModAε
kod∑

s MosAε
kos

,(A.5)

which simplifies to the gravity equation for patient flows as shown in Equation (7).

A.1.2 Model variant with GP-specific accessibility. Our model in the main text is based
on accessibility that is aggregated to the regional level. In this section, we analyze a variant of
our framework with a GP-specific accessibility measure. This variant takes into account that
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patients may have preferences regarding the accessibility of individual GPs. In this case, the
accessibility measure is given by

Akold = Rld f (distkld ).(A.6)

In contrast to Equation (2), we focus on accessibility of an individual GP instead of aggregat-
ing over all physicians in a destination. This implies that patients derive utility from seeing a
specific GP:

Ukold = akodAkold .(A.7)

Note that the preference shock akod is unchanged compared to the main text, and captures
that individual patients have different preferences regarding regions (e.g., differences in trans-
portation costs).44

To simplify notation, we introduce � = ∑
s Ls as the set of all physicians. Analogous to the

solution of the main model, patients choose the physician who offers the maximum utility:

Uk = max
{
Ukold ; ld ∈ �

}
.(A.8)

The probability that choosing physician l in region d leads to the highest utility compared to
all other physicians across all regions can be written as

λkold = Pr
[
Ukold ≥ max

{
Ukols; ls ∈ �−ld

}]
.(A.9)

Using the Fréchet distribution, we derive the probability that patient k from region o chooses
physician ld:

λkold = Mod(Akold )ε∑
s Mos

∑
ls∈Ls

(Akols )
ε .(A.10)

In this case, the probability to choose a GP depends on a region- as well as a physician-specific
component. Conditional on regional differences, a patient is more likely to see a GP with
a higher accessibility. Besides that, the probability of seeing that specific physician increases
when located in a region with high average amenities. As we only observe the region where
patients see a physician, we aggregate over all GPs in a particular destination. Hence, the
probability of patient k from origin o to choose region d is given by:

λkod =
∑

ld

λkold = Mod
∑

ld (Akold )ε∑
s Mos

∑
ls∈Ls

(Akols )
ε .(A.11)

This equation resembles the gravity equation of GP choice in the main text (see Equation 7).
The difference is that the Fréchet shape parameter is attached to GP-specific accessibility
measures. This implies that heterogeneity in accessibility across physicians within a region be-
comes more important. As ε > 1, physicians with higher accessibility have a stronger weight
and hence, have a larger impact on the probability to choose a particular region.

This model variant could also be used in a setting where price differences among physicians
play a role. In this case, the utility in Equation (A.8) will include physician-specific prices such
that indirect utility depends on a measure of price-adjusted accessibility. Conditional on acces-
sibility, a higher price will then reduce the probability to see a specific physician. If prices for

44 This amenity shock is consistent with the empirical observation that not all patients from one origin region
choose the same destination. In principle, the shock could occur at the GP level as well. We abstract from this due
to the lack of an empirical counterpart.
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health-care services are identical within a region, they would enter the gravity equation as a
regional fixed effect.

A.2 Empirical Appendix.

A.2.1 Description and selection of distance decay. In this section of the empirical ap-
pendix, we provide an empirical rationale for the choice of the distance decay function
f (distlk) to derive the spatial accessibility measures based on the 2SFCA method.

Figure A.1 illustrates the nonparametric relationship between interregional patient flows
and Euclidean distance. Intraregional patient mobility is suppressed for ease of exposition.
The figure shows that patient flows decline quickly with distance, but the relationship flattens
after a distance of about 50 km. Patient flows are not significantly different from zero after
roughly 75 km distance between the patients’ and the physicians’ districts. Therefore, choos-
ing a threshold distance of 100 km is a rather conservative estimate of the physicians’ catch-
ment areas.

In order to select the distance decay parameter β for the distance decay function f (distlk) =
dist−β

lk , we estimate the regressions log(yod ) = α + γ1 log(Aod ) + τo + μd + εod and log(yod ) =
α + γ1 log(Ar1

od ) + τo + μd + εod, using a PPML regression, for different values of β. Table A.1
reports the goodness-of-fit statistics for these regressions, namely, the AIC, the BIC, and the
value of the log-likelihood function. All three test statistics suggest using a value of β = 2.8
to calculate the regular accessibility measure Aod and a value of β = 2.1 to derive the simpler
measure Ar1

od, under Restrictive Assumption 1 (i.e., when we abstract from intraregional het-
erogeneity for both physicians and patients).

A very high value of β results in a steep distance decay function, indicating that proximity is
very important for patients. The Figures A.2(i) and (ii) show the spatial distribution of the ac-
cessibility measure at the individual level, Ako = ∑

d Akod, for β = 2.8 and β = 0.3. If β is low,
proximity is less important, and spatial accessibility is rather evenly distributed across space,
as illustrated by Figures A.2(ii).

Table A.1
goodness-of-fit statistics to select β for f (distlk) = dist−β

lk

in Ar1
od in Aod

β BIC AIC LL BIC AIC LL

2.0 49,516,152 49,517,882 −24,757,845 1,686,951 1,688,681 −843,244
2.1 49,515,657 49,517,387 −24,757,598 1,650,699 1,652,429 −825,118
2.2 49,518,296 49,520,026 −24,758,917 1,622,617 1,624,347 −811,077
2.3 49,523,130 49,524,860 −24,761,334 1,601,135 1,602,865 −800,336
2.4 49,529,460 49,531,190 −24,764,499 1,585,069 1,586,799 −792,303
2.5 49,536,766 49,538,496 −24,768,152 1,573,544 1,575,274 −786,541
2.6 49,544,663 49,546,394 −24,772,101 1,565,924 1,567,654 −782,731
2.7 49,552,870 49,554,600 −24,776,204 1,561,746 1,563,476 −780,642
2.8 49,561,178 49,562,908 −24,780,358 1,560,674 1,562,404 −780,106
2.9 49,569,440 49,571,170 −24,784,489 1,562,454 1,564,184 −780,996
3.0 49,577,548 49,579,278 −24,788,543 1,566,890 1,568,621 −783,214
3.1 49,585,430 49,587,160 −24,792,484 1,573,822 1,575,552 −786,680
3.2 49,593,036 49,594,766 −24,796,287 1,583,113 1,584,843 −791,326
3.3 49,600,335 49,602,065 −24,799,937 1,594,640 1,596,370 −797,089
3.4 49,607,311 49,609,041 −24,803,424 1,608,287 1,610,017 −803,912
3.5 49,613,954 49,615,684 −24,806,746 1,623,937 1,625,668 −811,738

Note: The statistics are based on the models log(yod ) = α + γ1 log(Ar1
od ) + τo + μd + εod and log(yod ) = α +

γ1 log(Aod ) + τo + μd + εod , respectively, estimated by a Poisson pseudo-maximum-likelihood (PPML) regression.
The rows highlighted in bold indicate the model specifications with the best fit. Ar1

od : Accessibility measure after
Restrictive Assumption 1. Aod : Accessibility measure based on the two-step-floating catchment area method. BIC:
Bayesian information criterion. AIC: Akaike information criterion. LL: Log-likelihood value.
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Notes: The blue line depicts the locally weighted polynomial regression line for patient flows to public GPs, yod ,
between the patients’ region o and the physicians’ district d, and the Euclidean distance between the population-
weighted centroids (in km) of the respective district pairs. The gray area around the regression line illustrates the
95% confidence interval. The graph only includes out-of-own-district patient flows, that is, yod with o �= d.

Figure A.1

nonparametric regression between patient flows and interregional distance

A.2.2 Regression results with alternative distance decay parameters.

Table A.2
sensitivity analysis—accessibility based on distance decay parameter β = 2.0

Model 2Aa Model 3Aa Model 3Ab Model 3Ac Model 3Ad

Accessibility of GPs, log(Aod ) 0.980∗∗∗ 0.656∗∗∗ 0.656∗∗∗ 0.655∗∗∗ 0.601∗∗∗
(0.004) (0.013) (0.013) (0.013) (0.036)

Number of commuters, log(Mod ) 0.522∗∗∗ 0.523∗∗∗ 0.526∗∗∗ 0.514∗∗∗
(0.018) (0.017) (0.018) (0.019)

Population-weighted distance, log(distod ) 0.004
(0.023)

Accessibility of private GPs, log(Apriv
od ) 0.038

(0.025)
Constant 8.811∗∗∗ 5.497∗∗∗ 5.478∗∗∗ 5.504∗∗∗ 5.569∗∗∗

(0.027) (0.127) (0.145) (0.128) (0.145)
Origin fixed effects Yes Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes Yes
Dummy for same federal state No No No Yes No

Number of obs. 13,225 13,225 13,225 13,225 13,225
Log-likelihood −843,244 −573,918 −573,901 −573,550 −569,835
BIC 1,688,681 1,150,047 1,150,023 1,149,321 1,141,900
AIC 1,686,951 1,148,302 1,148,270 1,147,569 1,140,140

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. Standard errors are reported in parenthesis and are based on a robust sandwich covariance matrix estima-
tor. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure A.2

spatial accessibility measure to public gps at the individual level (Ak = ∑
d Akd)
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Table A.3
sensitivity analysis—accessibility based on distance decay parameter β = 3.5

Model 2Ab Model 3Ae Model 3Af Model 3Ag Model 3Ah

Accessibility of GPs, log(Aod ) 0.464∗∗∗ 0.315∗∗∗ 0.315∗∗∗ 0.315∗∗∗ 0.291∗∗∗
(0.002) (0.007) (0.007) (0.007) (0.018)

Number of commuters, log(Mod ) 0.507∗∗∗ 0.510∗∗∗ 0.506∗∗∗ 0.499∗∗∗
(0.021) (0.021) (0.021) (0.021)

Population-weighted distance, log(distod ) 0.015
(0.021)

Accessibility of private GPs, log(Apriv
od ) 0.035

(0.024)
Constant 10.291∗∗∗ 6.624∗∗∗ 6.562∗∗∗ 6.624∗∗∗ 6.621∗∗∗

(0.064) (0.161) (0.169) (0.161) (0.158)
Origin fixed effects Yes Yes Yes Yes Yes
Destination fixed effects Yes Yes Yes Yes Yes
Dummy for same federal state No No No Yes No

Number of obs. 13,225 13,225 13,225 13,225 13,225
Log-likelihood −811,738 −556,930 −556,738 −556,928 −554,054
BIC 1,625,667 1,116,071 1,115,698 1,116,076 1,110,338
AIC 1,623,937 1,114,326 1,113,945 1,114,324 1,108,578

Note: All models estimate interregional patient flows by using a Poisson pseudo-maximum-likelihood (PPML) esti-
mator and include origin- (patient-) and destination- (physician-) regional fixed effects. If explanatory variables are
zero and the logarithm is undefined, dummy variables are included that take the value one in these cases and zero
otherwise. Standard errors are reported in parenthesis and are based on a robust sandwich covariance matrix estima-
tor. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

A.2.3 Utilization rates of different sex–age cohorts.

Table A.4
average utilization rates by sex–age cohorts

Age Cohorts 0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 ≥ 90

Male 2.4 3.2 3.9 4.4 5.3 7.9 11.1 15.7 21.5 27.4
(4.9) (5.2) (6.7) (6.7) (7.2) (7.6) (5.2) (3.8) (1.5) (0.2)

Female 2.3 3.4 4.9 5.7 6.8 9.0 11.6 16.9 23.7 30.5
(4.6) (4.8) (6.4) (6.6) (7.2) (7.6) (5.7) (4.6) (2.5) (0.7)

Note: The figures denote the average number of consultations of public GPs in Austria in 2017. The numbers in
parentheses (in italics) indicate the share of the respective sex-age cohort (in percent) in the total population.

A.2.4 Simulation of counterfactual scenarios—Effects on accessibility and patient mobility.
Market exits or relocations of physicians in St. Veit influence the spatial accessibility of GPs
and thus patient mobility. While the relative change in accessibility at the individual level,
Ako = ∑

d Akod, is illustrated in Figure 4 in the main text for the four counterfactual scenar-
ios under scrutiny, Table A.5 reports regional averages of these effects. The spatial accessibil-
ity for residents in St. Veit decreases between 33.3% and 54.9% in the first three scenarios,
whereas these patients experience (on average) a gain in accessibility in scenario 4. The neg-
ative effects on accessibility for residents of other regions are generally largest in scenario 2
(i.e., when GPs in the south of the St. Veit district leave the market), in particular for regions
in the south-west: Accessibility declines on average by 4.2% and 3.4% in the districts of Völk-
ermarkt and of Klagenfurt Land, respectively.

The expected effects of these supply-side shocks on patient mobility are summarized by
flow matrices, reported in Table A.6 to Table A.9. In order to derive these flow matrices, we
first calculate the expected flow matrix in the baseline scenario, based on Equation (13) and
the parameter estimates of Model 3, reported in Table 2. We then calculate the patient flow
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Table A.5
results of simulation experiments—expected average change in spatial accessibility

Scenario 1 2 3 4

St Veit −33.32 −54.87 −36.52 15.15
Klagenfurt Stadt −0.05 −0.85 −0.19 0.52
Feldkirchen −0.46 −1.81 −0.79 0.69
Klagenfurt Land −0.19 −3.42 −0.68 2.26
Villach Stadt −0.01 −0.03 −0.01 0.02
Wolfsberg −0.35 −0.83 −0.44 0.31
Murau −1.33 −0.63 −0.65 0.67
Villach Land −0.06 −0.19 −0.06 0.14
Völkermarkt −0.46 −4.22 −1.81 1.07
Spittal −0.06 −0.10 −0.04 0.08
Murtal −0.13 −0.14 −0.08 0.11
Deutschlandsberg −0.03 −0.07 −0.03 0.04
Voitsberg −0.03 −0.06 −0.03 0.04
Tamsweg −0.20 −0.24 −0.11 0.22
other districts 0.00 0.00 0.00 0.00

Note: Figures denote the average change in spatial accessibility (in %) relative to the baseline scenario. The change in
accessibility is calculated at the individual (patient) level and averaged over all patients in the district.

Table A.6
flow matrix—expected change in patient mobility under scenario 1

SV K FE KL VI WO MU VL VK SP MT DL VO TA Other
∑

SV −5,860 1,078 1,767 610 349 280 453 195 296 172 162 48 23 16 410 0
K −44 37 1 4 0 0 0 0 0 0 0 0 0 0 0 0
FE −142 6 113 5 7 1 0 5 1 3 0 0 0 0 1 0
KL −65 14 2 39 2 0 0 3 2 0 0 0 0 0 0 0
VI −18 0 0 0 15 0 0 3 0 0 0 0 0 0 0 0
WO −59 1 0 0 0 50 0 0 2 0 1 1 1 0 2 0
MU −242 2 5 1 1 1 195 1 1 1 14 1 1 6 14 0
VL −41 1 1 1 9 0 0 25 0 2 0 0 0 0 1 0
VK −62 4 1 3 1 7 0 1 43 0 0 0 0 0 2 0
SP −31 0 1 0 1 0 0 1 0 25 0 0 0 0 2 0
NT −28 0 0 0 0 0 0 0 0 0 24 0 0 0 2 0
DL −5 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0
VO −5 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0
TA −6 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0
Other −58 0 0 0 0 0 0 0 0 0 0 1 0 0 56 0∑ −6,666 1,144 1,893 665 386 340 650 236 344 205 202 54 29 27 492

Note: Matrix reports the expected changes in patient flows under scenario 1, that is, when the 16 northern GPs leave
the market. List of abbreviations: SV: St. Veit, K: Klagenfurt Stadt, FE: Feldkirchen, KL: Klagenfurt Land, VI: Vil-
lach, WO: Wolfsberg, MU: Murau, VL: Villach Land, VK: Völkermarkt, SP: Spittal, MT: Murtal, DL: Deutschlands-
berg, VO: Voitsberg, TA: Tamsweg. All other districts are aggregated and labeled “Other.”

matrix in each counterfactual scenario and report the difference to the flow matrix in the
baseline scenario. Table A.6 to Table A.9 report the expected change in patient flows for all
district pairs depicted in Figure 3 to Figure 5, whereas all other districts are aggregated for
brevity (and labeled “other” in the respective tables).

The first row of Table A.6, for example, reports the expected change in patient flows under
scenario 1 (i.e., when the 16 northern GPs leave the market) for residents of St. Veit (labeled
SV). Due to the market exits, the expected number of inhabitants of St. Veit seeing a doctor
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Table A.7
flow matrix—expected change in patient mobility under scenario 2

SV K FE KL VI WO MU VL VK SP MT DL VO TA Other
∑

SV −14,982 4,499 3,411 2,578 797 548 442 480 918 315 215 92 38 25 623 0
K −1,240 1,024 27 131 15 5 1 13 13 4 1 1 0 0 5 0
FE −551 33 418 31 26 2 2 22 3 8 1 1 0 1 3 0
KL −1,293 314 46 774 36 11 2 49 39 7 2 2 1 1 9 0
VI −69 1 1 0 55 0 0 11 0 1 0 0 0 0 0 0
WO −188 3 1 1 1 161 0 1 6 0 3 2 2 0 7 0
MU −141 1 3 0 1 0 114 1 0 1 7 0 0 4 7 0
VL −155 4 5 4 34 0 0 100 0 5 0 0 0 0 2 0
VK −734 61 9 43 10 67 1 8 507 4 2 3 1 0 18 0
SP −54 0 1 0 2 0 0 2 0 45 0 0 0 0 2 0
NT −36 0 0 0 0 0 0 0 0 0 32 0 0 0 3 0
DL −17 0 0 0 0 0 0 0 0 0 0 13 0 0 3 0
VO −12 0 0 0 0 0 0 0 0 0 0 0 9 0 2 0
TA −8 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0
Other −109 0 0 0 1 0 0 1 0 1 1 2 1 0 104 0∑ −19,591 5,942 3,924 3,564 977 795 563 687 1,486 392 265 116 53 38 789

Note: Matrix reports the expected changes in patient flows under scenario 2, that is, when the 16 southern GPs leave
the market. List of abbreviations: SV: St. Veit, K: Klagenfurt Stadt, FE: Feldkirchen, KL: Klagenfurt Land, VI: Vil-
lach, WO: Wolfsberg, MU: Murau, VL: Villach Land, VK: Völkermarkt, SP: Spittal, MT: Murtal, DL: Deutschlands-
berg, VO: Voitsberg, TA: Tamsweg. All other districts are aggregated and labeled “Other.”

in their districts of residence declines by 5,860. Of those, 1,078 residents see a GP in K (Kla-
genfurt Stadt), 1,767 in FE (Feldkirchen), and so on. The row sums up to zero, because every
patient chooses exactly one physician. The column sums indicate the expected change in the
number of patients choosing a physician in the respective region. For example, the expected
number of patients opting for a GP in SV (St. Veit) declines by 6,666. Of those, 5,860 individ-
uals are residents of SV (St. Veit), 44 are residents of K (Klagenfurt Stadt), and so on. These
patients have to be admitted by physicians in other regions, as depicted by the other column
sums in Table A.6. The expected effects on patient mobility in the three other counterfactual
scenarios, reported in Table A.7, Table A.8, and Table A.9, can be interpreted analogously.
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Table A.8
flow matrix—expected change in patient mobility under scenario 3

SV K FE KL VI WO MU VL VK SP MT DL VO TA Other
∑

SV −2,774 676 677 389 154 145 132 90 183 66 60 22 10 6 166 0
K −150 123 4 16 2 1 0 2 2 0 0 0 0 0 1 0
FE −146 9 112 7 7 1 1 6 1 2 0 0 0 0 1 0
KL −167 39 6 100 5 1 0 7 5 1 0 0 0 0 1 0
VI −16 0 0 0 13 0 0 2 0 0 0 0 0 0 0 0
WO −77 1 0 1 0 66 0 0 2 0 1 1 1 0 3 0
MU −93 1 2 0 0 0 75 1 0 0 5 0 0 2 5 0
VL −36 1 1 1 8 0 0 23 0 1 0 0 0 0 0 0
VK −195 17 3 11 3 20 0 2 131 1 1 1 0 0 5 0
SP −18 0 0 0 1 0 0 1 0 15 0 0 0 0 1 0
NT −17 0 0 0 0 0 0 0 0 0 15 0 0 0 1 0
DL −5 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0
VO −5 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0
TA −3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
Other −41 0 0 0 0 0 0 0 0 0 0 1 0 0 40 0∑ −3,743 866 806 525 193 234 208 133 324 88 83 30 15 11 226

Note: Matrix reports the expected changes in patient flows under scenario 3, that is, when 16 randomly selected GPs
leave the market. List of abbreviations: SV: St. Veit, K: Klagenfurt Stadt, FE: Feldkirchen, KL: Klagenfurt Land, VI:
Villach, WO: Wolfsberg, MU: Murau, VL: Villach Land, VK: Völkermarkt, SP: Spittal, MT: Murtal, DL: Deutsch-
landsberg, VO: Voitsberg, TA: Tamsweg. All other districts are aggregated and labeled “Other.”

Table A.9
flow matrix—expected change in patient mobility under scenario 4

SV K FE KL VI WO MU VL VK SP MT DL VO TA Other
∑

SV −727 182 123 103 40 58 30 23 65 15 19 8 3 1 55 0
K 387 −324 −8 −39 −4 −1 0 −4 −4 −1 0 0 0 0 −1 0
FE 192 −9 −149 −10 −9 −1 −1 −8 −1 −3 0 0 0 0 −1 0
KL 402 −96 −14 −243 −11 −3 −1 −16 −11 −2 −1 −1 0 0 −3 0
VI 32 0 0 0 −26 0 0 −5 0 0 0 0 0 0 0 0
WO 49 −1 0 0 0 −42 0 0 −1 0 −1 −1 0 0 −2 0
MU 120 −1 −3 0 −1 0 −98 −1 0 −1 −6 0 0 −3 −6 0
VL 71 −2 −2 −2 −16 0 0 −45 0 −3 0 0 0 0 −1 0
VK 143 −10 −1 −7 −2 −12 0 −1 −105 −1 0 −1 0 0 −3 0
SP 30 0 −1 0 −1 0 0 −1 0 −25 0 0 0 0 −1 0
NT 20 0 0 0 0 0 0 0 0 0 −17 0 0 0 −2 0
DL 6 0 0 0 0 0 0 0 0 0 0 −5 0 0 −1 0
VO 5 0 0 0 0 0 0 0 0 0 0 0 −4 0 −1 0
TA 5 0 0 0 0 0 0 0 0 0 0 0 0 −4 −1 0
Other 47 0 0 0 0 0 0 0 0 0 0 −1 0 0 −45 0∑

784 −260 −56 −199 −30 −2 −70 −58 −57 −21 −8 0 −2 −7 −12

Note: Matrix reports the expected changes in patient flows under scenario 4, that is, when the number of GPs remains
unaffected, but 16 randomly selected GP locations are dissolved. List of abbreviations: SV: St. Veit, K: Klagenfurt
Stadt, FE: Feldkirchen, KL: Klagenfurt Land, VI: Villach, WO: Wolfsberg, MU: Murau, VL: Villach Land, VK: Völk-
ermarkt, SP: Spittal, MT: Murtal, DL: Deutschlandsberg, VO: Voitsberg, TA: Tamsweg. All other districts are aggre-
gated and labeled “Other.”
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