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Firm-Level Climate Change Exposure

ZACHARIAS SAUTNER, LAURENCE VAN LENT, GRIGORY VILKOV,
and RUISHEN ZHANG*

ABSTRACT

We develop a method that identifies the attention paid by earnings call participants
to firms’ climate change exposures. The method adapts a machine learning keyword
discovery algorithm and captures exposures related to opportunity, physical, and reg-
ulatory shocks associated with climate change. The measures are available for more
than 10,000 firms from 34 countries between 2002 and 2020. We show that the mea-
sures are useful in predicting important real outcomes related to the net-zero transi-
tion, in particular, job creation in disruptive green technologies and green patenting,
and that they contain information that is priced in options and equity markets.

CLIMATE CHANGE WILL PROFOUNDLY AFFECT the way business is conducted.
Scientists have developed complex models that estimate the effect of green-
house gas emissions on the global climate. At the same time, however, little
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evidence exists on the degree to which climate change impacts jobs, innova-
tion, and risk sharing in capital markets. One key challenge in estimating
these impacts is that it is difficult to measure how individual firms are affected
by climate change (Giglio, Kelly, and Stroebel (2021)), as the effects are multi-
faceted, originating from multiple sources. For instance, while physical climate
changes and regulations implemented to combat global warming can impose
costs on some firms, climate change can provide opportunities for other firms,
such as those operating in renewable energy, electric cars, or energy storage.
It is therefore important to develop disaggregated measures that capture this
variation across firms. The measures should also reflect market participants’
assessments about how climate change affects individual firms. Such infor-
mation is important to consider in a finance context given the critical role
that market participants play in the resource allocation and price discovery
process.

In this paper, we make progress on this front by using transcripts of earnings
conference calls to construct time-varying measures of how call participants
across the globe view firms’ exposures to different facets of climate change.
Earnings calls are key corporate events in which financial analysts listen to
management and ask questions about current and future developments mate-
rial to the firm (Hollander, Pronk, and Roelofsen (2010)). We interpret these
measures as capturing the attention financial analysts and management de-
vote to climate change topics at a given point in time. A benefit of these mea-
sures is that they reflect “soft” information originating from information ex-
changes between managers and analysts.1

To construct the climate change exposure measures, we build on recent work
using quarterly earnings calls as a source for identifying firms’ various risks
and opportunities (Hassan et al. (2019, 2021, 2023a, 2023b), Jamilov, Rey, and
Tahoun (2021)). These studies use the proportion of the conversation during
an earnings call that relates to a particular topic to capture the firm’s ex-
posure to that topic. We follow these papers in defining “exposure” to an is-
sue as the share of the conversation in a transcript devoted to that topic.2

We depart from these papers, however, along two dimensions. First, our mea-
sures capture the market’s perception of a firm’s exposure to various upside
or downside factors related to climate change, namely, physical threats, regu-
latory interventions, and technological opportunities. Second, to mitigate the

1 This feature allows us to provide economic insights beyond those derived from existing
firm-level exposure measures based on “hard” information (e.g., carbon emissions, extreme local
weather events). Note that the exchanges are not limited to soft information but might also discuss
specific quantitative data or restate “hard” information in conversational terms. Prior literature
provides important insights into the relations between “hard” information and real and finan-
cial outcomes at the firm level (e.g., Bolton and Kacperczyk (2021, 2022, 2023), Ilhan, Sautner,
and Vilkov (2021) or De Haas and Popov (2023) for carbon emissions, and Kruttli, Roth Tran, and
Watugala (2021), Hong, Li, and Xu (2019), Addoum, Ng, and Ortiz-Bobea (2020), or Pankratz and
Schiller (2021) for weather events).

2 This definition of “exposure” is different from how risk exposure is defined in the asset-pricing
literature. Our measure is not intended to capture the covariance with aggregate fluctuations.
Hassan et al. (2019) discuss the relationship between these two areas of literature.
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challenges of identifying “niche languages” that use specific wordings, par-
ticularly in the context of climate change, where language use varies among
policymakers, journalists, and financial market participants (Webersinke et al.
(2021)), we develop a new method that adapts the keyword discovery algorithm
proposed in King, Lam, and Roberts (2017) to construct four related sets of cli-
mate change bigrams in earnings calls. The first captures broadly defined as-
pects of climate change. The remaining three measures cover specific climate
change “topics:” opportunities, physical shocks (e.g., sea level rise), and regula-
tory shocks (e.g., carbon taxes, cap and trade markets). We then use these four
sets of bigrams to construct firm-level measures reflecting call participants’
topical attention. In particular, the measures count the frequency of specific
climate change bigrams in a transcript, scaled by the number of bigrams.3 The
algorithm only requires human input to specify a short list of initial keywords
associated with climate change. Our sample covers data from over 10,000 firms
in 34 countries between 2002 and 2020.

We conduct several validation exercises to verify our methodology. First,
we consider the face validity of the climate change bigrams. Second, we fol-
low Baker, Bloom, and Davis (2016) and perform a structured human audit
in which 18 graduate students independently coded over 2,000 transcript text
fragments. Both of these exercises suggest that our algorithm reliably captures
bigrams identifying climate change discussions. Third, our exposure measures
are robust to excluding one keyword at a time from the initial keywords list.
Fourth, our keyword search-based measures substantially improve the identi-
fication of climate change discussions relative to an alternative approach using
the initial keywords only. And fifth, we find plausible industry patterns in the
exposure measures. When we aggregate exposure to the industry level, the
sector with the highest overall exposure is Electric, Gas, & Sanitary Services
(utilities), followed by Construction (top-ranked firms build power generation
systems or solar projects) and Transportation Equipment (top-ranked firms
build fuel-cell or zero-emission vehicles). Utilities top the exposure ranking
for opportunity and regulatory shocks, which indicates that this sector faces
both opportunities (e.g., renewable energy) and regulatory risks (e.g., carbon
taxes).4

Our results reveal sizeable within-industry variation for all measures, which
indicates that firms benefit or suffer from climate change to various degrees. A
case in point is the comparison between TotalEnergies and ExxonMobil. While

3 We also construct “sentiment” measures, which count the relative frequency of climate change
bigrams that occur in the vicinity of positive and negative tone words (Loughran and McDonald
(2011)), and “risk” measures, which count the relative frequency of climate change bigrams men-
tioned in the same sentence as the words “risk,” “uncertainty,” or their synonyms.

4 That firms with heightened regulatory risks also exhibit climate-related opportunities is con-
sistent with Cohen, Gurun, and Nguyen (2021), who document that several major electricity, oil,
and gas firms are not only large CO2 emitters, but also innovators in green technologies. This find-
ing is consistent with how analysts view sectors with high regulatory risks (e.g., “Morgan Stanley:
‘Second wave of renewables’ to drive 70 GW of coal retirements,” S&P Global Market Intelligence,
December 20, 2019).
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TotalEnergies and ExxonMobil have similar regulatory exposures, TotalEner-
gies scores more than seven times higher in terms of measured opportunities.
This divergence in perceived prospects is consistent with differences in the
perceived extent to which these firms embrace renewable energy and the
net-zero transition into their business models (Pickl (2019)).

In a final validity check, we find that climate exposure positively correlates
with carbon emissions and Engle et al.’s (2020, EGKLS) index of public cli-
mate change attention. The association with emissions stems from regulatory
and opportunity exposure (since physical exposure is unrelated to emissions).5

The effect of public attention also arises from positive associations between
EGKLS’s index and the opportunity and regulatory exposure measures.

We apply our measures to shed light on the nature of climate change expo-
sure among our sample firms. Perhaps surprisingly, as climate change is often
seen as an aggregate risk factor associated with global changes in the physi-
cal climate, its within-sector impact is far from uniform. A variance analysis
that separates the relative contributions of aggregate, sectoral, and firm-level
exposure by including the corresponding sets of fixed effects shows that be-
tween 70% and 96% of the variation in the exposure measures plays out at the
firm level. Only half of this firm-level variation is persistent, suggesting that
firms within an industry are exposed to climate change to varying degrees over
time. Thus, the effects of climate change are heterogeneous across firms even
within an industry. This result is consistent with the idea that many factors
that affect a firm’s ability to adapt to a greener economy exhibit large firm-level
components (e.g., managerial skill, financing constraints).

We interpret the large share of firm-level variance as capturing economically
meaningful heterogeneity and argue that a firm’s idiosyncratic climate change
exposure is the key driver of this heterogeneity. That being said, a plausible
alternative is that part of the variation reflects idiosyncratic measurement er-
ror. Several tests dispel this alternative for several reasons. First, as discussed
below, we report robust associations between our measures and green job cre-
ation, green innovation, and risk-related outcomes. Second, following Hassan
et al. (2019), we directly quantify the amount of measurement error contained
in the firm-level variation. Approximately, 5% to 10% of the variation in mea-
sured exposure can be attributed to measurement error. The implied measure-
ment error at the firm level is about 2 percentage points higher than that for
the overall variation. Although we interpret these results with due caution,
they suggest that measurement error in the firm-level dimension is higher
than that in the overall panel, but only modestly so.

Having bolstered confidence that the firm-level variation in measured cli-
mate change exposure is meaningful, we apply it to four real and financial
market outcomes. In the first two applications, we demonstrate that climate

5 This result may also reflect the fact that some firms’ emissions provides opportunities by sup-
porting the transition to a greener economy (e.g., producers of building materials that make houses
more energy-efficient). Such “enabling activities” are also explicitly included in the EU Taxonomy,
which identifies activities that help reach the EU’s climate targets.
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change exposure predicts green-tech hiring and green patents, two key drivers
of the low-carbon transition. Using data compiled from Burning Glass (BG)
by Bloom et al. (2021), we establish that firms with higher measured climate
exposures create more jobs in disruptive green technologies over the subse-
quent year:6 a one-standard-deviation increase in climate change exposure
is associated with a 109% increase in green jobs in the following year. This
overall effect originates from more job creation at firms exhibiting higher
measured opportunities and regulatory exposures.

The results for green-tech job creation extend to green patenting. A one-
standard-deviation increase in climate change exposure is associated with a
72% increase in the number of green patents in the following year. Once more,
this finding stems from firms with higher opportunities and regulatory expo-
sures. High-exposure firms are not simply recruiting more across fields. They
are also not more innovative, in general. In fact, firms with higher exposure
hire less in nongreen-tech areas and generate fewer nongreen patents.

The remaining two applications relate climate change exposure to financial
market outcomes. We first show that measured exposure is related to risks and
risk premiums in the options market. Such relationships are plausible, as pol-
icy uncertainty surrounding regulation, including climate policy uncertainty, is
priced in options (Kelly, Pastor, and Veronesi (2016), Ilhan, Sautner, and Vilkov
(2021)). Likewise, there is plenty of uncertainty surrounding green technology
or renewable energy investment. Realizing these opportunities leads to signif-
icant gains if successful or large losses if unsuccessful. It is therefore plausible
that measured exposure relates to investors’ propensity to hedge extreme cli-
mate risks and/or gamble on climate outcomes. Indeed, for options written on
stocks with high overall exposure, the tail regions are relatively more expen-
sive. Effects are similar at firms with high opportunity exposure, for which
investors are willing to pay a (variance risk) premium. In comparison, effects
are smaller but still statistically significant for firms with high regulatory ex-
posure. This finding corroborates the view that some firms with high regula-
tory exposure face downside risks and upside potential (due to their innovation
activity).

We also document the conditional pricing of a factor that reflects innovations
to the aggregate level of climate change exposure. Firms with higher betas to
this factor face higher uncertainty related to future developments in climate-
related areas and, as a result, earn higher returns.7 Our estimation applies
the approach of Gagliardini, Ossola, and Scaillet (2016), which performs well
when—as in our case—the cross section is large relative to the time series. We

6 Our data do not cover all jobs potentially related to climate change, but they do identify job
postings with potential to have a lasting and meaningful real impact, as Bloom et al. (2021) only
consider job creation in “disruptive” technologies (e.g., solar or battery technology).

7 Our primary objective is to show that climate attention in earnings calls is linked to systematic
risk, with shocks to such attention being priced in the cross section. We do not want to propose a
new factor to be added to the factor zoo, and we do not try to use a conditional model framework
to explain asset pricing anomalies (Lewellen and Nagel (2006)).
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obtain a positive average conditional risk premium on the factor, and, more
importantly, find large time-series variability in the risk premium.8

Our keyword discovery approach of extracting climate-related information
from text offers an alternative approach to contemporaneous papers that try
to accomplish the same task by relying on other advances in natural language
processing (NLP). All of this work, including ours, is based on the understand-
ing that standard NLP methods are not well suited for “niche languages,” that
is, specialized, highly technical vocabulary that varies substantially across tex-
tual sources (Varini et al. (2020), Webersinke et al. (2021)). These frictions
are exacerbated when the wordings associated with a topic are complex, am-
biguous, and fast moving. A promising approach among these alternatives is
to use pretrained language models to learn word patterns in the language.
When implementing this pretraining approach in a specific domain of inter-
est (e.g., climate change), rather than using large generic corpora, researcher
have found some promising results (Bingler, Kraus, and Leippold (2022),
Kölbel et al. (2022)). Work is ongoing on these problems. Which approach
works best in the context of climate finance is ultimately an empirical
matter.

A valid question is whether our approach delivers meaningful gains above
and beyond an alternative, off-the-shelves approach. Our main argument is
that keyword discovery is useful when the language of interest is not common.
We illustrate this claim by constructing, for comparison purposes, alternative
exposure measures using a list of pre-specified keywords from EGKLS. These
keywords appear more frequently in earnings calls than the bigrams we iden-
tify, probably because EGKLS’s set also contains unigrams and more general
terms. However, several of EGKLS’s unigrams are part of our top-100 list of
bigrams, and exposure measures based on the pre-specified keywords corre-
late positively with our measures. Beyond these correlations, a question is
why the approaches differ. As mentioned above, our measures have the ben-
efit of capturing context-specific jargon used in specialized economic environ-
ments (earnings calls), while an approach using pre-specified keywords bet-
ter captures broader discussions (e.g., in news media in the case of EGKLS’s
keywords). In addition, our approach adjusts the vocabulary over time, while
using pre-specified keywords fixes this vocabulary ex ante.9 Finally, especially
for the topic-based measures, it is easier to identify initial seed bigrams than
to develop keyword lists from authoritative texts.

Most closely related to our paper is the contemporaneous work by Li et al.
(2021, LSTY), who also use earnings calls to identify climate risks. We diverge

8 A caveat of all four applications is that any evidence of our measures’ ability to predict real
and financial outcomes is a success only if the true relationship exists in the data. We therefore
face the usual joint-hypothesis problem between the quality of our measures and the true economic
model generating the data.

9 Time-series variation in true (unobservable) climate change exposure, especially over long
horizons, is more likely to be picked up by such an “evolutionary” approach. Indeed, the selection
of pre-specified keywords may become obsolete over time with changing technologies or climate
change concerns.
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from their work in terms of our method, focus, and sample. More specifically,
LSTY use a pre-specified training library to identify climate risk words, which,
we argue, is unlikely to uncover the exact language used in earnings calls to
discuss climate change (see also Varini et al. (2020)). In addition, while LSTY
focus on physical and regulatory risks among U.S. firms, we provide a more
comprehensive analysis based on a global sample and include upside opportu-
nity effects of climate change. Based on a textual analysis of 10K reports, Baz
et al. (2022) document that firms with more regulatory climate change expo-
sure experience positive stock return effects after the 2016 Trump election.

Since making our data available, our measures have been related to a series
of real and financial outcomes. This “out-of-sample” evidence is reassuring, as
it indicates that the measures capture meaningful variation across firms and
do not reflect mostly noise. On the real side, as in our paper, von Schickfus
(2021) illustrates more green patenting when the overall measure and the
opportunity measure are higher, and Li, Lin, and Lin (2022) show that the
overall measure predicts depressed overall innovation. Furthermore, our
overall measure positively relates to cash holdings (Heo (2021)) and explains
how strongly U.S. firms’ emissions declined in response to the EPA’s 2010
Greenhouse Gas Reporting Program (Tomar (2023)). Our physical measure
is related to physical risk disclosure in 8K filings (Gostlow (2021)), and the
opportunity measure relates to firms’ carbon risk management (Duong et al.
(2021)). On the financial side, our physical measure is associated with lower
leverage after the Paris Agreement (Ginglinger and Moreau (2022)). Mueller
and Sfrappini (2022) show that after regulatory climate risks become salient,
bank lending is skewed toward firms with high regulatory exposure in the
United States, but away from such firms in the EU. We provide additional evi-
dence in Sautner et al. (2022) that our measures are priced in equity markets,
and Kölbel et al. (2022) show that the overall measure is negatively associated
with credit default swap (CDS) spreads after the Paris Agreement. Di Giuli
et al. (2022) find that investors’ propensity to vote for climate proposals after
experiencing hot temperatures is higher at firms with more overall climate
change exposure. Heath et al. (2022) find that socially responsible investment
(SRI) funds invest less in firms with higher overall climate change exposure.
Our keyword dictionary is used by Hail, Kim, and Zhang (2021).

The rest of the paper proceeds as follows. Section I describes the data.
Section II presents our method to quantify firm-level climate change ex-
posure. Section III validates the exposure measures. Section IV presents a
variance decomposition of the exposure measures and addresses measure-
ment error. Section V presents four applications of the exposure measures.
Section VI concludes.

I. Data

A. Data on Earnings Conference Calls

We use transcripts of quarterly earnings calls held by publicly listed firms
to construct time-varying measures of the attention paid by call participants
to firm-level climate change exposure. The measures are constructed using
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the entire earnings call, including both the management presentation and the
Q&A session with analysts.10 The transcripts are collected from the Refinitiv
Eikon database. We use the complete set of English-language transcripts from
2002 to 2020. Unless indicated otherwise, as most of our other data vary at
the year level, we average quarterly transcript-based measures for each firm.
We exclude countries with 150 or fewer firm-year observations and drop SIC
codes 9900 to 9999 (“Nonclassifiable”) Our final sample includes 86,152 firm-
year observations from 10,673 firms headquartered in 34 countries. Variable
definitions are presented in Table A.1.11

B. Data on Carbon Emissions

Some tests use data on carbon emissions (Total Emissions), calculated as
the sum of Scope 1 and Scope 2 emissions, from S&P Global Trucost. These
data include emissions reported by firms and emissions estimated by Trucost.
We use emission levels, rather than intensities, as emission levels are associ-
ated with a risk premium (Bolton and Kacperczyk (2021, 2023)), are the prime
target of policy and investor initiatives aiming to achieve net-zero emissions,
and are directly linked to carbon budgets (Bolton, Kacperczyk, and Samama
(2021)). Furthermore, many firms have witnessed strong investor opposition
on reporting emission intensities. To link the emissions data with our sample
firms, we apply a series of matching variables based on the following order: (i)
GVKEYs, (ii) ISINs, (iii) exact names, (iv) fuzzy names, and (v) tickers plus the
first two ISIN digits. We can match 33,789 firm-years with the emissions data
(4,999 unique firms from 34 countries between 2004 and 2020).12

C. Data on Public Attention to Climate Change

We borrow an index developed by EGKLS to capture how public climate
change attention varies in the time series. The WSJ CC News Index is con-
structed by measuring news about climate change in the Wall Street Journal
(WSJ). To quantify the intensity of climate news coverage, EGKLS compare
the WSJ’s news content to a corpus of authoritative texts on climate change.
The resulting measure reflects the fraction of the WSJ dedicated to the topic of

10 We also provide tests based on the measured exposure constructed from the Q&A session only.
The Q&A part is less scripted and may be less subject to strategic disclosure incentives than the
presentation part. In some calls, analysts ask no questions (we would calculate a climate change
exposure of zero in these cases). However, zero-question calls are a nonrandom event, and treating
these calls as if the firm is unexposed to climate change likely introduces bias (Chen, Hollander,
and Law (2014).)

11 Table IA.I in the Internet Appendix provides the distribution of firm-years across countries.
The Internet Appendix may be found in the online version of this article.

12 Table IA.II illustrates that Trucost data coverage is higher for firm-years with higher climate
change exposure, larger, more profitable, and less-R&D-intense firms, and non-U.S. firms. The
higher climate change exposure scores are expected given that Trucost caters to clients in need of
climate risk data (especially risks related to emissions).
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climate change each day (we use average annual values). For our sample, WSJ
CC News Index is available from 2002 to 2017.

D. Data on Green-Tech Jobs

Job data related to important green technologies come from Bloom et al.
(2021). These authors use textual analysis to identify 29 disruptive technolo-
gies over the past decades, of which four are broadly related to climate change
(“hybrid vehicle electric car,” “lithium battery,” “solar power,” and “fracking”).
Our data from Bloom et al. (2021) contain online job postings by firms related
to these four technologies. We refer to the jobs related to these technologies
as green-tech jobs.13 The data do not cover all jobs potentially related to cli-
mate change, but do identify those green jobs that, by Bloom et al.’s (2021)
construction, have a lasting and meaningful (“disruptive”) real impact. Bloom
et al. (2021) obtain these data from BG, which aggregates online job postings
using “spider bots” from job boards or employer websites.14 We match these
data by GVKEY and year. Jobs data are available for U.S. firms for 2007 and
2010 to 2020.

The measure #Green-Tech Jobs is the number of postings for disruptive
green-tech jobs in a firm-year. We assume that no green-tech job was posted
if a firm-year does not indicate disruptive green-tech job creation in the BG
database. (The results are robust to only considering firm-years within the BG
database; many firm-years in BG also show zero green-tech postings). Some
tests use #Nongreen-Tech Jobs, the number of job postings related to nongreen
disruptive technologies in a firm-year. We observe disruptive green job postings
in 5.4% of firm-years, and conditional on #Green-Tech Jobs being nonzero, the
average (median) number of green-tech jobs is 38 (3). The top-5 firms in the
cumulative count of new green-tech jobs include Tesla, Sunrun, First Solar,
Sunpower Corp, and Viviant Solar.

E. Data on Green Patents

To identify green patents, we collect patent data from the Google Patents
(GP) database. This database is also used by Kogan et al. (2017) and Kelly
et al. (2021). To identify “green” patents, we follow Cohen, Gurun, and Nguyen
(2021) and apply an OECD classification that identifies patents with the poten-
tial to address environmental problems. A description of how the OECD clas-
sifies patents into technology groups is provided by Haščič and Migotto (2015).
Green patents include patents on emission abatement technologies, renewable

13 It is unclear ex ante whether fracking has positive or adverse environmental effects. More
specifically, Acemoglu et al. (2019) argue that shale gas has the short-term benefit of lower emis-
sions, when compared to conventional fossil fuels. However, the shale gas boom may lead to less
innovation in other emission-reducing technologies in the long run. Furthermore, fracking has
negative climate effects due to emission leakage. Our results are robust to excluding fracking jobs.

14 BG data are also used by Darendeli, Law, and Shen (2022) to measure green hiring. Campello,
Gao, and Xu (2021) additionally use BG data, though not in a climate context.
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energy, and energy storage. As in Kogan et al. (2017), we use name matching
to match patent assignee names to sample firms.15 Patent data are available
for U.S. firms from 2002 to 2019 (GP coverage for 2020 was still limited at the
time of writing).

The measure #Green Patents is the number of green patents filed in a firm-
year. We assume that no green patenting occurred if we are unable to identify a
green patent in GP for a firm-year (results are robust to relaxing this assump-
tion). Consistent with Acemoglu et al. (2019), new green patents are relatively
rare—we observe green patenting in only 1.4% of firm-years. However, the dis-
tribution is highly skewed. If we consider observations within GP, then green
patenting is observed in 15% of firm-years. Conditional on green patenting
being nonzero, the average (median) number of green patents equals 8.5 (2).
The top green patent producer is Caterpillar, with 1,364 green patents over
the sample period.16 We also use the total number of nongreen patents filed
(#Nongreen Patents).

F. Data on Risks and Risk Premiums in the Options Market

Data on option-implied variables are from the Volatility Surface File of Ivy
DB OptionMetrics. In these tests, we focus on S&P500 firms, for which data
on liquid options are available. We match options data through the historical
CUSIP link of OptionMetrics. We construct six measures: implied variance
(IVar), implied skewness (ISkew), implied kurtosis (IKurt), implied volatility
slopes (SlopeD and SlopeU ), and variance risk premium (VRP). The variable
construction process is detailed in Section II of the Internet Appendix. The high
frequency of the option-implied measures allows us to use quarterly values of
CCExposure.17

G. Data on Risk Premiums in the Equity Market

Our tests examining the climate change exposure factor use monthly data on
the standard factors from Ken French’s data library. Term and default spread
data are from the St. Louis Fed’s FRED library. The term spread is the differ-
ence between the 10-year and three-month Treasury constant maturity data
series (variable T10Y3MM). The default spread is the difference between the

15 We track the timing of an invention by matching patents using the priority year, that is, the
effective date of a patent filing (De Haas and Popov (2022)). While the “filing date” corresponds to
when a patent application is filed at the patent office, the “priority date” is when the novelty of an
invention is established.

16 Caterpillar traditionally manufactured diesel engines and mining equipment, but moved into
selling photovoltaic or energy storage technology. The firm also ranks in the top-10 in Cohen,
Gurun, and Nguyen’s (2021) sample; the slight ranking divergence is due to different sample pe-
riods.

17 To avoid look-ahead bias, we match quarterly exposure values covering earnings calls in quar-
ter t (typically discusses events of quarter t − 1) with option-implied measures from the last day
of quarter t.
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Baa and Aaa corporate bond yield (BAA10YM and AAA10YM). Book-to-market
ratio data (defined in log terms as in Fama and French (2008)) come from Com-
pustat North America. Term and default spreads and the book-to-market ratio
for each firm are centered and standardized in the time series, and then used
as instruments for conditional risk premium estimation. We restrict the risk
premium tests to S&P500 firms with more than 28 monthly returns (out of
228) during our sample period.

H. Financial Statement Data

Data on firm financial variables (e.g., total assets, debt, CAPEX, R&D, or
cash holdings) are from Compustat North America and Compustat Global.

II. Quantifying Firm-Level Exposure to Climate Change

A. Discovery of Climate Change Bigrams

To quantify exposure to climate change, we build on Hassan et al. (2019,
2021, 2023a). Extracting climate-related information from text sources is chal-
lenging (Webersinke et al. (2021)). Methods using training libraries or pre-
specified word lists do not cope well with the niche language used to de-
scribe climate change.18 In addition, discussion in earnings calls considers
climate change together with topics such as regulation, tax credits, techno-
logical breakthroughs, and performance. This results in substantial ambiguity
about when the discussion is genuinely about climate change. Finally, vocabu-
lary used to discuss climate change is fast moving, changing to reflect shifting
opinions, regulations, and innovations related to climate change.

To address these challenges, we adapt the keyword discovery algorithm
proposed in King, Lam, and Roberts (2017).19 This algorithm does not require
a comprehensive “climate change” training library, but rather only a small
set of “initial” bigrams (see Table IA.III). These initial bigrams are chosen
because they relate unambiguously to climate change. The algorithm then
uses these initial bigrams to search for new bigrams that also likely indicate
climate change conversation and searches directly in the transcripts. Because
each initial bigram is connected to a specific group of new bigrams discovered
through the search algorithm, one can easily decompose the measure of
climate change exposure into its constituent parts based on the presence of
these bigrams. The initial bigrams allow the algorithm to identify sentences
that focus unambiguously on climate change. The algorithm then extracts
“features” by relying on supervised learning methods. Features are bigrams
beyond the initial set predicting climate change from the identified sentences.

18 That said, researchers have used the SEC Climate Disclosure Search tool, which looks for
pre-specified keywords in SEC filings, to develop a measure of climate risk (Berkman, Jona, and
Soderstrom (2019)).

19 Details, including how we define the set of initial bigrams, are presented in Section I of the
Internet Appendix.
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Finally, the algorithm constructs a model predicting whether a sentence is
related to climate change. We apply this prediction model to sentences that
do not include any initial bigrams and then assess whether the predicted sen-
tences are related to climate change. To discover new climate change bigrams,
we reverse-engineer the machine-learning (ML) process and trace back the
bigrams that best discriminate climate-change-related sentences from other
sentences. The resulting set of climate change bigrams C includes the initial
bigrams and the newly identified bigrams.

That our approach generates meaningful climate change bigrams based on
the initial bigrams is helpful for several reasons. First, it extends the rather
broadly specified initial bigrams into more specialized word combinations.20

Second, C includes the names of several power stations and wind farms (e.g.,
“kibby wind” or “coughlin power”), which are of interest to call participants
who discuss the climate change exposure of these facilities’ operators. These
bigrams illustrate the challenge of using training libraries or pre-specified
word lists to identify climate change talk—few researchers have the detailed
field knowledge to recognize the relationship between these words and cli-
mate change.

Our approach allows us to adapt the bigram-search algorithm to discover
three unique sets of bigrams from C that capture opportunities as well as reg-
ulatory and physical climate shocks. Toward this end, we feed a set of initial
bigrams reflecting these three topics to the search algorithm. We then allow
the algorithm to discover bigrams related to the topic of interest. Table IA.IV
lists the initial bigrams used for the topic search. We construct new initial bi-
grams for these topics by hand-picking appropriate bigrams from the top-500
bigrams discovered after the first generic, nontopic-specific bigram search. We
then rerun the search algorithm to find a broader set of bigrams for each topic.
As the topic-based algorithm yields some general climate change bigrams, we
drop bigrams appearing in more than one topic to guarantee that we do not
have overlapping topic measures. In the final stage, we take the intersection
between C and each set of topic bigrams to obtain the sets of opportunity,
regulatory, and physical climate change bigrams (i.e., COpp, CReg, and CPhy),
respectively.

B. Construction of Climate Change Exposure Measures

Using the bigram sets, we construct measures of climate change exposure
for each transcript. We interpret these measures as capturing the attention
devoted to climate change topics by call participants at a point in time, rather
than as measures of fundamental exposure. We use the broad set of climate
change bigrams C to illustrate how we construct these measures. The topic

20 For example, “rooftop solar” and “photovoltaic panel” come from the initial bigram “solar
energy,” while “nuclear power” and “event fukushima” come from “renewable energy,” and “tesla
battery” and “hybrid plug” come from “electric vehicle.”
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measures are constructed analogously; we simply replace C with the bigrams
that relate to the corresponding topic.

We construct an overall exposure measure, CCExposure, based on how fre-
quently the specified bigrams appear in a transcript. This involves taking the
set of climate bigrams C to the transcript of firm i in quarter t and counting the
frequency of these bigrams. To account for the call length, we scale the count
by the number of bigrams in the transcript,

CCExposurei,t = 1
Bi,t

Bi,t∑
b

(
1[b ∈ C]

)
, (1)

where b = 0, 1, . . . , Bi,t are the bigrams in the earnings call transcripts of firm
i in quarter t and 1[·] is the indicator function. We create an annual mea-
sure for each firm by averaging the quarterly measures. We produce exposure
measures from COpp, CReg, and CPhy, respectively, by scoring each transcript
using the same method. We label the topic-based measures as CCExposureOpp,
CCExposureReg, and CCExposurePhy.

Some of our tests employ two refinements. In the first refinement, we create
two sentiment measures by counting the number of climate change bigrams
after conditioning on the presence of the positive or negative tone words in
Loughran and McDonald (2011),

CCSentimentPos/Neg
i,t = 1

Bi,t

Bi,t∑
b

{(
1[b ∈ C]

) ×
b∈S∑

b

T Pos/Neg(b)

}
, (2)

where S represents the sentence containing bigrams b = 0, 1, . . . , Bi,t and
T Pos/Neg(b) assigns sentiment to each bigram b:21

T Pos(b) =
{

1 if b has a positive tone,
0 if otherwise,

T Neg(b) =
{

1 if b has a negative tone,
0 if otherwise.

In the second refinement, we construct a measure of risk by counting the rel-
ative frequency of the climate change bigrams mentioned in the same sentence

21 Though not used in this paper, we also combine both sentiment measures into an overall
measure by counting the climate change bigrams after conditioning on the presence of positive
and negative tone words,

CCSentimenti,t = 1
Bi,t

Bi,t∑
b

⎧⎨
⎩(

1[b ∈ C]
) ×

b∈S∑
b

T(b)

⎫⎬
⎭,

where T(b) = 1(−1) if b has positive (negative) tone, and zero otherwise.
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with the words “risk,” “uncertainty,” or their synonyms,

CCRiski,t = 1
Bi,t

Bi,t∑
b

(
1[b ∈ C] × 1[b, r ∈ S]

)
, (3)

where r contains the words “risk,” “uncertainty,” or a synonym.
The exposure measures do not adjust for the differences in the importance

or typical frequencies of individual bigrams. For robustness, we account for
such differences by constructing measures that weigh each bigram with a score
reflecting the bigram’s representativeness for climate discussions. We do this
so that common terms that appear in most transcripts receive low scores, as
these terms are less informative about a call’s content, as do rare terms in a
given transcript, as these terms have low text frequency. This approach follows
Hassan et al. (2019), Gentzkow, Kelly, and Taddy (2019), and EGKLS and is
commonly referred as “term frequency-inverse document frequency” (TFIDF).
Formally,

CCExposureTFIDF
i,t = 1

Bi,t

Bi,t∑
b

(
1[b ∈ C] × log

(
NT

fb,T

))
, (4)

where NT refers to the number of transcripts and fb,T to the number of tran-
scripts in which bigram b appears. A bigram appearing in many transcripts
therefore has low weight when calculating the TFIDF score, and—in the ex-
treme case—if a given bigram appears in every transcript, it receives zero
weight (log( NT

fb,T
) = 0).

Table I reports summary statistics for the exposure measures (for purposes
of exposition, the measures are multiplied by 103).22 Table IA.V reports the
correlations across the exposure measures. A few correlations deserve fur-
ther comment. The correlation between CCExposureReg and CCExposureOpp

is positive at 33%, and CCExposurePhy is largely unrelated to CCExposureReg

and CCExposureOpp. In addition, the correlation between CCExposure and
CCExposureTFIDF is 99.7%.

Tables IA.VI to IA.VIII report the sample distribution at the earnings-call
(transcript) level across countries, years, and industries. We report the dis-
tributions for all sampled earnings calls and for those calls with nonzero cli-
mate change exposure. The tables show meaningful proportions of calls with
nonzero climate change exposure across all three sample cuts; transcripts with
CCExposure > 0 are not concentrated in certain countries, years, or industries.
Our analysis does not make use of a binary indicator for whether CCExposure
is nonzero, but instead uses a continuous measure.

22 The magnitudes of CCExposureTFIDF are larger than those of CCExposure as the inverse
document frequency of the climate change bigrams can be much larger than one (the document
frequencies of the climate change bigrams are much smaller than the total number of transcripts).



Firm-Level Climate Change Exposure 1463

Table I
Climate Change Exposure Variables: Summary Statistics

This table reports summary statistics for different measures of climate change exposure, carbon
emissions, and public attention to climate change at the firm-year level. For the climate change
exposure measures, we average values of the four earnings calls during the year. The sample
includes 10,673 unique firms from 34 countries over the period 2002 to 2020. Table A.1 provides
detailed variable definitions.

Mean STD 25% Median 75% N

CC Measures (×103)
CCExposurei,t 1.01 2.53 0.10 0.30 0.78 86,152
CCExposureOpp

i,t 0.31 1.23 0.00 0.00 0.15 86,152
CCExposureReg

i,t 0.04 0.23 0.00 0.00 0.00 86,152

CCExposurePhy
i,t 0.01 0.11 0.00 0.00 0.00 86,152

CC Measures (TFIDF Version) (×103)
CCExposurei,t 7.99 19.69 0.77 2.44 6.26 86,152
CCExposureOpp

i,t 2.35 9.08 0.00 0.00 1.18 86,152
CCExposureReg

i,t 0.32 1.68 0.00 0.00 0.00 86,152

CCExposurePhy
i,t 0.10 0.81 0.00 0.00 0.00 86,152

CC Q&A Measure (×103)
CCExposureQ&A

i,t 0.67 1.95 0.00 0.12 0.54 86,152
CC Sentiment and Risk Measures (×103)

CCSentimentPos
i,t 0.38 1.10 0.00 0.07 0.32 86,152

CCSentimentNeg
i,t 0.19 0.55 0.00 0.00 0.16 86,152

CCRiski,t 0.04 0.17 0.00 0.00 0.00 86,152
Carbon Emissions and Climate Change Attention

Total Emissionsi,t 2,961,549 13,608,989 27,472 133,847 751,772 33,789
WSJ CC News Indext 0.007 0.001 0.006 0.006 0.008 68,794

III. Validation

A. Validation at the Bigram Level

A.1. Face Validity of Climate Change Bigrams

We validate our exposure measures using a multipronged approach. First,
we consider the bigrams’ face validity. Table II lists the 100 highest-frequency
bigrams in C. The top bigrams associated with CCExposure capture aspects
of the opportunities and risks associated with climate change. The top bi-
grams include both opportunity-related word pairs (e.g., “battery power,”
“new energy”) and risk-related terms (e.g., “environmental concern,” “extreme
weather”).

Table IA.IX considers the three topic-based measures. When we construct
CCExposureOpp using initial bigrams such as “wind power” or “solar energy,”
we find several new bigrams that refer to new (green) technologies (e.g., “solar
farm,” “carbon free”) (Panel A). Several word combinations are linked to devel-
opments in “electric vehicles,” including “charge infrastructure” and “battery
electric.” With respect to CCExposureReg (Panel B), when we use initial bigrams
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Table II
Top-100 Bigrams Captured by Climate Change Exposure

(CCExposure)
This table reports the top-100 bigrams associated with CCExposure, which measures the relative
frequency with which bigrams related to climate change occur in earnings call transcripts. Table
A.1 defines all variables in detail.

Bigram Frequency Bigram Frequency Bigram Frequency

renewable energy 15,605 onshore wind 878 carbon intensity 641
electric vehicle 9,508 electric motor 869 energy application 615
clean energy 6,430 provide energy 851 produce electricity 604
new energy 4,544 efficient solution 839 help state 604
climate change 4,374 global warm 837 environmental

standard
593

wind power 4,253 power generator 828 power agreement 586
wind energy 4,035 solar pv 827 supply energy 585
energy efficient 3,899 scale solar 827 electric hybrid 585
greenhouse gas 3,416 need clean 821 source power 575
solar energy 2,511 coastal area 816 sustainability goal 572
air quality 2,409 energy star 793 energy reform 571
clean air 2,301 environmental

footprint
792 plant power 564

carbon emission 2,088 design use 777 compare con-
ventional

560

gas emission 1,910 area energy 777 gas vehicle 560
extreme weather 1,773 charge station 762 effort energy 560
carbon dioxide 1,583 clean water 759 pass house 559
water resource 1,423 major design 747 carbon free 558
autonomous vehicle 1,394 vehicle manu-

facturer
740 driver assistance 545

energy environment 1,279 future energy 737 electrical energy 543
wind resource 1,245 motor control 726 solar installation 541
government india 1,201 combine heat 718 snow ice 538
battery power 1,147 electric bus 709 renewable natural 536
air pollution 1,127 distribute power 703 promote use 536
battery electric 1,121 environmental

benefit
695 farm project 531

integrate resource 1,052 eco friendly 695 laser diode 528
clean power 1,008 electrical vehicle 695 deliver energy 526
carbon price 999 carbon neutral 690 protect environ-

ment
525

world population 977 fast charge 675 sustainable energy 523
solar farm 971 cell power 657 manage energy 522
energy regulatory 967 energy team 650 invest energy 521
obama administration 957 cycle gas 646 electric energy 519
heat power 941 coal gasification 643 forest land 512
carbon tax 928 environmental

concern
643 capacity energy 512

unite nation 925
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“carbon tax,” “air pollution,” or “air quality”, that is, terms related to regula-
tory interventions, we discover bigrams that explicitly include the word “regu-
lation” or its synonyms (e.g., “control regulation,” “environmental legislation”).
Turning to the top bigrams for CCExposurePhy (Panel C), we use initial bigrams
such as “natural hazard” or “sea level” to identify word pairs intuitively linked
to physical climate change (e.g., “area florida,” “ice control,” and “wind speed”).

For the 10 highest-scoring firms on CCExposure, Table IA.X provides “snip-
pets.” These snippets are text fragments taken from the point in the tran-
script that the algorithm identifies as the moment when the participants dis-
cuss climate issues. Consider Ocean Power Technologies, a U.S. firm that turns
ocean wave power into electricity for offshore applications. In its 2008Q4 call,
bigrams such as “energy requirement,” “powerbuoy wave,” “wave condition,”
and “wave power” were heavily featured. In the top snippet, participants dis-
cuss the increased demand for the firm’s trademark technology (the Power-
Buoy®) due to heightened attention to renewable energy. Not surprisingly,
high-scoring firms are involved in energy production or the broader energy
infrastructure. Indeed, when ECOtality call participants use climate change
bigrams, they discuss how charging infrastructures are central to advancing
zero-emissions transportation.

A.2. Audit Study Based on Human Reading

We developed a two-stage snippet-based audit to evaluate the scoring of our
algorithm (Baker, Bloom, and Davis (2016), Hassan et al. (2019)). While our
algorithm should be judged in the context of the entire transcript, a snippet-
based audit improves our ability to sample across a large number of tran-
scripts. In the first stage, we define a snippet as the 10 sentences around
the climate change bigram with the highest text frequency in a transcript.
For transcripts with CCExposure = 0, we randomly choose a snippet of 10 con-
secutive sentences for the audit. In our pilot study, each of the authors inde-
pendently coded 250 identical and randomly selected snippets using a binary
coding scheme. The coding used the variable CCAudit, which equals one if
the rater classifies the text as providing evidence of climate change exposure,
and zero otherwise. In addition, for each snippet we record Coding Confidence,
which ranges from three (the rater is highly confident that their coding is cor-
rect) to one (“hard calls”). We identified some slight coding differences between
the authors and resolved discrepancies. Based on this iterative procedure, we
developed a detailed guide with definitions of what text should be coded as
climate change exposure and which snippets should not qualify as such. The
audit guide describes examples of snippets and offers interpretations and sug-
gested coding to help the raters solve complex cases in the audit process. We
then instructed two graduate students based on the audit guide and asked
them to audit the same 250 snippets that the author team coded to assess any
remaining inconsistencies.

In the second stage, we recruited 19 graduate students to each inde-
pendently code 250 new snippets from the audit universe. Together they
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Figure 1. Probability of correctly identified positives by decile. This figure plots on the
vertical axis the predicted probability of having a correctly identified positive (i.e., the audit study
of the snippet confirms climate change-related text) against deciles of the CCExposure distribution.
The median score of CCExposure in a given decile is shown on the axis. Predicted probabilities are
computed by estimating a logit model on the sample of 2,090 audited snippets. (Color figure can
be viewed at wileyonlinelibrary.com)

assessed 2,090 unique snippets.23 Auditors received training based on the au-
dit guide. The snippets were partially overlapping to allow us to conduct some
inter-rater correspondence tests. Our goal is to verify the information content
of CCExposure at various points of its distribution. Following Hassan et al.
(2019), we create portfolios with the same number of transcripts based on their
percentile of the CCExposure distribution. We then count the number of tran-
scripts at that percentile that the auditors rated as CCAudit = 1 (i.e., the snip-
pet is classified as containing a clear discussion of a firm’s climate change expo-
sure). We count 310 true positives out of 339 snippets (91% correct positives) in
the top-decile portfolio (transcripts with the highest value of CCExposure). The
rate of correct positives declines almost linearly as we move to the median and
bottom portfolios. This is displayed in Figure 1, which plots the relationship
between (the predicted probability of) true positives (as judged by the human
reading) at each decile and the median percentile score of CCExposure at that

23 We first sorted all transcripts with nonzero CCExposure into deciles. We then randomly se-
lected 10 snippets from each decile and another 10 from CCExposure = 0 transcripts for each
sample year.

https://onlinelibrary.wiley.com
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percentile. The association is positive and nearly linear, as would be expected
if our algorithm reliably identifies climate change discussions.24

A.3. Comparison with Approach Using Pre-Specified Keywords

We construct alternative exposure measures from a list of pre-specified cli-
mate change keywords to compare these measures with those produced by our
algorithm. To obtain such a list, we use the set of unique stemmed unigrams
and bigrams CEGKLS used by EGKLS to build their time-varying, news-based
index of climate change attention. These keywords originate from 74 author-
itative texts. To create CCExposureEGKLS, we replace C with CEGKLS and re-
compute the relative frequency with which the alternative terms appear in
the transcripts. We construct a frequency-unweighted and a TFIDF version,
denoted by CCExposureEGKLS−EW or CCExposureEGKLS−TFIDF , respectively.

Table IA.XI illustrates that the unigrams and bigrams in CEGKLS appear
more frequently in earnings calls than the bigrams in C. This finding is un-
surprising as CEGKLS includes more unigrams and more general terms (the
top-3 bigrams are “market,” “increase,” and “time”). Using unigrams rather
than bigrams trades off the higher likelihood of a given term occurring in a
text against the higher probability of a false positive, that is, wrongly clas-
sifying a fragment as climate change text (van Zaanen and Kanters (2010)).
Several of the unigrams in CEGKLS are part of the top-100 bigrams in C
(e.g., “carbon,” “energy,” or “water”). As would be expected from Table IA.XI,
the mean values of both alternative exposure measures (Table IA.XII, Panel
A) are larger than those of CCExposure. Thus, larger parts of the earnings
calls are classified as discussing climate topics if we use CEGKLS instead of
C. At the same time, Table IA.XII, Panel B, indicates that the measures cor-
relate positively with CCExposure. The correlation table illustrates that our
main measure and the alternative measures yield more similar assessments
when the public pays close attention to climate change (WSJ CC News In-
dex is in the top quartile). One possible explanation is that at times when
the WSJ devotes a lot of space to climate topics, terms from a more gen-
eral climate library (on which the index and pre-specified keyword mea-
sures build) become more commonly used in earnings calls. Intuitively, me-
dia attention might homogenize the language used to talk about climate
change. When the media pivots to other events, the vocabulary likely used
to discuss climate change in earnings calls becomes more idiosyncratic again.
Such instances are plausibly better reflected in our keyword-search-based
approach.

A question that remains is how our measure and a measure using pre-
defined keywords differ economically. Our measure is well suited to capture

24 These findings suggest that our algorithm correctly identifies climate change text, even at
relatively low CCExposure scores. A benchmark is provided in Hassan et al. (2019), where the
number of correct positives reduces to below five out of 20 at the 90th percentile of their text-
based political risk score. Weighting observations by Coding Confidence does not materially change
our findings.
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context-specific jargon used in specialized environments with experts and al-
lows us to construct topic-based measures. The pre-specified keyword approach
better captures broader discussions by the public, as reflected in articles pub-
lished in the WSJ, while identifying specific or emerging topics with a pre-
specified keyword approach is more challenging. A further difference is that
our approach is “evolutionary,” that is, it will reflect changes in the vocabulary
used in transcripts over time, while an approach using pre-specified keywords
fixes this vocabulary ex ante. Time-series variation in true (unobservable) cli-
mate change exposure, especially over long horizons, is more likely to be picked
up by such an “evolutionary” approach. Any selection of pre-specified keywords
is due to become obsolete the further out one moves in time.

A.4. Perturbation Tests for Individual Initial Bigrams

We evaluate the extent to which our overall exposure measure depends on
individual bigrams in the initial bigram list (Table IA.III) by performing a
perturbation test. We successively exclude one initial bigram at a time, recom-
puting the modified set of bigrams CPert as well as the modified CCExposurePert .
Given that our initial short list contains 50 bigrams, we construct 50 new
versions of CCExposurePert . After aggregating the measure to the firm-year
level, we calculate the correlation of each of these exposure measures with
CCExposure. These correlations are above 85%, which means that CCExposure
does not depend much on specific initial seed bigrams.

A.5. Comparison with Approach Using Initial Bigrams Only

Table II shows that the initial keywords dominate the top-100 bigrams used
in the construction of CCExposure. This raises the question of how big the
performance gain of the keyword discovery approach is relative to the alter-
native that only uses the initial seed bigrams. To address this question, we
construct the new exposure measure CCExposureInitial from the initial bigrams
only. Figure 2, Panel A, shows how frequently the new measure signals zero
exposure, while CCExposure instead reveals that climate topics are discussed.
Results are reported by CCExposure decile. In the top decile, CCExposureInitial

indicates no exposure in 27% of transcripts. Hence, even among the most ex-
posed firms, there is a performance gain when applying our approach. This
gain increases when we consider other deciles—already in the second decile,
CCExposureInitial deviates from CCExposure, indicating the absence of expo-
sure in more than 62% of transcripts. The effects increase monotonically as we
move to lower exposure deciles.

Panel B reports results of the topic-based exposure measures, with the al-
ternative measures using only the topic-based initial bigrams (Table IA.IV).
For all three measures and deciles, significant fractions of the transcripts are
incorrectly classified as having zero exposure. Even in the three respective top
deciles, the alternative approach misses positive exposure in 10% to 40% of the
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transcripts. Across all deciles, the gain from the keyword discovery approach
is largest for CCExposureOpp (especially in the lower deciles).

Beyond these statistics, identifying exposure using bigrams beyond the ini-
tial seed words is economically important. Below we show that, among the
set of firms for which CCExposureInitial = 0, our exposure measures keep pre-
dicting green outcomes. These effects are identified purely from the bigrams
obtained through the keyword search algorithm.

B. Validation at the Climate Change Exposure Level

B.1. Climate Change Exposure: Industry Variation

We now move away from the bigram level to examine the properties of the
exposure measures. This involves several steps. In the first step, we compute
averages by industry sector (two-digit SIC code level) and present a ranking
of these means in Table III. In Panel A, using CCExposure, the sectors with
the highest overall exposure include Electric, Gas, & Sanitary (SIC49). Top-
ranked firms within this sector include China Longyuan Power Group, China’s
largest producer of wind power, and the U.S. utility Allete. This sector is fol-
lowed by Heavy Construction (SIC16) and Construction (SIC17). High-ranking
firms in these sectors include A-Power Energy Generation Systems, a Chinese
firm providing on-site power generation systems, ReneSola, a U.S. firm devel-
oping and operating solar projects, and Quanta Services, a U.S. infrastructure
solutions provider for firms in the energy and pipeline business. Top-ranked
firms in the Transportation Equipment sector (SIC37), ranked next, include
alternative fuel and zero-emission vehicle firms.

A few sectors are worth commenting on in Panels B to D, which report the
topic-based measures. Utilities top the list for CCExposureOpp (Panel B) and
CCExposureReg (Panel C). While the latter ranking position is expected, given
the sector’s exposure to carbon taxes or related regulations, the earlier position
is more surprising. Notwithstanding, it is consistent with Cohen, Gurun, and
Nguyen (2021), who find that this sector is a key innovator in the energy tran-
sition space. Coal Mining (SIC12) displays high exposure to regulatory and
physical shocks (Panels C and D). While high regulatory exposure is expected
given the large emissions associated with burning coal, high physical exposure
is less obvious. This may reflect mining firms’ exposure to heavy precipitation,
or heat, which pose physical challenges to their operations. Stone, Clay & Glass
Products (SIC32), in the top-5 for CCExposureReg, includes mostly cement pro-
ducers among its top-ranked firms (they belong to the largest CO2 emitters).
A sector in the top-10 of CCExposurePhy (Panel D) is the insurance industry,
which, unsurprisingly, is highly exposed to the costs of storms or flooding.

The large variation in exposure between sectors masks important hetero-
geneity within each sector (apparent from the large within-sector standard
deviations). To illustrate this heterogeneity, we compare TotalEnergies and
ExxonMobil. Both firms operate in Petroleum Refining (SIC29), a sector rank-
ing among the top 10 for CCExposureOpp and CCExposureReg. In terms of the
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Table III
Industry Distribution of Climate Change Exposure Measures

This table reports firms’ climate change exposure measures for the top-10 industries. Statistics
are reported at the firm-year level across different SIC2 industries. We rank sectors by the aver-
age values of the climate change exposure measures. CCExposure measures the relative frequency
with which climate change bigrams occur in earnings calls. CCExposureOpp measures the rela-
tive frequency with which bigrams that capture opportunities related to climate change occur in
earnings calls. CCExposureReg measures the relative frequency with which bigrams that capture
regulatory shocks related to climate change occur in earnings calls. CCExposurePhy measures the
relative frequency with which bigrams that capture physical shocks related to climate change oc-
cur in earnings calls. For all measures, we average values of the four earnings calls during the year.
We report results only those industries for which we have more than 20 firm-year observations.
Table A.1 defines all variables in detail.

Panel A: CCExposure (×103)

Industry (SIC2) Mean Std.Dev. Median N

49 Electric, Gas, & Sanitary Services 6.95 6.23 5.34 3,259
16 Heavy Construction, Except Building 3.04 4.35 1.53 537
17 Construction 2.26 2.95 1.16 131
37 Transportation Equipment 2.12 3.17 1.07 2,021
36 Electronic & Other Electric Equipment 2.07 4.20 0.57 5,812
12 Coal Mining 2.05 1.48 1.70 253
29 Petroleum Refining 1.72 2.14 1.06 730
41 Local & Suburban Transit 1.69 2.06 0.84 94
55 Automative Dealers & Service Stations 1.63 3.90 0.69 484
33 Primary Metal 1.56 1.54 1.14 1,149

Panel B: CCExposureOpp (×103)

Industry (SIC2) Mean Std.Dev. Median N

49 Electric, Gas, & Sanitary Services 2.50 3.30 1.26 3,259
16 Heavy Construction, Except Building 1.37 2.78 0.30 537
17 Construction 0.91 1.71 0.34 131
36 Electronic & Other Electric Equipment 0.90 2.38 0.09 5,812
37 Transportation Equipment 0.81 1.70 0.23 2,021
55 Automative Dealers & Service Stations 0.54 1.34 0.16 484
29 Petroleum Refining 0.47 0.93 0.16 730
35 Industrial Machinery & Equipment 0.46 1.85 0.07 4,056
75 Auto Repair, Services, & Parking 0.42 1.04 0.11 171
87 Engineering & Accounting & Research 0.38 0.94 0.00 1,443

Panel C: CCExposureReg (×103)

Industry (SIC2) Mean Std.Dev. Median N

49 Electric Gas & Sanitary Services 0.34 0.61 0.10 3,259
12 Coal Mining 0.14 0.24 0.00 253
29 Petroleum Refining 0.14 0.32 0.00 730
32 Stone Clay Glass Products 0.12 0.35 0.00 622
10 Metal Mining 0.08 0.32 0.00 1,465
33 Primary Metal 0.08 0.22 0.00 1,149
37 Transportation Equipment 0.08 0.27 0.00 2,021
35 Industrial Machinery & Equipment 0.08 0.47 0.00 4,056

(Continued)



Firm-Level Climate Change Exposure 1471

Table III—Continued

Panel C: CCExposureReg (×103)

24 Lumber & Wood 0.07 0.43 0.00 471
16 Heavy Construction 0.07 0.21 0.00 537

Panel D: CCExposurePhy (×103)

Industry (SIC2) Mean Std.Dev. Median N

41 Local and Suburban Transit 0.17 0.47 0.00 94
26 Paper & Allied Products 0.08 0.35 0.00 852
24 Lumber & Wood 0.07 0.26 0.00 471
49 Electric, Gas, & Sanitary Services 0.06 0.24 0.00 3,259
14 Mining & Quarrying 0.05 0.14 0.00 208
12 Coal Mining 0.04 0.19 0.00 253
64 Insurance Agents, Brokers, & Service 0.03 0.15 0.00 297
10 Metal Mining 0.03 0.12 0.00 1,465
15 Building Construction 0.03 0.09 0.00 600
35 Industrial Machinery & Equipment 0.03 0.25 0.00 4,056

average regulatory exposure since 2010, TotalEnergies’ score is similar to that
of ExxonMobil (CCExposureReg

TotalEnergies = 0.21 vs. CCExposureReg
ExxonMobil = 0.18),

but the French oil major exhibits much higher average opportunity expo-
sure (CCExposureOpp

TotalEnergies = 1.13 vs. CCExposureOpp
ExxonMobil = 0.15). This di-

vergence reflects a broader perception in the market about the extent to which
these firms embrace renewable energy and the net-zero transition in their
business models (see Pickl (2019)). More generally, the large within-industry
variation indicates that sectors have “winners” and “losers.” Investors may
therefore be able to address climate risks and opportunities by maintaining
a broad industry diversification (rather than banning some industries) and
then performing negative screening of climate change “losers.” This observa-
tion echoes arguments by both academics (Andersson, Bolton, and Samama
(2016)) and providers of low-carbon index solutions.

B.2. Climate Change Exposure: Time-Series Variation

In Figure 3, Panels A to D, we compute the cross-sectional means for
CCExposure and the topic-based measures and plot them over time (for each
measure, we focus on top-10 sectors). This figure also highlights key moments
in public awareness of climate change, covering climate policy events relevant
to regulatory and opportunity shocks (Panels B and C), select physical shocks
(Panel D), or both (Panel A). In Panel A, CCExposure generally increases over
the sample period, especially since the mid-2000s. The increase in the early
years indicates that earnings calls discussed climate issues earlier than we
might have expected. A plateau is reached around 2009 (the year of the un-
successful Copenhagen Climate Summit). We then observe a slight decline in
the years leading up to the 2012 Doha Climate Summit. We note a renewed
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Figure 2. Climate change exposure calculated with initial bigrams. This figure shows
how frequently CCExposureInitial signals zero climate change exposure, while CCExposure instead
reveals that such exposure exists. Results are reported by CCExposure decile. CCExposureInitial

is a measure of climate change exposure based on the initial seed bigrams only. Panel A reports
results for the overall climate change exposure measure, and Panel B for the topic-based measures.
In the figure, the exposure measures are calculated at the quarterly (transcript) level. (Color figure
can be viewed at wileyonlinelibrary.com)

increase in CCExposure since around 2013. At the end of the sample,
CCExposure peaks with earnings calls exhibiting about four climate change
bigrams per 1,000 bigrams; this compares to about 0.1 political bigrams per
1,000 bigrams in Hassan et al. (2019).

In Panel B, the time series for CCExposureOpp is similar to that of the over-
all measure: CCExposureOpp trends upward, especially at the beginning of the
sample. In Panel C, CCExposureReg increases between 2002 and 2008, varies
around a markedly lower level between 2011 and 2013, spikes in 2015 (Paris
Agreement), and follows an increasing trend since 2017. This is consistent with
intensified policy discussions about how to achieve the Paris goals. In Panel
D, CCExposurePhy displays more swings than the other measures, albeit also
around an upward trend. It appears that CCExposurePhy does not strongly re-
flect highly salient climate events. For example, while there is a jump after
major U.S. hurricanes (i.e., Katrina, Sandy, and Harvey), the jumps occur with
a considerable lag. This pattern indicates that CCExposurePhy primarily re-
flects firm-specific exposures to physical climate events, (e.g., local heat waves
or droughts).

B.3. Climate Change Exposure and Carbon Emissions

We explore how well the exposure measures correlate with firms’ carbon
emissions. Carbon emissions constitute an essential variable to measure firm-
level exposure to climate change, especially for regulatory shocks (Bolton and
Kacperczyk (2021, 2023)). The analysis of carbon emissions is also the most fre-
quently used climate risk management tool of institutional investors (Krueger,
Sautner, and Starks (2020)). A benefit of using carbon emissions is that they

https://onlinelibrary.wiley.com
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Figure 3. Climate change exposure over time. This figure shows firms’ average climate
change exposures over time. CCExposure measures the relative frequency with which climate
change bigrams occur in earnings calls. CCExposureOpp measures the relative frequency with
which bigrams that capture opportunities related to climate change occur in earnings calls.
CCExposureReg measures the relative frequency with which bigrams that capture regulatory
shocks related to climate change occur in earnings calls. CCExposurePhy measures the relative
frequency with which bigrams that capture physical shocks related to climate change occur in
earnings calls. For each exposure measure, we construct the time series for firms in the top-10
industries (see Table III). Table A.1 provides detailed variable definitions. (Color figure can be
viewed at wileyonlinelibrary.com)

are easy to understand and compute, readily available for subscribers of envi-
ronmental, social, and governance (ESG) databases, and genuinely related to
changes in the global climate.

We expect that regulatory climate topics arise more frequently in earnings
calls of large carbon emitters, as they are more strongly affected by carbon
taxes or related regulations. At the same time, regulatory threats related to
emissions may also spur technological innovation that provides firms with
opportunities in the marketplace.25 Furthermore, some firms’ emissions may
be “good” in supporting the transition to a greener economy; these firms,

25 For example, utilities with a large carbon footprint may have strong incentives to develop low-
carbon alternatives (e.g., wind farms, solar farms), which provide future opportunities. Indeed, as

https://onlinelibrary.wiley.com


1474 The Journal of Finance®

called “climate enablers,” include, for example, manufacturers of building ma-
terials that help houses become more energy-efficient. Finally, carbon emis-
sions should be unrelated to the exposure to physical shocks at the firm
level.

We test these predictions by regressing the exposure measures on lagged
emission values (we use lagged values because emissions covering year t −
1 are reported in year t). Table IV, Panel A, reports the results. In col-
umn (1), we observe a strong positive association between Total Emissions
and CCExposure. As predicted, this association originates from positive
correlations between emissions and both CCExposureOpp (column (2)) and
CCExposureReg (column (3)). A one-standard-deviation increase in the emis-
sions variable is associated with an increase in CCExposureReg equal to 23% of
its standard deviation (using values for the regression sample). In column (4),
we find no association between emissions and physical exposure.

B.4. Climate Change Exposure and Public Attention to Climate Change

Time-series variation in public attention to climate change, as proxied by
WSJ CC News Index, has been shown to affect financial market participants
(e.g., Choi, Gao, and Jiang (2020) or Ilhan, Sautner, and Vilkov (2021)). Ac-
cordingly, we expect earnings call discussions to react to the salience of climate
topics in the public arena. Indeed, Table IV, Panel B, shows that measured cli-
mate change exposure is higher at times when public climate attention rises.
In column (1), a one-standard-deviation increase in WSJ CC News Index is
associated with an increase in CCExposure of 0.05 (5% of the mean within
the regression sample). This effect reflects a positive association between WSJ
CC News Index and both CCExposureOpp and CCExposureReg. Hence, when
public climate attention is high, earnings calls discuss regulatory shocks and
climate opportunities more extensively. Higher values of WSJ CC News In-
dex do not translate into more discussions of physical shocks. This suggests
that CCExposurePhy mostly captures firm-specific physical shocks, rather than
economy-wide shocks that make it to the WSJ (this conclusion is consistent
with the time-series evidence in Figure 3).

IV. Variance Decomposition and Role of Measurement Error

A. Variance Decomposition

We conduct a variance analysis to examine the extent to which CCExposure
and its components quantify firm-level variation in climate change exposure.
Table V reports the incremental explanatory power from conditioning the
exposure measures on fixed effects that plausibly drive the variation. Time
fixed effects (i.e., economy-wide changes in aggregate exposure) explain little

mentioned above, Cohen, Gurun, and Nguyen (2021) demonstrate that some of the largest carbon
emitters produce more and better green innovation than other firms.
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Table IV
Climate Change Exposure Measures: Effects of Carbon Emissions

and Climate Change News
This table reports regressions that relate carbon emissions and climate change news to the cli-
mate change exposure measures. Regressions are estimated at the firm-year level. CCExposure
measures the relative frequency with which bigrams related to climate change occur in earnings
calls. CCExposureOpp measures the relative frequency with which bigrams that capture opportu-
nities related to climate change occur in earnings call transcripts. CCExposureReg measures the
relative frequency with which bigrams that capture regulatory shocks related to climate change
occur in earnings calls. CCExposurePhy measures the relative frequency with which bigrams that
capture physical shocks related to climate change occur in earnings calls. For all measure, we
average values of the four earnings calls during the year. Total Emissions is the sum of a firm’s
Scope 1 and Scope 2 carbon emissions. WSJ CC News Index is a time-series index developed in
Engle et al. (2020) that captures climate change news in the Wall Street Journal. We divide the
coefficient on WSJ Climate Change News Index by 100. The regressions control for Log(Assets),
Debt/Assets, Cash/Assets, PP&E/Assets, EBIT/Assets, CAPEX/Assets, and R&D/Assets (all in
t − 1). In Panel B, we do not include time-varying industry fixed effects, as WSJ CC News Index
varies only in the time series. Standard errors, clustered at the industry-year level, are in paren-
theses. Table A.1 defines all variables in detail. *p < 0.1; **p < 0.05; ***p < 0.01.

Panel A: Carbon Emissions

CCExposurei,t CCExposureOpp
i,t CCExposureReg

i,t CCExposurePhy
i,t

(1) (2) (3) (4)

Log(1 + Total Emissionsi,t−1) 0.169∗∗∗ 0.036∗∗∗ 0.023∗∗∗ −0.000
(0.023) (0.009) (0.003) (0.001)

Model OLS OLS OLS OLS
Sample All All All All
Controls Yes Yes Yes Yes
Industry × Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects No No No No
Country Fixed Effects Yes Yes Yes Yes
N 30,905 30,905 30,905 30,905
Adj. R2 0.390 0.267 0.145 0.035

Panel B: Public Attention to Climate Change

CCExposurei,t CCExposureOpp
i,t CCExposureReg

i,t CCExposurePhy
i,t

(1) (2) (3) (4)

WSJ CC News Indext 0.427∗∗ 0.154∗ 0.034∗∗∗ 0.002
(0.168) (0.089) (0.010) (0.004)

Model OLS OLS OLS OLS
Sample All All All All
Controls Yes Yes Yes Yes
Industry × Year Fixed Effects No No No No
Industry Fixed Effects Yes Yes Yes Yes
Country Fixed Effects Yes Yes Yes Yes
N 54,824 54,824 54,824 54,824
Adj. R2 0.298 0.185 0.090 0.024
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Table V
Variance Decomposition of Climate Change Exposure Measures

This table provides a variance decomposition of the climate change exposure measures. Regres-
sions are estimated at the firm-year level. In Panel A, the table reports the incremental R2 from
adding a specific fixed effect. In Panel B, the table decomposes the variation into a firm fixed
effect and a residual component. CCExposure measures the relative frequency with which cli-
mate change bigrams occur in earnings calls. CCExposureOpp measures the relative frequency
with which bigrams that capture opportunities related to climate change occur in earnings calls.
CCExposureReg measures the relative frequency with which bigrams that capture regulatory
shocks related to climate change occur in earnings calls. CCExposurePhy measures the relative
frequency with which bigrams that capture physical shocks related to climate change occur in
earnings calls. For all measures, we average values of the four earnings calls during the year.
Table A.1 defines all variables in detail.

CCExposurei,t CCExposureOpp
i,t CCExposureReg

i,t CCExposurePhy
i,t

(1) (2) (3) (4)

Panel A: Incremental R2

Year Fixed Effect 0.7% 0.7% 0.5% 0.05%
Industry Fixed Effect 27.1% 16.9% 7.8% 2.0%
Industry × Year Fixed Effect 1.9% 2.6% 1.4% 1.5%
Country Fixed Effect 0.6% 0.7% 0.4% 0.3%
“Firm Level” 69.7% 79.1% 89.9% 96.2%
Sum 100.0% 100.0% 100.0% 100.0%

Panel B: Fraction of Variation

Firm Fixed Effect:
Permanent differences across firms
within sector and countries 51.6% 56.4% 44.7% 45.1%
Residual:
Variation over time in the identity
of firms within industries and countries
most affected by exposure variable 48.4% 43.7% 55.3% 54.9%
Sum 100.0% 100.0% 100.0% 100.0%

variation, yielding an incremental R2 below 1% for each measure. For industry
fixed effects, the same observation holds only for CCExposurePhy. In contrast,
exposures to opportunity or regulatory shocks have a sizeable industry compo-
nent (17% and 8%, respectively), which might stem from regulation targeting
specific industries or technological developments affecting entire sectors. The
interaction between industry and time fixed effects accounts for, at most, an
additional 2.6% of the variation (in the case of CCExposureOpp). Country fixed
effects provide little additional explanatory power, which mitigates concerns
that our measures are strongly affected by the native language in a country
or how distant this language is from English. Depending on the measure, be-
tween 70% and 96% of the variation is unexplained by these sets of fixed effects.
Thus, variation plays out at the firm level, rather than at the level of the coun-
try, industry, or over time. (The high unexplained variation for CCExposurePhy
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is unsurprising given that exposure to physical shocks depends highly on the
location of a firm’s production sites or insurance policies.) Adding firm fixed
effects, permanent differences across firms in an industry and country account
for 52%, 56%, 45%, and 45% of the variation of CCExposure, CCExposureOpp,
CCExposureReg, and CCExposurePhy, respectively. The remaining 48%, 44%,
55%, and 55%, respectively, come from variation over time in the identity
of firms in industries and countries most affected by the respective climate
change variables.

B. Assessing Measurement Error

We interpret the large share of variance within the firm-year as capturing
economically meaningful heterogeneity. Under this view, a firm’s idiosyncratic
exposure to climate change is the key determinant of the measured variation. A
plausible alternative explanation is that part of the firm-level variation reflects
idiosyncratic measurement error. We conduct several tests that dispel this al-
ternative. First, we note that we find robust associations between CCExposure
and important real and financial outcomes (as do other papers). These find-
ings suggest that the variation reflected in firm-level CCExposure is not sim-
ply noise.

Second, following Hassan et al. (2019), we quantify the amount of measure-
ment error contained in the firm-level variation by assuming that a firm’s
“true” exposure follows a first-order autoregressive (AR) process. We then
assume that CCExposure measures this true exposure with classical (i.i.d.)
measurement error.26 Suppose a valid instrument for (lagged) CCExposurei,t−1
were available. In this case, one could back out the share of its variation con-
sisting of measurement error by comparing the OLS and instrumental vari-
able (IV) coefficients. Intuitively, the idea is that candidate IVs measure true
climate change exposure with error. Under the i.i.d. assumption, the measure-
ment error in the IV is uncorrelated with that in CCExposurei,t and thus can
be used to “purge” the latter’s measurement error. For this procedure to work,
we do not assume that the IV has lower measurement error—indeed, it is
likely to have higher measurement error. We assume only that the measure-
ment error in the IV and in measured climate change exposure are statistically
independent.

Table VI shows three implementations of this idea. One implementation uses
an alternative exposure measure constructed by applying our algorithm to the
“Management Discussion and Analysis” (MD&A) section in firms’ annual 10K
filings. The two other implementations use lags of this alternative measure

26 Under these assumptions, if the correlation between two different lags of the firm-year data
is known, the AR(1) parameter and the estimated measurement error can be backed out. For
example, if the first lag has a correlation of 0.45 (=0.5*0.9) and the second lag a correlation of 0.41
(=0.5*0.9*0.9), that would imply measurement error of 50% of the variation and an AR coefficient
of 0.9. If the first lag has a correlation of 0.9 and the second 0.8, this implies no measurement error
and an AR coefficient of 0.9.
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Table VI
Quantifying Measurement Error in Climate Change Exposure

Measures
This table shows AR(1) regressions of climate change exposure. Regressions are estimated at
the firm-year level. CCExposure measures the relative frequency with which climate change bi-
grams occur in earnings calls. We average values of the four earnings calls during the year.
CCExposure10K measures climate change exposure by applying our algorithm to the “Manage-
ment Discussion and Analysis” (MD&A) section in firms’ annual 10K filings. Following Hassan
et al. (2019), CCExposure and CCExposure10K in this table are standardized by subtracting the
sample mean and dividing by the sample standard deviation. Implied Share Measurement Er-
ror is calculated as 1 − (β̂OLS/β̂IV ), where β̂OLS is the estimated coefficient in CCExposurei,t =
α + βCCExposurei,t−1 + ε and β̂IV is the coefficient on the instrumented CCExposurei,t in the same
specification. To obtain bootstrapped standard errors for Implied Share Measurement Error, we
repeat the following procedure 500 times: draw a random sample of the same sample size (with
replacement and clustered by firm) from our regression sample, run the two regressions, and ob-
tain the implied share of measurement error. These standard errors are clustered at the firm level.
Table A.1 defines all variables in detail. *p < 0.1; **p < 0.05; ***p < 0.01.

Panel A: Overall Variation

CCExposurei,t
(1) (2) (3) (4)

CCExposurei,t−1 0.922∗∗∗ 1.008∗∗∗ 0.991∗∗∗ 0.958∗∗∗
(0.002) (0.003) (0.003) (0.002)

Model OLS IV IV IV
Instrument CCExposure10K

i,t−1 CCExposure10K
i,t−2 CCExposurei,t−2

Sample U.S. U.S. U.S. U.S.
Industry × Year Fixed Effects No No No No
N 47,589 47,589 41,794 41,794
Implied Share Measurement Error 0.085 0.069 0.037

(0.007) (0.007) (0.005)

Panel B: Firm-Level Variation

CCExposurei,t
(1) (2) (3) (4)

CCExposurei,t−1 0.886∗∗∗ 0.992∗∗∗ 0.966∗∗∗ 0.932∗∗∗
(0.002) (0.004) (0.002) (0.003)

Model OLS IV IV IV
Instrument CCExposure10K

i,t−1 CCExposure10K
i,t−2 CCExposurei,t−2

Sample U.S. U.S. U.S. U.S.
Industry × Year Fixed Effects Yes Yes Yes Yes
N 47,502 47,502 41,712 41,712
Implied Share Measurement Error 0.107 0.083 0.050

(0.002) (0.012) (0.007)
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and CCExposure itself as instruments. While the estimates of the share of mea-
surement error in CCExposure vary somewhat across the three approaches,
approximately 5% to 10% of the variation in measured CCExposure is due to
measurement error.27 The implied measurement error at the firm level (in
Panel B) is about 2 percentage points higher than in the overall variation
(Panel A). Although we interpret these results with due caution, they suggest
that measurement error in the firm-level dimension is higher than in the
overall panel, but only modestly. Thus, concerns that the variation displayed
at the firm level is subject to more measurement error than the overall climate
change exposure measure (before any fixed effects) are not substantiated.

V. Economic Applications

A. Real Outcomes: Green-Tech Jobs and Green Patents

Significant climate-related innovation is required to reach net-zero emis-
sions by 2050 (Stern and Valero (2021)), implying huge investments by firms
in human capital and R&D. According to some estimates, incremental invest-
ments of $50 trillion are needed in solar technology, decarbonization, energy
efficiency, or carbon capture by 2050 (World Economic Forum (2021)). To il-
lustrate that our exposure measures help predict real outcomes related to the
net-zero transition, we relate next year’s creation of disruptive green-tech jobs
and green patents to this year’s values of climate change exposure. Among the
sampled U.S. firms, for firm i and year t we estimate

Green Outcomei,t+1 = exp(αi + β log(1 + CCExposurei,t ) + γ Xi,t + δ j × δt + εi,t+1),
(5)

where Green Outcomei,t+1 is #Green-Tech Jobsi,t+1 or #Green Patentsi,t+1 in
year t + 1 and CCExposurei,t is the climate change exposure measure in
year t (we include the overall and topic-based measures). The vector Xi,t
includes Log(Assets), Debt/Assets, Cash/Assets, PP&E/Assets, EBIT/Assets,
CAPEX/Assets, and R&D/Assets. The variables δ j × δt represent industry-
year fixed effects. We account for industry shocks that vary over time, as firm-
level innovation-related activity contains a large time-varying industry compo-
nent (Aghion et al. (2005)). As demonstrated in Table V, such variation is also
an important determinant of climate change exposure, making it important to
identify effects within industry-year pairs. We cluster standard errors at the
industry-year group level.

We estimate equation (5) using Poisson regressions, which have two advan-
tages (Cohn, Liu, and Wardlaw (2022)). First, Poisson regressions account for
the distributional characteristics of our count-based outcomes (they provide
unbiased estimates for dependent variables with a large mass of values at
zero combined with severe skewness). Second, Poisson regressions allow use to

27 These estimates compare favorably to the amount of measurement error found using similar
assumptions in firm-level variables measured using accounting data (e.g., measures of total factor
productivity constructed by Bloom et al. (2018) and Collard-Wexler (2011)).
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include industry-year fixed effects without biasing the estimation. They thus
address the issue of separable group fixed effects (in our case at the industry-
year level) by basing the estimation only on observations with at least one
nonzero value within a group. This is desirable, as it restricts the usable sam-
ple to those groups that are informative about the effects of CCExposure.28 For
robustness, we also estimate linear and log1plus-linear models (with and with-
out industry-year fixed effects) on the unrestricted sample (we interpret these
models’ estimates with caution).

The estimation results for #Green-Tech Jobs are reported in Table VII. In
column (1), the estimates show that firms with higher overall exposure post
more vacancies for jobs in disruptive green technologies over the subsequent
year. A one-standard-deviation increase in CCExposure is associated with a
109% increase in the number of green-tech jobs over the next year.29 Columns
(2) to (4) consider the topic-based measures. As expected, the overall exposure
effect is due in large part to high-opportunity firms (column (2)). Firms with
higher regulatory exposure also plan to hire more green-tech workers than
firms with lower exposure (column (3)). We do not find that firms with larger
physical exposure post more green-tech jobs (column (4)). In column (5), we
continue to find that CCExposure positively predicts green-tech hiring if we
replace #Green-Tech Jobs with I(Green-Tech Jobs), an indicator for whether a
firm posts a green-tech job (we estimate a linear model with the same observa-
tions as in columns (1) to (4)). Similarly, in column (6) estimates are robust to
using the ratio of green-tech jobs to all tech jobs (Green-Tech Ratio). Column
(7) addresses the concern that high-exposure firms may simply recruit more
personnel in disruptive technologies across the board, without a specific focus
on green jobs per se (for example, because these firms happen to be more in-
novative). Specifically, we replace #Green-Tech Jobs with #Nongreen-Tech Jobs
and reestimate the regression in column (1). We do not find positive predic-
tive effects of the exposure measure, which mitigates concerns of spurious
relationships. In fact, firms with higher climate change exposure hire less,
not more, nongreen-tech jobs. Overall, the data are more consistent with a re-
cruiting shift from nongreen-tech jobs to green-tech jobs, rather than a general
expansion of tech-related hiring at high-exposure firms.

The results for green-tech jobs broadly extend to green patents in
Table VIII. In columns (1) to (3), firms with greater climate change expo-
sure show more green patenting in the next year. A one-standard-deviation

28 Cohn, Liu, and Wardlaw (2022) show that log1plus-linear models may be biased in our con-
text. The admission of separable group fixed effects in Poisson regressions differs from that in
other nonlinear count-data models. These alternative models are subject to the incidental param-
eter problem, which leads to biased and inconsistent estimates (Lancaster (2000)).

29 In a Poisson model, for a regression coefficient β, the magnitude of a one-standard-deviation
change in the independent variable is calculated as eβ×STD − 1. This effect size (when multiplied
by 100%) represents the percentage change in the dependent variable. We use the within-fixed-
effects (rather than overall-panel) standard deviation to capture plausible variation. The large
magnitude of the effect also indicates that the average number of disruptive green-tech jobs is
relatively low.
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increase in CCExposure is associated with a 72% increase in the number of
green patents over the next year. The effect for CCExposureOpp is intuitive, as
green innovation provides business opportunities during the net-zero transi-
tion. To illustrate the intuition behind the effects for CCExposureReg, the case of
Caterpillar is insightful. This firm is not only the top green patent producer in
our sample (see Section I.E), but it also exhibits high measured regulatory ex-
posure. This latter feature stems from its legacy business related to mining and
diesel engines (sample mean of CCExposureReg

Caterpillar = 0.09, in the top decile of
CCExposureReg). We do not find that firms with larger physical exposure gen-
erate more green patents (column (4)). In columns (5) and (6), we continue to
find that CCExposure predicts green patenting if we replace #Green Patents
with an indicator for whether a firm created green patents (column (5)) or with
the green patents ratio as in Cohen, Gurun, and Nguyen (2021) (column (6)).
Column (7) shows that high-exposure firms are not simply more innovative
in general; the estimates indicate fewer, not more, nongreen patents by firms
with high values of CCExposure.

Table IA.XIII shows that the results in Tables VII and VIII are robust to
controlling for carbon emissions. This finding demonstrates that our measures
contain additional information beyond what is reflected in emissions (the sam-
ple size is reduced in the panel due to the lower number of observations on
carbon emissions).

In Table IA.XIV, a series of alternative specifications continue to show that
CCExposure predicts green-tech job creation. In column (1), we dispel concerns
related to strategic disclosure in earnings calls (Mayew (2008), Hassan et al.
(2019)). One specific potential concern is that managers may want to distract
attention from poor performance and strategically “cheap talk” about climate
change (Hail, Kim, and Zhang (2021)). Following Hassan et al. (2019), we test
for this possibility by adding a control for the firm’s overall sentiment (share
of positive and negative tone words across the earnings call transcript) and
two proxies for recent performance.30 The estimates show that our results are
robust to adding these controls. In column (2), we restrict the sample to firm-
years within the BG database to ensure that the results are unaffected by
how we classify the firms missing in BG; recall that we assume no green-tech
job creation for these firms (BG may systematically miss scraping some firms’
postings). In column (3), exposure is based on a count of bigrams in the Q&A
session, that is, the part of the call that is less under management control and
in turn less subject to concerns of strategic (non)disclosure and greenwashing.
In column (4), CCSentimentPos strongly predicts next-year green-tech job cre-
ation, while CCSentimentNeg is insignificant (albeit marginally). In column (5),
CCRisk is positively associated with green-tech job creation. In column (6) to

30 We measure performance as the precall stock return accumulated over the seven days prior
to the earnings call and the earnings surprise. Earnings surprise is defined as earnings per share
before extraordinary items minus earnings per share in the same quarter of the prior year, divided
by the price per share at the beginning of the quarter (Ball and Bartov (1996)). We average the
two variables across the earnings calls of a firm-year to obtain an annual measure.
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(9), results hold if we estimate OLS specifications to address potential concerns
with the Poisson specification. We estimate models with and without industry-
year fixed effects, and with #Green-Tech Jobs or Log(1 + #Green-Tech Jobs). We
also provide estimates that replace the log1plus version of CCExposure with
an unlogged version. Table IA.XV applies the same alternative specifications
to green patenting. The estimates show that our results continue to hold.

Table IA.XVI reports regressions for the subsamples in which the exposure
measures that rely exclusively on the initial bigrams indicate zero exposure. In
these estimations, our exposure measures continue to predict green outcomes.
This finding corroborates the performance gain from using more subtle and
less visible climate change bigrams, as the estimation is identified from the
bigrams obtained through the keyword search algorithm.

Finally, Table IA.XVII documents the covariate balance of observations that
are either included or excluded from the estimations in Tables VII and VIII.
Excluded firm-years exhibit lower climate change exposure, implying that our
estimates are obtained within the set of firms for which climate change issues
are most pressing.

B. Financial Market Outcomes

B.1. Options Market Risks and Risk Premiums

Firms with higher regulatory exposure are more strongly affected by future
regulations to combat global warming, and uncertainty over such regulations
should be priced in the options market (Kelly, Pastor, and Veronesi (2016)).
Likewise, climate opportunities are risky, with plenty of uncertainty surround-
ing investments in green technologies or renewable energy. We therefore test
whether climate change exposure is related to option-implied risks and risk
premiums. We consider three sets of risk variables. First, to quantify general
risks, we use three implied central moments, namely, variance (IVar), skew-
ness (ISkew), and kurtosis (IKurt). Second, we calculate two heuristic mea-
sures quantifying the relative expensiveness of protection against left (SlopeD)
and right (SlopeU ) tail risks.31 Third, we use the variance risk premium (VRP)
to measure the premiums that investors are willing to pay to hedge against
general climate-related variance risk (or uncertainty, as suggested in Bali and
Zhou (2016)). Using each of these variables, we run the regression:

OI Outcomei,t+1 = αi + β Log(1 + CCExposurei,t ) + γ Xi,t + δ j × δt + εi,t+1, (6)

where OI Outcomei,t+1 is an option-implied measure for firm i measured at the
end of quarter t (i.e., a conditional expectation of some quantity over the period

31 The variable SlopeD increases when the cost of left-tail protection goes up (relative to the cost
of at-the-money [ATM] options), and SlopeU decreases (becomes more negative) when the relative
cost of obtaining upside growth increases. Note that Sautner et al. (2022) define their measure of
SlopeU as minus one times SlopeU .
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t + 1), and CCExposurei,t is firm i’s climate change exposure in quarter t.32 The
vector Xi,t includes the same controls as before (delayed to be available in the
third quarter after the annual close of the fiscal period). The variables δ j and
δt represent industry and year fixed effects, respectively. We cluster standard
errors at the industry-year level.

Table IX, Panel A, documents that CCExposure is strongly linked to forward-
looking risks and risk premiums. In columns (2) and (3), CCExposure predicts
a more negatively skewed return distribution (ISkew) and fatter tails (IKurt).
Furthermore, tail exposure is more costly for firms with higher climate change
exposure. More specifically, downside protection in column (4) (positive and sig-
nificant coefficient on SlopeD) and upside potential in column (5) (negative and
significant coefficient on SlopeU ) become more expensive when CCExposure
is higher. In terms of magnitudes, the effects are strongest in column (3) for
IKurt. A one-standard-deviation change in CCExposure is associated with a
change in IKurt equivalent to 7% of its standard deviation. The effects for
SlopeD and SlopeU are 4.5% and 4.1%, respectively.

The three remaining panels consider the topic-based measures. Earnings
calls should contain more discussions of climate-related opportunities if a firm
is well positioned for the growth potential arising from climate change. The
realization of these opportunities could lead to large gains if successful and to
large losses if unsuccessful. Investors may in turn trade in the options market
to reflect the two-sided effects of climate opportunities. Panel B confirms this
intuition: the tail effects for CCExposureOpp in columns (4) and (5) are similar
compared to the corresponding estimates in Panel A. The magnitude of a one-
standard-deviation increase in CCExposureOpp is 4.3% for SlopeD and 3.9%
for SlopeU , respectively. Thus, it is not only the case that options are more
expensive on both tails if climate opportunities are higher, but also that the
cost of upside potential grows faster than the cost of downside crash protection.
The link between CCExposureOpp and VRP in column (6) demonstrates that
the wedge between the implied and “historically fair” price of out-of-the-money
(OTM) calls increases with opportunity exposure. Thus, investors are ready to
pay an extra (volatility) premium when buying options on stocks with climate-
related upside potential. However, the effect is small in magnitude and only
marginally significant.

In Panel C, the pattern for CCExposureReg is similar to that for
CCExposureOpp, though the magnitudes are smaller. While the right-tail op-
tion expensiveness increases by 2.6% of its standard deviation (i.e., SlopeU
diminishes) for a one-standard-deviation change in CCExposureReg, the crash
protection grows by 2.3%. This confirms our earlier evidence that some firms
with high regulatory exposure face downside risks and upside potential due to

32 When computing quarterly versions of our measures, we encounter the issue that any specific
earnings call in a year might not discuss climate change, even though the conversation turns to
the issue in surrounding calls. These incidental gaps in the quarterly data (where the measured
CCExposure = 0) do not reflect business realities. Therefore, we preprocess the quarterly climate
change exposure following a method outlined in Sautner et al. (2022), which exponentially smooths
each metric for each firm with a half-life of three quarters.
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Table IX
Forward-Looking Risk Measures and Climate Change Exposure

Measures
This table reports regressions that relate forward-looking risk measures to the climate change
exposure measures. Regressions are estimated at the firm-quarter level. IVar is implied vari-
ance, ISkew is implied skewness, IKurt is implied kurtosis, SlopeD and SlopeU are implied
volatility slopes on the left and right of the distribution, and VRP is the variance risk pre-
mium. Construction of the option-implied measures is detailed in Section II of the Internet Ap-
pendix. CCExposure, CCExposureOpp , CCExposureReg, and CCExposurePhy are defined as in pre-
vious tables. The regressions control for Log(Assets), Debt/Assets, Cash/Assets, PP&E/Assets,
EBIT/Assets, CAPEX/Assets, and R&D/Assets (all in t). The economic effect is computed as the
effect of a one-standard-deviation change in the exposure variable of interest relative to the stan-
dard deviation of the dependent variable (in %). We use the within-fixed-effect standard deviation.
Standard errors, clustered at the industry-year level, are in parentheses. Table A.1 defines all
variables in detail. *p < 0.1; **p < 0.05; ***p < 0.01.

IVari,t+1 ISkewi,t+1 IKurti,t+1 SlopeDi,t+1 SlopeUi,t+1 VRPi,t+1
(1) (2) (3) (4) (5) (6)

Panel A: CCExposure

Log(1 + CCExposurei,t ) −0.002 −0.049∗∗∗ 0.303∗∗∗ 0.033∗∗∗ −0.026∗∗∗ 0.003
(0.005) (0.009) (0.049) (0.007) (0.006) (0.002)

N 42,093 42,093 42,093 42,093 42,093 42,089
Adj. R2 0.424 0.140 0.349 0.231 0.236 0.094
Economic Effect, % −0.42 −4.57 7.01 4.46 −4.14 0.89

Panel B: CCExposureOpp

Log(1 + CCExposureOpp
i,t ) 0.004 −0.053∗∗∗ 0.403∗∗∗ 0.048∗∗∗ −0.037∗∗∗ 0.006∗

(0.009) (0.012) (0.067) (0.011) (0.010) (0.003)
N 42,093 42,093 42,093 42,093 42,093 42,089
Adj. R2 0.424 0.140 0.348 0.231 0.236 0.094
Economic Effect, % 0.56 −3.27 6.18 4.30 −3.91 1.19

Panel C: CCExposureReg

Log(1 + CCExposureReg
i,t ) −0.007 −0.075∗∗∗ 0.453∗∗∗ 0.054∗∗ −0.053∗∗∗ 0.005

(0.014) (0.024) (0.146) (0.027) (0.019) (0.008)
N 42,093 42,093 42,093 42,093 42,093 42,089
Adj. R2 0.424 0.139 0.346 0.230 0.235 0.094
Economic Effect, % −0.46 −2.19 3.28 2.28 −2.64 0.47

Panel D: CCExposurePhy

Log(1 + CCExposurePhy
i,t ) −0.033 −0.083 1.336∗∗∗ 0.145∗∗∗ −0.175*∗∗ −0.012

(0.020) (0.059) (0.319) (0.048) (0.048) (0.011)
N 42,093 42,093 42,093 42,093 42,093 42,089
Adj. R2 0.424 0.139 0.347 0.230 0.236 0.094
Economic Effect, % −1.02 −1.13 4.51 2.85 −4.06 −0.52

(Continued)
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Table IX—Continued

Model OLS OLS OLS OLS OLS OLS

Sample S&P500 S&P500 S&P500 S&P500 S&P500 S&P500
Controls Yes Yes Yes Yes Yes Yes
Industry × Year Fixed Effects Yes Yes Yes Yes Yes Yes
Dep. Variable: Mean 0.176 −0.571 4.678 0.317 −0.101 0.042
Dep. Variable: STD 0.199 0.453 1.823 0.312 0.265 0.142

their green innovation activity. In Panel D, the effects for CCExposurePhy are
similar to those of the other measures.33

Overall, climate change exposure is priced in the options market. Consider-
ing all the evidence, stocks with higher exposure have probability mass shifted
to the tails of the distribution, making crash protection and upside potential
relatively more expensive. Obtaining protection and upside growth potential
comes at a premium, which increases more strongly for firms facing higher op-
portunities. We acknowledge that the effect magnitudes are modest and hardly
tradeable after transaction costs.

B.2. Cross Section of Stock Returns

Climate change exposure is related to risks and risk premiums in the options
market. Consequently, systematic risk related to CCExposure may be associ-
ated with a risk premium in the cross section of returns. That said, testing
for the pricing effects of a climate change exposure factor, labeled CCEXPO-
SURE, is challenging for several reasons. A conceptual challenge arises be-
cause return effects are theoretically more ambiguous to predict compared to
the risk measures. On the one hand, firms with high betas for CCEXPOSURE
should be more risky and—in expectation—earn a risk premium.34 On the
other hand, the relations may actually be the opposite, with risks gradually
getting priced in during the sample period; as risks emerge, stock prices de-
cline, implying lower realized returns. Pastor, Stambaugh, and Taylor (2021)
illustrate this difference between ex ante and ex post returns. An estimation
challenge arises because CCExposure reflects the attention devoted to climate
topics at a point in time. This implies that the pricing of CCEXPOSURE should
vary over time, requiring the estimation of conditional risk premiums. Another

33 Our inference for the pricing of physical exposure is different from the link between hurricane
uncertainty and variance pricing in Kruttli, Roth Tran, and Watugala (2021). For example, while
we concentrate on the unconditional pricing using the expected VRP, Kruttli, Roth Tran, and
Watugala (2021) study dynamics of the realized VRP. However, these authors also conclude that,
especially in the early sample years, investors underprice variance in options of firms strongly
exposed to extreme weather events.

34 For example, such firms face higher uncertainty related to future developments in climate-
related areas, that is, their valuation should include real option value depending on the path of
climate-related technologies, regulations, or physical climate shifts.
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challenge arises because the number of assets for such tests is large relative to
the time points available for the estimation—less than 20 years of data.

With these challenges in mind, we investigate the conditional pricing of CC-
EXPOSURE in the cross section of stocks. We follow Jamilov, Rey, and Tahoun
(2021) and construct the factor as an unexpected shock to the aggregate value
of CCExposure. This involves three primary steps. First, we convert quar-
terly transcript-level values of CCExposurei,t for U.S-traded firms to a monthly
frequency by propagating the last exposure values for up to three months for-
ward (i.e., we match the month-year of each climate change exposure to the
month-year of the respective quarterly transcript). Second, we compute cross-
sectional monthly averages of CCExposurem. Third, we take the first differ-
ences in these monthly averages as a proxy for unexpected monthly shocks to
the aggregate exposure level, and use them as the CCEXPOSURE factor.35

To examine the conditional pricing of CCEXPOSURE among S&P500 firms,
we follow Gagliardini, Ossola, and Scaillet (2016, GOS), who provide a con-
ditional extension of the two-pass regression approach (Fama and MacBeth
(1973)). We use this approach as it delivers good small-sample performance
when—as in our case—the cross section is large relative to the time series.
GOS assume a linear conditional factor model for excess returns with time-
varying factor exposures and risk premiums. They model the parameters as
linear functions of lagged instruments. The factor loadings βi,m depend on
stock-specific instruments (Zi,m−1) as well as common instruments (Zm−1), and
the factor expectations only on common instruments. Under this framework,
the conditional expected return on stock i in month m is

E[Ri,m|Zi,m−1, Zm−1] = β
ᵀ
i,mλm, (7)

where the risk premium λm is the sum of the conditional factor expectation
E[Fm|Zm−1] and the process νm, estimated from the cross section of stocks. The
process νm allows the estimated risk premium to deviate from the conditional
expectation of a factor due to market imperfections for tradeable factors (Cre-
mers, Petajisto, and Zitzewitz (2013), GOS) and it also reveals an “implicit
cost” of projecting a nontradeable factor (like ours) on returns. A similar frame-
work is used, for example, in Barras and Malkhozov (2016). As in GOS, we use
as common instruments the term spread and the default spread and as the
stock-specific instrument the log of the book-to-market ratio (see Section I.G
for definitions). We estimate the time-varying components of the risk premi-
ums with the four-factor model by Carhart (1997) that is augmented with the
CCEXPOSURE factor.36

When performing the estimation, we obtain average conditional risk premi-
ums in line with expectations (risk premiums for the market, size, value, and

35 The factor is standardized to have zero mean and annual volatility of 10%. Results are robust
to using the residuals from an AR(1) process fitted to the monthly exposure series, as implemented
in Jamilov, Rey, and Tahoun (2021) (the resulting factors are almost perfectly correlated). However,
fitting an AR(1) process may introduce look-ahead bias.

36 The factor is essentially orthogonal to the other factors, with all unconditional correlations
being smaller than 0.05. The results are robust to using three- and five-factor models.
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Table X
Climate Change Exposure Factor: Components of F and ν

This table reports the estimated annualized components of F and ν for the four-factor Carhart
(1997) model augmented by a CCEXPOSURE factor. The estimation is based on the conditional
framework by Gagliardini, Ossola, and Scaillet (2016). The factor is constructed as the monthly
change in the cross-sectional average of CCExposure across U.S.-traded sample firms. The factor
is standardized to have zero mean and an annual volatility of 10%. All instruments are centered
and standardized in the time series. The common instruments are the default spread and the
term spread, and the firm-specific instrument is the log of the book-to-market ratio. *p < 0.1;
**p < 0.05; ***p < 0.01.

F SE(F ) ν SE(ν)
Factors Instruments (1) (2) (3) (4)

Market Constant 8.9838∗∗∗ 3.4981 2.3908∗∗∗ 0.7110
Default Spread −1.0201 5.4550 2.4676∗∗∗ 0.8715
Term Spread −1.9715 3.3962 1.4489∗∗ 0.6705

SMB Constant 2.3669 1.9164 2.6523∗ 1.3459
Default Spread 2.5406 2.0404 −1.3983 1.0227
Term Spread 2.1356 1.8985 −4.6391*** 0.9302

HML Constant −2.1553 2.0893 −3.5959*** 1.0965
Default Spread −3.6834 3.9437 3.7360∗∗∗ 0.8545
Term Spread 4.8748∗∗ 2.2504 −0.0444 0.8434

MOM Constant 1.3199 3.5668 7.2011∗∗∗ 1.6444
Default Spread −14.359* 8.2567 7.8356∗∗∗ 1.7552
Term Spread 2.4766 2.9728 −0.6825 1.2843

CCEXPOSURE Constant −0.0032 2.3008 3.7273∗∗∗ 1.1654
Default Spread 0.0805 2.7644 3.1262∗∗∗ 1.0855
Term Spread −0.2941 2.6282 −0.1834 0.9978

momentum factors are 11.4%, 5.0%, −5.8%, and 8.5% per annum (p.a.), respec-
tively). The CCEXPOSURE premium is positive, on average (3.7% p.a.), and
we obtain positive point estimates for most months. More importantly, the risk
premium is not constant over time, and we reject the hypotheses that its two
components are constant (p-values of 0.0137 and 0.0001, respectively).

In Table X, we report the estimated annualized components of the risk pre-
mium λm, that is, the estimates of F and ν. Similar to the results in GOS, most
of the action for the risk premiums comes through the cross-sectional compo-
nent ν. For CCEXPOSURE, ν has a positive unconditional mean (constant of
3.73%) and a positive link to the default spread (3.13%)—both are highly sig-
nificant. This indicates that stocks with high exposure to the CCEXPOSURE
factor are expected to earn higher returns, especially when market-wide de-
fault risk increases.

The time series of the estimated risk premium on CCEXPOSURE is depicted
in Figure 4. The series illustrates significant variability over time, with a large
spike around the financial crisis. Further tentative interpretations indicate a
temporary spike around the time of Hurricane Sandy (October 2012) and the
Doha Climate Summit (November 2012). Another temporary spike occurs just
after the Paris Agreement (December 2015). Considering the most recent five
years, the risk premium was lowest around the time President Trump took
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Figure 4. Risk premium on the climate change exposure factor. This figure shows the time
series of the risk premium on the CCEXPOSURE factor, estimated together with the four-factor
Carhart (1997) model using the conditional framework of Gagliardini, Ossola, and Scaillet (2016).
The factor is constructed as the monthly change in the cross-sectional average of CCExposure
across U.S.-traded sample firms. The factor is standardized to have zero mean and an annual
volatility of 10%. (Color figure can be viewed at wileyonlinelibrary.com)

office (January 2017); it gradually increased thereafter with a drop around the
onset of the COVID pandemic.37

We emphasize that our objective is not to create an ultimate climate factor
to be added to the factor zoo (Feng, Giglio, and Xiu (2020)), but instead to show
that attention to climate topics in earnings calls is linked to systematic risk,
with shocks to such attention potentially being priced in the cross section (fol-
lowing a narrative as in Shiller (2017)).

VI. Conclusion

In this paper, we introduce a new method that identifies firm-level climate
change exposure from word combinations signaling climate change conver-
sation in earnings conference calls. As these calls reflect the demand side
(analysts) and the supply side (management) of a “market for information,”

37 As in the previous applications, we estimate the risk premiums separately by topic. The topic-
based premiums are on average positive, but demonstrate distinct time-series patterns. For exam-
ple, when the physical risk premium goes up, the opportunity risk premium tends to go down. We
do not want to overemphasize the topic-based differences here, as our framework uses the same
set of instruments for all topic-based factors.

https://onlinelibrary.wiley.com
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our measures reflect the combined views of key stakeholders about a firm’s
climate change exposure. Furthermore, earnings calls are largely forward-
looking; while analysts review past results, they also spend much of their time
probing management about future plans (Huang et al. (2018)).

Our measures build on recent work that identifies earnings calls as a source
for identifying the various risks and opportunities that firms face over time. We
adjust the approach of this prior work along several critical dimensions, allow-
ing us to capture aspects of both the opportunities and the (physical and reg-
ulatory) risks associated with climate change. For this purpose, we adapt the
machine-learning keyword discovery algorithm proposed by King, Lam, and
Roberts (2017) to produce several sets of climate change bigrams. Rather than
choosing a training library, we start with a short list of initial bigrams that
most experts would agree are related to climate change. Our exposure mea-
sures capture the proportion of the earnings call related to climate change top-
ics. These measures are available for a global sample of more than 10,000 firms
covering the period 2002 to 2020. We demonstrate that our measures are help-
ful in predicting important real outcomes related to the net-zero transition,
notably, green-tech growth and green patenting. We also document that the
measures contain information that is priced in the options and equity markets.
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Appendix A

.

Table A.1
Variable Definitions

Variable Years Definition

CCExposure 2002 to 2020 Relative frequency with which bigrams related to
climate change occur in the transcripts of earnings
conference calls. We count the number of such
bigrams and divide by the total number of bigrams
in the transcripts. Source: Self-constructed.

CCExposureOpp 2002 to 2020 Relative frequency with which bigrams that capture
opportunities related to climate change occur in the
transcripts of earnings conference calls. We count
the number of such bigrams and divide by the total
number of bigrams in the transcripts. Source:
Self-constructed.

(Continued)
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Table A.1—Continued

Variable Years Definition

CCExposureReg 2002 to 2020 Relative frequency with which bigrams that capture
regulatory shocks related to climate change occur in
the transcripts of earnings conference calls. We
count the number of such bigrams and divide by the
total number of bigrams in the transcripts. Source:
Self-constructed.

CCExposurePhy 2002 to 2020 Relative frequency with which bigrams that capture
physical shocks related to climate change occur in
the transcripts of earnings conference calls. We
count the number of such bigrams and divide by the
total number of bigrams in the transcripts. Source:
Self-constructed.

CCExposureQ&A 2002 to 2020 Relative frequency with which bigrams related to
climate change occur in the Q&A session part of
transcripts of earnings conference calls. We count
the number of such bigrams and divide by the total
number of bigrams in the Q&A session. Source:
Self-constructed.

CCSentimentPos 2002 to 2020 Relative frequency with which bigrams related to
climate change are mentioned together with
positive tone words that are summarized by
Loughran and McDonald (2011) in one sentence in
the transcripts of earnings conference calls. We
count the number of such bigrams and divide by the
total number of bigrams in the transcripts. Source:
Self-constructed.

CCSentimentNeg 2002 to 2020 Relative frequency with which bigrams related to
climate change are mentioned together with the
negative tone words that are summarized by
Loughran and McDonald (2011) in one sentence in
the transcripts of earnings conference calls. Source:
Self-constructed.

CCRisk 2002 to 2020 Relative frequency with which bigrams related to
climate change are mentioned together with the
words “risk” or “uncertainty” (or synonyms thereof)
in one sentence in the transcripts of earnings
conference calls. We count the number of such
bigrams and divide by the total number of bigrams
in the transcripts. Source: Self-constructed.

CCExposure10K 2002 to 2020 Climate change exposure constructed by applying our
algorithm to the “Management Discussion and
Analysis” (MD&A) section in firms’ annual 10K
filings. Source: Self-constructed.

Total Emissions 2004 to 2020 Sum of annual Scope 1 and Scope 2 carbon emissions
(metric tons of CO2) at the end of the year. Scope 1
emissions are caused by the combustion of fossil
fuels or releases during manufacturing. Scope 2
emissions originate from the purchase of electricity,
heating, or cooling. Source: Trucost.

(Continued)
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Table A.1—Continued

Variable Years Definition

WSJ CC News Index 2002 to 2017 Time-series index of the fraction of the Wall Street
Journal dedicated to the topic of climate change.
Source: Engle et al. (2020).

#Green-Tech Jobs 2007, 2010 to
2020

Number of job postings for disruptive green-tech jobs
in a year according to the Burning Glass (BG)
database. Disruptive green-tech job postings relate
to jobs in one of four climate-related technology
areas identified by Bloom et al. (2021) as having
been disruptive (“hybrid vehicle electric car,”
“lithium battery,” “solar power,” and “fracking”). We
assume that no disruptive green-tech job has been
posted if a firm-year is not included in the BG
database. Source: Bloom et al. (2021) and BG.

I(Green-Tech Jobs) 2007, 2010 to
2020

Indicator equal to one if #Green − Tech Jobs is
positive, and zero otherwise. Source: Bloom et al.
(2021) and BG.

Green-Tech Ratio 2007, 2010 to
2020

Number of job postings for disruptive green-tech jobs
relative to the total number of all disruptive job
postings. Set to zero if the number of disruptive job
postings is zero. Source: Bloom et al. (2021) and BG.

#Nongreen-Tech Jobs 2007, 2010 to
2020

Number of job postings for nongreen disruptive tech
jobs in a year according to the BG database.
Nongreen disruptive tech job postings relate to jobs
in one of 25 climate-related technology areas
identified by Bloom et al. (2021) as having been
disruptive and are unrelated to climate change. We
assume that no nongreen disruptive tech job has
been posted if a firm-year is not included in the BG
database. Source: Bloom et al. (2021) and BG.

#Green Patents 2002 to 2019 Number of green patents obtained in a year according
to the Google Patents (GP) database. To identify
“green” patents, we follow Cohen, Gurun, and
Nguyen (2021) and apply the OECD classification
to identify what constitutes a patent with the
potential to address environmental problems. We
assume that no green patenting has occurred if we
are unable to identify a green patent in the GP
database for a firm-year. Source: GP.

I(Green Patents) 2002 to 2019 Indicator equal to one if #Green Patents is positive,
and zero otherwise. Source: GP.

Green Patents Ratio 2002 to 2019 Number of green patents (#Green Patents) relative to
the total number of patents. Set to zero if the
number of total patents is zero. Source: GP.

#Nongreen Patents 2002 to 2019 Number of nongreen patents obtained in a year
according to the GP database. We assume that no
patenting has occurred if we are unable to identify
a nongreen patent in the GP database for a
firm-year. Source: GP.

Assets 2002 to 2020 Total assets (in $ millions) at the end of the year
(Compustat item AT). Winsorized at the 1% level.
Source: Compustat NA/Global

(Continued)
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Table A.1—Continued

Variable Years Definition

Debt/Assets 2002 to 2020 Sum of the book value of long-term debt (Compustat
data item DLTT) and the book value of current
liabilities (DLC) divided by total assets (Compustat
data item AT). Winsorized at the 1% level. Source:
Compustat NA/Global.

Cash/Assets 2002 to 2020 Cash and short-term investments (Compustat data
item CHE) divided by total assets (Compustat data
item AT). Winsorized at the 1% level. Source:
Compustat NA/Global.

PPE/Assets 2002 to 2020 Property, plant, and equipment (Compustat data item
PPENT) divided by total assets (Compustat data
item AT). Winsorized at the 1% level. Source:
Compustat NA/Global.

EBIT/Assets 2002 to 2020 Earnings before interest and taxes (Compustat data
item EBIT) divided by total assets (Compustat data
item AT). Winsorized at the 1% level. Source:
Compustat NA/Global

R&D/Assets 2002 to 2019 R&D expenditures (Compustat data item XRD)
divided by total assets (Compustat data item AT).
Missing values set to zero. Winsorized at the 1%
level. Source: Compustat NA/Global.

CAPEX/Assets 2002 to 2020 Capital expenditures (Compustat data item CAPX)
divided by total assets (Compustat data item AT).
Winsorized at the 1% level. Source: Compustat
NA/Global.

IVar 2002 to 2020 Implied variance of log returns computed from 30-day
out-of-the-money options following Bakshi,
Kapadia, and Madan (2003). Winsorized at the 1%
level. Source: Ivy DB OptionMetrics Volatility
Surface File.

ISkew 2002 to 2020 Implied skewness of log returns computed from
30-day out-of-the-money options following Bakshi,
Kapadia, and Madan (2003). Winsorized at the 1%
level. Source: Ivy DB OptionMetrics Volatility
Surface File.

IKurt 2002 to 2020 Implied kurtosis of log returns computed from 30-day
out-of-the-money options following Bakshi,
Kapadia, and Madan (2003). Winsorized at the 1%
level. Source: Ivy DB OptionMetrics Volatility
Surface File.

SlopeD 2002 to 2020 Slope of the implied volatility smile on the left side
from the at-the-money level (i.e., for negative
returns relative to ATM), computed as the slope
coefficient from regressing implied volatilities of
out-of-the-money puts on the respective option
deltas (and a constant). The variable is computed
from 30-day options. Winsorized at the 1% level.
Source: Ivy DB OptionMetrics Volatility Surface
File.

(Continued)
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Table A.1—Continued

Variable Years Definition

SlopeU 2002 to 2020 Slope of the implied volatility smile on the right side
from the at-the-money level (i.e., for positive
returns relative to ATM), computed as the slope
coefficient from regressing implied volatilities of
out-of-the-money calls on the respective option
deltas (and a constant). The variable is computed
from 30-day options. Winsorized at the 1% level.
Source: Ivy DB OptionMetrics Volatility Surface
File.

VRP 2002 to 2020 Variance risk premium computed as the difference
between the implied variance of log returns (IVar)
and the realized variance of daily log returns over a
historical monthly window. Winsorized at the 1%
level. Source: Ivy DB OptionMetrics Volatility
Surface File for options data and CRSP for daily
returns.
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