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Abstract

This article expands on previous studies of the so-called low-risk puzzle with con-

cepts from cooperative game theory. To allocate portfolio risk to single assets, previ-

ous studies used concepts such as the Shapley value. In these concepts, the marginal

contributions of assets to risks of subsets of the portfolio are used to allocate portfo-

lio risk to assets. In this article, beyond the marginal contributions, a structure on a

set of assets is considered in the allocation of portfolio risk. This structure can model

the branch, firm size or the region of the assets. Specifically, the Myerson value and

the Spectrum value of cooperative game theory are applied. We show the application

by means of a simulation study. In this context, considering an additional structure

could enhance the analysis of the so-called low-risk puzzle.

J E L C L A S S I F I C A T I ON

C71, G10, G11

1 | INTRODUCTION

Allocating portfolio risk to individual assets is an important step in

(empirical) capital market research to perform risk–return analyses. In

addition to classic measurement of the risk of an asset in the stand-

alone view (for example asset variance), there are a number of concepts

in capital market theory for distributing portfolio risk to individual assets.

These market theories include the activity-based method (Hamlen et al.,

1977), the Beta method (e.g., Homburg & Scherpereel, 2008), and the

incremental approach (see, for instance, Jorion, 1985). In addition to

these concepts, a growing body of literature has emerged that uses

cooperative game theory, especially the Shapley value (Shapley, 1953),

the Nucleolus (Schmeidler, 1969), and the τ value—also known as cost

gap method (Tijs, 1987; Tijs & Driessen, 1986), for risk allocation

(Auer & Hiller, 2019, 2021; Balog et al., 2017; Mussard &

Terraza, 2008; Ortmann, 2016, 2018; Shalit, 2020).

The question of how the risk of a portfolio is distributed among

the individual assets is a natural application of cooperative game

theory, since this theory addresses exactly such distribution problems.

A very well-known example is the situation of voting committees.

Value-like concepts (Hart, 1997) of cooperative game theory also

offer the advantage of making unambiguous risk allocations and thus

enable risk–return considerations. The Shapley value is the best-

known value-like solution concept. Its advantage is that it takes into

account all contributions that an asset makes to the risks of all other

groups of assets and is thus more suitable than, for example, variance

as a risk measure, which only takes into account the risk of the

asset alone.1

In addition to the Shapley concept, other value-like concepts exist

such as the Nucleolus for the allocation of portfolio risk, which are

considered in comparison in Auer and Hiller (2021). In addition to the

consideration of all marginal contributions, cooperative game theory

offers numerous possibilities to take into account further structures

1One drawback of the Shapley value is that the weights of marginal contributions are

predefined. Concepts considering variable weights are referred in the literature to as semi

values (Monderer & Samet, 2002).
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between assets. These could be active groups (portfolios as part of

the total stock market) in the sense of Aumann and Drèze (1974),

opposing asset classes (in the sense of Owen, (1977)) or hierarchies

between assets or asset classes (Gilles et al., 1992; van den

Brink, 2008; van den Brink & Gilles, 1996). In this paper, graphs are

used to incorporate similarities between assets into the analysis.

Table 1 summarizes how different games of cooperative game theory

have been applied in the field of portfolio theory so far and what gap

our approach has left.

However, without applying cooperative game theory, a phe-

nomenon in empirical capital market theory shows that the mea-

surement of an asset's risk has so far been problematic. According

to current theory, assets that generate a higher return also have to

bear a higher risk (Lintner, 1965; Markowitz, 1952; Mossin, 1966;

Rubinstein, 2002; Sharpe, 1964). Empirically, this cannot be con-

firmed and the opposite finding occurs—the so-called low-risk puz-

zle. Also, when using different classical measures for risk, the

phenomenon still exists (Auer & Schuhmacher, 2021; Baker et al.,

2011; Blitz et al., 2014; Dutt & Humphery-Jenner, 2013; Frazzini &

Pedersen, 2014). The empirical evidence that assets with low risk

(volatility) earn higher returns is stable for global large-cap assets

and for the US, European, and Japanese markets. Also, the low-risk

puzzle cannot be explained by other effects such as book-to-market

ratio and free float market value. The puzzle is also robust to differ-

ent measurement periods of volatility (Blitz & van Vliet, 2007). One

reason for this empirical phenomenon may be the difficulty in allo-

cating portfolio risk to individual assets (Baker et al., 2011). Auer

and Hiller (2019, 2021) showed in simulation studies that using the

Shapley value instead of classic measures of risk has the potential

to solve the low-risk puzzle.

This forms the starting point for our article. Whereas the Shapley

value only considers marginal contributions of assets to risks of

subsets of the portfolio, we consider an additional structure at the

set of assets. Specifically, this structure is a ranking of the assets.

Assets that are close to each other in this ranking are more similar in

terms of the structure. In practice, this structure can be for

example: branches, company size, or regional origin of an asset or a

company. We can illustrate our idea with the following example:

Assume there are three assets: an American car manufacturer, an

American technology company, and a European technology company.

The first and the last assets have no similarity, while the second asset

is situated between the two remaining assets and can “dock” to both.

This situation is very similar to the technical modeling we consider

within cooperative games. We assume a graph L that connects all

players without making unnecessary cycles. Solution concepts that

determine payoffs for the players in games with graphs exist in

numerous forms. The best-known solution concept is the Myerson

value (Myerson, 1977). The Spectrum value is a quite new value

(Alvarez-Mozos et al., 2013). This concept was introduced for the

analysis of political parties and takes into account the graph on the

player set in a significantly different way compared to the Myerson

value. Hence, both values capture a wide range in the field of games

with graphs. In our study, we want to analyze whether the technical

inclusion of another structure at a set of assets — a graph — can

increase the number of corrections of the rankings between the

assets in comparison to non-inclusion of this structure (application of

the Shapley value). To the best of our knowledge, this article is the

first to allocate portfolio risk to single assets considering an additional

structure at a set of assets.

For our analysis, we perform a simulation study based on the

ideas of Auer and Hiller (2019, 2021). A simulation was chosen as

analytical framework for the following reasons. Firstly, we would

like to further develop the analysis done with simulations by Auer

and Hiller (2019, 2021). They chose this analytical framework

TABLE 1 Application of different games / values to portfolio theory.

games values application in portfolio theory interpretation

no structure Shapley (1953), Mussard and Terraza (2008), only one portfolio exists in

the total stock market; no

structures on the set of

assets

Banzhaf (1965), Balog et al. (2017),

Schmeidler (1969), Ortmann ((2016), (2018)),

Tijs and Driessen (1986), Auer and Hiller ((2019), (2021)),

Tijs (1987) Shalit (2020)

(active) coalition structures Aumann and Drèze (1974), Hiller (2022) portfolios as part of the

total stock marketWiese (2007),

Casajus (2009),

Alonso‐Meijide et al. (2015)

(bargaining) coalition structures Owen (1977) ‐

cooperation structure/networks Myerson (1977), this article a structure on the set of

assets like branch, firm

size, or region is

considered

Borm et al. (1992),

Herings et al. (2008),

Alvarez‐Mozos et al. (2013),

Navarro (2020)
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because the low-risk puzzle is an empirical problem and the simula-

tions can be used to represent all conceivable constellations on the

portfolio market. Secondly, we think that strong, clear theoretical

statements cannot be expected, given the large number of parame-

ters (variances, means, covariances, graphs, and asset shares in the

portfolio).

We look at an investor who is interested in combining individual

assets in a portfolio and evaluate the riskiness of each asset based on

payoffs according to Myerson or Spectrum. We design our setup as

such that the low-risk puzzle exists in the individual asset variances.

We then repeatedly randomly generate the covariance matrix of the

assets. We consider two weighting schemes for asset shares in a mar-

ket. Based on this data, we calculate Myerson payoffs and Spectrum

payoffs and the percentage of cases in which they lead to asset rank-

ings different from the individual asset variances. Three different

graphs on the set of assets are considered in each of the calculations.

In addition, we calculate the Shapley payoffs as benchmark and con-

clude whether there are more corrections using graph solution

concepts.

The remainder of our article is organized as follows. In Section 2,

we present basic notations of cooperative game theory. Section 3 pre-

sents our simulation study. Finally, Section 4 summarizes and outlines

directions for future research.

2 | COOPERATIVE GAME THEORY

A transferable utility (TU) game is a pair ðN,vÞ. N¼f1,2,…,ng is the set

of players (assets). The coalition function v specifies for every subset

S⊆N a certain worth vðSÞ reflecting the risk of a portfolio S, that is, v :

2N !ℝ with v ;ð Þ¼0.

A value is an operator ϕ that assigns (unique) payoff vectors to

all games ðN,vÞ (i.e., uniquely determines a payoff for every

player in every TU game). We interpret the payoff of player i as

i's contribution to portfolio risk vðNÞ. The most important value

is the Shapley value. For calculating a player's payoff, rank orders

δ on N are used. They are written as ðδ1,…,δnÞ where δ1 is the first

player in the order and so on. The set of these orders is denoted by

RðNÞ; n! rank orders exist. The set of players before i in rank order δ

including i is called SiðδÞ. For player i, the Shapley payoff is

(Shapley, 1953)

ShiðN,vÞ¼ 1
R Nð Þj j

X
δ � RðNÞ

v Si δð Þð Þ�v SiðδÞnfigð Þ: ð1Þ

In order to model a network structure on the set of players, the

Myerson value (Myerson, 1977) has been introduced and axiomatized.

The network can model communication relationships between

players, distribution structures between firms, or similarities between

players, to name just a few examples. Some further preliminaries are

necessary to explain the Myerson value. First, a graph L on the set of

players is considered. The set of possible pairwise links between

players is called LN ¼ fi, jg : i, j�N, i≠ jf g, whereat fi, jg and fj, ig,
respectively, (or ij and ji) is the direct link between players i and j. A

cooperation structure CO on N is a graph ðN,LÞ with L⊆ LN. A CO

game is characterized by ðN,v,LÞ. The graph L partitions N into con-

nected components C1,…,Ck . This partition is denoted by NnL. Each
player is in one component; Ci\Cj ¼;, i≠ j,N¼S

Cj. NnLðiÞ denotes

the component of i. Two players i and j with NnLðiÞ¼NnLðjÞ are con-

nected. The restricted coalitional function vjL is given by

vjLðSÞ :¼
X

C � SnLðSÞ
vðCÞ8S⊆N: ð2Þ

The worth of a coalition S corresponds to the sum of the worths

of its components. In the case SnLðSÞj j ¼1, we have vðSÞ¼ vjLðSÞ. A
CO value is an operator ψ that assigns (unique) payoff vectors to all

CO games ðN,v,LÞ. The most popular value for CO games is the Myer-

son value (Myerson, 1977). According to this value, player i's payoff is

calculated by

MyiðN,v,LÞ¼ Shi N,vjL
� �

: ð3Þ

To apply the Myerson value there is no further requirement for L.

To model an ordering of players in a game ðN,vÞ, Alvarez-Mozos et al.

(2013) introduced the so-called Spectrum value. This value assumes a

graph L where all players in N are connected via one path. A path con-

necting all players in N is a sequence of players i1, i2,…, inð Þ with

ik , ikþ1f g� L for all k¼1,…,n�1. Three examples of paths are shown

in Figure 2. We denote graphs with only one path on N with L. A rank

order δ is an admissible permutation with respect to this path, if each

player that is added in rank order is immediately to the left or immedi-

ately to the right of the set of predecessors. Hence, SiðδÞ is connected

F IGURE 1 More possible graphs.
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for all i�N. The set of all admissible rank orders is denoted by RðNÞ. A
CO game with one path on N is characterized by ðN,v,LÞ. The Spec-

trum payoff of player i for ðN,v,LÞ is

SpiðN,v,LÞ¼
1

RðNÞ
��� ���

X
δ � RðNÞ

v SiðδÞð Þ�v Si δð Þnfigð Þ: ð4Þ

The set of all CO games with one path is a subset of all

CO games. Hence, the Myerson value is also defined for these games.

The Myerson value and the Spectrum value differ in the way that the

graph is considered for calculating players' payoffs. While the Myer-

son value restricts the coalition function, the Spectrum value changes

the number of possible player rank orders.2

In addition to paths, a large number of graphs are conceivable

that depict similarities or relationships between assets. Several exam-

ples are outlined in Figure 1. In this paper, we have focused on simple

paths to test the suitability of the structure to solve the low-risk puz-

zle. The Spectrum value, which was developed with the aim of model-

ing the similarity of parties, can only be applied to paths.

To illustrate the potential of considering cooperation structures

and CO values on the order of assets, we state one theorem. For this

theorem, some additional preliminaries on variables that determine

the portfolio risk are necessary. These variables are asset weights of

the portfolio wi with
P

i � Nwi ¼1, standard deviation for an asset i

noted by σi, variance for an asset i noted by σ2i and correlations ρij

between two assets i and j. With these variables, portfolio risk for any

K ⊆N, vðKÞ, is determined by

vðKÞ¼
X
i � K

w2
i �σ2i þ2 �

X
i � K

X
j � K, j> i

wi �wj �σi �σj �ρij: ð5Þ

Theorem 1. In a portfolio with

• n assets, n>3,wi ¼ 1
n for all i�N;

• σi ¼ σ,1 > σ > �1,σ≠0, for all i�N;

• ρij ¼ ρ, 1 > ρ> �1,ρ≠0, for all i, j�N; and

• a path with 1,2,…,nð Þ with fi, iþ1g� L for all i¼1,…,n�1,

a rank correction occurs if the Myerson value or the

Spectrum value is used to allocate portfolio risk vðNÞ.

Pointers to this Theorem are in the Appendix A.3 In this theorem,

assumptions regarding assets are very restrictive. For a realistic

assessment of how many rank corrections occur, we use a simulation

in the following section. Since this simulation is similar to those of

Auer and Hiller (2019, 2021) using the Shapley value without further

cooperations structures, we can quantify the added value of

considering CO games.

3 | SIMULATION

3.1 | General setting

Since our study is similar to articles by Auer and Hiller (2019, 2021),

we adopt some of their simulation settings. We analyze a four-asset

scenario, N¼f1,2,3,4g.4 We assume mean returns for each asset

μ1 > μ2 > μ3 > μ4 and variances σ21 < σ
2
2 < σ

2
3 < σ

2
4. Thus, the low-risk puz-

zle occurs. Further, we have a 4�4 covariance matrix V of asset

returns. For weights wi, we have
P

i � Nwi ¼1. We analyze two

weighting schemes. The first is a naive scheme where all assets have

the same weights; wi ¼ 1
4 8i�N. The second weighting scheme has

random weights assuming a uniform distribution of asset weights

between 0 and 1. In addition, we adopt some further technical set-

tings of the simulation by Auer and Hiller (2019). The covariance

matrix V and the asset weights in the second weight scheme are simu-

lated 100,000 times, standard deviations of assets are between 0 and

10, and asset correlations range from �1 to 1. In contrast to Auer and

Hiller (2019, 2021), we do not assume the invertibility of V, because
we do not consider minimum-variance weights. Therefore, our results

may differ from Auer and Hiller (2019, 2021) with respect to the

Shapley concept.

In addition, we assume three graphs on the set of assets (see

Figure 2). One aspect to consider when choosing paths are “mirrored”
paths—for example, ð1,2,3,4Þ and ð4,3,2,1Þ result in the same asset

payoffs. Our choice of graphs allows one to analyze, for example, how

the number of ranking corrections between Assets 1 and 2 change

with increasing distance between both assets in the graph. The dis-

tance between 1 and 2 increases step by step from first path ð1,2,3,4Þ
to our last path 1,4,3,2ð Þ. We predict some simulation results (see also

2Further values for CO games are the position value (Borm et al., 1992), the average tree

solution (Herings et al., 2008), and the center value (Navarro, 2020). For a literature survey

on CO games, see Slikker and van den Nouweland (2001) and Gilles (2010).
3A rank correction occurs if for at leats two assets i, j�N, we have σi ¼ σj and ψ i >ψ j .

4As such, four assets were used to make the results comparable with those of Auer and Hiller

((2019), (2021)). Additionally, using four assets and the chosen graphs, the effects of

increasing the distance between two assets (in our case, Players 1 and 2) can be sufficiently

modeled. In addition from perspective of portfolio theory, private investors typically

construct small portfolios (Schuhmacher et al., 2021). Furthermore, they often follow passive

strategies consisting of three asset classes (stocks, bonds, and commodities) combined with a

risk-free asset (money) or, when focusing on stocks, limit their attention to four broad

markets (North America, Europe, Pacific, and emerging markets).

F IGURE 2 Graphs on the set of assets.
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Theorem 1): One theoretical prediction is that when comparing path

1,2,3,4ð Þ and path ð1,3,2,4Þ, there will be more rank corrections

between Assets 1 and 2 in ð1,3,2,4Þ than in ð1,2,3,4Þ since the similar-

ity between the two assets decreases (the distance in the path

increases), but Asset 2 retains its central role in the path.

Another theoretical consideration concerns the payoff from each

asset when comparing the three solution concepts. To this end, we

will first consider the effect of a path for the two CO values. If the

Myerson value is considered, central assets in the path benefit

because they connect the remaining assets. In our model, connecting

assets leads to a lower portfolio risk vðNÞ compared to the sum of

individual risks. The central assets benefit is that their risk allocation

decreases. Specifically, for Asset 2, paths ð1,2,3,4Þ and 1,3,2,4ð Þ are

expected to lead to a lower risk attribution when applying the Myer-

son value than when applying the Shapley value. Considering the

Spectrum value, the opposite occurs. The central assets in the path

are in front positions in many admissible rank orders R Nð Þ. Thus, they
cannot achieve marginal contributions by gaining access to pre-

existing assets; and thus, their risk allocation is higher compared to

the Shapley value.5

3.2 | Results

In Table 2, we present results from our last theoretical consideration.

For Asset 2, the mean values of the three solution concepts are noted.

For the CO values, path ð1,2,3,4Þ is considered. The mean values

change as predicted. Compared to the Shapley concept, Asset 2 bene-

fits (loses) from a central position with respect to the Myerson

(Spectrum) concept.

In Tables 3–5, we present the results of our calculations concern-

ing the risk rank corrections. The tables compile our results on the

proportions of cases, in which a solution concept occurs for

• a rank correction between Assets 1 and 2,

• any partial correction (two assets change ranks),

• full corrections, and

• no corrections.

In our analysis, the results of the Shapley value are used as a

benchmark if the inclusion of a structure increases the number of rank

corrections when using the Myerson value or the Spectrum value.

This means that the low-risk puzzle has been solved to a greater

extent. Any difference between rank corrections is significant since

we use a simulation study and thus know the basic population.

In the case of equal asset weights, the Myerson value and the

Spectrum value increase the number of rank corrections between

Assets 1 and 2 for the paths ð1,2,3,4Þ and ð1,3,2,4Þ compared to the

Shapley value. Path ð1,3,2,4Þ achieves a higher number of corrections

than ð1,2,3,4Þ. Comparing the Myerson value and the Spectrum value,

the Myerson value leads to more ranking corrections between 1 and 2

for paths ð1,2,3,4Þ and ð1,3,2,4Þ. If any directional correction is con-

sidered, both values for ðN,v,LÞ perform better than Shapley for all

graphs with one path. In the analysis of any directional corrections,

the Myerson value achieves a higher number than the Spectrum

value. If we analyze full corrections of rank orders of assets, the

results are not quite clear. With respect to our first theoretical predic-

tion, for the Myerson value and the Spectrum value, we find more

rank corrections between Assets 1 and 2 in path ð1,3,2,4Þ than in path

ð1,2,3,4Þ.
In the second case, we have random weights for assets in portfo-

lio N. The Myerson value corrects more rankings between 1 and 2 for

paths 1,2,3,4ð Þ and ð1,3,2,4Þ, whereas the Spectrum value outper-

forms the Shapley value for all paths. We have the same results as in

the case of equal weights, where path ð1,3,2,4Þ has a higher number

of corrections than ð1,2,3,4Þ. In addition comparing both graph values,

the Myerson value leads to more ranking corrections between 1 and

2 for paths ð1,2,3,4Þ and 1,3,2,4ð Þ than the Spectrum value; this

result is the same as in the case of equal asset weights. Analyzing

any directional correction, the Myerson value corrects better than

Shapley for all paths. Again, as in the case of equal asset weights, the

Myerson value achieves a higher number of corrections than the

Spectrum value. Considering full corrections, again, there are only

small deviations between Shapley, Myerson, and Spectrum. Also, in

this case, we find our first theoretical prediction confirmed; there are

more rank corrections between 1 and 2 in path ð1,3,2,4Þ than in path

ð1,2,3,4Þ.
In the next step, we take a closer look at the partial rank correc-

tions. Specifically, we compute the risk–return relationship in cases

with partial corrections. We use the least-squares method to a linear

equation linking the mean return vector (with arbitrary values of [4 3

2 1] for the assets) to the risk allocation vector (computed as

described above). In a very similar way, Auer and Hiller (2021) use this

method to analyze which is the best remedy based on values of coop-

erative game theory to solve the low-risk anomaly. In case of a posi-

tive slope of the regression line, there is a solution of the low-

risk-puzzle for average. In Table 6, the proportion of all simulations

with a positive increase in the risk–return relationship is noted. Now,

the Myerson value outperforms the Shapley value for ð1,4,3,2Þ and

with a low extent for ð1,2,3,4Þ. The Spectrum value has more positive

sloped regression lines for ð1,2,3,4Þ and 1,3,2,4ð Þ with respect to the

Shapley value. Comparing both graph values, the Spectrum concept

has more positive sloped regression lines than the Myerson concept

for graphs ð1,2,3,4Þ and 1,3,2,4ð Þ in both weight schemes.

5With respect to path ð1,2,3,4Þ, rank orders

1,2,3,4ð Þ, ð2,1,3,4Þ, ð2,3,1,4Þ, ð2,3,4,1Þ, ð3,2,1,4Þ, ð3,2,4,1Þ, ð3,4,2,1Þ, and ð4,3,2,1Þ are
possible.

TABLE 2 Asset 2, mean values.

Sh2ðN,vÞ My2ðN,v,LÞ Sp2ðN,v,LÞ
Equal weights −3.9392 −5.9722 −1.8726

Rand. weights −2.6063 −5.2074 −0.0240
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4 | RESEARCH OUTLOOK

In our article, we expand the application of cooperative game theory

to the problem of allocation of portfolio risk to assets in portfolios.

Our results show that considering an additional structure on a set of

assets can improve the number of rank corrections and thus the num-

ber of cases in which the low-risk puzzle is solved.

We would like to leave the question of which CO value best

solves the low-risk puzzle open at this point. The low-risk puzzle is an

empirical problem and only empirical studies on the capital market with

the help of CO values can ultimately provide information on which CO

value makes the greatest contribution to solving this problem. Hence,

our article could be a starting point for new empirical research. One

aspect in this research is which similarity (industry, region, firm size,

etc.) should be modeled using graphs. Paths like those in our simulation

can be used, as can more complex structures (see Figure 1). As an

example, a recent generalization of the model in Alvarez-Mozos et al.

(2013) could be used (Hellman & Peretz, 2018), for this purpose. In

addition, it is conceivable that individual links have different weights

(Calvo et al., 1999). If several structures are to be modeled at the same

time, several graph games can be combined (van den Nouweland et al.,

1992). Furthermore, analysis is possible to determine whether differ-

ent structures are relevant for rank corrections in different asset clas-

ses. Subsequently, analysis is necessary to determine which CO value

achieves the best results with the empirical data. In addition to the CO

values used and mentioned, there are other CO values whose contri-

bution to solving the low-risk puzzle can be empirically investigated

(Gilles, 2010; Slikker & van den Nouweland, 2001).

As mentioned in Section 1, the Shapley value and the CO values

take into account fixed weights for the marginal contributions of

assets to the risks of subsets of the portfolio to allocate portfolio risk

to single assets. However, the weights of marginal contributions could

vary. Concepts of this type are referred to in the literature as semi

values (Monderer & Samet, 2002). The idea behind varying marginal

contributions is that investors do not have the complex formulas of,

for example, the Myerson value or the Spectrum value in mind when

evaluating marginal contributions in terms of determining the risk of

TABLE 4 Results for Myerson value.

Corrections 1 and 2 Directional correction Full correction No correction

Equal weights 1, 2, 3, 4 0.7581 0.9933 0.0000 0.0067

1, 3, 2, 4 0.9928 0.9929 0.0000 0.0071

1, 4, 3, 2 0.0309 0.7685 0.0001 0.2315

Rand. weights 1, 2, 3, 4 0.6799 0.9357 0.0000 0.0643

1, 3, 2, 4 0.9409 0.9417 0.0000 0.0583

1, 4, 3, 2 0.1380 0.8087 0.0001 0.1913

TABLE 5 Results for Spectrum value.

Corrections 1 and 2 Directional correction Full correction No correction

Equal weights 1, 2, 3, 4 0.4171 0.8483 0.0013 0.1517

1, 3, 2, 4 0.5168 0.8528 0.0001 0.1472

1, 4, 3, 2 0.1626 0.4744 0.0000 0.5256

Rand. weights 1, 2, 3, 4 0.3102 0.8014 0.0005 0.1986

1, 3, 2, 4 0.3761 0.7878 0.0000 0.2123

1, 4, 3, 2 0.2838 0.5295 0.0001 0.4705

TABLE 6 Share positive risk–return slopes.

Shapley Myerson Spectrum

Equal weights 0.0037 1, 2, 3, 4 0.0051 0.0459

1, 3, 2, 4 0.0001 0.0133

1, 4, 3, 2 0.0923 0.0018

Rand. weights 0.0031 1, 2, 3, 4 0.0037 0.0419

1, 3, 2, 4 0.0003 0.0204

1, 4, 3, 2 0.0680 0.0014

TABLE 3 Results for Shapley value.

Corrections 1 and 2 Directional correction Full correction No correction

Equal weights 0.1825 0.4123 0.0001 0.5877

Rand. weights 0.2681 0.5133 0.0001 0.4868
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an asset. Hence, this approach could improve the application of coop-

erative game theory.

At best, implications for the theoretical development of capital

market models can be drawn from these empirical studies.
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APPENDIX A: Appendix

A.1 | Theorem 1

A.1.1 | Myerson value

With the assumptions on variables, vðNÞ is determined by

vðNÞ¼ n � 1
n

� �2

�σ2þ2 �n � n�1ð Þ
2

� 1
n

� �2

�σ2 �ρ

¼ 1
n
�σ2þ n�1ð Þ

n
�σ2 �ρ:

ðA1Þ

Without cooperation structure, the Shapley payoffs of assets are

ShiðN,vÞ¼ 1
n �vðNÞ. Hence, there are no rank corrections between

assets. The coalition function v is subadditive; hence, vL is

subadditive.

In vL, any unconnected coalition has a Harsanyi dividend

(Harsanyi, 1959) zero. A coalition K is connected, if there is a

sequence of assets i1, i2,…, ij
� �

with is, isþ1f g� L for all s¼1,…, j�1.

The Harsanyi dividend of K in vL is given by (van den Brink et al.,

2007)

vðKÞ�v Kn i1f gð Þ�v Kn ij
� �� �þv Kn i1, ij

� �� �
: ðA2Þ

This term is negative. The assets in the middle of path L are mem-

ber in more connected coalitions in L than assets at the end of the

path. Hence, Myerson payoffs of assets are not equal and rank correc-

tions occur. For example, if the number of assets is odd, the asset in

the middle of the path will have the lowest Myerson payoff, while the

assets at the end of the path will have the highest (equal) payoffs.

A.1.2 | Spectrum value

In Alvarez-Mozos et al. (2013), symmetric weighted voting games are

analyzed. These games are superadditive. The results from Claim 3 in

Alvarez-Mozos et al. (2013) can be transferred to our symmetric

subadditive game. When n is large enough, assets located virtually

half-between the center and one of the most extreme assets get the

lowest payoffs. Hence, Spectrum payoffs of assets are not equal and

rank corrections occur.
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