
Bagnara, Matteo

Article  —  Published Version

Asset Pricing and Machine Learning: A critical review

Journal of Economic Surveys

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Bagnara, Matteo (2022) : Asset Pricing and Machine Learning: A critical
review, Journal of Economic Surveys, ISSN 1467-6419, Wiley, Hoboken, NJ, Vol. 38, Iss. 1, pp.
27-56,
https://doi.org/10.1111/joes.12532

This Version is available at:
https://hdl.handle.net/10419/288177

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1111/joes.12532%0A
https://hdl.handle.net/10419/288177
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


DOI: 10.1111/joes.12532

ARTICLE

Asset Pricing andMachine Learning: A critical
review

Matteo Bagnara1,2

1Leibniz Institute for Financial Research
SAFE, Frankfurt am Main, Germany
2Goethe University Frankfurt, Frankfurt
am Main, Germany

Correspondence
Matteo Bagnara, Leibniz Institute for
Financial Research SAFE,
Theodor-W.-Adorno-Platz 3, 60323,
Frankfurt am Main, Germany.
Email: bagnara@safe-frankfurt.de

Abstract
The latest development in empirical Asset Pricing is
the use of Machine Learning methods to address the
problem of the factor zoo. These techniques offer great
flexibility and prediction accuracy but require special
care as they strongly depart from traditional Economet-
rics. We review and critically assess the most recent and
relevant contributions in the literature grouping them
into five categories defined by the Machine Learning
(ML) approach they employ: regularization, dimension
reduction, regression trees/random forest (RF), neural
networks (NNs), and comparative analyses. We sum-
marize the empirical findings with particular attention
to their economic interpretation providing hints for
future developments.

KEYWORDS
empirical Asset Pricing, Machine Learning, risk premium,
stochastic discount factor

1 INTRODUCTION

In the last 40 years, the greatest endeavor in Asset Pricing has been documenting the properties
of the stochastic discount factor (SDF) or pricing kernel (PK), which allows to price any asset
with unknown future payoff, with the goal of understanding the determinants of asset returns.
The well-documented empirical failures of the CAPM together with the work of Banz (1981),
Rosenberg et al. (1985), Fama and French (1992), Carhart (1997) and others showing that a single
economically motivated factor (market or aggregate consumption growth) is not enough to
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explain differences in average stock returns (Mehra & Prescott, 1985), led us to focus on multi-
factor models à la Fama and French (1993). The convenient shortcut adopted by the literature of
treating unexplained portfolios as unknown risks and simply adding them to existing factors did
not dwarf the search for new “anomalies,” that is, assets whose risk-adjusted returns significantly
spread over the distribution of one firm characteristic without a corresponding change in the
exposure to some prespecified risk sources. Over time, a plethora of factors that supposedly
predict cross-sectional variation in expected returns have been documented (Harvey et al., 2016;
Hou et al., 2015). This “factor zoo” has been criticized either because of doubts on the actual
usefulness of the factors proposed (McLean & Pontiff, 2016) or because of the struggles one faces
when considering somany sources of risk inmodels which shall explain these empirical findings.
Besides these criticisms, a new strand of literature emerged, which tackles the factor zoo

employing nonstandard statistical techniques known as Machine Learning (ML), which has the
potential to recover complex patterns better than classical Econometrics thanks to its flexibility in
high-dimensional settings (Karolyi & Van Nieuwerburgh, 2020). Some studies select only a few
characteristics (Freyberger et al., 2020) or instrument factor loadings to summarize their informa-
tion content (Kelly et al., 2019). Others combine thesemethods with economic restrictions (Lettau
& Pelger, 2020b), while some others exploit them to circumvent daunting issues affecting tradi-
tional models (Giglio & Xiu, 2021). A growing level of attention has been paid to this topic as in
several cases results achieved are outstanding, with findings that shed new light on the SDF struc-
ture. In view of these recent developments, practitioners and academics consider ML a powerful
alternative to conventional approaches with tremendous potential ahead. A sound grasp of these
models is imperative for those willing to keep abreast of the latest frontiers of research.
ApplyingML to Asset Pricing involves econometric challenges the readermight not be familiar

with considering its early stage. This paper critically summarizes the methods and the empirical
discoveries of this promising new literature with special attention to their economic interpreta-
tion. It is organized as follows. Section 2 provides a general framework encompassing the goals
pursued by the papers we examine and points out the econometric issues arising due to the fac-
tor zoo. Section 3 reviews and groups the most recent studies based on the main ML approach
they use, dedicating a brief introduction to each of them. This serves both as high-level intro-
duction to these techniques and as benchmark for more refined specifications adopted in current
research. Section 4 summarizes the empirical findings assessing their contributions to our under-
standing of expected returns and attempts at giving guidelines for coordinated future efforts.
Section 5 concludes.

2 THE PLAYING FIELD AND THE ECONOMETRIC STRUGGLE

The studies we review belong to two main frameworks: predictions and factor models with asso-
ciated SDF. The factor zoo results in different econometric issues for each of them. Since ML
methods can be used to circumvent some of these, a brief overview is helpful.

2.1 Predicting returns

One stream of literature tries to identify predictors for the cross-section of stock returns. Starting
from a general additive prediction error model

𝑟𝑖,𝑡+1 = 𝔼𝑡

[
𝑟𝑖,𝑡+1

]
+ 𝜀𝑖,𝑡+1 (1)
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where 𝑟𝑖,𝑡+1 is the return of stock 𝑖 in excess of the risk-free rate between time 𝑡 and 𝑡 + 1 and
𝔼𝑡[𝜀𝑖,𝑡+1] = 0 for 𝑡 = 1, … , 𝑇 − 1 and 𝑖 = 1, … ,𝑁, the conditional mean 𝔼𝑡[𝑟𝑖,𝑡+1] is often modeled
as an unknown function 𝑔(.) of some firm characteristics 𝑧𝑖,𝑡 defined by the parameter vector 𝜃.
The model in Equation (1) becomes (Gu et al., 2020):

𝑟𝑖,𝑡+1 = 𝑔(𝑧𝑖,𝑡; 𝜃) + 𝜀𝑖,𝑡+1 (2)

The vector 𝑧𝑖,𝑡 contains 𝑃 features supposed to forecast returns. In the factor zoo, 𝑃 is in the order
of hundreds (Harvey et al., 2016). With an ever-growing predictor space, researchers face issues
arising in high-dimensional settings.1 The first is overfitting: the richer the right-hand side, the
harder the model fits the training sample (low bias), the less stable its performance with new data
(high variance). While the in-sample 𝑅2 benefits from new predictors, the out-of-sample (OOS)
𝑅2 is low or even negative if these are not associated with the response, thus caution is needed
when deciding what to include and what not. The second problem is multicollinearity: the risk
of one regressor being expressible as linear combinations of others is remarkable with 𝑃 large.
Moreover, estimates of 𝜃 are likely imprecise due to high collinearity. Finally, traditional models
soon become intractable including interactions and nonlinear transformations of all predictors.

2.2 Factor models and stochastic discount factor

The second perspective adopted in many empirical studies is a multifactor model in the spirit of
the arbitrage pricing theory (APT, Ross, 1976):

𝑟𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝑓𝑡𝛽
′
𝑖,𝑡

+ 𝜖𝑖,𝑡 (3)

where 𝑓𝑡 is a vector of 𝐾 risk factors with risk premia 𝛾𝑡 = 𝔼𝑡−1[𝑓𝑡] and loadings 𝛽𝑖,𝑡 and
𝔼𝑡−1[𝜖𝑖,𝑡] = 𝔼𝑡−1[𝜖𝑖,𝑡𝑓𝑡] = 0 . No-arbitrage implies𝛼𝑖,𝑡 = 0∀(𝑖, 𝑡), a condition equivalent to the exis-
tence of an SDF 𝑀𝑡+1 satisfying the fundamental equation 𝔼𝑡[𝑟𝑖,𝑡+1𝑀𝑡+1] = 0 . Such PK is an
affine transformation of the tangency portfolio (Back, 2010), and is expressible as

𝑀𝑡 = 1 − (𝑓𝑡 − 𝔼[𝑓𝑡])𝑏 (4)

where theweights 𝑏 depend on factormean 𝜇 = 𝔼[𝑓𝑡] and covariancematrixΣ, that is, 𝑏 = Σ−1𝜇′

. Equation (4) holds also for individual stock returns, but the large amount of noise in their time
series makes the estimation of 𝑏 imprecise. The same holds for 𝛼𝑖,𝑡 and 𝛽𝑖,𝑡 in Equation (3). This
issue led the profession to heavily rely on characteristics-based portfolio sorts, a tendency rein-
forced with the well-known approach of building new factors from long-short portfolio strategies
(e.g., Fama & French, 1993, 1996). In a Fama–French world, unexplained alphas represent expo-
sures to priced risk sources not yet included in amodel for the cross-section. “There is no “alpha”.
There is just beta you understand and beta you do not understand” (Cochrane, 2011, p.1087). Add
the omitted factors, the bias fades away and the fit improves. “[Fama&French (1993)] is an incom-
plete model for expected returns [. . . ]. Motivated by this evidence [. . . ] we add profitability and
investment factors” (Fama and French, 2015, p.3). Appending relevant factors means increasing
the Sharpe ratio (SR) attainable in the investment set spanned by the risk factors thus contributing
to move closer to the multivariate mean–variance efficient portfolio (Merton, 1973; Fama, 1996).
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Proxing risk factors through “hedge” portfolios (long-short portfolios based on firm character-
istics generating anomalies) require two implicit assumptions, but none is innocuous. The first
is that expected returns are constant over fixed parts of the characteristics distribution, that is,
within the portfolios. The second one is that returns monotonically increase (decrease) in the
characteristic of interest. As long as the difference between top and bottom portfolios shows sig-
nificant spread in average returns, what happens in the middle is disregarded. This is especially
concerning since portfolio means have troubles capturing the high variation of portfolio returns
at the extremes of the distribution typically observed in the data (Fama & French, 2008). If sorts
are too coarse, we might miss a significant relation or see one that is actually not there. Portfo-
lio sorts further suffer from the curse of dimensionality: we simply cannot sort stocks along too
many dimensions because we soon end up with more portfolios than stocks, and if they are not
well-diversified they have small predictive power in Asset Pricing tests (Fama & French, 2015).
Double sorts exacerbate these issues, because complex nonmonotonic relations can arise along
each dimension.
Multifactor models like Equation (3) raise also misspecification concerns. First, factor expo-

sures are usually not allowed to change over time, that is, 𝛽𝑖,𝑡 = 𝛽𝑖 like in Fama and French (2015).
Loadings might instead depend onmacroeconomic (Ferson &Harvey, 1991) or asset-specific vari-
ables (Kelly et al., 2019). Second, the PK functional form is likely complex and unknown (Chen
et al., Forthcoming): leading theoretical contributions postulate nonlinearities between returns
and state variables (e.g., Campbell & Cochrane, 1999; Bansal & Yaron, 2004), which impact the
return factor structure, too. Third, Equation (3) suffers from omitted variable bias, the economet-
ric bogeyman of all models. Fama and French (2015)’smodus operandi usually adds a new hedge
portfolio to the existing factors if this results in roughly the same fit for benchmark test assets
(e.g., 25 size-value-sorted portfolios) plus insignificant alphas for some small set of anomaly port-
folios. This is equivalent to fit harder the data: the higher model complexity reduces the chance to
perform well with yet unseen observations, hence portfolios sorted on newer characteristics are
more likely to produce large pricing errors. It is not surprising that, even if the dimension of 𝑓
keeps increasing, we find additional anomalies over time. We must take different paths, and ML
is one of them.

2.3 Pending questions

The factor zoo leaves some pending questions for the literature (Cochrane, 2011, p.1060).
“Which characteristics really provide independent information about average returns?”Although

several anomalies are not robust phenomena as their returns decrease by two thirds after publi-
cation (McLean & Pontiff, 2016), a considerable number persist and we must deal with that. The
question about howmuch independent information each one provides is still open, but some have
recently addressed it (Freyberger et al., 2020; Feng et al., 2020).
“Does each new anomaly variable also correspond to a new factor formed on those anomalies?”

This is crucial to find theoretical explanations for our empirical findings: do we accept anoma-
lies as model failures (alphas) or are we just not properly accounting for them (“betas we do not
know”)? Alas, only few have tried to answer this question (Kelly et al., 2019).
“Howmany of these factors are really important?” This question raises the debate between those

in favor and those against a sparse SDF. The crossroad is represented by: either accepting the
existence of many factors and the need to account for them all (Kozak et al., 2020); or imposing a
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low-dimensional SDF structure by regularization (Freyberger et al., 2020) or dimension reduction
(Lettau & Pelger, 2020b).
Recently, some researchers have made excellent use of Cochrane (2011)’s advice that we need

new methods for the factor zoo, and resorted to the ML field. Gu et al. (2020) provide a bril-
liant definition summarizing the main features of these techniques: they are generally used for
high-dimensional predictions; they can be regularized to mitigate overfitting; their algorithms
efficiently search and select among many model specifications. These attributes, often absent in
standard methods, are well-suited to address and solve some of the problems mentioned above.
Additionally, ML becomes a necessity when ordinary least squares (OLS) are not feasible (Karolyi
& Van Nieuwerburgh, 2020). To keep up with the recent advances, one must understand which
ML methods best fit Asset Pricing needs, how to employ them and what results they deliver. We
address all these points reviewing state-of-the-art papers on the topic.

3 A GUIDED LITERATURE REVIEW

We group recent studies into five categories according to the main ML approach they adopt: reg-
ularization, dimension reduction, regression trees/random forest (RF), neural networks (NNs),
and comparative analyses. For every study, we indicate in Table 1 the newmethod proposed, data
sample and covariates used, research question andmain findings.We also report the Asset Pricing
framework they belong to: prediction (Equation (2)) or factor models (Equation (3)). In the text,
we dedicate a subsection to each ML area with a brief introduction to its mechanics.
We do not include in the table all the papers we mention for reasons of space but focus on the

most relevant ones. We exclude papers using mainly Bayesian methods such as Bryzgalova et al.
(Forthcoming). Although they are connected to regularization (Kozak et al., 2020), they do not
belong toML per se.2 Bayesian inference is a statistical paradigm, which represent beliefs through
prior and posterior probability distributions. ML denotes instead computational algorithms that
learn complex data patterns in largely unstructured manners. Bayesian methods are neither in
contrast nor in competitionwithML. They are rather an alternative approach to inference that can
be nested in other ML techniques (e.g., Bayesian neural networks, Neal (2012)), whose discussion
goes beyond the scope of this review.

3.1 Regularization

The simplest formulation of Equation (2) assumes that returns are linear in characteristics:
𝑔(𝑧𝑖,𝑡; 𝜃) = 𝑧′

𝑖,𝑡
𝜃. Financial markets have weak signal-to-noise ratios, which means that there is

a high degree of randomness resulting from forces of competition and profit maximization that
wipe out most of predictability. Only unanticipated shocks (noise) really move markets (Israel
et al., 2020). In these environments, OLS tend to overfit noise rather than extract the true signals if
the right-hand side contains hundreds of characteristics. To get the “big picture” sacrificing some
details to prioritize the strongest predictors, reducing the number of parameters is vital. This can
be done through regularization (or penalization), a key concept inML and “one of the first signs of
the existence of intelligent inference” (Vapnik, 1998, p.9). It involves estimatingmodel parameters
adding a penalty term 𝜙(𝜃; ⋅) to a loss function (𝜃) to favor more parsimonious specifications,
similarly to Akaike or Bayes information criteria. With OLS, we have a penalized sum of squared
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residuals (SSR):

𝑂𝐿𝑆
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑

(𝜃; 𝑧𝑖,𝑡) =
1

𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

(
𝑟𝑖,𝑡+1 − 𝑧′

𝑖,𝑡
𝜃
)2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
OLS loss function

+𝜆(1 − 𝜌)

𝑃∑
𝑗=1

|𝜃𝑗| + 1

2
𝜆𝜌

𝑃∑
𝑗=1

(𝜃𝑗)
2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
penalty 𝜙(𝜃;𝜆,𝜌)

(5)

The model in Equation (5) is known as elastic net (Zou & Hastie, 2005). The terms 𝜆 and 𝜌 are
hyperparameters or tuning parameters to be determined through Cross-Validation (CV, Hastie
et al., 2009). The elastic net incorporates two models depending on the value of 𝜌. The Ridge
regression (Hoerl & Kennard, 1970, 𝜌 = 1) penalizes the estimator in the “𝑙2-space” for picking
large values for 𝜃, regardless their sign. Ridge performs shrinkage: it draws all coefficient estimates
towards zero, but it still retains them all. 𝜆 controls the amount of shrinkage. When 𝜆 = 0, there
is no penalization, that is, we have standard OLS. As 𝜆 increases, the model flexibility decreases,
leading to higher bias but smaller variance. The Least Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani, 1996, 𝜌 = 0) does not shrink coefficients towards zero, rather it forces some
to zero imposing an 𝑙1-penalization. It achieves selection among predictors based on the value of
𝜆 maximizing the OOS performance. For each value of 𝜆 in Equation (5), there exists a unique 𝛾

that solves the following equivalent constrained minimization problem:

min
𝜃

1

𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

(
𝑟𝑖,𝑡+1 − 𝑧′

𝑖,𝑡
𝜃
)2

subject to
𝑃∑

𝑗=1

(𝜃𝑗)
2 ≤ 𝛾

(
𝑃∑

𝑗=1

|𝜃𝑗| ≤ 𝛾

)
(6)

for 𝜌 = 1 (𝜌 = 0). To understand the differences between the two cases, consider 𝑃 = 2. The con-
straint region is a disk for Ridge and a diamond for LASSO. Unlike the disk, the diamond has
corners and if the first tangency point between the SSR contour lines and the constraint lies there,
one parameter is set to zero. When 𝑃 > 2, we have a sphere (Ridge) and a rhomboid (LASSO)
with many corners, flat edges and faces (Hastie et al., 2009): there are many chances that several
coefficients are set to zero with such an “edgy” constraint region. This is why LASSO delivers
sparse solutions.
Ridge and LASSO estimates can be interpreted as the posterior distribution moments for given

Bayesian priors. Ridge gives posterior mean andmode under a Normal model for the distribution
of returns given the predictors and a Normal prior for the parameters. LASSO gives the posterior
mode given Laplace priors (Athey& Imbens, 2019). Some studies exploit this link tomap themod-
els they first develop following Bayesian approaches into penalized estimators (e.g., Kozak et al.,
2020). With ML, however, the optimal amount of regularization is chosen by CV without specific
priors. CV carries out data resampling to tune hyperparameters on subsets of data not contained
in the training set (validation set). For example,K-fold CV splits the data into𝐾 subsamples (folds),
and each time it fits themodel omitting the 𝑘th subsample, for 𝑘 = 1, 2, …𝐾. The optimal value for
the tuning parameter minimizes the prediction error across all the 𝐾 validation subsamples ini-
tially excluded.3 Model performance is evaluated in the test set. Besides this, both methods have
pros and cons depending on the situation. For instance, LASSO struggles with strongly correlated
variables, as it is indifferent between including one, the correlated one, or even both covariates
as long as they get nonzero coefficients (Nagel, 2021). Elastic nets encourage both shrinkage and
selection to skirt the limitations of each of its nested models.
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Regularization is often embedded in the loss function of other ML techniques to mitigate over-
fitting. In Asset Pricing, special penalization specifications enhance traditional methods aimed at
predicting returns or identifying risk factors, as we review below.

3.1.1 Regularization in asset pricing

Chinco et al. (2019) propose LASSO as off-the-shelf method to improve 1-min-ahead return fore-
casts when the space of candidate predictors is large. Differently from Equation (2), here the
predictors are not firm characteristics but rather the lagged returns of the entire NYSE universe
during the previous 3 min. “Betting on sparsity” (Hastie et al., 2009) with LASSO regressions
over 30-min rolling windows results in an OOS adjusted 𝑅2 of 2.47% with significant increases in
explained variation according to the formal (Giacomini &White, 2006) test for alternative conven-
tional models including several AR(𝑝) models, Fama & French (1993), and combinations of them
augmented with firm characteristics. A trading strategy based on the model predictions yields a
1.79 OOS annualized SR and a significant alpha with respect to a four-factor model with market,
size, value, and momentum without significant loadings on any of them except for the market.
The authors also calculate the probability of LASSO selecting a certain predictor with a simple
logit model, and find that size, liquidity, volume, and industry do not influence it, whereas they
are relevant atweekly ormonthly horizons. In this sense, the selected predictors are “unexpected”.
LASSO selects the same lagged return for no longer than 15min, that is, predictors are short-lived,
and retains mainly returns of stocks with recent news about their fundamentals, in line with eco-
nomic intuition. The conclusion is that plain-vanilla selection methods like LASSO can support
human intuition towards economically meaningful choices.
Freyberger et al. (2020) use a variation of LASSO named adaptive group LASSO paired with a

nonparametric method (quadratic splines) to establish which firm characteristics provide inde-
pendent information for the cross-section of expected returns. The conditional expectation in
Equation (1) is a potentially nonlinear function𝑚𝑡+1(.) of the characteristics:𝑚𝑡+1(𝑧1, … , 𝑧𝑃) ∶=

𝔼[𝑟𝑖𝑡+1|𝑧1,𝑖,𝑡 = 𝑧1, … , 𝑧𝑃,𝑖,𝑡 = 𝑧𝑃]. Once characteristics are normalized into the unit interval with a
rank-transformation, as usual in ML to eliminate sensitivity to outliers, there exists an equivalent
formulation with these new features �̃�𝑖,𝑡, that is, �̃�𝑡+1(�̃�1, … , �̃�𝑃). To sidestep the shortcom-
ings of portfolio sorts mentioned above, the authors use the additive model �̃�𝑡+1(�̃�1, … , �̃�𝑃) =∑𝑃

𝑗=1
�̃�𝑡+1,𝑗(�̃�𝑗) offering a rate of convergence independent from 𝑃, where �̃�𝑡+1,𝑗 are unknown

functions to estimate through adaptive group LASSO. The method first splits the support of every
characteristic into𝐿 intervals similar to portfolios and fits quadratic splines in each of them. In this
way, �̃�𝑡+1,𝑗(�̃�𝑗) ≈

∑𝐿+2

𝜅=1
𝑏𝑡,𝑗,𝜅𝑠𝜅(�̃�𝑗), with 𝑠𝜅(�̃�) basis functions and 𝑏𝑡,𝑗,𝜅 must be estimated. Sec-

ond, it employs the group LASSO (Huang et al., 2010), which drops not one but all the coefficients
associated with a given �̃�𝑗 in �̃�𝑡+1,𝑗(�̃�𝑗) if it does not help predicting returns:

�̂�𝑡 = argmin
𝑏𝑗,𝜅∶𝑗=1,…,𝑃;𝜅=1,…,𝐿+2

𝑁∑
𝑖=1

1

𝑁

(
𝑟𝑖,𝑡+1 −

𝑃∑
𝑗=1

𝐿+2∑
𝜅=1

𝑏𝑗,𝜅𝑠𝜅(�̃�𝑗,𝑖,𝑡)

)2

+ 𝜆1

𝑃∑
𝑗=1

(
𝐿+2∑
𝜅=1

𝑏2
𝑗,𝜅

)1∕2

(7)

where �̂�𝑡 is an (𝐿 + 2) × 𝑃 vector. The adaptive step consists inminimizing Equation (7) again, this
timemultiplying the parameters 𝑏2

𝑗,𝜅
by weights, which nullify characteristics with a zero squared

contribution over all intervals that might have been selected in the first step. This is one of the few
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models able to disentangle the incremental predictive power of individual characteristics beyond
their relevance due to the correlation with other measures. Out of 62 predictors from the anomaly
literature, several of them like idiosyncratic volatility are not associated with expected returns
after conditioning for other covariates. Even if the set of selected predictors varies depending on
interpolation points, data subsamples and over time, 41 are never chosen. The group surviving the
selection in most cases mainly includes past-return-based predictors, except for change in shares
outstanding and standardized unexplained volume (SUV). Some of these characteristics are eas-
ily identified as proxies for risk exposures, while others require mispricing-based explanations. In
contrast to their formulation, the main results presented are obtained with time-invariant mean
functions ̂̃𝑚𝑗(�̃�) estimated over the entire sample to get more precise estimates. Rolling estima-
tions show that the relation between stock returns and some predictors might vary substantially
over time: predictability might disappear and reappear in different periods.
Return predictability in high-dimensional settings is investigated also in Martin and Nagel

(2022). In the “age of big data,” investors observe a great number of signals andmight incorporate
ML when learning about cross-sectional anomalies. Owing to the large amount of noise in past
cash flows, their beliefs update imperfectly and slowly, even with Bayesian learners with correct
priors about the data-generating process. As a result, an econometrician who looks at the data
ex-post finds predictability, but sees none OOS. Exploiting the connection between regulariza-
tion and Bayesian methods explained earlier, the model implications are corroborated running
Ridge regressions with a large set of standard predictors to mimic investors’ learning process.
Predictability results indeed much weaker OOS than in-sample and there is substantial decay
over time. In the past, investors could not process information as effectively as today, as if they
had only bounded rationality, which induced excessive shrinkage or sparsity in their forecasting
models, hence anomalies would occur. The study concludes that in-sample predictability tests
are ill-suited to uncover risk premia and suggests to focus on OOS periods to test the efficient
market hypothesis.
Feng et al. (2020) introduce regularized two-pass cross-sectional regressions based on the

double-selection LASSO of Belloni et al. (2014) to establish the marginal contribution of a new
factor controlling for high-dimensional sets of existing risk sources. A distinctive feature is the
focus on model selection: factors that do not predict the cross-section might still be useful to
reduce omitted variable bias. Consider a linear model like Equation (3), where factors 𝑓𝑡 are split
into 𝑔𝑡, the new factors to be tested, and ℎ𝑡, the known factors at time 𝑡. In standard two-pass
regressions (Fama & MacBeth, 1973), controlling for the entire factor zoo is inefficient or even
infeasible due to the curse of dimensionality, but “to cherry-pick a handful of control factors” (Feng
et al., 2020, p.1336) is an ad hoc solution that omits potentially relevant factors biasing the risk
premia estimates. Furthermore, one needs to look at the SDF loadings to understand whether
a factor is useful or not (Cochrane, 2009): investors would still pay a nonzero risk premium to
hedge against risk sources correlated with the “true” ones regardless their contribution to the PK.
Hence, a double-selection procedure is introduced, which modifies the first step using covari-
ances instead of betas and avoids omitted variable bias. First, a cross-sectional LASSO regression
of average returns on sample covariances between ℎ𝑡 and 𝑟𝑡 selects the factors. Then, the covari-
ance between returns and each factor in 𝑔𝑡 is regressed on the covariance between 𝑟𝑡 and all ℎ𝑡

with LASSO. This step seeks factors potentially missed in the first stage because they have low
explanatory power but that may induce a bias if excluded. Finally, post-selection SDF weights are
estimated regressing 𝑟𝑡 on covariances of returns with both ℎ𝑡 and the selected 𝑔𝑡.
To mimick the discovery process over time, 150 risk factors proposed between 2012 and 2016

are tested conditional on the ones known up to that point, using several bivariate sorts based
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on traditional characteristics to build test assets. Due to the search for omitted factors, first- and
second-step LASSO produce strikingly different results, selecting usually 4 and 20 up to 80 factors,
respectively. As in other studies, most new factors turn out redundant, given the others. Among
those that matter are Hou et al. (2015)’s investment factor, intermediary capital (He et al., 2017),
QualityMinus Junk (Asness et al., 2019), Betting Against Beta (BAB, Frazzini and Pedersen, 2014),
Conservative Minus Aggressive and Robust Minus Weak (CMA and RMW, Fama and French
(2015)), and Return On Equity (ROE, Hou et al. (2015)). Past-return variables are less important
than in Freyberger et al. (2020), although bothmethods rely on LASSO. Room for further research
is given by the possibility of replacing LASSO with another technique in the first stage.
Kozak et al. (2020) is a major contribution in this review. The paper estimates the SDF weights

𝑏 in Equation (4) through a Bayesian approach with economically motivated priors that can be
mapped into regularized parameter estimation along the lines of what discussed in Section 3.1,
hence its inclusion here. The authors acknowledge the multidimensional challenge of the fac-
tor zoo but argue that “[. . . ] the multi-decade quest to summarize the cross-section of stock
returns with sparse characteristics-based factor models [. . . ] is ultimately futile. There is simply
not enough redundancy” (p.21). We lack redundancy because we often need several observable
proxies to capture the effect of factors justified by theory that we cannot directly measure, like
expected profitability and investment in the 𝑞-theorymodel (Lin&Zhang, 2013). Each proxy gains
at least somepredictive power only thanks to its correlationwith the unobservable factors entering
the true SDF.
A naïve SDF-weight estimator using sample moments �̂� = Σ̄−1�̄�′ overfits the data in high-

dimensional settings and thus needs regularization. In a Bayesian setting, first and second factor
moments should be linked together in investors’ beliefs since, intuitively, factorswith high returns
should be themselves relevant risk sources or be highly exposed to the true ones. The authors
choose a prior from a family of corresponding shrinkage estimators including those used in Pástor
(2000) and Pástor and Stambaugh (2000), which leads to an estimator �̂� for the posterior mean of
𝑏 shrinking the SDF coefficients towards zero based on factor volatilities. Alternatively, one finds
the same �̂� with Ridge-style regressions, either minimizing the model cross-sectional 𝑅2 with an
𝑙2-penalty on the maximum SR, or minimizing the HJ-distance (Hansen & Jagannathan, 1991)
subject to a squared penalty on 𝑏:

�̂� = argmin
𝑏

(�̄�′ − Σ̄𝑏)′Σ̄−1(�̄�′ − Σ̄𝑏) + 𝜆𝑏′𝑏 (8)

Despite being fierceful advocates for density, Kozak et al. (2020) do not exclude sparsity a priori
and include an additional 𝑙1-penalization in Equation (8) hoping to set to zero some redundant
factors, obtaining a model similar to an elastic net. The method is tested on a cross-section of
80 standard anomaly based factors to ensure that it contains more redundancy than typical size-
value-sorted portfolios spanned by few factors (Lewellen et al., 2010). The “misbelief” in sparsity
is justified by the findings: there is almost no redundancy in the test assets, as the elastic net
essentially switches off the 𝑙1-penalization to maximize the OOS 𝑅2. This happens because the
𝑙2-penalization already pushes many coefficients close to zero and almost no selection takes place
with many strongly correlated covariates. Therefore, we can only say which factors are the most
relevant looking at their SDF weight: industry momentum and relative reversals, seasonality,
earnings surprises, market, ROE, andmomentum among others. Introducing interactions among
factors reveals that most of them are superfluous, in contrast to what others find (e.g., Bryz-
galova et al., 2021). The only result speaking in favor of sparsity is the good OOS performance of a
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low-dimensional SDF built using the factor Principal Components (PCs). However, since these are
still built rotating all factors, the main message remains that “Sparsity is generally elusive” (p.21).

3.2 Dimension reduction

Both those who “bet on sparsity” and those who impose it to avoid high-dimensional problems
would like to reduce the dimension of the factor zoo without losing valuable information for the
cross-section. Dimension reduction methods compress the data into a lower-dimensional space.
Prominent examples are cluster analysis, principal component analysis (PCA), and partial least
squares (PLS, Gu et al. (2020)). We focus here on PCA, the method that has been applied most
often in Asset Pricing based on our knowledge.
PCA can be employed both for forecasts and in factor models. In predictive regressions like

Equation (2), PCA first summarizes a large set of covariates into few linear combinations, which
best describe returns, and then uses them as predictors. A classical example of such principal com-
ponent regression (PCR) is in Gu et al. (2020). PCA for factor models like Equation (3) is described
next referring to the specification used in Lettau & Pelger (2020b), who build on Connor and
Korajczyk (1986, 1988, 1993) and Bai and Ng (2002).
We start from an “approximate” multifactor model which follows Ross (1976), where by

assumption there is no mispricing and therefore no alpha:

𝑟𝑖,𝑡 = 𝑓𝑡𝛽
′
𝑖
+ 𝜖𝑖,𝑡

𝑅
⏟⏟⏟
𝑇×𝑁

= 𝐹
⏟⏟⏟
𝑇×𝐾

𝐵′
⏟⏟⏟
𝐾×𝑁

+ 𝜖
⏟⏟⏟
𝑇×𝑁

(9)

where in the second line, we stack the time series altogether andmatrix dimensions are analogous
to Lettau & Pelger (2020b). PCA applies singular value decomposition (SVD) to 𝑅, or, alterna-
tively, eigen-decomposition to its sample covariance matrix Σ̄𝑅 ∶=

1

𝑇
𝑅′𝑅 = 𝑉𝐷2𝑉′ when returns

are demeaned.4 The eigenvalues are the elements 𝑑2
𝑗
in 𝐷2 with associated eigenvectors 𝑣𝑗 from

𝑉, for 𝑗 = 1, 2, … ,𝑁. The PCs are linear combinations of returns with eigenvectors as weights,
that is, 𝑅𝑣𝑗 . Since 𝑉𝑎𝑟(𝑅𝑣𝑗) = 𝑑2

𝑗
∕𝑁, eigenvalues are a natural metric to sort PCs: the first PC has

the highest eigenvalue and thus the largest variance among all combinations of the columns of
𝑅. Each subsequent 𝑘th PC has the 𝑘th largest variance, conditional on being orthogonal to all
previous PCs, for 𝑘 = 2, 3, … , 𝐾, where𝐾 is the desired number of components. PCs constitute the
closest subspace (e.g., surface) to the data cloud, thereby providing a 𝐾-dimensional approxima-
tion in terms of Euclidean distance (Hastie et al., 2009). In latent factor models like Equation (9),
the first 𝐾 eigenvectors form the 𝐾 × 𝑁 loading matrix �̂� on the 𝐾 orthogonal factors with the
largest variance, that are estimated as �̂� = 𝑅�̂�(�̂�′�̂�)−1. Minimizing the quadratic loss function
corresponding to Equation (9) choosing jointly factors and loadings produces the same results
(Stock & Watson, 2002).
How does one choose the number of components 𝐾? The most straightforward way is using

the proportion of variance explained (PVE). The PVE for the 𝑘th PC is the ratio of its variance to
the total variance of the data. One keeps estimating PCs until their cumulative PVE reaches a
user-defined target. This procedure can guide the choice of the number of factors in theoretical
models, as it happens for the term structure of interest rates, where the first three PCs usually
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representing its level, slope, and curvature capture most of the variation. Alternatively, one can
stop when the contribution of the 𝑘th PC is negligible (Hastie et al., 2009) or resort to statistical
estimation (Pelger, 2019). Lastly, some studies treat𝐾 as a hyperparameter to be foundminimizing
the squared prediction error in the validation set (Gu et al., 2020). This approach is more OOS-
oriented and fits well the typical Machine Learning paradigm that learns patterns in the data
without relying just on in-sample information.
As PCA combines all regressors into the linear combinations best describing the data, it is

particularly useful in situationwith high collinearity, where shrinkagemethodsmight lead to sub-
optimal forecasts (Gu et al., 2020). PCA has strong explanatory power in many applications, but it
is prone to overfitting. Another shortcoming is its instability to data structure. If one covariate cap-
tures a disproportionate amount of the data variation, their first PC roughly coincideswith it. Now,
if that covariate was split into 𝐿 “smaller covariates,” then the first 𝐿 PCs would approximately
correspond to those 𝐿 parts of the original covariate. Data do not change, but results differ (one
versus many PCs). When identifying dynamic factors with high-dimensional data, PCA is more
efficient than maximum likelihood estimation (MLE), which requires estimating many parame-
ters (Stock & Watson, 2002). There exists also nonlinear PCA (Hastie et al., 2009) and Bayesian
PCA (Bishop, 1999), which have not been explored in Asset Pricing yet.

3.2.1 Dimension reduction in asset pricing

As mentioned above, we focus on PCA. Chamberlain and Rothschild (1983) and Connor and
Korajczyk (1986, 1988) provide early contributions. More recently, Kozak et al. (2018) show that a
low-dimensional SDF built using PCs of the test assets covariance matrix can easily price several
anomaly portfolios. However, this tells us nothing about whether the economy is rational: mis-
pricing can still persist since arbitrageurs exploit near-arbitrage opportunities only insofar as they
are orthogonal to common risk sources and are reluctant to trade aggressively against anomalies
that exposes them to factor risk.
Kelly et al. (2019) adapt standard PCA allowing time variation in factor loadings. In the IPCA

(instrumented PCA), these are linear functions of characteristics with predictive power for the
cross-section of returns:

𝑟𝑖,𝑡 = 𝛼𝑖,𝑡−1 + 𝑓𝑡𝛽
′
𝑖,𝑡−1

+ 𝜖𝑖,𝑡

𝛼𝑖,𝑡−1 = 𝑧′
𝑖,𝑡−1

Γ𝛼 + 𝜈𝛼,𝑖,𝑡−1

𝛽𝑖,𝑡−1 = 𝑧′
𝑖,𝑡−1

Γ𝛽 + 𝜈𝛽,𝑖,𝑡−1

(10)

where 𝑧𝑖,𝑡−1 is a vector with 𝑃 = 36 firm characteristics. “Instrumenting” betas enables IPCA to
incorporate the information contained in 𝑧𝑖,𝑡−1 to describe returns, overcoming a major short-
comings of PCA, namely that it is a static model ill-suited to estimate conditional factor models.
IPCA achieves dimension reduction through Γ𝛽 , which maps a large number of features into 𝐾

factors in 𝑓𝑡 without resorting to portfolio sorts. In this way, it requires much fewer parameters
compared to static-beta models. For example, Fama and French (2015)’s model plus momentum
estimates 68712 parameters for individual stocks in the period considered, while IPCA needs 3816.
Hence, this technique works well in high-dimensional environments. Operationally, IPCA finds
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Γ𝛽 , Γ𝛼, and 𝑓𝑡 to minimize

min
Γ𝛽,Γ𝛼,𝑓𝑡

𝑇∑
𝑡=1

(𝑟𝑡 − 𝑍𝑡−1Γ𝛼 − 𝑍𝑡−1Γ𝛽𝑓
′
𝑡)

′(𝑟𝑡 − 𝑍𝑡−1Γ𝛼 − 𝑍𝑡−1Γ𝛽𝑓
′
𝑡) (11)

where 𝑟𝑡 is a 𝑁 × 1 vector and 𝑍𝑡−1 is an 𝑁 × 𝑃 matrix. The method is easily understood con-
sidering the application of SVD to “characteristic-managed portfolios” 𝑥𝑡 = 𝑍′

𝑡−1𝑟𝑡∕𝑁𝑡. From this
perspective, the factors are linear combinations, or “portfolios of portfolios,” that best explain
the covariation among managed portfolios. The IPCA allows three types of tests. First, testing
𝐻0 ∶ Γ𝛼 = 0 comparing a restricted and an unrestricted model ( Γ𝛼 = 0 and Γ𝛼 ≠ 0, respectively),
one examines whether characteristics give rise to “genuine” risk factors because they proxy for
exposures to common risks commanding a premium, or if they are mere anomalies. The investi-
gation of this point is hard to find elsewhere in the literature. Second, adding observable factors
in the spirit of Fama and French (2015) in Equation (10), one can test whether latent factors have
explanatory power beyond the rest. Third, one can verify which characteristics significantly con-
tribute to the loadings 𝛽𝑖,𝑡−1, controlling for the others. All these tests utilize Wald-type statistics
backed by robust bootstrapping procedures.
IPCA is applied to data fromFreyberger et al. (2020).Model performance ismeasured bothwith

total and predictive𝑅2. The latter represents the variation explained bymodel-implied conditional
returnswhen factors are fixed at their average. Themain finding is that “characteristics are covari-
ances,” whichmeans they proxy for risk exposures: for𝐾 > 1, the unrestrictedmodel consistently
outperforms the restricted one. IPCAperforms particularly good for conditional returns, as its pre-
dictive 𝑅2 is more than three times that of Fama and French (2015) plusmomentum for individual
stocks, and it explains almost 99%of the in-sample variation ofmanaged portfolioswith six factors.
Itswinning ingredients are both the use of unspecified statistical factors and dynamic betas, which
enable good results also OOS. The authors interpret IPCA factors looking at the weights Γ𝛽 in the
first𝐾 factor loadings. Factor 1 is a firm-value factor dominated by size and book assets. Factor 2 is
mostly determined by market beta, factors 3 and 4 by momentum and Short-Term Reversal (STR)
and factor 5 is a mixture of many “less important” characteristics. Except for book assets, these
ones are also the most relevant characteristics according to the contribution to the model 𝑅2 in
several robustness tests. In sum, accounting and past-return-based characteristics predominantly
contribute to the stock return variation, in line with the cross-sectional Asset Pricing tradition.
IPCA has proved successful also in other contexts. Kelly et al. (Forthcoming) show that the

method captures the bulk of momentum and long-term reversal anomalies as it recovers the
time-varying exposures to priced latent factors that these characteristics pick up. STR still gener-
ates mispricing, however, probably because its effect is partially driven by the illiquidity of small
firms (Asness et al., 2014) and does not stem from systematic risk compensations. Kelly et al.
(Forthcoming) employ IPCA to extract latent factors from corporate bond returns. They use 30
bond characteristics (including a constant) with predictive power from the literature to model
conditional loadings of individual assets and characteristic-managed portfolios. One factor alone
explains 41% and an impressive 93% of their variation, respectively. With 𝐾 = 5, the model sur-
passes (Bai et al., 2019)’ and Fama and French (2015)’smodels both in-sample andOOS and cannot
reject the hypothesis of zero-pricing error. The risk factors are dominated by option-adjusted
bond spread, duration, bond volatility, equitymomentum, and spread-to-distance-to-default ratio.
These characteristics together with few others mostly contribute to the model fit, too. Even if
IPCA factors differ for equity and bonds, they produce remarkably similar bond risk premia esti-
mates, hence the authors claim that the integration between these two markets is stronger than
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previously documented. Finally, Büchner and Kelly (2022) use IPCA on delta-hedged returns of
S&P500 index options.Due to their short lifespan and rapidly changing risk attributes, options rep-
resent hard challenges for traditional models. Instrumenting betas with option time-to-maturity,
implied volatility, embedded leverage, and Black–Scholes–Merton “Greeks” (delta, theta, gamma,
vega, volga) recovers statistical factors explaining between 72% (𝐾 = 1) and 90% (𝐾 = 5) of the
movements in individual index options. Static PCA and observable factor models augmented
with option-specific risk factors such as BAB and straddle factor (Coval & Shumway, 2001) are
outmatched. Using the bootstrapping procedures of Kelly et al. (2019), the study concludes that
option characteristics are not just anomalies but compensation for risk exposures to mainly three
factors, interpretable as level, maturity slope, and moneyness skew of the implied volatility sur-
face. The characteristics contributing the most to explain option returns are implied volatility,
vega, and gamma.
Lettau & Pelger (2020b) modify traditional PCA to recover latent factors depending on their

ability to simultaneously explain time series and cross-section of stock returns. Statistical factor
analysis in the spirit of Connor and Korajczyk (1986, 1988) is a second-order method, which iden-
tifies factors depending only on their comovements with the data, disregarding the information
about the first moments. With low signal-to-noise ratios only “strong” factors affecting numer-
ous assets and/or having large variance are picked, while “weak” factors are not recovered. This
is problematic for Asset Pricing: even if they do not generate much comovement among stocks,
they can still foster the proliferation of anomalies and capture differences in risk premia. To cir-
cumvent this limitation, risk-premium PCA (RP-PCA) augments the standard PCA problem of
minimizing time-series pricing errors with a penalty term on cross-sectional pricing errors:

𝐹RP-PCA, 𝐵RP-PCA = argmin
𝐵,𝐹

1

𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

(𝑟𝑖,𝑡 − 𝑓𝑡𝛽
′
𝑖
)2 + 𝜆

1

𝑁

𝑁∑
𝑖=1

(𝑟𝑖 − 𝑓𝛽′
𝑖
)2 (12)

where 𝑟𝑖 is the sample mean of excess returns, which must not be restricted to zero: thanks to
the penalty term, in RP-PCA a factor signal strength depends also on its first moment besides its
volatility. If the signal strength is high enough relative to noise, the factor is identified; otherwise
it is discarded as a weak one. Alternatively, RP-PCA extracts factors and loadings through an
SVD on a modified covariance matrix Σ𝑅𝑃 ∶=

1

𝑇
𝑅′𝑅 + 𝜆𝑅𝑅

′
where 𝜆 determines the weight of

cross-sectional errors as in Equation (12). When 𝜆 = −1, the model reduces to standard PCA. The
model-implied SDF is then obtained from Equation (4) with the estimated factors. Lettau and
Pelger (2020a) provide statistical properties and derivations.
Empirically, RP-PCA is employed to extract factors from single-sorted anomaly portfolios from

Kozak et al. (2020) and other double-sorted portfolios. CV sets 𝐾 = 5: RP-PCA delivers a sparse
SDF. The method is superior to standard PCA and Fama & French (1993)’s model in terms of SDF
SR, pricing errors and residual variance, both in-sample and OOS. Similarly to Kelly et al. (2019),
we can attach economic meaning to the extracted factors inspecting the weights of the test port-
folios. Unsurprisingly for latent factor models, the first one is the market. Portfolios in all groups
contribute to the second factor, while the third one is a value factor. The most important portfo-
lios for the fourth factor are related to momentum, interactions with value and trading frictions
and those belonging to the reversal category dominate the fifth one. The rest of the factor zoo is
largely redundant, as other studies claim. While the market affects both time-series and cross-
sectional fit, factors 2 and 5 impact only the cross-section and factors 3 and 4 only the time series.
In comparison, standard PCA factors are tougher to interpret as the factorweights do not provide a
clear-cut grouping. The study also finds that sparse mean–variance optimization produces higher
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SRs than shrinkage, in contrast to Kozak et al. (2020). RP-PCA can be combined with either IPCA
or Kozak et al. (2020)’s approach to improve model performance. It is therefore flexible enough to
support other methods accounting for important factors that otherwise might be missed, making
it a noteworthy contribution to the literature.
Giglio and Xiu (2021) provide a three-pass methodology to estimate risk premia valid even with

omitted factors and measurement error. The factors 𝑓𝑡 in Equation (3) can always be split into
potentially correlated and unobservable innovations 𝜈𝑡 and their risk premia 𝛾:

𝑟𝑡 = 𝛽𝛾′ + 𝛽𝜈′
𝑡 + 𝜖𝑡 (13)

where 𝛽 is an𝑁 × 𝐾matrix. Estimation of 𝛾 for a set of 𝑑 < 𝐾 factors controlling for the remaining
ones typically occurs through two-pass regressions (Fama & MacBeth, 1973) and the mimicking
portfolio approach. In the first method, omitting some of the 𝐾 components of 𝜈𝑡 entails a “com-
punded” bias for 𝛾: the bias in time-series regression loadings further distorts the risk premia
estimated with cross-sectional regressions. In the second method, the bias results from missing
assets in themaximally correlated portfolio.Measurement errors arisewhenproxying for anunob-
served factor with an observable variable 𝑔𝑡. Assume that 𝑔𝑡 = 𝛿 + 𝜂𝜈𝑡 + 𝜉𝑡, where 𝜉𝑡 introduces
the error in measuring 𝜈𝑡 through 𝑔𝑡. Even if Cov(𝜉𝑡, 𝜈𝑡) = 0, potential correlation between 𝜉𝑡
and 𝜖𝑡 in Equation (13) biases the risk premium estimate for the proxy 𝑔𝑡, that is, 𝛾𝑔 = 𝜂𝛾. To
bypass both kinds of bias, the authors exploit a property of risk premia called rotation invariance:
the product 𝜂𝛾 can be identified up to an arbitrary full-rank factor rotation of the type �̂�𝑡 = 𝜈𝑡𝐻,
which means the risk premium of a single component of 𝑔𝑡 is invariant to how the remaining
𝐾 − 1 are rotated, as long as they span the same risks as the true model. Hence, we need neither
𝐻 nor 𝜈𝑡 explicitly but only �̂�𝑡, which can be consistently identified by PCA if factors are suffi-
ciently strong (Bai, 2003). Following this logic, the three-pass methodology first extracts factors
�̂�𝑡 and loadings from a large panel of test assets with PCA. Second, it computes their risk premia
regressing average returns on estimated betas. Third, a mimicking portfolio procedure recovers
the relation between 𝑔𝑡 and 𝜈𝑡 removing the effect of measurement error. The risk premium of 𝑔𝑡
is the product between third-step loadings and second-step risk premia. The three-pass method
can be interpreted both as a PCA-augmented cross-sectional regression and as a regularizedmim-
icking portfolio, where the PCs of the test assets play the role of controls and the space where to
project factors onto, respectively, instead of using arbitrary assets.
The method is used to test both tradable (e.g., Fama and French, 2015) and nontradable factors

(e.g., Pástor& Stambaugh, 2003). Amodelwith seven factors delivers a 59%𝑅2 on a cross-section of
647 portfolios including treasuries, currencies, and corporate bonds. The three-pass approach pro-
duces risk premia estimates that are very close to average returns of tradable factors. The other
standard methods give instead unstable estimates due to omitted variables. The most important
factors are market, momentum, profitability, and BAB. Among nontradable ones, only liquid-
ity and intermediary factors together with some macro variables and stockholders’ consumption
growth have economic and statistic significance. Results are robust to including RP-PCA or IPCA
in the first step.
Pelger (2020) identifies continuous, jump, and overnight factors in high-frequency data with

PCA. Changes in the 𝑁 × 1 vector of log prices 𝑃(𝑡) have the following factor structure:

𝑑𝑃(𝑡) = 𝐵𝐶𝑑𝐹𝐶(𝑡) + 𝐵𝐷𝑑𝐹𝐷(𝑡) + 𝐵𝑁𝑑𝐹𝑁(𝑡) + 𝑑𝑒(𝑡) (14)

where 𝐵𝐶 , 𝐵𝐷 , and 𝐵𝑁 are continuous, jump, and overnight loadings on the corresponding 𝐾-
dimensional factor processes 𝐹𝐶 , 𝐹𝐷 , and 𝐹𝑁 , respectively. The return matrix 𝑅 has elements
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𝑅𝑖,𝑗 = 𝑃𝑖(𝑡𝑗+1) − 𝑃𝑖(𝑡𝑗) for 𝑖 = 1, … ,𝑁, 𝑗 = 1,… , 𝑇. Hence, the model for high-frequency returns
becomes 𝑅 = Δ𝐹𝐵′ + Δ𝜖, where the Δ operator represents changes from 𝑡𝑗 to 𝑡𝑗+1. If returns at
time 𝑡𝑗 exceed a threshold number of standard deviations above the estimated stochastic volatil-
ity, they are considered jumps 𝑅𝐷 of the price process; otherwise they are continuous components
𝑅𝐷 . Accordingly, a factor model holds for each 𝑅, 𝑅𝐶 , and 𝑅𝐷 . Factor changes and loadings are
estimated following Pelger (2019), who essentially applies PCA to a volatility and jump covari-
ance matrix considering only factors whose perturbated eigenvalue-ratio statistics cluster far
away from 1 to identify their number 𝐾. Continuous and jump components add up to intraday
returns.
The dataset used consists of 5-min and daily returns together with characteristics for individual

stocks. Overnight returns are the difference between intraday and daily returns. Themethod iden-
tifies four high-frequency and continuous factors for most of the sample, whereas jump factors
play a negligible role. Factors are given economic meaning following Pelger and Xiong (2021).
The first factor is a market portfolio, while the others represent industry factors, that is, oil,
finance, and electricity, and they have low generalized correlation (Bai & Ng, 2006) with Fama–
French–Carhart factors. This is the only study we reviewwhere industries play such an important
role: high-frequency returns may load on different risk sources than those at other frequencies.
Overnight and daily data show indeed weaker links to industry portfolios. The major finding is
a reversal pattern between intraday and overnight returns. Statistical factors earn a much higher
SR intraday than overnight, when it often turns negative. Exactly the opposite happens for Fama–
French–Carhart factors. A potential explanation comes from Lou et al. (2019), who observe that
large trades from institutional investors tend to occur near the close, while small trades on part of
individuals usually take place near the open. In few words: firm characteristics matter overnight
and industries matter intraday, such that studying only the cross-section of daily returns might
neglect risk-return trade-offs with overnight reversals. Statistical factors capture in fact variation
in industry portfolios better than observable ones, which miss this phenomenon.

3.3 Regression trees/random forest

Interactions among firm characteristics may have predictive power for stock returns (Bryzgalova
et al., 2021), but traditional methods struggle to account for all of them in the factor zoo. Regres-
sion trees are powerful tools to capture interactions and efficiently group stocks into homogeneous
groups similar to portfolios. Intuitively, they are nonparametric techniques that partition the fea-
ture space into 𝐻 rectangular regions called leaves according to some distance metric, and then
fit a simple model in each of them to predict the outcome variable. We can interpret a regression
tree as a set of nearest neighbors (Athey & Imbens, 2019) approximating the function of interest
𝑔(𝑧𝑖,𝑡; 𝜃) with a multidimensional step function (Breiman et al., 2017). Figure 1 illustrates a tree
partitioning the predictor space into three regions based on size and value according to the final
nodes.We can express the prediction for 𝑟𝑖,𝑡+1 in a tree with 𝐿 subsequent vertical nodes (or depth)
and𝐻 leaves as

𝑟𝑖,𝑡+1 = 𝑔(𝑧𝑖,𝑡; 𝜃, 𝐻, 𝐿) =

𝐻∑
ℎ=1

𝜃ℎ𝟏{𝑧𝑖,𝑡∈𝐶ℎ(𝐿)} (15)

where 𝐶ℎ(𝐿) is the region at depth 𝐿 of the tree and 𝜃ℎ is a constant parameter coinciding with
the average return of the node. Since each stock 𝑖 falls in just one of the final nodes, its predicted
return is the node average.
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F IGURE 1 Example of regression tree diagram using size and value with 𝐿 = 2 and regressor space partition
into leaves according to splitting points 𝑠1 and 𝑠2 [Colour figure can be viewed at wileyonlinelibrary.com]

How do we determine the partitions to “grow” a tree? As in other ML methods, the decision
metric is the forecast error. Since finding the globally optimal partition minimizing it is often
computationally infeasible (Nagel, 2021), we need to resort to an algorithm to approximate the
solution. The greedy algorithm (Hastie et al., 2009) is a local method focusing on a single branch
every time disregarding the rest. For each splitting variable 𝑗 = 1,… , 𝑃, a splitting point 𝑠 creates
two half-planes of the covariates 𝑍, that is, {𝑍|𝑧𝑗 ≤ 𝑠} and {𝑍|𝑧𝑗 > 𝑠}. We seek both 𝑗 and 𝑠 to
minimize the local measure

min
𝑗,𝑠

⎡⎢⎢⎣min
𝑐1

∑
𝑧𝑖∈{𝑍|𝑧𝑗≤𝑠}

(𝑟𝑖,𝑡+1 − 𝑐1)
2 + min

𝑐2

∑
𝑧𝑖∈{𝑍|𝑧𝑗>𝑠}

(𝑟𝑖,𝑡+1 − 𝑐2)
2
⎤⎥⎥⎦ (16)

One can show that the constants 𝑐1 and 𝑐2 are the average return in each subregion. Hence, locat-
ing the best splitting point for each variable is quick. We keep partitioning the feature space into
half-planes every time we find the best split until we get𝐻 leaves. This process is known as recur-
sive binary splitting. The greedy algorithm is efficient, but it does not ensure that the resulting
“path” of thresholds and splits is the correct one (Gu et al., 2020).
Regression trees are invariant to monotonic transformations of the data and capture up to

(𝐿 − 1) interactions with a depth 𝐿. Depth and leaves are tuning parameter governing the model
complexity and they should be determined with techniques reducing overfitting. Cost-complexity
pruning consists in growing a large tree with 𝐻 leaves first, and then in “pruning” it back to a
smaller one by collapsing some leaves into bigger ones to minimize a Ridge- or LASSO-penalized
SSR over the terminal nodes. This creates a sequence of smaller trees and the one with the small-
est cost becomes the final tree. Regularization can also be done through ensemblemethods, which
simply denote the practice of aggregating results of different hyperparameter choices through
some form of average. Boosting recursivelymerges forecasts from oversimplified (“shallow”) trees
into a single “stronger” tree according to some shrinkage factor. This leads to gradient-boosted
regression trees (GBRT, Gu et al. (2020)). Bagging or bootstrap aggregation averages predictions
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over several bootstrapped samples (Hastie et al., 2009). RF (Breiman, 2001) modify bagging com-
bining large collections of decorrelated trees. One first bootstraps 𝐵 samples of the same size of
the data. Then, for each sample, each node in the tree is split considering only a random subset
𝑣 < 𝑃 of the characteristics, and the selection process is repeated until obtaining𝐻 leaves. The RF
predictor is the average of the 𝐵 predictions. This method reduces correlation among trees in dif-
ferent bootstrap samples to avoid problems arising from covariates with disproportionate effects
compared to the rest. CV can be used to choose 𝑣 and 𝐵.

3.3.1 Regression trees/random forest in asset pricing

Moritz and Zimmermann (2016) propose tree-based conditional portfolio sorts to sidestep the lim-
itations of traditional linear models and account for interactions among many predictors. The
method follows the greedy algorithm explained above to predict a company’s stock returns using
decile rankings based on its 1-month returns over the past 2 years. To reduce overfitting and decor-
relate results, trees are aggregated into RF with 𝑣 = 8 random past-return decile rankings in each
tree. A prediction-based long-short portfolio delivers anomalous returns with respect to Fama &
French (1993)’s model plus momentum and does not significantly load on size and value. The
study provides two insightful approaches to interpret ensemble methods like RF. The first one
assesses variable importance mechanically perturbating the value of a candidate predictor in all
the trees and then measuring the resulting mean-squared error relative to the original one across
trees. From this perspective, recent returns (STR) contain more predictive power than more dis-
tant ones (intermediate and standard momentum) because they generate larger reductions in
the forecasting error. The second method builds “average partial derivatives” of monthly returns
with respect to the decile ranking of one past month looking at average differences over time,
bootstrapped samples and firms for predictions obtained artificially setting its value to 1,2,. . . ,10,
ceteribus paribus. Using this procedure for two-way interaction terms shows that the interplay
between short- and longer-term past-returns significantly affects future returns. A limitation of
the study is the use of decile rankings in the RF instead of continuous variables, which means
they depend on univariate sorts with all their shortcomings after all.
Bryzgalova et al. (2021) prune RF based on penalized mean–variance optimization to build test

assets representing higher hurdles for Asset Pricing models. A well-fitting model for test assets,
which do not span the underlying SDF, could easilymiss relevant risk factors. Hence, constructing
meaningful cross-sections of returns is crucial.
Conventional portfolio sorts suffer from several problems, such as curse of dimensionality and

noisy repackaging of the same economic risks.5 The former affects standard regression trees, too:
with 𝑀 sorting variables, we have 𝑀𝐿 ⋅ 2𝐿 (overlapping) portfolios with 𝑁∕2𝐿 stocks each. The
contribution of the paper consists in providing sound economic intuition to prune trees back to
a feasible number of leaves spanning the SDF as closely as possible. Greedy algorithms are ill-
suited tomaximize theOOSSRbecause onemust consider the complete asset covariancematrix to
find the tangency portfolio weights. Asset Pricing Trees (AP-Trees) achieve pruning by employing
instead a global criterion based on the typicalmean–variance optimization that seeks SDFweights
𝑏, augmented with an elastic net:

min
𝑏

1

2
𝑏′Σ̄𝐴𝑃𝑏 + 𝜆1|𝑏|′𝟏 +

1

2
𝜆2𝑏

′𝑏

subject to 𝑏′𝟏 = 1; 𝑏′�̄�𝐴𝑃 ≥ 𝜇0

(17)
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where �̄�𝐴𝑃 and Σ̄𝐴𝑃 denote AP-Trees portfolios sample moments, 𝟏 is an𝑁 × 1 vector of ones and
𝜇0, 𝜆1, 𝜆2 are tuning parameters to choose by CVmaximizing the SDF SR. Portfolio returnweights
damp the role of “deeper” nodes to compensate for their higher diversification. The robust mean–
variance optimization in Equation (17) intuitively shrinks the contribution of assets that do not
contribute to span the PK collapsing high-level nodes (i.e., portfolios) into bigger ones, thereby
reducing overfitting, and generalizes the SDF recovery of Kozak et al. (2020). A caveat of AP-
Trees is that there is no guarantee that the resulting portfolios span the whole mean–variance
space covered by individual stocks.
The SDF resulting from Equation (17) is used to compare standard 32 and 64 triple-sorted port-

folios based on size, investment, and profitability against 40 AP-Trees. The latter deliver much
higher SRs and traditional Fama–French models capture only about 60% of their variation versus
an 𝑅2 above 80% for the former. The study finds remarkable redundancy in many test assets. By
choosing 𝜆1 appropriately, the authors show that one retains roughly 90% of the SR of an SDF
built using only 10 portfolios instead of 40 for many sets of AP-Trees. Another relevant result is
that interactions matter. This is cleverly shown removing nodes containing interactions among
characteristics. The resulting PK SR is only half as large as the original one in many cases.

3.4 Neural networks

Neural networks find parameterized mappings of inputs into outputs to approximate highly non-
linear functions of the data in flexible ways. We describe here one of the simplest types, the
feedforward network (FFN), henceforth just NN unless otherwise specified. Its architecture is
defined by its input, hidden, and output layers, as illustrated in Figure 2. In terms of Equation
(2), inputs are the characteristics 𝑧 and outputs are the returns 𝑟. The hidden layers interact and
nonlinearly transform the inputs estimating the unknown function 𝑔(𝑧; 𝜃) to obtain accurate pre-
dictions. Each layer is composed of nodes (units, or neurons). While the dimension of the inputs
determines the nodes in the input layer, the number of nodes 𝑄 in each hidden layer as well as
the number of hidden layers 𝐿 are hyperparameters.
To train a NN, one starts from a semi-affine transformation of the input vector 𝑧(0) according to

some parameter matrix 𝜃(0). Dropping indices 𝑖 and 𝑡 for simplicity, 𝑧(1) = 𝜃
(0)
0 +

∑𝑃

𝑗=1 𝑧
(0)
𝑗

𝜃
(0)
𝑗

=

𝑧(0)′𝜃(0). The “bias term” 𝜃(0)
0 plays the role of intercept in a linear model. Then, at each unit of the

first hidden layer, a nonlinear activation function is applied element-wise to 𝑧(1) obtaining 𝑧(2) =

𝑓(𝑧(1); 𝜃(1)). Popular choices for 𝑓 are the sigmoid and the rectified linear unit (ReLU) function,
which is𝑓 = 𝑚𝑎𝑥(0, 𝑧). 𝑧(2) becomes the input of the next hidden layer, and the process repeats for
each hidden layer. The return forecast is the linear combination of the outputs of each node: 𝑟 =

𝜃
(2)
0 +

∑𝑄

𝑞=1
𝑧
(2)
𝑗

𝜃
(2)
𝑗

if 𝐿 = 1 as in Figure 2. A deep NN (when 𝐿 ≥ 2) can be expressed recursively

with its intermediate outputs 𝑧(𝑙)
𝑞 for neuron 𝑞 = 1,… , 𝑄 in each hidden layer 𝑙 = 1, … , 𝐿, and the

final output 𝑟:

𝑧
(𝑙)
𝑞 = 𝑓(𝑧(𝑙−1)′𝜃

(𝑙−1)
𝑞 )

𝑟 = 𝑔(𝑧; 𝜃) = 𝑧(𝐿−1)′𝜃(𝐿−1)
(18)

which shows that predictions are nothing but linear combinations of a composition of simpler
nonlinear functions. The complete parameter matrix 𝜃 (network weights) is estimatedminimizing
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F IGURE 2 Example of FFN with three inputs (𝑧1, 𝑧2, 𝑧3), one hidden layer with 𝑄 = 4 units and activation
function 𝑓, and output 𝑟. Arrows are associated with network weight parameters. [Colour figure can be viewed at
wileyonlinelibrary.com]

the SSR, just like with OLS: these ones are indeed equivalent to a shallow NN (𝐿 = 0) with linear
activations. In practice, there are several algorithms to do this. The popular stochastic gradient
descent evaluates the gradient of the objective function on small random subsets of data instead of
using the entire sample at every iteration, enabling tremendous reductions of computation times.
Back propagation iteratively updates the gradient at each step controlling for the update size with
a hyperparameter called learning rate.
NNs require estimatingmanyparameters: (1 + 𝑃)(𝑄)𝐿 + (1 + 𝑃) if𝑄 is the same in every hidden

layer. Hence, one needs to restrict to simple architectures if the data available are not too large.
But then why are NNs so popular? Because, under some conditions, they can approximate any
function. According to the universal approximation theorem (Hornik et al., 1989), with sufficiently
many hidden units, every continuous function overℝ𝑃 can be approximated arbitrarily closely by
NNswith as few as one hidden layer, for any input dimension 𝑃 and anymonotonically increasing
activation function. But not all that glitters is gold: the theorem has important limitations (Dixon
et al., 2020), and NNs face other difficulties. Their great flexibility is coupled with high risks of
overfitting. Besides Ridge-style penalizations, which shrink the networkweights in regions where
𝑔(.) is roughly linear, NNs are regularized using small learning rates, with early stopping and batch
normalization (Gu et al., 2020). Overfitting is also curtailedwith ensemble learning, which reduces
both the effect of randomness and the output sensitivity to the initial network weights, and with
dropout, which averages out the output of multiple networks randomly removing some inputs.
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There exists several other types of NNs. For example, recurrent neural networks (RNNs) extract
hidden states from time-series data with nonlinear dependencies. They are basically flexible
𝐴𝑅(𝑝) processes (Dixon et al., 2020). Unknown and long autocorrelation in the data can be
captured adding long-short-term-memory (LSTM) cells. Autoencoders are self-supervised net-
works that approximate the mapping of a target on itself. Dixon et al. (2020) describe further
architectures with applications in finance.

3.4.1 Neural networks in asset pricing

Chen et al. (Forthcoming) estimate the SDF starting from new test assets that are hard to price
combining no-arbitrage together with three types of NNs. With individual demeaned returns,
Equation (4) becomes 𝑀𝑡+1 = 1 − 𝑏′

𝑡𝑟𝑡+1. The authors assume the SDF weights 𝑏𝑖 and the cor-
responding loadings 𝛽𝑖 are functions of both macroeconomic (𝐼𝑡) and firm-specific information
(𝐼𝑖,𝑡): 𝑏𝑡,𝑖 = 𝑏(𝐼𝑡, 𝐼𝑖,𝑡) and 𝛽𝑖,𝑡 = 𝛽(𝐼𝑡, 𝐼𝑖,𝑡). To find them, they solve themethod ofmoments problem
𝔼[𝑀𝑡+1𝑟𝑖,𝑡+1𝑔(𝐼𝑡, 𝐼𝑖,𝑡)] = 0 implied by the analogous no-arbitrage condition using an adversar-
ial approach which, in loose sense, can be summarized by a min-max problem over the model
mispricing:

min
𝑏

max
𝑔

1

𝑁

𝑁∑
𝑗=1

(
𝔼

[(
1 −

𝑁∑
𝑖=1

𝑏(𝐼𝑡, 𝐼𝑖,𝑡)𝑟𝑖,𝑡+1

)
𝑟𝑗,𝑡+1𝑔(𝐼𝑡, 𝐼𝑗,𝑡)

])2

(19)

The flexible nonparametric function 𝑔(.) is determined through an iterative zero-sum gamewhere
first the “adversary” chooses it to form the portfolios that are the hardest to price, and then the
asset pricer corrects the model to price such assets choosing 𝑏, until all information is accounted
for. Operationally, the generative adversarial network (GAN) looks for 𝑏 and 𝑔 to minimize Equa-
tion (19) allocating one NN each. The “SDF network” seeks 𝑏𝑡, given an initial choice for 𝑔. First,
a RNN with LSTM cells extracts hidden state variables ℎ𝑡 relevant for pricing discarding the
cross-sectional redundancies in the macro aggregates 𝐼𝑡. Second, a FFN estimates 𝑏𝑡 using ℎ𝑡 and
firm-specific characteristics 𝐼𝑖,𝑡 as inputs with the objective of approximating the sample counter-
part of Equation (19). In similar fashion, the “conditional network” looks for 𝑔, given 𝑏𝑡 from the
SDF network: a RNN finds the hidden states ℎ𝑔

𝑡 , which then serve as inputs for the FFN, which
finds 𝑔 this timemaximizing (19). This step builds the assets producing the biggest mispricing pos-
sible, such that the resulting SDF is more robust than one obtained using assets with strong factor
structure like Fama–French portfolios. The algorithm iterates through the two NNs until conver-
gence: minimizing the largest loss among all possible conditioning functions, the loss for any 𝑔 is
small. Finally, factor loadings are obtained fitting a FFN to the moments 𝔼𝑡[𝑏

′
𝑡𝑟𝑡+1𝑟𝑖,𝑡+1] = 𝛽𝑖,𝑡.

The optimal model employs dropout and ensemble learning to reduce sensitivity to specific
hyperparameter choices.
The GAN is implemented using 46 firms-specific characteristics and 178 macro variables as

inputs. It achieves a cross-sectional 𝑅2 of at least 90% for each of the 46 corresponding anomaly
portfolios and outperforms simpler models excluding nonlinearities or adversarial approach for
both Fama–French portfolios and individual stocks. Average excess returns of portfolios sorted
on SDF betas line up almost perfectly against their loadings: representing the security market
line (SML) is a traditional Asset Pricing exercise, which shows that ML needs not to be a “black
box” but can be given clear economic interpretation. To interpret the complex GAN structure,
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the authors average the absolute derivative of the model-implied weights 𝑏 with respect to the
variable of interest over time and across assets. Based on this, the most relevant characteristics
are trading frictions and past returns, in particular SUV, STR, and momentum, but other tradi-
tional accounting variables matter as well. Among the macro variables, median bid–ask spread
and federal funds rate stand out. A final insight reveals that the PK weights are approximately
linear in single characteristics, but flexible functional forms are necessary to capture interactions
among covariates rather than single higher-order terms. The GAN can be combined with IPCA,
with encouraging results.
Gu et al. (2021) extend IPCA to allow for nonlinearities between factor loadings and charac-

teristics using autoencoders. Autoencoders are dimension reduction tools, which can be seen as
nonlinear network counterparts to PCA, where returns are function of themselves and no addi-
tional information is required. First, autoencoders compress the inputs into a lower dimension
passing them into fewer nodes in the hidden layers (encoding); then, they unpack the intermedi-
ate results into the outputs,whichhave the samedimension as the original inputs (decoding).With
one hidden layer of 𝐾 neurons and a linear activation function one gets a linear 𝐾-factor model
similar to those studied in Bai and Ng (2002) and Bai (2003). Treasuring the insights from Kelly
et al. (2019), a conditional autoencoder (CA) exploits asset-specific conditional information. The
overall model is composed of two networks that estimate latent factors and loadings of the first
row in Equation (10) minimizing a LASSO-penalized SSR. The first one is a FFN with 𝐿𝛽 hidden
layers fitting a flexible function between betas and firm characteristics through the parameters 𝜃𝛽 :
𝛽𝑖,𝑡−1 = 𝑔𝛽(𝑧𝑡−1; 𝜃𝛽). The second network is a standard autoencoder with 𝐿 = 1 and linear acti-
vation function recovering latent factors from managed portfolios 𝑥𝑡 similar to Kelly et al. (2019)
to circumvent the problem of unbalanced panels, such that 𝑓𝑡 = 𝑔𝑓(𝑥𝑡; 𝜃𝑓). Predicted returns are
the product between factors 𝑓𝑡 and the stacked loading matrix 𝐵𝑡−1. The model reduces to IPCA
using a linear activation and one hidden layer in both networks. Overfitting is further reduced
through early stopping and ensemble learning.
The CA is trained on the dataset of Gu et al. (2020), used to build 94 managed portfolios. The

baselinemodel described above (CA0) is compared against PCA, IPCA, three richer formulations,
each adding one hidden layer to the beta-network (CA1,CA2, andCA3), andwith observable factor
models with up to six factors. Although traditional models are outperformed by far, the OOS total
and predictive𝑅2 cannot point at a clearwinner: IPCAperforms the best in terms of total𝑅2, while
CAs generate higher predictive 𝑅2. The model-implied tangency portfolio earns an annualized
OOS SR of 4.58 and 3.72 for CA1 and IPCA, respectively. The hypothesis that the OOS pricing
error is zero cannot be rejected for 37 test portfolios for Fama–French models, but only in eight
cases with the best-performing CA (CA2). The most relevant characteristics, identified through
the reduction in total 𝑅2 like in Kelly et al. (2019), belong to past returns (STR and several versions
of momentum), liquidity variables (e.g., volume, Amihud, 2002’s illiquidity and bid–ask spread)
and riskmeasures (such asmarket beta and idiosyncratic volatility). A limit of the study is the lack
of a clear criterion guiding the choice of a specific NN architecture over another one other than
OOS performance. Furthermore, it is unclear in which circumstances and why IPCA performs
better despite being a simpler method.

3.5 Comparative analyses

A substantial push to the diffusion of ML for Asset Pricing comes from Volume 33, Issue 5 (2020)
of the Review of Financial Studies, which collects several studies offering new methods for the
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cross-section of stock returns, including three of those we review. In their introduction to this
special issue, Karolyi & Van Nieuwerburgh (2020) identify ML as promising field to answer
Cochrane (2011)’s pending questions. Nevertheless, they call for tools to consistently compare dif-
ferent methods among each other and stress the importance of clear economic interpretations,
potentially with a view to incorporate them in equilibrium models, “the ambitious goal towards
which we are all aiming” (Cochrane, 2011, p.1067). Some comparative analyses have been recently
carried out following these guidelines.
Gu et al. (2020) compare a vast number of ML methods to predict returns according to Equa-

tion (2) including elastic nets, PCA, PLS, generalized linear models with penalization, GBRT, RF,
and NNs. As stressed in Gu et al. (2021), the study focuses purely on forecasts without taking any
stand on risk–return relationships. Nonetheless, it has become the benchmark for later papers
employingML, both for practices used (e.g., database, sample split) and results achieved (𝑅2, vari-
able importance, etc.). For the data considered, NNs perform the best, closely followed by RF and
GBRT. The methods generally agree regarding the most influential stock-level predictors, which
belong to four categories: price trends, liquidity variables, risk measures, and valuation ratios. At
themacro-level, the aggregate book-to-market ratio stands out. The prediction-based trading strat-
egy generating the highest SR is an ensemble of all methods, but it is difficult to find the economic
intuition behind it.
In similar vein, Bianchi et al. (2021) predict Treasury bond returns at different maturities with

several ML methods. Differently from stock data, here the majority of them perform bad when
using only yields as inputs following Campbell and Shiller (1991) and produce a negative OOS 𝑅2.
NNs, extreme regression trees and RF, however, still manage to explain around one fourth of the
variation of 10-year Treasuries.When forward rates andmacro variables are used as predictors, the
best-performingmethod is a “group-ensembled”NN, that is, a collection of networks, one for each
group of macroeconomic aggregates, where the interactions across groups are switched off. Based
on these findings, the authors argue that it is the nonlinearities and interactions within a variable
group that matter, not the interactions across groups. The same network is able to forecast both
level, slope and curvature of interest rateswith reasonable precision, and produces countercyclical
bond risk premia. Variable importance is assessed through the average gradient of the network.
Predictors linked to inflation, money, and credit matter regardless the maturity, while the role of
other covariates is term-structure-dependent: some have either a level or a slope effect only, hence
averaging bond returns across maturities for research purposes is not a good idea.
Avramov et al. (2022) evaluate the performance of trading strategies built using a three-layerNN

fromGu et al. (2020) (NN3), theGANofChen et al. (Forthcoming) (CPZ), IPCA, theCAofGu et al.
(2021), and the robust SDF ofKozak et al. (2020) (KNS) after transaction costs andwith restrictions
on the sample used. Excluding microcaps, financially distressed firms or without credit rating
from the training sample results in network-based models losing more than half of their Fama–
French risk-adjusted returns, while IPCA offers more robust strategies. Concerns about net-of-fee
performance arise due to the large turnovers ML strategies generate, and the rather extreme
portfolio positions of the KNS-SDF cast doubts on its feasibility from a real-time investment per-
spective. On the positive side, the profitability with NN3 and CPZ increases in periods of high
market sentiment and volatility and lowmarket liquidity, as expected following previous research.
Moreover, it does not decline in recent years, in contrast to traditional anomalies. Looking at the
stocks assigned to the same prediction-sorted portfolios reveals that all ML techniques agree in
investing long in traditional characteristics carrying positive risk premia, such as size, illiquidity,
beta, momentum, and so forth. Furthermore, the authors decompose the payoff of a trading strat-
egy into an intra-industry and an inter-industry component, specifically investing long (short)
in the winners (losers) within an industry and in the winner (loser) industries, respectively. The
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intra-industry strategy outperforms the inter-industry one substantially, and accounts for 84% of
the original strategy. In other words, ML informs on stock selection rather than industry rotation:
controlling for similar firm fundamentals within the same industry helps identifying the most
profitable stocks.

4 LESSONS FOR THE FUTURE

DoesML contribute to our understanding of expected returns?Howdoes theory fit with the recent
findings? What potential pitfalls should practitioners and academics be wary of when employing
ML in Asset Pricing? What developments should we expect? In what follows, we highlight the
most salient results that emerge from the papers we discussed pointing out prospective directions
for future research.

4.1 What did we learn about asset returns?

Despite the recent noticeable efforts to apply new methods in Asset Pricing, a major insight
that transpires from this emerging literature is that the factor zoo issue is still unresolved. Every
method we review detects indeed different groups of prominent factors for the cross-section and
at this stage, it is complicated to tell which approach to prefer, especially considering that sev-
eral well-known anomalies has become less relevant over time (Chordia et al., 2014) and that
the predictive power of some characteristics varies after conditioning on the others (Freyberger
et al., 2020). Notwithstanding, some factors tend to stick out more often than others, namely
past returns (e.g., STR and momentum), liquidity factors (e.g., Pástor & Stambaugh, 2003), and
trading frictions (e.g., SUV). Pinning down a small set of risk sources robust to various identifica-
tion algorithms ultimately ameliorates the comprehension of what drives returns and provides an
excellent starting point for further research. In particular, this information can assist researchers
in the question about the sparsity/density of the SDF, which remains open. While majority of
the papers find redundancies in the factor zoo (e.g., Feng et al., 2020), others claim that one
needs to consider all anomalies to achieve good performance (Kozak et al., 2020). The point is
far-reaching as it guides researchers’ views in the process of building theoreticalmodels to explain
these empirical facts.
A second notable finding is that nonlinearities matter. Interactions among covariates play a

big role in several studies, and matter more than nonlinearities in single characteristics (Bianchi
et al., 2021), although not everybody agrees (Kozak et al., 2020).
Finally, new patterns have been discovered in specific applications thanks to ML. For exam-

ple, high-frequency stock returns are largely driven by industry factors in contrast to traditional
characteristics-based factors (Pelger, 2020). Returns of assets traditionally difficult to describewith
factor models, like options, are easily captured by few economically interpretable factors (Giglio
et al, 2022). Firm characteristics and first moments of returns contain valuable information to
build low-dimensional but highly efficient statistical factor representations (Kelly et al., 2019;
Lettau & Pelger, 2020b).

4.2 Going forward

ML offers great prediction accuracy (Gu et al., 2020), with trading strategies that deliver hedge
during crises, mitigate downside risk, and remain profitable in recent years (Avramov et al., 2022).
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Additionally, somemethods allow to side-step well-known problems of the field (Feng et al., 2020;
Giglio and Xiu, 2021). However, there are also limitations we must bear in mind moving forward.
Probably the biggest downside of ML methods is their lack of interpretability. This partially

occurs because they are mainly designed for predictions, where performance is often all that mat-
ters. Ensemble learning tends to outmatch other approaches (Bianchi et al., 2021), but it is difficult
to attaching economic meaning to the results found. We need bridges between economic theory
and ML: the latter is a tool to support the former, not a substitute for it. Tailoring ML to Asset
Pricing purposes instead of using methods “off the shelf” has revealed the most effective practice,
both for prediction purposes (Freyberger et al., 2020), mean–variance optimization (Bryzgalova
et al., 2021), and for factor models (Lettau & Pelger, 2020b). Clear economic restrictions enable
the interpretation of the most complex approaches (e.g., Chen et al., Forthcoming).
Adding economic structure to describe some aspects of the data before resorting to computa-

tional algorithms enhances intuition and indirectly mitigates the issues due to low signal-to-noise
ratios in financialmarkets. Furthermore, it helps rationalizing the broad and diverse range of find-
ings that recent papers brought about, which are often in contrast with each other. The patterns
captured might not be robust features of the data, a situation in which embedding economic the-
ory would be extremely valuable. Alternatively, the methods presented might still be sensitive
to changes in the data despite all the regularization introduced. It is, therefore, critical to follow
some standards with these methods.
An obvious starting point is using the same data. In line with this perspective, Chen and Zim-

mermann (2022) provide a large and freely accessible database of anomalies. Of course, this should
not encourage 𝑝-hacking or data mining. Preprocessing choices such as rank-normalization
should be standardized to avoid affecting the final results.
Common grounds should also be established with respect to evaluation metrics. Since risk fac-

tors can be combined into a PK (Back, 2010), any factor model can be evaluated using its SR
analogously to trading strategies, although caution is necessary: some strategies can be tilted to
“sharpen” the SR (Goetzmann et al., 2002).Moreover, the tangency portfoliomaynot be feasible in
practice (Avramov et al., 2022) and transaction costs must always be accounted for. An SML-like
representation as in Chen et al. (Forthcoming) is a good benchmark because it verifies a cru-
cial Asset Pricing restriction. Likewise, comparing the behavior of SDFs from different methods
could help recognize and isolate common components. Once again, attaching economic meaning
to methods and evaluation measures becomes decisive.
Finally, better tools to quantify the contribution of inputs to model outcomes are pivotal to

eradicate the skepticism that persists about ML. We need to dive deeper in the ML literature as it
already offers valid instruments even for very complexmethods (Dixon et al., 2020). Alternatively,
one can simply perturbate the value of one covariate and see how the outcome varies, as inMoritz
and Zimmermann (2016). Further still, the lack of standard fitmetrics like𝑝-values and the notion
of statistical significance in ML should not refrain us from designing new evaluation metrics. For
example, bootstrapping remains a powerful instrument to quantify the uncertainty of coefficient
estimates also in this context.
Looking ahead, ML for Asset Pricing is a promising and fertile field. Other than employing

further techniques and refining those already explored, there is room for research when consider-
ing additional asset classes. The stock market has drawn a disproportionate amount of attention,
while applications for bonds and derivatives have played a limited role thus far. Apart from this,
time is needed to better comprehend the interplay betweenML and finance. After all, there is only
one true OOS, without real shortcuts for it.
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5 CONCLUSION

ML methods have been recently exploited in empirical Asset Pricing with encouraging results
opening up possibilities for further research. The studies we review show that pricing anomalies
are not necessarily stable after conditioning for further covariates, such that there is a high degree
of redundancy in the factor zoo, but it is not clear whether the SDF is sparse or dense yet. The
most relevant variables belong to past returns, liquidity and trading frictions, and nonlinearities
(especially interactions)matter for the cross-section. Risk of overfitting the data and difficult inter-
pretation of the procedures employed are the price to pay for the flexibility and the performance
of ML methods. Common grounds for data sample, evaluation metrics, and tools to identify the
contributions of characteristics to expected returns are vital for future research.
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ENDNOTES
1The literature often talks about high-dimensional problems referring to the factor zoo, but the number of obser-
vations per time series, 𝑇, can still be larger than 𝑃 for each firm, depending on the data frequency. Nonetheless,
issues arise even when 𝑃 < 𝑇 but close to it (Hastie et al., 2009). We refer to high-dimensional problems in a rel-
ative sense to label issues which are more likely with many anomalies than in low-dimensional models derived,
say, from first principles. Notice that𝑁 plays a negligible role here because of the limited incremental information
contained in new cross-sectional observations (Gu et al., 2020).

2ML-specific reviews do not mention them (e.g., Athey and Imbens (2019)).
3Standard CV is not appropriate with sequential data, as excluding independent subsets in the middle of the data
breaks the time-series dependence of predictors and returns (Bianchi et al., 2021). The studies surveyed here
bypass this issue validating the model on subsamples which are consequential to an expanding training set. Gu
et al. (2020) provide an excellent discussion of sample splitting schemes for forecasting purposes.

4Data must be standardized before applying PCA to avoid that arbitrary scaling choices affect the results: we can
correctly assess their contribution to the total variance only if they are all on the same “unit.” Accordingly, the
studies employing dimension reduction we review apply standardization as initial step.

5To address (Lewellen et al., 2010)’s concerns, many studies stack together several traditional cross-sections, for
example, 25 size-value-sorted portfolios together with industry andmomentum portfolios. Such assets are known
to have a strong factor structure, whichmeans they arewell explained by few factors. Pooling them togethermight
artificially inflate the model performance giving an illusion of robustness to many test assets.
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