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DETECTING RELEVANT CHANGES IN THE SPATIOTEMPORAL
MEAN FUNCTION

HOLGER DETTE AND PASCAL QUANZ
Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany

For a spatiotemporal process {Xj(s, t) ∣ s ∈ S, t ∈ T}j=1,… ,n, where S denotes the set of spatial locations and T the time
domain, we consider the problem of testing for a change in the sequence of mean functions {𝜇j(s, t) ∣ s ∈ S, t ∈ T}j=1,… ,n. In
contrast to most of the literature, we are not interested in arbitrarily small changes but only in changes with a norm exceeding
a given threshold. Asymptotically distribution free tests are proposed, which do not require the estimation of the long-run
spatiotemporal covariance structure. In particular, we consider a fully functional approach and a test based on the cumulative
sum paradigm, investigate the large sample properties of the corresponding test statistics and study their finite sample properties
by means of simulation study.
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1. INTRODUCTION

In many applications such as in the analysis of weather- or pollution-related data, measurements are obtained at
different spatial locations over a certain time period at a high temporal frequency. Often there exists a natural
segmentation of the time series such that it is reasonable to model at each spatial coordinate, say s, and on each
segment, say j, the resulting data as a function, say t → Xj(s, t) of the time (on the corresponding segment). Typical
examples are measurements at different geographical locations. For example, within the United States Climate
Reference Network (USCRN) high resolution infrared surface temperature measurements at 126 stations in the
US are publicly available on the website of the NOAA U.S. government agency. Here at each location s and each
day j one observes the daily temperature curve t → Xj(s, t) (Diamond et al., 2013). Other examples include yearly
curves at different locations over different years such as the daily mean temperature records from 1916 to 2018 in
40 representative Canadian cities, which are publicly available from the government of Canada website. In these
applications data is typically modeled in the form

Xj(s, t), s ∈ S, t ∈ T , j = 1, … , n, (1.1)

where S is an arbitrary finite set and T is a dense set (we will later consider an interval).
A typical question in this context is if the sequence of mean functions {𝜇j(s, t) ∣ s ∈ S, t ∈ T}j=1,… ,n, of a

spatiotemporal process {Xj(s, t) ∣ s ∈ S, t ∈ T}j=1,… ,n has changed over a specific time period. For a fixed location
this corresponds to the meanwhile classical change point problem in functional data analysis (see, e.g.Berkes
et al., 2009; Zhang et al., 2011; Aston and Kirch, 2012; Horváth and Kokoszka, 2012; Aue et al., 2018; Dette
et al., 2020b, among many others). On the other hand, in the spatiotemporal context as considered in model (1.1)
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the change point problem is not well studied. Recently, Gromenko et al. (2017) proposed a test for the hypothesis
of the existence of a change point in the mean function, say 𝜇j(s, t) = E[Xj(s, t)], in a sequence of independent
observations. They formulated the null hypothesis and alternative in the form

H0 ∶ 𝜇1 = 𝜇2 = · · · = 𝜇n

and

H1 ∶ 𝜇 ∶= 𝜇1 = · · · = 𝜇⌊n𝜗0⌋
≠ 𝜇⌊n𝜗0⌋+1 = · · · = 𝜇n =∶ 𝜇 + 𝛿

for some 𝜗0 ∈ (0, 1) and combined the CUSUM principle with classical principal component analysis to construct
a test for these hypotheses, which generalizes the approach of Berkes et al. (2009) to the spatiotemporal model
(1.1). We also refer to the recent article of Zhao et al. (2021) who proposed change point analysis based on a
composite likelihood criterion for a different spatiotemporal model.

In contrast to this literature (and also to most of the literature on change point analysis for functional data), this
article takes a different look at the change point problem. Our work is motivated by the observation that in many
applications one might not be interested in arbitrarily ‘small’ changes in the mean function (in fact, one often does
not believe that this function is completely constant over the whole time period for all locations). As an alternative,
we therefore propose to test the hypothesis of the existence of a time point ⌊n𝜗0⌋ such that the difference, say 𝛿,
between the mean functions before and after this point in time is relevant. For this purpose, we define two measures
of relevance. The first one corresponds to the fully functional approach as advocated in Aue et al. (2018) and is
based on a norm of the difference function 𝛿. The second one is related to the FPCA approach as considered in
Berkes et al. (2009) and Gromenko et al. (2017) and uses the norm of the projection of the difference on the leading
principal components. The null hypothesis is then stated in the form that the squared norm is less or equal than a
given threshold Δ > 0, that is H0 ∶ ||𝛿||2 ≤ Δ (see Section 2 for details). We derive pivotal tests for both testing
problems with neither requiring estimation of the long-run variance of the process {Xj}j=1,… ,n nor the estimation
of the covariance structure of the random field {Xj(s, t) ∣ s ∈ S, t ∈ T}.

In Section 2 we introduce the basic terminology and carefully define the two types of hypotheses considered in
this article. Section 3 is devoted to the fully functional approach, while the problem of testing relevant hypotheses
by projections on the functional principal components is investigated in Section 4. Finally, in Section 5 we illustrate
our approach by means of a small simulation study and by the analysis of a data example.

2. RELEVANT CHANGES IN THE SPATIOTEMPORAL MEAN

For an arbitrary finite set S let L2(S × T) denote the set of all square integrable functions of the form f ∶ S × T → R

with the common inner product

⟨f , g⟩ =
∑

s∈S
∫T

f (s, t)g(s, t)dt

and the corresponding norm ||f || = ⟨f , f ⟩1∕2. From now on we put T = [0, 1]. Let
{

Xj

}

j∈Z
be a sequence of square

integrable random functions on S × [0, 1], where

Xj = 𝜇j + 𝜂j, j ∈ Z, (2.1)

{
𝜂j

}

j∈Z
is a centered error process and {𝜇j}j∈Z is a sequence of mean functions in L2(S × [0, 1]). We assume that

the mean functions are of the form

𝜇 = 𝜇1 = · · · = 𝜇⌊n𝜗0⌋
, 𝜇⌊n𝜗0⌋+1 = · · · = 𝜇n = 𝜇 + 𝛿,

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 44: 505–532 (2023)
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where 𝜇, 𝛿 denote arbitrary deterministic but unknown elements in L2(S × [0, 1]) and 𝜗0 ∈ (0, 1) is a potential
(unknown) change point. The case 𝛿 ≡ 0 corresponds to the situation of no change point. As explained in Section 1,
we are not interested in ‘small’ deviations before and after a potential change point and therefore consider the
problem of monitoring the sequence for a relevant change in the mean function by testing the relevant hypotheses

H0 ∶ ||𝛿||2 ≤ Δ versus H1 ∶ ||𝛿||2 > Δ. (2.2)

Here Δ > 0 is a predefined threshold, which defines the difference before and after the time point ⌊n𝜗0⌋ as
relevant. Note that the case Δ = 0 corresponds to the classical hypotheses (see Gromenko et al., 2017), but this
case is not considered here. Our interest in hypotheses of the from (2.2) with Δ > 0 stems from the fact that in
applications it is often questionable to look for arbitrary small deviations. Instead, it is more reasonable to focus on
(scientifically) relevant deviations, which are here defined by the threshold Δ in (2.2). The choice of this threshold
depends sensitively on the specific application (see Remark 3.4 for some discussion and Dette and Wied, 2014, for
an example in the context of portfolio analysis based on multivariate data). We also note that for hypotheses of the
form (2.2) the choice of the norm matters, as objects might be identified as close with respect to one norm (such
as the L2-norm), while they might be considered as different with respect to another norm (such as the sup-norm).
Moreover, we also mention that the null hypothesis and alternative in (2.2) can easily be changed, that is

H0 ∶ ||𝛿||2 > Δ versus H1 ∶ ||𝛿||2 ≤ Δ. (2.3)

This formulation is attractive because it allows to decide for a non-relevant change (such that one can continue
working under the assumption of a nearly constant mean function) at a controlled type I error. For real valued data,
hypotheses of the form (2.2) and (2.3) have found considerable attention in the literature (see, e.g.themonographs
of Chow and Liu, 1992; Wellek, 2010). This concept has also been used by (Liu et al., 2009; Gsteiger et al., 2011)
and Dette et al. (2018) to establish the similarity of different parametric regression curves which are estimated from
real valued data. In the context of functional data analysis, relevant hypotheses have been considered by (Fogarty
and Small, 2014; Dette et al., 2020b) and Dette et al. (2020c) among others. A pivotal test for the hypotheses (2.2)
(and as a consequence also for the hypotheses (2.3)) will be developed in Section 3.

Recently, Gromenko et al. (2017) considered a different quantity to measure deviations of the difference 𝛿 from
the function 𝛿 ≡ 0, which is closely related to functional principal component analysis. More precisely, assume
that  ∶= {b1, b2, …} is a basis in L2(S × [0, 1]) such that the linear span of  is dense in L2(S × [0, 1]). Then
these authors proposed to test for a fixed order d ∈ N whether the sum of the squared scores

∑d
k=1⟨𝛿, bk⟩

2 vanishes.
In the context of testing relevant hypotheses, we are therefore interested in testing hypotheses of the form

H0 ∶
d∑

k=1

⟨𝛿, bk⟩
2 ≤ Δ versus H1 ∶

d∑

k=1

⟨𝛿, bk⟩
2
> Δ.

A pivotal test for these hypotheses, where the basis functions are given by the eigenfunctions of a convex
combination of the covariance kernels before and after the change point, will be developed in Section 4.

We conclude this section by presenting several assumptions, which are required to prove the results in the next
and the following sections.

Assumption 2.1.

(A1) The process
{

Xj

}

j∈Z
in model (2.1) satisfies

Xj =

{
𝜇 + 𝜂

(1)
j j ≤ n𝜗0,

𝜇 + 𝛿 + 𝜂

(2)
j , j > n𝜗0,

where
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
are stationary processes in L2(S × [0, 1]).

J. Time Ser. Anal. 44: 505–532 (2023) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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(A2)
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
form sequences of Bernoulli-shifts, that is, there exist a measurable space  , mea-

surable functions f1, f2 ∶ ∞ → L2(S × [0, 1]) and a sequence of i.i.d., -valued and jointly (in (s, t, 𝜔))
measurable random functions

{
𝜀j

}

j∈Z
= {𝜀j(s, t, 𝜔)}j∈Z such that

𝜂

(𝓁)
j = f𝓁(𝜀j, 𝜀j−1, …), 𝓁 = 1, 2

for all j ∈ Z.

(A3) There exists a constant 𝜓 ∈ (0, 1) such that E‖‖
‖
𝜂

(𝓁)
j

‖
‖
‖

2+𝜓
<∞, for 𝓁 = 1, 2.

(A4) The sequences
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
can be approximated by m-dependent sequences

{
𝜂

(1)
j,m

}

j∈Z
and

{
𝜂

(2)
j,m

}

j∈Z
, respectively, in the sense that for some 𝜅 > 2 + 𝜓

∞∑

m=1

(

E‖‖
‖
𝜂

(𝓁)
0 − 𝜂

(𝓁)
0,m

‖
‖
‖

2+𝜓
)1∕𝜅

< ∞, 𝓁 = 1, 2,

where 𝜂

(𝓁)
j,m is defined by

𝜂

(𝓁)
j,m = f𝓁(𝜀j, … , 𝜀j−m+1, 𝜺

∗
j,m), 𝓁 = 1, 2 (2.4)

with 𝜺∗j,m =
(
𝜀

∗
j,m,j−m, 𝜀

∗
j,m,j−m−1, …

)
and 𝜀

∗
j,m,k are i.i.d. copies of 𝜀0 and independent of

{
𝜀j

}

j∈Z
.

Assumption (A1) defines two segments before and after the change point. On each segment the corresponding
spatiotemporal time series is assumed to be stationary, but there might be differences (in the mean and the error
process) before and after the change point. The stochastic processes

{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
in Assumption (A1)

are not independent as they are defined by the same sequence of innovations {𝜀j}j∈Z (see Assumption (A2)). The
dependence concept specified by condition (A4) has been used by (Aue et al., 2009; Hörmann and Kokoszka, 2010;
Berkes et al., 2013; Horváth et al., 2014) among others. We also emphasize that our assumptions are different
from those in Gromenko et al. (2017), who considered an independent and identically distributed error process
{𝜂j}j∈Z. In particular, we allow for different long-run variances before and after the change point ⌊n𝜗0⌋. Moreover,
these authors postulate separability in the spatiotemporal variance structure (in our case a long-run variance),
which means that it factors into a purely spatial and a purely temporal component. This assumption simplifies the
definition and the asymptotic analysis of their test statistics substantially. We will demonstrate below that, by using
the concept of self-normalization, we can construct (asymptotically) pivotal test statistics for relevant hypotheses
without any of these assumptions.

3. FULLY FUNCTIONAL DETECTION OF RELEVANT CHANGE POINTS

We first consider a fully functional approach for testing the relevant hypotheses in (2.2). As in the case of the
classical hypothesis H0 ∶ ||𝛿|| = 0, it is based on the CUSUM statistic, but it turns out that for relevant hypotheses
it will be more difficult to obtain asymptotic quantiles of a corresponding test statistic. To be precise, we consider
the common estimator for the unknown change point 𝜗0 (see Hariz et al., 2007; Jandhyala et al., 2013, among
many others) defined by

̂
𝜗n ∶=

1
n

arg max
⌊n𝜀⌋+1≤k≤n−⌊n𝜀⌋

k(n − k)
n2

‖
‖
‖
‖
‖
‖

1
k

k∑

j=1

Xj −
1

n − k

n∑

j=k+1

Xj

‖
‖
‖
‖
‖
‖

2

, (3.1)

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 44: 505–532 (2023)
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where 𝜀 ∈ (0, 1∕2) is a predefined constant. It can be shown by similar arguments as in Proposition 3.1 of Dette
et al. (2020c) that, under Assumption 2.1, the estimator ̂

𝜗n is consistent whenever ‖𝛿‖2
> 0 and 𝜗0 ∈ (𝜀, 1 − 𝜀),

that is

̂
𝜗n = 𝜗0 + oP

(
n−1∕2

)
(3.2)

as n → ∞. Next, for 𝜆 ∈ [0, 1], 𝜗 ∈ (𝜀, 1 − 𝜀) we define the quantity

Dn(𝜆, 𝜗) ∶=
1

⌊n𝜗⌋

⌊𝜆⌊n𝜗⌋⌋∑

j=1

Xj −
1

n − ⌊n𝜗⌋

⌊n𝜗⌋+⌊𝜆(n−⌊n𝜗⌋)⌋∑

j=⌊n𝜗⌋+1

Xj ∈ L2(S × [0, 1]), (3.3)

where we also use the notation Dn(s, t, 𝜆, 𝜗) simultaneously to make the dependence on the spatial and temporal
coordinate explicit. Note that Dn is well defined if 𝜀 ≥ 1

n
and we will assume throughout this article that n is

sufficiently large such that this condition is satisfied. If 𝜗 = k∕n and 𝜆 = 1 the quantity Dn(1, k∕n) coincides with
the expression in the squared norm in (3.1). Therefore, Dn(1, ̂𝜗n) is a natural estimator of the function 𝛿, which
defines the difference before and after the change point. Consequently, it is reasonable to reject the null hypothesis
in (2.2) for large values of the statistic

||Dn(1, ̂𝜗n)||.

It will be shown later that
√

n
(
||Dn(1, ̂𝜗n)||2 − ||𝛿||2

)
converges weakly to a normal distribution with a complicated

variance depending on a linear combination of the long-run variances of the processes
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
. To

avoid its estimation, we will construct a pivotal statistic. Our main tool for this construction is the following result,

which provides the weak convergence of the process
{√

n(||Dn(𝜆, ̂𝜗n)||2 − 𝜆

2||𝛿||2)
}

𝜆∈[0,1]
. For its statement we

denote by

K𝓁((s1, t1), (s2, t2)) ∶=
∑

h∈Z

Cov(𝜂(𝓁)0 (s1, t1), 𝜂
(𝓁)
h (s2, t2))

the long-run covariance kernel of the process
{
𝜂

(𝓁)
j

}

j∈Z
for 𝓁 = 1, 2, which exists under Assumption 2.1 and by

K((s1, t1), (s2, t2)) ∶=
1
𝜗0

K1((s1, t1), (s2, t2)) +
1

1 − 𝜗0

K2((s1, t1), (s2, t2)) (3.4)

a scaled convex combination of these kernels. The following results can be proved by similar arguments as given
in Dette et al. (2020b) and the details are omitted for the sake of brevity.

Theorem 3.1. If Assumption 2.1 is satisfied and ||𝛿|| > 0, then

√
n
{
||Dn(𝜆, 𝜗0)||2 − 𝜆

2‖𝛿‖2}

𝜆∈[0,1] ⇝ 𝜏
𝛿,𝜗0

{𝜆B(𝜆)}
𝜆∈[0,1] , (3.5)

√
n
{
||Dn(𝜆, ̂𝜗n)||2 − 𝜆

2‖𝛿‖2}

𝜆∈[0,1] ⇝ 𝜏
𝛿,𝜗0

{𝜆B(𝜆)}
𝜆∈[0,1] (3.6)

as n → ∞, where ⇝ denotes weak convergence in 𝓁∞([0, 1]), {B(𝜆)}
𝜆∈[0,1] denotes a standard Brownian motion

and

𝜏

2
𝛿,𝜗0

∶= 4
∑

s1 ,s2∈S
∫ ∫

𝛿(s1, t1)𝛿(s2, t2)K((s1, t1), (s2, t2))dt1dt2 (3.7)

with K defined in (3.4).

J. Time Ser. Anal. 44: 505–532 (2023) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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This result leads to a very simple and pivotal test for the relevant hypotheses in (2.2). To be precise, we define

̂Dn ∶= ||Dn(1, ̂𝜗n)||2,

̂Vn ∶=
(

∫

1

0

(
||Dn(𝜆, ̂𝜗n)||2 − 𝜆

2||Dn(1, ̂𝜗n)||2
)2

d𝜈(𝜆)
)1∕2

, (3.8)

where ̂
𝜗n is defined as in (3.1) and 𝜈 is a probability measure on the interval (0, 1). We propose to reject the null

hypothesis in (2.2) whenever

̂Dn > Δ + q1−𝛼(W) ̂Vn, (3.9)

where q1−𝛼(W) is the (1 − 𝛼)-quantile of distribution of the random variable

W ∶= B(1)
(
∫ 𝜆

2(B(𝜆) − 𝜆B(1))2d𝜈(𝜆)
)1∕2

. (3.10)

The following result shows that the decision rule (3.9) defines a consistent and asymptotic level 𝛼 test for the
hypotheses (2.3).

Theorem 3.2. If Assumption 2.1 is satisfied, Δ > 0 and 𝜗0 ∈ (𝜀, 1 − 𝜀), we have

lim
n→∞

P
(
̂Dn > Δ + q1−𝛼(W) ̂Vn

)
=

⎧
⎪
⎨
⎪
⎩

0, if ‖𝛿‖2
< Δ,

𝛼, if ‖𝛿‖2 = Δ and 𝜏

2
𝛿,𝜗0

> 0,

1, if ‖𝛿‖2
> Δ.

Remark 3.3. The distribution of the random variable W in (3.10) is symmetric. To see this, note that the numerator
and denominator of W are independent. This follows by using the L2 representation B(t) = tZ0 +

∑
k≥1 Zk

sin(𝜋kt)
𝜋k

of the Brownian motion for t ∈ [0, 1] and comparing B(1) and B(t) − tB(1). Lastly, since B(1) is symmetric, the
claim follows because

(

− B(1),
(

∫
𝜆

2(B(𝜆) − 𝜆B(1))2d𝜈(𝜆)
)−1∕2)



=
(

B(1),
(

∫
𝜆

2(B(𝜆) − 𝜆B(1))2d𝜈(𝜆)
)−1∕2)

.

Remark 3.4.

(1) Note that the test (3.9) depends on the specification of the measure 𝜈 on the interval (0, 1), which has to be
chosen in advance by the data analyst. However, in numerical experiments it turned out that this dependence
does not have a significant influence on the rejection probabilities if the support of the measures has some
distance to the boundaries 0 and 1 of this interval (see Section 5 for some practical results). A heuristic
explanation for this observation lies in the fact that the measure 𝜈 appears in the definition of the statistic ̂Vn

in (3.8) and in the quantiles of the random variable W in (3.10). Thus, intuitively there is a cancelation effect
in the decision rule (3.9).

(2) An important problem in applications is the choice of the threshold Δ which is problem-specific. For this
choice a careful discussion with experts from the field of application is recommended to understand in which
difference they are really interested. Moreover, there are also several alternatives if this choice is difficult after
these discussions. In particular, it follows from the proof of Theorem 3.1 that

̂Dn − ||𝛿||2

̂Vn



−−−−−→ W .

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 44: 505–532 (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12674



CHANGE POINTS IN SPATIOTEMPORAL DATA 511

Consequently, an (asymptotic) (1− 𝛼) confidence interval for the squared norm ||𝛿||2 ≥ 0 of the difference of
the mean functions before and after the change point is given by

[
0, ̂Dn + q1−𝛼(W) ̂Vn

]
. (3.11)

Similarly, if it can be ruled out that the squared norm vanishes, a two sided interval for ||𝛿||2 > 0 is given by

(
max

{
0, ̂Dn − q1−𝛼∕2(W) ̂Vn

}
,
̂Dn + q1−𝛼∕2(W) ̂Vn

]
. (3.12)

(3) It is also possible to test the relevant hypotheses in (2.2) for a finite number of thresholds Δ(1) < · · · <
Δ(L) simultaneously. In particular, acceptance of the null hypothesis with the threshold Δ(L0) also implies
acceptance for all larger thresholds Δ(L0+1)

, … ,Δ(L). Correspondingly, rejection for a Δ(L0) means rejection
for all smaller thresholds. In this sense, evaluating the test for several thresholds is logically consistent for
the user and it is possible to determine for fixed level 𝛼 the largest threshold such that the null hypothesis is
rejected.

Remark 3.5. We expect that under additional assumptions the results of this article remain correct if the data is
observed at discrete but sufficiently dense time points in the interval [0, 1] and the methodology provided in this
article is applied to continuous (with respect to t) curves obtained after smoothing the original data. To be a little
more precise, assume, for example, that for each j = 1, … , n and each location s ∈ S we observe

{
Xj(s, t𝜈) ∣ 𝜈 = 1, … ,N

}
, (3.13)

where t0 ∶= 0 < t1 < · · · < tN−1 < tN = 1 defines a partition of the interval [0, 1] such that maxN
j=1|tj − tj−1| =

O(1∕N) and N converges to infinity as n → ∞. For fixed j let ̂Xj(s, t) denote the local linear estimator of the
function (s, t) → Xj(s, t) from the data in (3.13). Then under additional smoothness assumptions on the error
processes t → 𝜂

(𝓁)(s, t) and the mean functions t → 𝜇(s, t) (s ∈ S,𝓁 = 1, 2) and for a sufficiently dense partition of
the interval [0, 1] the estimation error maxs∈S maxt∈[0,1] ∣ Xj(s, t) − ̂Xj(s, t) ∣ is of order oP

(
n−1∕2

)
(uniformly with

respect to j). Moreover, the procedures defined in this and the following section remain valid if they are applied to
the smoothed data

{
̂Xj(s, t) ∣ s ∈ S, t ∈ [0, 1]

}

j=1,… ,n
.

Remark 3.6. As pointed out by a referee, there are numerous applications where there might exist more than
one change point. For Euclidean data the literature in this context investigates multiple change points by con-
sidering classical hypotheses (see,e.g.Dette et al., 2020a, and the references therein), that is: one is interested in
detecting arbitrarily small changes. On the other hand, the problem of testing for multiple relevant change points
is challenging and has not been addressed rigorously so far. In the situation where 0 < 𝜗1 < 𝜗2 < · · · < 𝜗K < 1
are unknown change points and

Xj = 𝜇 + 𝛿𝓁−1 + 𝜂

(𝓁)
j if ⌊n𝜗𝓁−1⌋ + 1 ≤ j ≤ ⌊n𝜗𝓁⌋; 1 ≤ 𝓁 ≤ K + 1 (3.14)

(with 𝛿0 = 0; 𝜗0 = 0, 𝜗K+1 = 1) Dette et al. (2020c) described a test for the hypotheses

HL2

0 ∶ 1
K

K∑

𝓁=1

||𝛿𝓁 − 𝛿𝓁−1||
2 ≤ Δ versus HL2

1 ∶ 1
K

K∑

𝓁=1

||𝛿𝓁 − 𝛿𝓁−1||
2
> Δ

(the cumulative sum of changes is relevant) for L2([0, 1])-valued data. This approach can be directly
extended to the situation of spatiotemporal data as considered in this article. However, for other hypotheses
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such as

Hmax
0 ∶

K
max
𝓁=1

||𝛿𝓁 − 𝛿𝓁−1||
2 ≤ Δ versus Hmax

1 ∶
K

max
𝓁=1

||𝛿𝓁 − 𝛿𝓁−1||
2
> Δ

(there exists at least one relevant change point) the situation is more complicated and will be a topic of future
research.

4. TESTING RELEVANT HYPOTHESES BY CUMULATIVE SUMS OF SQUARED SCORES

We address the problem of detecting relevant changes in the mean of a stationary functional time series by esti-
mating scores. For functional data this approach has been successfully used by several authors in the context of
testing classical hypotheses in the one-sample, two-sample and change point problem (see Benko et al., 2009;
Berkes et al., 2009; Zhang and Shao, 2015, among others) and it has been generalized to spatiotemporal data by
Gromenko et al. (2017). To the best authors’ knowledge tests for relevant hypotheses have not been constructed
using this approach.

To be precise, consider model (2.1) and note that in this scenario, it is possible that the covariance function
also changes at the point ⌊n𝜗0⌋. Therefore, we denote by c(1) and c(2) the covariance kernels correspond-
ing to the samples X1, … ,X⌊n𝜗0⌋

and X⌊n𝜗0⌋+1, … ,Xn before and after the change point, respectively, and
define

c
𝜗0
∶= 𝜗0c(1) + (1 − 𝜗0)c(2) (4.1)

as a convex combination of these two kernels. We denote by 𝜏1 ≥ 𝜏2 ≥ … the ordered eigenvalues of the operator
having covariance kernel c

𝜗0
with the corresponding orthonormal eigenfunctions w1,w2, … in L2(S × [0, 1]). For

a fixed integer d ∈ N we are interested in testing the (relevant) hypotheses

H0 ∶
d∑

k=1

⟨𝛿,wk⟩
2 ≤ Δ versus H1 ∶

d∑

k=1

⟨𝛿,wk⟩
2
> Δ, (4.2)

where Δ > 0 is a predefined threshold. We will briefly comment on the choice of d in Section 5. Note that by
Parseval’s identity ||𝛿||2 =

∑∞
k=1⟨𝛿,wk⟩

2, and therefore - similar as for testing classical hypotheses – a test for the
hypotheses (4.2) can also be used for the hypotheses (2.2). We refer to Remark 4.4 for a more detailed discussion
of this approach in the context of testing relevant hypotheses. For the statements in this section we require the
following assumptions.

Assumption 4.1. The process
{

Xj

}

j∈Z
in model (2.1) satisfies conditions (A1) and (A2) of Assumption 2.1.

Furthermore,
{

Xj

}

j∈Z
satisfies

(A3’) There exists a constant 𝜓 ∈ (0, 1) such that E‖‖
‖
𝜂

(𝓁)
j

‖
‖
‖

4+𝜓
<∞, 𝓁 = 1, 2.

(A4’) The sequences
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
can be approximated by m-dependent sequences

{
𝜂

(1)
j,m

}

j∈Z
and

{
𝜂

(2)
j,m

}

j∈Z
, respectively, in the sense that for some 𝜅 > 4 + 𝜓

∞∑

m=1

(

E‖‖
‖
𝜂

(𝓁)
0 − 𝜂

(𝓁)
0,m

‖
‖
‖

4+𝜓
)1∕𝜅

< ∞, 𝓁 = 1, 2,

where 𝜂

(𝓁)
j,m is defined (2.4).

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 44: 505–532 (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12674



CHANGE POINTS IN SPATIOTEMPORAL DATA 513

Assumption 4.2. The (ordered) eigenvalues of the covariance operator c
𝜗0

in (4.1) satisfy 𝜏1 > · · · > 𝜏d > 𝜏d+1 >

0, where d ∈ N is the number of scores considered in (4.2).

Recall the definition of the estimator for the change point in (3.1) and for f , g ∈ L2(S × [0, 1]) we define the
function f ⊗ g ∈ L2((S × [0, 1])2) as

(f ⊗ g)((s1, t1), (s2, t2)) ∶= f (s1, t1)g(s2, t2), (s1, t1), (s2, t2) ∈ S × [0, 1] .

We consider

ĉ
̂
𝜗n,𝜆

∶= ̂
𝜗nĉ(1)

𝜆

+ (1 − ̂
𝜗n)ĉ

(2)
𝜆

, (4.3)

as a sequential estimator of the convex combination (4.1), where

ĉ(1)
𝜆

∶= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i=1

⎛
⎜
⎜
⎝

Xi −
1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

Xj

⎞
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎝

Xi −
1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

Xj

⎞
⎟
⎟
⎠

,

ĉ(2)
𝜆

∶= 1

⌊𝜆(n − ⌊n ̂
𝜗n⌋)⌋

⌊n ̂
𝜗n⌋+⌊𝜆(n−⌊n ̂

𝜗n⌋)⌋∑

i=⌊n ̂
𝜗n⌋+1

⎛
⎜
⎜
⎝

Xi −
1

⌊𝜆(n − ⌊n ̂
𝜗n⌋)⌋

⌊n ̂
𝜗n⌋+⌊𝜆(n−⌊n ̂

𝜗n⌋)⌋∑

j=⌊n ̂
𝜗n⌋+1

Xj

⎞
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎝

Xi −
1

⌊𝜆(n − ⌊n ̂
𝜗n⌋)⌋

⌊n ̂
𝜗n⌋+⌊𝜆(n−⌊n ̂

𝜗n⌋)⌋∑

j=⌊n ̂
𝜗n⌋+1

Xj

⎞
⎟
⎟
⎠

are estimates of the covariance functions c(1) and c(2) before and after the change point respectively. For 𝓁 = 1, 2
we put ĉ(𝓁)

𝜆

∶= 0 if ⌊𝜆⌊n ̂
𝜗n⌋⌋ = 0. The first result of this section shows that the statistic (4.3) is a uniformly

consistent estimator for the convex combination in (4.1).

Theorem 4.1. If Assumption 4.1 is satisfied and 𝜗0 ∈ (𝜀, 1 − 𝜀), we have

sup
0≤𝜆≤1

√
𝜆

‖
‖
‖

ĉ
̂
𝜗n,𝜆

− c
𝜗0

‖
‖
‖2
= OP

(
log2∕𝜅(n)

√
n

)

,

where ‖⋅‖2 denotes the norm induced by the inner product

⟨f , g⟩2 ∶=
∑

s1,s2∈S
∫ ∫

f ((s1, t1), (s2, t2))g((s1, t1), (s2, t2))dt1dt2 (4.4)

on L2((S × [0, 1])2).

In the following discussion by ŵ1,𝜆, ŵ2,𝜆, … we will denote the eigenfunctions of the operator corresponding
to the estimated covariance function ĉ

̂
𝜗n,𝜆

. Moreover, we use the notation ŵk,1 ∶= ŵk. Recall the definition of the

process Dn(𝜆, 𝜗) in (3.3) and note that Dn(1, ̂𝜗n) is an estimator for the difference between the mean functions
before and after the change point. Consequently, a natural estimator for the quantity

∑d
k=1⟨𝛿,wk⟩

2 in (4.2) is given
by the statistic

d∑

k=1

⟨Dn(1, ̂𝜗n), ŵk⟩
2 (4.5)
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and the null hypothesis in (4.2) will be rejected for large values of this statistic. The following result shows that
the process

√
n
{∑d

k=1

(
⟨Dn(𝜆, ̂𝜗n), ŵk⟩

2 − 𝜆

2⟨𝛿,wk⟩
2
) }

𝜆∈[0,1] converges weakly and - as a by-product - establishes
asymptotic normality of (4.5) (after appropriate normalization).

Theorem 4.2. If Assumption 4.1 is satisfied, ‖𝛿‖2
> 0 and 𝜗0 ∈ (𝜀, 1 − 𝜀), then the following statements hold in

𝓁∞([0, 1]) as n → ∞.

√
n

{
d∑

k=1

(
⟨Dn(𝜆, 𝜗0), ŵk,𝜆⟩

2 − 𝜆

2⟨𝛿,wk⟩
2
)
}

𝜆∈[0,1]

⇝ 𝜎
𝛿,𝜗0

{𝜆B(𝜆)}
𝜆∈[0,1] , (4.6)

√
n

{
d∑

k=1

(
⟨Dn(𝜆, ̂𝜗n), ŵk,𝜆⟩

2 − 𝜆

2⟨𝛿,wk⟩
2
)
}

𝜆∈[0,1]

⇝ 𝜎
𝛿,𝜗0

{𝜆B(𝜆)}
𝜆∈[0,1] , (4.7)

where

𝜎

2
𝛿,𝜗0

∶= 4
∑

h∈Z

(

𝜗0

∑

s1,… ,s4∈S
∫

Cov
(
𝜂

(1)
0 (s1, t1)𝜂

(1)
0 (s2, t2), 𝜂

(1)
h (s3, t3)𝜂

(1)
h (s4, t4)

)

× f ((s1, t1), (s2, t2))f ((s3, t3), (s4, t4))d(t1, t2, t3, t4)

− 2
∑

s1,s2,s3∈S
∫

Cov
(
𝜂

(1)
0 (s1, t1)𝜂

(1)
0 (s2, t2), 𝜂

(1)
h (s3, t3)

)
f ((s1, t1), (s2, t2))w(s3, t3)d(t1, t2, t3)

+ (1 − 𝜗0)
∑

s1,… ,s4∈S
∫

Cov
(
𝜂

(2)
0 (s1, t1)𝜂

(2)
0 (s2, t2), 𝜂

(2)
h (s3, t3)𝜂

(2)
h (s4, t4)

)

× f ((s1, t1), (s2, t2))f ((s3, t3), (s4, t4))d(t1, t2, t3, t4)

− 2
∑

s1,s2,s3∈S
∫

Cov
(
𝜂

(2)
0 (s1, t1)𝜂

(2)
0 (s2, t2), 𝜂

(2)
h (s3, t3)

)
f ((s1, t1), (s2, t2))w(s3, t3)d(t1, t2, t3)

)

+ 4
∑

s1,s2∈S
∫

K((s1, t1), (s2, t2))w(s1, t1)w(s2, t2)d(t1, t2)

with K defined in (3.4) and

w(s1, t1) ∶=
d∑

k=1

⟨𝛿,wk⟩wk(s1, t1), (4.8)

f ((s1, t1), (s2, t2)) ∶=
d∑

k=1

⟨𝛿,wk⟩wk(s1, t1)
∑

i≠k

⟨𝛿,wi⟩

𝜏k − 𝜏i

wi(s2, t2). (4.9)

Note that Theorem 4.2 implies that the statistic
√

n
∑d

k=1

(
⟨Dn(1, ̂𝜗n), ŵk⟩

2 − ⟨𝛿,wk⟩
2
)

converges weakly to a nor-
mal distribution with mean 0 and variance 𝜎

2
𝛿,𝜗0

. However, the limiting variance 𝜎

2
𝛿,𝜗0

is rather difficult to estimate
and therefore we propose to proceed by self-normalization again. For this purpose, define

̂Yn ∶=
⎛
⎜
⎜
⎝
∫

1

0

(
d∑

k=1

⟨Dn(𝜆, ̂𝜗n), ŵk,𝜆⟩
2 − 𝜆

2⟨Dn(1, ̂𝜗n), ŵk⟩
2

)2

d𝜈(𝜆)
⎞
⎟
⎟
⎠

1∕2

, (4.10)
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for some probability measure 𝜈 on the interval (0, 1). Then we propose to reject the null hypothesis in (4.2)
whenever

d∑

k=1

⟨Dn(1, ̂𝜗n), ŵk⟩
2
> Δ + q1−𝛼(W) ̂Yn. (4.11)

The next result shows that this decision rule defines a reasonable test for the hypotheses (4.2). The proof is obtained
by similar arguments as given in the proof of Theorem 3.2 in Dette et al. (2020c) and is therefore omitted.

Theorem 4.3. If Assumption 4.1 is satisfied, Δ > 0 and 𝜗0 ∈ (𝜀, 1 − 𝜀), we have

lim
n→∞

P

(
d∑

k=1

⟨Dn(1, ̂𝜗n), ŵk⟩
2
> Δ + q1−𝛼(W) ̂Yn

)

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, if
∑d

k=1⟨𝛿,wk⟩
2
< Δ,

𝛼, if
∑d

k=1⟨𝛿,wk⟩
2 = Δ and 𝜎

2
𝛿,𝜗0

> 0,

1, if
∑d

k=1⟨𝛿,wk⟩
2
> Δ.

Remark 4.4. Parseval’s identity implies ||𝛿||2 =
∑∞

k=1⟨𝛿,wk⟩
2 and therefore one can also use the decision rule

(4.11) for testing the hypotheses (2.2) (the null hypothesis is rejected if (4.11) holds). As a consequence of
Theorem 4.2, we obtain for the rejection probabilities of this test - provided that all the requirements stated in
Theorem 4.3 are satisfied

lim
n→∞

P

(
d∑

k=1

⟨Dn(1, ̂𝜗n), ŵk⟩
2
> Δ + q1−𝛼(W) ̂Yn

)

=

{
0, if ‖𝛿‖2

< Δ,

1, if
∑d

k=1⟨𝛿,wk⟩
2
> Δ

and if ‖𝛿‖2 = Δ and 𝜎

2
𝛿,𝜗0

> 0, we have

lim
n→∞

P

(
d∑

k=1

⟨Dn(1, ̂𝜗n), ŵk⟩
2
> Δ + q1−𝛼(W) ̂Yn

)

≤ 𝛼.

This means that the decision rule (4.11) also defines a (conservative) asymptotic level 𝛼 test for the hypothe-
ses (2.2). Moreover, similar as in the case of testing classical hypotheses the test is consistent whenever

∑d
k=1

⟨𝛿,wk⟩
2
> Δ.

5. FINITE SAMPLE PROPERTIES

We illustrate the finite sample properties of the proposed tests by means of a small simulation study and by the
analysis of a data example. Throughout this section, if not mentioned otherwise, we use a uniform distribution
𝜈19 =

1

19

∑19
i=1𝛿i∕20 at the points 1∕19, … , 18∕19 for the the probability measure 𝜈 in the pivotal statistic (here 𝛿x

denotes the Dirac measure at the point x). We also demonstrate below that the tests (3.9) and (4.11) are not very
sensitive with respect to the choice of this measure.

5.1. Simulation Study

For the illustration of the methods introduced in Section 3 (fully functional) and in Section 4 (cumulative sum of
squared scores) we put 𝜇 ≡ 0 and as the difference function before and after the change point we use

𝛿(s, t) =
√
𝛾s cos

(
𝜋

2
t
)
, (s, t) ∈ S × [0, 1] . (5.1)
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The parameter 𝛾 will be used to vary the size of the quantity ‖𝛿‖2 and
∑d

k=1⟨𝛿, vk⟩
2 in the hypotheses (2.2) and

(4.2) respectively. In all cases we consider four locations, that is S = {1, 2, 3, 4}, the threshold is Δ = 0.15 and
the sample sizes are given by n = 150, 250, 500. The position of the change point is chosen as 𝜗0 = 0.6 and the
trimming parameter 𝜀 in the change point estimator defined in (3.1) is set to 0.05. All the results presented are
based on 1000 simulation runs.

For both procedures we consider different error processes {𝜂j}j∈Z in model (2.1), where we assume that the

processes before and after the change point have the same distribution, that is {𝜂i}i∈Z



=
{
𝜂

(1)
i

}

i∈Z



=
{
𝜂

(2)
i

}

i∈Z
.

The first one consists of independent (scaled) Brownian motions, that is for j = 1, … , n

𝜂j(s, t) =
s
4

Bj(t) (5.2)

(here Bj denotes the standard Brownian motion on the interval [0, 1]). Note that this process has a separable covari-
ance function. Second, we consider a process {𝜂j}j∈Z of independent functions with non-separable covariance
defined by

𝜂j(s, t) =
20∑

𝓁=1

N𝓁,j

2𝜋𝓁
(sin(2𝜋𝓁t) + s ⋅ cos(2𝜋𝓁t)), (s, t) ∈ S × [0, 1] , (5.3)

where N𝓁,j denote independent standard normally distributed random variables. The third process is a functional
moving average process (fMA) of order 1. More precisely, we define independent processes

𝜀j(s, t) =
∞∑

k=1

Nk,j

√
𝜆kvk(s, t), (s, t) ∈ S × [0, 1] , (5.4)

where Nk,j are independent standard normally distributed random variables, 𝜆k = (2𝜋k2)−1 and vk(s, t) =
√

2

4
⋅ s ⋅

sin(2k𝜋t) and consider the fMA(1) process

𝜂j(s, t) = 𝜀j(s, t) + 0.7𝜀j−1(s, t), (s, t) ∈ S × [0, 1] (5.5)

(we use the first 40 terms in the expansion (5.4)). The data is generated and stored in Fourier basis representations
using the R-package fda.

5.1.1. Fully Functional Detection of Relevant Changes
We begin with an investigation of the fully functional approach and display in Figure 1 the rejection probabilities
of the test (3.9) for the hypotheses (2.2) (with Δ = 0.15) for the three different error processes introduced in the
previous subsection. We observe a qualitatively similar behavior in all three cases as predicted by Theorem 3.2.
The rejection probability is strictly increasing with ||𝛿||2. It is close to the nominal level 5% if ||𝛿||2 = Δ and
smaller (larger) than 5% if ||𝛿||2 < Δ (||𝛿||2 > Δ). A comparison of the three error processes shows that the best
power of the test is obtained for the error process (5.3) followed by the error process (5.5), while for the error
process (5.2) the test is least powerful.

This observation can be explained by the fact that the different error processes have different variability. More
precisely, it follows from the proof of Theorem 3.2 that for large sample sizes the probability of rejection can be
approximated by

P

(
̂W >

√
n

V

Δ − ‖𝛿‖2

𝜏
𝛿,𝜗0

+ q1−𝛼(W)
)

, (5.6)
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Figure 1. Empirical rejection probabilities of the test (3.9) for the hypotheses (2.2) with Δ = 0.15. The difference 𝛿 between
the mean functions is given by (5.1) and different error processes are considered. Left panel: scaled Brownian motion in (5.2);

middle panel: non-separable process in (5.3); right panel: fMA(1) process in (5.5)

Figure 2. Size of the term (Δ − ‖𝛿‖2)∕𝜏
𝛿,𝜗0

as a function ‖𝛿‖2 in the approximation of the rejection probability (Δ = 0.15) in
(5.6). Left panel: scaled Brownian motion in (5.2); middle panel: non-separable process in (5.3); right panel: fMA(1) process

in (5.5)

where 𝜏

2
𝛿,𝜗0

is defined in (3.7) and V =
(
∫ 𝜆

2(B(𝜆) − 𝜆B(1))2d𝜈(𝜆)
)1∕2

denotes a generic random variable (a

functional of the Brownian motion). Thus, the power is dominated by the term (Δ−‖𝛿‖2)∕𝜏
𝛿,𝜗0

, which is negative
under the alternative. A smaller value of this term results in a larger power and in Figure 2 we display this quantity
as a function of ||𝛿||2. The results explain the differences in the simulated power for the three processes under
consideration.

We also note that the approximation of the nominal level at the boundary of the hypotheses ||𝛿||2 = Δ differs in
the scenarios. For small sample sizes it is more accurate for the non-separable process (5.3) compared to the two
other cases. A possible explanation for this observation is given by the different accuracies of the change point
estimator (3.1) in the three scenarios, which are displayed in Figure 3. We observe that the change point estimator
for the error process (5.2) exhibits a larger variability than in the two other cases, while the smallest variability is
obtained for the error process (5.3).
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Figure 3. Histograms of the change point estimator defined in (5.2). The difference between the mean functions is given by
(5.1), Δ = 0.15 and the change point is located at 𝜗0 = 0.6. Different columns correspond to different sample sizes. Left:
n = 250; middle: n = 500; right: n = 1000. Different rows correspond to different processes. Top: scaled Brownian motion in

(5.2); middle: non-separable process in (5.3); bottom: fMA(1) process in (5.5)

Next we investigate the impact of the measure 𝜈 in the self-normalizing statistic (3.8) on the properties of the
test (3.9). Note that this measure appears in the definition of the statistic ̂Vn in (3.8) and in the random variable
W in (3.10). Thus, intuitively, there is a cancelation effect in the decision rule (3.9). For the sake of brevity, we
restrict ourselves to the case of the fMA(1) error process (5.5) and display in Figure 4 the rejection probabilities
of the test (3.9), where we use uniform distributions

𝜈k =
1
k

k∑

i=1

𝛿i∕(k+1) (5.7)

at k = 4, 9 and k = 19 points as measure in the statistic (3.8). We observe a rather similar behavior for all three
measures, where 𝜈19 yields a slightly better approximation of the nominal level at the boundary of the hypotheses
(that is ||𝛿||2 = Δ = 0.15) for the sample size n = 150.
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Figure 4. Empirical rejection probabilities of the test (3.9) for the hypotheses (2.2) with Δ = 0.15. The error process is
given by an fMA(1) model and different measures in the statistic (3.8) are considered. Left panel: 𝜈4; middle panel: 𝜈9; right

panel: 𝜈19

Figure 5. Empirical rejection probabilities of the test (4.11) for the hypotheses (4.2) with Δ = 0.15. The difference 𝛿 between
the mean functions is given by (5.1) and different error processes are considered. Left panel: scaled Brownian motion (d = 15)

in (5.2); middle panel: non-separable process (d = 11) in (5.3); right panel: fMA(1) process (d = 11) in (5.5)

5.1.2. Relevant Changes by Cumulative Sums of Squared Scores
We briefly illustrate the finite sample properties of the test (4.11) for the hypotheses (4.2), where we use the same
scenarios as before. The test requires the choice of the number of principal functional components and we choose
the parameter d such that 95% of the variance in the data will be explained. This results in d = 15, d = 11 and
d = 11 functional principal components for the models (5.2), (5.3), and (5.5) respectively. The corresponding
rejection probabilities are displayed in Figure 5 and we observe the qualitative behavior predicted by Theorem 4.3.
We also observe that the test (4.11) is conservative in the case of the non-separable process (5.3), while the nominal
level at the boundary of the hypotheses

∑d
k=1⟨𝛿, bk⟩

2 = Δ is very well approximated for the scaled Brownian
motion (5.2).

Finally, we investigate the impact of the measure 𝜈 in the scaling factor (4.10), where we again restrict ourselves
to the case of an fMA(1) process and the uniform distributions 𝜈k in (5.7) for k = 4, 9 and 19. The corresponding
results are shown in Figure 6 and demonstrate that the test (4.11) is not very sensitive with respect to this choice,
either.
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Figure 6. Empirical rejection probabilities of the test (4.11) for the hypotheses (4.2) with Δ = 0.15. The error process is given
by an fMA(1) model and different measures in the statistic (3.8) are considered. Left panel: 𝜈4; middle panel: 𝜈9; right panel: 𝜈19

Table I. Results of the test (3.9) for the Canadian weather data for different nominal level and different thresholds

Δ∕𝛼 10% 5% 1%

0.004 Reject Reject Accept
0.005 Reject Accept Accept
⋮ ⋮ ⋮ ⋮

2.974 Reject Accept Accept
2.975 Accept Accept Accept

Note: The value 0.004 represents the maximal threshold in (2.3) such that the null hypothesis of no relevant change is rejected at nominal level
5%, whereas the value 2.974 represents the maximal threshold in (2.3) such that the null hypothesis is rejected at nominal level 10%.

5.2. Data Example

We conclude this article with an application of the two test procedures in a real data example. For this pur-
pose, we use Canadian weather data, which consists of daily measurements at 40 representative Canadian cities.
Thus, we observe yearly curves over different years (1916 − 2018) at different locations. The data can be down-
loaded from the government of Canada website: https://climate.weather.gc.ca/historical_data/search_historic_
data_e.html. The available data contains several different measurements such as maximum/minimum tempera-
ture or precipitation amount. For the sake of brevity, we focus on the average daily temperatures. Due to missing
values in the reported temperature data, four stations were chosen such that a large amount of available data
overlaps and only little parts had to be interpolated or removed: Calgary International Airport, Alberta
(ID: 2205), Medicine Hat Airport, Alberta (ID: 2273), Indian Head CDA, Saskatchewan (ID: 2925) and
Ottawa CDA, Ontario (ID: 4333). In the notation of the previous sections this means S = {1, 2, 3, 4} and
the sample size is given by n = 113, which corresponds to the period from the years 1891 to 2007 without the
years 1910, 1911, 1993 and 1995. The change point estimator in (3.1) yields ̂

𝜗n = 0.708, which approximately
corresponds to the year 1969. We emphasize that this result depends on the definition of the segmentation and
we have used the common yearly segmentation starting on January 1st and ending on December 31st (see also
Besse et al., 2000; Sharipov et al., 2016; Gromenko et al., 2017, who used this segmentation as well). If one
uses a different yearly segmentation the results may change slightly. For example, the yearly segmentation rang-
ing from July 1st to June 30th yields ̂

𝜗n = 0.699 as estimate for the change point corresponding to the years
1968/69.
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Figure 7. The function e in (5.8) for j = 1, … , 100

Table II. Results of the test (4.11) with d = 51 principal components for the Canadian weather data for different nominal level
and different thresholds

Δ∕𝛼 10% 5% 1%

0.531 Reject Reject Reject
0.532 Reject Reject Accept
⋮ ⋮ ⋮ ⋮

3.301 Reject Reject Accept
3.302 Reject Accept Accept
⋮ ⋮ ⋮ ⋮

4.467 Reject Accept Accept
4.468 Accept Accept Accept

Note: The value 4.467 represents the maximal threshold in (4.2) such that the null hypothesis of no relevant change is rejected at nominal
level 10%, the value 3.301 is the maximal threshold for the nominal level 5% and the value 0.531 is the maximal threshold for the nominal
level 1%.

Next we apply the testing procedures introduced in Section 3 and 4 starting with the fully functional approach.
The results of the test (3.9) for different thresholds and different nominal levels are given in Table I. We observe
that Δ = 2.974 is the largest threshold such that the test (3.9) rejects the null hypothesis at nominal level 𝛼 = 0.1.
Because there are four stations, this corresponds to an average effect of 2.974∕4 ≈ 0.74. Finally, we note that the
one-sided confidence interval for ||𝛿|| ≥ 0 in (3.11) is given by [0, 4.397], while the two-sided interval for ||𝛿|| > 0
in (3.12) is obtained as (0.067, 4.675].

Lastly, we consider the test based on cumulative sums of squared scores developed in Section 4. In this case, a
choice for the value of d must be made and we display in Figure 7 the ratios

j → e(j) ∶=
∑j

k=1
̂
𝜆k

trace (ĉ
̂
𝜗n
)
, (5.8)

where ̂
𝜆1,

̂
𝜆2, … are the estimated eigenvalues of the covariance operator corresponding to the covariance function

in (4.1). We observe that the eigenvalues are slowly decreasing and we choose d = 51, which results in a value of
e(51) ≈ 0.849 of explained variance. The results of the test (4.11) for the relevant hypotheses (4.2) are shown in
Table II for different values ofΔ and 𝛼. We observe that the maximal threshold in (4.2) such that the null hypothesis
of no relevant change is rejected at nominal level 10%, is given by 4.467. Finally, one and two-sided confidence
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intervals for the quantity
(∑d

k=1⟨𝛿,wk⟩
2
)1∕2

are obtained in same way as described in Remark 3.4 and are given

by [0, 3.254] and (1.877, 3.396], respectively (d = 51).
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APPENDIX : PROOFS

A.1. Some Preliminary Results
We start with some preparations and present several results which are used in the proofs. We define for s ∈ S and
t ∈ [0, 1]

Sn(s, t, 𝜆) ∶=
1
n

⌊𝜆n⌋∑

j=1

(
Xj(s, t) − E[Xj(s, t)]

)

and state the following result, which can be obtained by generalizing Theorem 1.1 in Berkes et al. (2013) to the
space L2(S × [0, 1]).

Theorem A.1. If Assumption 2.1 is satisfied, there exists a sequence of Gaussian processes( {
Γn(s, t, 𝜆) ∣ s ∈ S, 0 ≤ 𝜆, t ≤ 1

} )

n∈N
such that

sup
0≤𝜆≤1

∑

s∈S
∫

(√
nSn(s, t, 𝜆) − Γn(s, t, 𝜆)

)2
dt = sup

0≤𝜆≤1

‖
‖
‖

√
nSn(⋅, ⋅, 𝜆) − Γn(⋅, ⋅, 𝜆)

‖
‖
‖

2
= oP(1)

and

{
Γn(s, t, 𝜆) ∣ s ∈ S, 0 ≤ 𝜆, t ≤ 1

} 

= {Γ(s, t, 𝜆) ∣ s ∈ S, 0 ≤ 𝜆, t ≤ 1} ,

where

Γ(s, t, 𝜆) ∶=
∞∑

i=1

√
𝜆i𝜙i(s, t)Wi(𝜆),

𝜆i, 𝜙i are the eigenvalues and eigenvectors of the covariance operator of Xj and {Wi}i∈N are independent standard
Brownian motions.

Our next auxiliary result quantifies the difference between the processes {Dn(𝜆, 𝜗0)}𝜆∈[0,1] and {Dn(𝜆, ̂𝜗n)}𝜆∈[0,1]
as n → ∞.

Lemma A.2. If Assumption 2.1 is satisfied, then

(1) sup0≤𝜆≤1
‖
‖Dn(𝜆, 𝜗)‖‖ = OP(1) for 𝜗 ∈ {𝜗0,

̂
𝜗n},

(2) sup0≤𝜆≤1 ||Dn(𝜆, ̂𝜗n) − Dn(𝜆, 𝜗0)|| = oP(n−1∕2).

J. Time Ser. Anal. 44: 505–532 (2023) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12674 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



524 H. DETTE AND P. QUANZ

Proof. We can assume that 1

n
≤ 𝜆 because, by definition, Dn(𝜆, 𝜗0) ≡ Dn(𝜆, ̂𝜗n) ≡ 0 if 0 ≤ 𝜆 <

1

n
, and both

assertions are trivially true.
For a proof of part (1) we note that with 𝜅 from (A4) we have

sup
1
n
≤𝜆≤1

1
√

⌊𝜆n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆n⌋∑

j=1

𝜂

(𝓁)
j

‖
‖
‖
‖
‖
‖

= OP(log1∕𝜅(n)), 𝓁 = 1, 2, (A1)

which follows from Lemma B.1 in the online supplementary material of Aue et al. (2018). Let 𝜆 ∈
[
1∕n, 1

]
. It

suffices to show the assertion for 𝜗 = 𝜗0 because the second part of the Lemma implies the statement for 𝜗 = ̂
𝜗n.

Then

‖
‖Dn(𝜆, 𝜗0)‖‖ ≤

‖
‖
‖
̃Dn(𝜆, 𝜗0)

‖
‖
‖
+ 𝜆 ‖𝛿‖ + oP(1) =

‖
‖
‖
̃Dn(𝜆, 𝜗0)

‖
‖
‖
+ OP(1),

where the process { ̃Dn(𝜆, 𝜗)}𝜆∈[0,1] in L2(S × [0, 1]) is defined by

̃Dn(𝜆, 𝜗) ∶=
1

⌊n𝜗⌋

⌊𝜆⌊n𝜗⌋⌋∑

j=1

𝜂

(1)
j − 1

n − ⌊n𝜗⌋

⌊n𝜗⌋+⌊𝜆(n−⌊n𝜗⌋)⌋∑

j=⌊n𝜗⌋+1

𝜂

(2)
j .

Note that ̃Dn(𝜆, 𝜗) is the centered version of Dn(𝜆, 𝜗) defined in (3.3) and that

Dn(𝜆, 𝜗0) + 𝜆𝛿 = ̃Dn(𝜆, 𝜗0) + OP(n−1) (A2)

(note that 𝜗0 ∈ (𝜀, 1 − 𝜀) and that 𝜀 ≥ 1

n
if n is sufficiently large). We have

sup
1
n
≤𝜆≤1

‖
‖
̃Dn(𝜆, 𝜗0)‖‖ ≤ sup

1
n
≤𝜆≤1

1
⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

+ sup
1
n
≤𝜆≤1

1
n − ⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

⌊n𝜗0⌋+⌊𝜆(n−⌊n𝜗0⌋)⌋∑

j=⌊n𝜗0⌋+1

𝜂

(2)
j

‖
‖
‖
‖
‖
‖

,

where the first term can be estimated as follows

sup
1
n
≤𝜆≤1

1
⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤
1

√
⌊n𝜗0⌋

sup
1
n
≤𝜆≤1

1
√

⌊𝜆⌊n𝜗0⌋⌋

‖
‖
‖
‖
‖
‖

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤
1

√
⌊n𝜗0⌋

sup
1
n
≤𝜆≤1

1
√

⌊𝜆n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆n⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

= OP

(
log1∕𝜅(n)

√
n

)

= oP(1).

(here in the second inequality, we expanded the set over which we take the supremum and in the last step, we
used the estimate (A1)). A similar argument provides the same rate for the second term, which proves part (1) of
Lemma A.2.

For the proof of the second assertion we need the following (slightly more general) statement from
the beginning of Section B.1 in Dette et al. (2020c), which states that the sequence of processes{
Γn(s, t, 𝜆) ∣ s ∈ S, 0 ≤ t, 𝜆 ≤ 1

}

n∈N
in Theorem A.1 satisfies

sup
𝜈,𝜆∈[0,1]∶
|𝜈−𝜆|≤𝜅n

‖
‖Γn(⋅, ⋅, 𝜈) − Γn(⋅, ⋅, 𝜆)‖‖

2 = oP(1). (A3)
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for any and positive sequence
(
𝜅n

)

n∈N
with 𝜅n → 0. By adding and subtracting 𝜆𝛿 we have Dn(𝜆, ̂𝜗n)−Dn(𝜆, 𝜗0) =

̃Dn(𝜆, ̂𝜗n) − ̃Dn(𝜆, 𝜗0) + OP(n−1), where

̃Dn(𝜆, ̂𝜗n) − ̃Dn(𝜆, 𝜗0) =
1

⌊n ̂
𝜗n⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j − 1

⌊n𝜗0⌋

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j

+ 1
n − ⌊n𝜗0⌋

⌊n𝜗0⌋+⌊𝜆(n−⌊n𝜗0⌋)⌋∑

j=⌊n𝜗0⌋+1

𝜂

(2)
j − 1

n − ⌊n ̂
𝜗n⌋

⌊n ̂
𝜗n⌋+⌊𝜆(n−⌊n ̂

𝜗n⌋)⌋∑

j=⌊n ̂
𝜗n⌋+1

𝜂

(2)
j .

For the first difference we obtain by a similar argument as in the proof of part (1) that

sup
1
n
≤𝜆≤1

√
n
‖
‖
‖
‖
‖
‖

1

⌊n ̂
𝜗n⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j − 1

⌊n𝜗0⌋

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤
n

⌊n ̂
𝜗n⌋

sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖
‖

1
√

n

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j − Γn

(

⋅, ⋅, 𝜆
⌊n ̂
𝜗n⌋

n

)‖
‖
‖
‖
‖
‖

+ n
⌊n𝜗0⌋

sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖
‖

1
√

n

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

𝜂

(1)
j − Γn

(

⋅, ⋅, 𝜆
⌊n𝜗0⌋

n

)‖
‖
‖
‖
‖
‖

+ n

⌊n ̂
𝜗n⌋

sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖
‖

Γn

(

⋅, ⋅, 𝜆
⌊n ̂
𝜗n⌋

n

)

− Γn(⋅, ⋅, 𝜆 ̂𝜗n)
‖
‖
‖
‖
‖
‖

+ n
⌊n𝜗0⌋

sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖
Γn

(

⋅, ⋅, 𝜆
⌊n𝜗0⌋

n

)

− Γn(⋅, ⋅, 𝜆𝜗0)
‖
‖
‖
‖
‖

+ sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖

n

⌊n ̂
𝜗n⌋

Γn(⋅, ⋅, 𝜆 ̂𝜗n) −
n

⌊n𝜗0⌋
Γn(⋅, ⋅, 𝜆𝜗0)

‖
‖
‖
‖
‖

≤ sup
𝜈,𝜆∈[0,1]∶
|𝜈−𝜆|≤ 1

n

‖
‖Γn(⋅, ⋅, 𝜈) − Γn(⋅, ⋅, 𝜆)‖‖

+ O(1) sup
𝜈,𝜆∈[0,1]∶

|𝜈−𝜆|≤| ̂𝜗n−𝜗0 |

‖
‖Γn(⋅, ⋅, 𝜈) − Γn(⋅, ⋅, 𝜆)‖‖ +

|𝜗0 − ̂
𝜗n|

𝜗0
̂
𝜗n

OP(1) + oP(1)

= oP(1),

where we have used (A3) in the last equality. Assertion (2) of Lemma A.2 now follows by using a similar argument
for the second difference. ◾

We conclude our preparations recalling the definition of the inner product in (4.4) and state a lemma regarding the
weak convergence of the process

(
Z(1)n ,Z(2)n

)
⊤ ∶=

{
(Z(1)n (𝜆),Z

(2)
n (𝜆))

⊤

}

𝜆∈[0,1] (A4)

∶=

{(
1

√
n

⌊𝜆n⌋∑

j=1

(
⟨𝜂
(k)
j ⊗ 𝜂

(k)
j − c(k), 𝜉k⟩2 + ⟨𝜂

(k)
j , 𝜁k⟩

)
)

k=1,2

}

𝜆∈[0,1]

,
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where
{
𝜂

(1)
j

}

j∈Z
and

{
𝜂

(2)
j

}

j∈Z
are centered processes in L2(S × [0, 1]) and 𝜁1, 𝜁2 ∈ L2(S × [0, 1]), 𝜉1, 𝜉2 ∈

L2((S × [0, 1])2) are given functions. We emphasize that we consider the process
(
Z(1)n ,Z(2)n

)
⊤

with different param-
eters 𝜁1, 𝜁2 ∈ L2(S × [0, 1]), 𝜉1, 𝜉2 ∈ L2((S × [0, 1])2) in the proofs of the results of Section 3 and 4. The proof of
the following result is similar to the proof of Lemma B.1 in Dette et al. (2020c) and therefore omitted.

Lemma A.3. Let 𝜁1, 𝜁2 ∈ L2(S×[0, 1]), 𝜉1, 𝜉2 ∈ L2((S × [0, 1])2) be fixed but arbitrary functions and let
{
𝜂

(1)
j

}

j∈Z
,

{
𝜂

(2)
j

}

j∈Z
denote centered processes satisfying Assumption 4.1. Then the process defined in (A4) converges weakly

in 𝓁∞([0, 1])2, that is
(
Z(1)n ,Z(2)n

)
⊤

⇝ Σ1∕2
(
B1,B2

)
⊤

, (A5)

where B1,B2 are independent Brownian motions and Σ = (Σkl)k,l=1,2 is a 2 × 2 matrix with entries

Σkl =
∑

h∈Z

(

Cov
(
⟨𝜂
(k)
0 ⊗ 𝜂

(k)
0 , 𝜉k⟩2, ⟨𝜂

(l)
h ⊗ 𝜂

(l)
h , 𝜉l⟩2

)
+ Cov

(
⟨𝜂
(k)
0 ⊗ 𝜂

(k)
0 , 𝜉k⟩2, ⟨𝜂

(l)
h , 𝜁l⟩

)

+ Cov
(
⟨𝜂
(k)
0 , 𝜁k⟩, ⟨𝜂

(l)
h ⊗ 𝜂

(l)
h , 𝜉l⟩2

)
+ Cov

(
⟨𝜂
(k)
0 , 𝜁k⟩, ⟨𝜂

(l)
h , 𝜁l⟩

)
)

. (A6)

Moreover, in the case 𝜉1 ≡ 𝜉2 ≡ 0 Assumption 2.1 instead of Assumption 4.1 is sufficient for the weak convergence
in (A5).

A.2. Proof of Theorem 4.1
We will show that

sup
0≤𝜆≤1

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2
= OP

(
log2∕𝜅(n)

√
n

)

, (A7)

sup
0≤𝜆≤1

√
𝜆

‖
‖
‖
‖
(1 − ̂

𝜗n)ĉ
(2)
𝜆

− (1 − 𝜗0)E
[
𝜂

(2)
0 ⊗ 𝜂

(2)
0

]‖
‖
‖
‖2
= OP

(
log2∕𝜅(n)

√
n

)

. (A8)

For the sake of brevity, we restrict ourselves to a proof of (A7); the proof of (A8) follows by similar arguments.
First, we assume that 𝜆 < ⌊n ̂

𝜗n⌋
−1, then ĉ(1)

𝜆

= 0 and

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

<

𝜗0
√

⌊n ̂
𝜗n⌋

|
|
|
E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]
|
|
|
= OP(n−1∕2)

uniformly in 𝜆 ∈ [0, ⌊n ̂
𝜗n⌋

−1). If ⌊n ̂
𝜗n⌋

−1 ≤ 𝜆 ≤ 1, we use the representation

ĉ(1)
𝜆

= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

Xj ⊗ Xj −
1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i,j=1

Xi ⊗ Xj (A9)

and consider the first term. For this we get

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

Xj ⊗ Xj

= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∧⌊n𝜗0⌋∑

j=1

Xj ⊗ Xj +
1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊𝜆⌊n ̂
𝜗n⌋⌋∧⌊n𝜗0⌋+1

Xj ⊗ Xj
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= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∧⌊n𝜗0⌋∑

j=1

(
𝜂

(1)
j ⊗ 𝜂

(1)
j + 𝜇 ⊗ 𝜂

(1)
j + 𝜂

(1)
j ⊗ 𝜇 + 𝜇 ⊗ 𝜇

)

+ 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊𝜆⌊n ̂
𝜗n⌋⌋∧⌊n𝜗0⌋+1

(
𝜂

(2)
j ⊗ 𝜂

(2)
j + �̃� ⊗ 𝜂

(2)
j + 𝜂

(2)
j ⊗ �̃� + �̃� ⊗ �̃�

)
, (A10)

where we use the notation �̃� ∶= 𝜇 + 𝛿. The second term in (A9) can be rewritten as follows:

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i,j=1

Xi ⊗ Xj

= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∧⌊n𝜗0⌋∑

i,j=1

(
𝜂

(1)
i ⊗ 𝜂

(1)
j + 𝜇 ⊗ 𝜂

(1)
j + 𝜂

(1)
i ⊗ 𝜇 + 𝜇 ⊗ 𝜇

)

+
1
{
⌊n𝜗0⌋ ≤ ⌊𝜆⌊n ̂

𝜗n⌋⌋
}

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⎧
⎪
⎨
⎪
⎩

⌊n𝜗0⌋∑

i=1

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(
𝜂

(1)
i ⊗ 𝜂

(2)
j + 𝜇 ⊗ 𝜂

(2)
j + 𝜂

(1)
i ⊗ �̃� + 𝜇 ⊗ �̃�

)

+
⌊𝜆⌊n ̂

𝜗n⌋⌋∑

i=⌊n𝜗0⌋+1

⌊n𝜗0⌋∑

j=1

(
𝜂

(2)
i ⊗ 𝜂

(1)
j + 𝜂

(2)
i ⊗ 𝜇 + �̃� ⊗ 𝜂

(1)
j + �̃� ⊗ 𝜇

)

+
⌊𝜆⌊n ̂

𝜗n⌋⌋∑

i,j=⌊n𝜗0⌋+1

(
𝜂

(2)
i ⊗ 𝜂

(2)
j + 𝜂

(2)
i ⊗ �̃� + �̃� ⊗ 𝜂

(2)
j + �̃� ⊗ �̃�

)
⎫
⎪
⎬
⎪
⎭

.

We now consider the cases ⌊𝜆⌊n ̂
𝜗n⌋⌋ < ⌊n𝜗0⌋ and ⌊𝜆⌊n ̂

𝜗n⌋⌋ ≥ ⌊n𝜗0⌋ separately. For this purpose, we define the
set Λn ∶= {⌊n ̂

𝜗n⌋
−1 ≤ 𝜆 ≤ 1|⌊𝜆⌊n ̂

𝜗n⌋⌋ < ⌊n𝜗0⌋} and note that

sup
1
n
≤𝜆≤1

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

= max

{

sup
𝜆∈Λn

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

, sup
𝜆∈ΛC

n

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

}

.

We consider each case individually, starting with the first term, where the supremum is taken over the set
Λn, that is, the inequality ⌊𝜆⌊n ̂

𝜗n⌋⌋ < ⌊n𝜗0⌋ holds. Observing that the sum in (A10) vanishes, we obtain in
this case that

ĉ(1)
𝜆

= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j ⊗ 𝜂

(1)
j − 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i,j=1

𝜂

(1)
i ⊗ 𝜂

(1)
j . (A11)

In the subsequent discussion, we will repeatedly make use of the following inequality, without explicitly
mentioning it. It is obtained by expanding the set over which the supremum is calculated and substituting
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𝜆

′ = 𝜆

⌊n ̂
𝜗n⌋

n
:

sup
𝜆∈Λn

1
√

⌊𝜆⌊n ̂
𝜗n⌋⌋

‖
‖
‖
‖
‖
‖

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤ sup
1
n
≤𝜆′≤

⌊n ̂
𝜗n⌋
n

1
√

⌊𝜆′n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆′n⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤ sup
1
n
≤𝜆≤1

1
√

⌊𝜆n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆n⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

.

Regarding the second term in (A11) we have with 𝜅 from (A4’)

sup
𝜆∈Λn

√
𝜆
̂
𝜗n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i,j=1

𝜂

(1)
i ⊗ 𝜂

(1)
j

‖
‖
‖
‖
‖
‖2

= sup
𝜆∈Λn

𝜆
̂
𝜗n

⌊𝜆⌊n ̂
𝜗n⌋⌋

1
√
𝜆

‖
‖
‖
‖
‖
‖
‖
‖

1
√

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖
‖
‖

2

≤ OP(n−1∕2)

(

sup
1
n
≤𝜆≤1

1
√

⌊𝜆n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆n⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

)2

= OP

(
log2∕𝜅(n)

√
n

)

,

by (A1). This implies

sup
𝜆∈Λn

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

≤ sup
𝜆∈Λn

√
𝜆

‖
‖
‖
‖
‖
‖

̂
𝜗n

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

(
𝜂

(1)
j ⊗ 𝜂

(1)
j − E

[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

])‖‖
‖
‖
‖
‖2

+ | ̂𝜗n − 𝜗0|E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]
+ OP

(
log2∕𝜅(n)

√
n

)

≤ OP(n−1∕2) sup
1
n
≤𝜆≤1

1
√

⌊𝜆n⌋

‖
‖
‖
‖
‖
‖

⌊𝜆n⌋∑

j=1

(
𝜂

(1)
j ⊗ 𝜂

(1)
j − E

[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

])‖‖
‖
‖
‖
‖2

+ OP

(
log2∕𝜅(n)

√
n

)

≤ OP

(
log2∕𝜅(n)

√
n

)

,

where we used (3.2) and again a variation of (A1), this time for L2((S × [0, 1])2)-valued random variables.
It remains to calculate the supremum over the set ΛC

n . If ⌊𝜆⌊n ̂
𝜗n⌋⌋ ≥ ⌊n𝜗0⌋ is true, then a tedious but

straightforward calculation gives

ĉ(1)
𝜆

= 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j ⊗ 𝜂

(1)
j − 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊n𝜗0⌋∑

i,j=1

𝜂

(1)
i ⊗ 𝜂

(1)
j

+ 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)⊗ (𝜂(2)j + 𝛿)
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− 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊n𝜗0⌋∑

i=1

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

𝜂

(1)
i ⊗ (𝜂(2)j + 𝛿) − 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i=⌊n𝜗0⌋+1

⌊n𝜗0⌋∑

j=1

(𝜂(2)i + 𝛿)⊗ 𝜂

(1)
j

+ 1

⌊𝜆⌊n ̂
𝜗n⌋⌋

2

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

i,j=⌊n𝜗0⌋+1

(𝜂(2)i + 𝛿)⊗ (𝜂(2)j + 𝛿)

and we claim that

sup
𝜆∈ΛC

n

√
𝜆

‖
‖
‖
‖
̂
𝜗nĉ(1)

𝜆

− 𝜗0E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖
‖
‖
‖2

≤ sup
1
n
≤𝜆≤1

√
𝜆

‖
‖
‖
‖
‖
‖

̂
𝜗n

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j ⊗ 𝜂

(1)
j − 𝜗0E

[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖‖
‖
‖
‖
‖2

+ OP

(
log2∕𝜅(n)

√
n

)

. (A12)

For a proof of (A12), we show that

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

= OP(n−1∕2), (A13)

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)
‖
‖
‖
‖
‖
‖

= OP

(
log1∕𝜅(n)

√
n

)

, (A14)

sup
𝜆∈ΛC

n

√
𝜆
̂
𝜗n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)
‖
‖
‖
‖
‖
‖

2

= OP

(
log2∕𝜅(n)

√
n

)

, (A15)

sup
𝜆∈ΛC

n

√
𝜆
̂
𝜗n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)⊗ (𝜂(2)j + 𝛿)
‖
‖
‖
‖
‖
‖

= OP

(
log1∕𝜅(n)

√
n

)

. (A16)

The estimate (A13) follows from

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

≤
1

√
⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

1
√

⌊n𝜗0⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j

‖
‖
‖
‖
‖
‖

= OP

(
n−1∕2

)

because of ⌊n𝜗0⌋ ≤ ⌊𝜆⌊n ̂
𝜗n⌋⌋ and the central limit theorem in Hilbert spaces in the last step.

For the estimate (A14) recall that by (3.2) we have ̂
𝜗n = 𝜗0 + oP(n−1∕2). Moreover, this implies

sup
𝜆∈ΛC

n

⌊n𝜗0⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋

= 1 + oP(n−1∕2), (A17)

because

1 + oP(n−1∕2) =
⌊n𝜗0⌋

⌊n ̂
𝜗n⌋
≤ sup

𝜆∈ΛC
n

⌊n𝜗0⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋

≤ sup
𝜆∈ΛC

n

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋

= 1.
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Using again ⌊n𝜗0⌋ ≤ ⌊𝜆⌊n ̂
𝜗n⌋⌋ and the estimate (A1), we find that

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)
‖
‖
‖
‖
‖
‖

≤
1

√
⌊n𝜗0⌋

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖
‖
‖

1
√

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

𝜂

(2)
j

‖
‖
‖
‖
‖
‖
‖
‖

+ 1
√

⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

1
√

⌊n𝜗0⌋

⌊n𝜗0⌋∑

j=1

𝜂

(2)
j

‖
‖
‖
‖
‖
‖

+ sup
𝜆∈ΛC

n

⌊𝜆⌊n ̂
𝜗n⌋⌋ − ⌊n𝜗0⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋

‖𝛿‖

≤ OP(n−1∕2) sup
1
n
≤𝜆≤1

‖
‖
‖
‖
‖
‖

1
⌊𝜆n⌋

⌊𝜆n⌋∑

j=1

𝜂

(2)
j

‖
‖
‖
‖
‖
‖

+
⌊n ̂
𝜗n⌋ − ⌊n𝜗0⌋

⌊n𝜗0⌋
‖𝛿‖ + OP

(
n−1∕2

)

= OP

(
log1∕𝜅(n)

√
n

)

.

These calculations also yield the estimate (A15). For (A16) we have, using a version of (A1) for
L2((S × [0, 1])2)-valued random variables and the fact that ⌊n𝜗0⌋ ≤ ⌊𝜆⌊n ̂

𝜗n⌋⌋, that

sup
𝜆∈ΛC

n

√
𝜆
̂
𝜗n

‖
‖
‖
‖
‖
‖

1

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=⌊n𝜗0⌋+1

(𝜂(2)j + 𝛿)⊗ (𝜂(2)j + 𝛿)
‖
‖
‖
‖
‖
‖2

≤
1

√
⌊n𝜗⌋

sup
𝜆∈ΛC

n

‖
‖
‖
‖
‖
‖
‖
‖

1
√

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋∑

j=1

�̃�

⊗

j

‖
‖
‖
‖
‖
‖
‖
‖2

+
̂
𝜗n

√
⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

1
√

⌊n𝜗0⌋

⌊n𝜗0⌋∑

j=1

�̃�

⊗

j

‖
‖
‖
‖
‖
‖

+ oP(n−1∕2) ⋅ E
[
(𝜂(2)0 + 𝛿)⊗ (𝜂(2)0 + 𝛿)

]

= OP

(
log1∕𝜅(n)

√
n

)

,

where �̃�⊗j ∶= (𝜂
(2)
j +𝛿)⊗(𝜂(2)j +𝛿)−E

[
(𝜂(2)0 + 𝛿)⊗ (𝜂(2)0 + 𝛿)

]
. Finally, observing (A12), the assertion (A7) follows

from

sup
𝜆∈ΛC

n

√
𝜆

‖
‖
‖
‖
‖
‖

̂
𝜗n

⌊𝜆⌊n ̂
𝜗n⌋⌋

⌊n𝜗0⌋∑

j=1

𝜂

(1)
j ⊗ 𝜂

(1)
j − 𝜗0E

[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]‖‖
‖
‖
‖
‖2

≤
1

√
⌊n𝜗0⌋

‖
‖
‖
‖
‖
‖

1
√

⌊n𝜗0⌋

⌊n𝜗0⌋∑

j=1

(
𝜂

(1)
j ⊗ 𝜂

(1)
j − E

[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

])‖‖
‖
‖
‖
‖2

+ sup
𝜆∈ΛC

n

|
|
|
|

⌊n𝜗0⌋

⌊𝜆⌊n ̂
𝜗n⌋⌋

̂
𝜗n − 𝜗0

|
|
|
|
E
[
𝜂

(1)
0 ⊗ 𝜂

(1)
0

]

= OP

(
n−1∕2

)

by (A1) and (A17). This completes the proof of Theorem 4.1.
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A.3. Proof of Theorem 4.2
We begin stating an expansion for the difference ĉj,𝜆ŵj,𝜆 − wj, which is proved by similar arguments as given in
the proof of Proposition 2.1 in Aue et al. (2023). The details are therefore omitted.

Proposition A.4. Suppose Assumption 4.1 and 4.2 hold. If further 𝜗0 ∈ (𝜀, 1 − 𝜀), then for any k ≤ d and some
𝛼 > 0 we have

sup
0≤𝜆≤1

‖
‖
‖
‖
‖
‖

𝜆(ĉk,𝜆ŵk,𝜆 − wk) −
1

√
n

∑

i≠k

wi

𝜏k − 𝜏i

⟨ ̂Zn,𝜆,wk ⊗ wi⟩2

‖
‖
‖
‖
‖
‖

= OP

(
log𝛼(n)

n

)

and

sup
0≤𝜆≤1

√
𝜆||ĉk,𝜆ŵk,𝜆 − wk|| = OP

(
log1∕𝛼(n)

√
n

)

,

where ĉk,𝜆 = sign⟨ŵk,𝜆,wk⟩ and

̂Zn,𝜆 ∶=
1

√
n

(
⌊𝜆⌊n𝜗0⌋⌋∑

j=1

(
𝜂

(1)
j ⊗ 𝜂

(1)
j − c(1)

)
+

⌊n𝜗0⌋+⌊𝜆(n−⌊n𝜗0⌋)⌋∑

j=⌊n𝜗0⌋+1

(
𝜂

(2)
j ⊗ 𝜂

(2)
j − c(2)

)
)

.

For the proof of the first assertion (4.6) of Theorem 4.2 we add and subtract 𝜆𝛿, use (A2) and obtain uniformly in
𝜆 ∈ [0, 1]

⟨Dn(𝜆, 𝜗0), ŵk,𝜆⟩
2 − 𝜆

2⟨𝛿,wk⟩
2 = Ik,n(𝜆) + Jk,n(𝜆) + Kk,n(𝜆) + OP(n−1), (A18)

where ĉk,𝜆 is defined in Proposition A.4 and

Ik,n(𝜆) ∶= ⟨ ̃Dn(𝜆, 𝜗0), ĉk,𝜆ŵk,𝜆⟩
2
,

Jk,n(𝜆) ∶= 2𝜆⟨ ̃Dn(𝜆, 𝜗0), ĉk,𝜆ŵk,𝜆⟩⟨𝛿, ĉk,𝜆ŵk,𝜆⟩,

Kk,n(𝜆) ∶= 𝜆

2⟨𝛿, ĉk,𝜆ŵk,𝜆⟩
2 − 𝜆

2⟨𝛿,wk⟩
2
.

By Theorem A.1 sup0≤𝜆≤1 ||
√

n ̃Dn(𝜆, 𝜗0)|| is bounded. Therefore, the Cauchy–Schwarz inequality yields

sup
0≤𝜆≤1

√
nIk,n(𝜆) ≤

1
√

n
sup

0≤𝜆≤1
||
√

n ̃Dn(𝜆, 𝜗0)||2‖‖ŵk,𝜆
‖
‖

2 = oP(1)

for all k = 1, … , d. Moving to the second term Jk,n, we see that
√

nJk,n(𝜆) =
√

n2𝜆(⟨ ̃Dn(𝜆, 𝜗0), ĉk,𝜆ŵk,𝜆 − wk⟩⟨𝛿, ĉk,𝜆ŵk,𝜆 − wk⟩

+ ⟨ ̃Dn(𝜆, 𝜗0),wk⟩⟨𝛿, ĉk,𝜆ŵk,𝜆 − wk⟩

+ ⟨ ̃Dn(𝜆, 𝜗0), ĉk,𝜆ŵk,𝜆 − wk⟩⟨𝛿,wk⟩ + ⟨ ̃Dn(𝜆, 𝜗0),wk⟩⟨𝛿,wk⟩)

= 2𝜆⟨
√

n ̃Dn(𝜆, 𝜗0),wk⟩⟨𝛿,wk⟩ + oP(1),

uniformly in 𝜆 by the second part of Proposition A.4. Lastly, we have by the first part of Proposition A.4 uniformly
in 𝜆

√
nKk,n(𝜆) = ⟨𝛿, 𝜆(ĉk,𝜆ŵk,𝜆 − wk)⟩2 + 2𝜆⟨𝛿, 𝜆(ĉk,𝜆ŵk,𝜆 − wk)⟩⟨𝛿,wk⟩

= 2𝜆⟨𝛿,wk⟩

⟨

𝛿,

1
√

n

∑

i≠k

wi

𝜏k − 𝜏i

⟨ ̂Zn,𝜆,wk ⊗ wi⟩2

⟩

+ oP(1). (A19)
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Recalling the notations of w and f in (4.8) and (4.9) and combining (A18) – (A19), we can rewrite uniformly in 𝜆

Tn(𝜆) ∶=
√

n
d∑

k=1

(
⟨Dn(𝜆, 𝜗0), ŵk,𝜆⟩

2 − 𝜆

2⟨𝛿,wk⟩
2
)

= 2𝜆
√

n

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

⟨𝜂
(1)
j ⊗ 𝜂

(1)
j − c(1), f ⟩2 +

2𝜆
√

n

⌊n𝜗0⌋+⌊𝜆(n−⌊n𝜗0⌋)⌋∑

j=⌊n𝜗0⌋+1

⟨𝜂
(2)
j ⊗ 𝜂

(2)
j − c(2), f ⟩2

−
2𝜆

√
n

⌊n𝜗0⌋

⌊𝜆⌊n𝜗0⌋⌋∑

j=1

⟨𝜂
(1)
j ,w⟩ −

2𝜆
√

n

n − ⌊n𝜗0⌋

⌊n𝜗0⌋+⌊𝜆(n−⌊n𝜗0⌋)⌋∑

j=⌊n𝜗0⌋+1

⟨𝜂
(2)
j ,w⟩ + oP(1)

= 2𝜆

(

Z(1)n

(
𝜆⌊n𝜗0⌋

n

)

+ Z(2)n

(
⌊n𝜗0⌋ + ⌊𝜆(n − ⌊n𝜗0⌋)⌋

n

)

− Z(2)n

(
𝜗0

)
)

+ oP(1),

where for 𝓁 = 1, 2

Z(𝓁)n (𝜆) = 1
√

n

⌊𝜆n⌋∑

j=1

(
⟨𝜂
(𝓁)
j ⊗ 𝜂

(𝓁)
j − c(𝓁), 𝜉𝓁⟩2 + ⟨𝜂

(𝓁)
j , 𝜁𝓁⟩

)

with 𝜉1 = 𝜉2 = f , 𝜁1 = −
1

𝜗0
w and 𝜁2 = −

1

1−𝜗0
w. Now by Lemma A.3 we obtain

{Tn(𝜆)}𝜆∈[0,1] ⇝ {Z(𝜆)}
𝜆∈[0,1]

∶=
{

2𝜆Z
(1) (

𝜆𝜗0

)
+ 2𝜆

(
Z
(2) (

𝜗0 + 𝜆(1 − 𝜗0)
)
− Z

(2) (
𝜗0

))}

𝜆∈[0,1]

in 𝓁∞([0, 1]), where Z(1)(𝜆) ∶= ̃Σ11B1(𝜆) + ̃Σ12B2(𝜆) and Z(2)(𝜆) ∶= ̃Σ21B1 + ̃Σ22B2. ̃Σij denotes the ij-th entry of

the matrix Σ1∕2 and the entries of Σ = (Σij)i,j=1,2 are defined by (A6) with 𝜉1 = 𝜉2 = f , 𝜁1 = −
1

𝜗0
w and 𝜁2 = −

1

1−𝜗0
w.

Inspecting the covariance structure of the limiting process, we see that

Cov
(
Z(𝜆1),Z(𝜆2)

)
= 4𝜆1𝜆2(𝜆1 ∧ 𝜆2)(𝜗0Σ11 + (1 − 𝜗0)Σ22)

and hence the weak convergence in (4.6) follows.
To prove the second assertion (4.7) we note that we have by part 1 and 2 of Lemma A.2

sup
0≤𝜆≤1

(⟨Dn(𝜆, ̂𝜗n), ŵk,𝜆⟩
2 − ⟨Dn(𝜆, 𝜗0), ŵk,𝜆⟩

2)

= sup
0≤𝜆≤1

(
⟨Dn(𝜆, ̂𝜗n) − Dn(𝜆, 𝜗0), ŵk,𝜆⟩

2 + 2⟨Dn(𝜆, ̂𝜗n) − Dn(𝜆, 𝜗0), ŵk,𝜆⟩⟨Dn(𝜆, 𝜗0), ŵk,𝜆⟩
)

≤ sup
0≤𝜆≤1

‖
‖
‖

Dn(𝜆, ̂𝜗n) − Dn(𝜆, 𝜗0)
‖
‖
‖

2
‖
‖ŵk,𝜆

‖
‖

2

+ 2 sup
0≤𝜆≤1

‖
‖
‖

Dn(𝜆, ̂𝜗n) − Dn(𝜆, 𝜗0)
‖
‖
‖
‖
‖Dn(𝜆, 𝜗0)‖‖ ‖

‖ŵk,𝜆
‖
‖

2

= oP

(
n−1∕2

)
.

Consequently, assertion (4.7) follows from (4.6).
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