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Abstract

We examine the predictive value of El Niño and La Niña weather episodes for

the subsequent realized variance of 16 agricultural commodity prices. To this

end, we use high-frequency data covering the period from 2009 to 2020 to

estimate the realized variance along realized skewness, realized kurtosis,

realized jumps, and realized upside and downside tail risks as control vari-

ables. Accounting for the impact of the control variables as well as spillover

effects from the realized variances of the other agricultural commodities in our

sample, we estimate an extended heterogeneous autoregressive (HAR) model

by means of random forests to capture in a purely data-driven way potentially

nonlinear links between El Niño and La Niña and the subsequent realized

variance. We document such nonlinear links, and that El Niño and La Niña

increase forecast accuracy, especially at longer forecast horizons, for several of

the agricultural commodities that we study in this research.

KEYWORD S

agricultural commodities, El Niño and La Niña, forecasting, random forests, realized
variance

1 | INTRODUCTION

It is well established that the so-called El Niño-Southern
Oscillation (ENSO), an irregularly periodic variation in
winds and sea surface temperatures over the tropical east-
ern Pacific Ocean, tends to influence the climate of much

of the tropics and subtropics (Trenberth et al., 2007). The
warming phase of sea temperature is known as El Niño
and the corresponding cooling phase as La Niña. Each of
these two phases can last several months, and usually,
they occur every few years with intensities varying per
phase. Understandably, the ENSO is an important source
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of inter-annual variability in weather and climate patterns
in many parts of the world (Shabbar & Khandekar, 1996).
Not surprisingly, quite a few recent studies, following the
early work of Brunner (2002), have highlighted the signifi-
cant impact of the ENSO on prices of agricultural com-
modities (see, for example, Bastianin et al., 2018; Ubilava,
2012a, 2012b, 2014, 2017, 2018; Ubilava & Holt, 2013).1

All the above mentioned studies, however, have
analyzed the impact of the ENSO on the first moment of
agricultural commodity prices and/or returns and have
primarily been in-sample-based structural analyses. An
exception is the study by Ubilava (2018), who reports the
results of an out-of-sample forecasting experiment based
on nonlinear (smooth-transition autoregressive) models.
Against this backdrop, the objective of our research is to
shed light on the ability of the ENSO to forecast the real-
ized variance of the returns of agricultural commodity
prices, where we separate out the El Niño and La Niña
phases. Economically, forecasting realized variance is of
paramount importance because agricultural commodities
have experienced enormous price swings since 2008,
resulting in both high and low volatility regimes (Greb &
Prakash, 2015). In this regard, Johnson (2011) argues that
increased volatility primarily stems from extreme weather
events (albeit factors such as the production of biofuels,
market speculation, rising demand, and declines in food
stocks cannot be ruled out). Naturally, accurate forecasts
of the volatility of movements of the prices of agricultural
commodities are of key importance for policy authorities,
who need to ensure food security, as well as for market
participants and traders, given that volatility is a key
input for investment decisions. In terms of forecasting,
the usefulness of in-sample results is limited because,
from a statistical perspective, in-sample predictability
does not necessarily translate into a good out-of-sample
forecasting performance of a specific predictor, besides
the fact that it is out-of-sample forecasting that tends to
constitute a more stringent test of the appropriateness of
an econometric model being studied and a predictor being
under scrutiny (Campbell, 2008). Hence, we conduct an
out-of-sample forecasting experiment to identify the role
of the ENSO for the realized variance of returns of the
prices of 16 highly traded agricultural commodities.2

At this stage, it is important to describe the underly-
ing economic channel via which we conjecture the link
between the ENSO and the realized variance of the
returns of the agricultural commodities prices. Recent
studies (Balcilar et al., 2021; Bouri et al., 2021; Demirer
et al. 2022; Qin et al., 2020) have indicated that the ENSO
can successfully serve as an empirical proxy for the
theoretical concept of rare disaster risks, as coined by
Rietz (1988), Barro, (2006, 2009), and Gabaix (2012). The
rise of rare disaster risks associated with the ENSO is

likely to make the path of future aggregate demand
and aggregate production less predictable. Facing the
enhanced uncertainty emanating from this more intense
unpredictability, risk-averse commodity producers will
prefer to hold physical inventory when facing uncertain
aggregate demand conditions. Increases in inventories, in
turn, will increase the convenience yield for holding
physical inventory and eventually will amplify the vari-
ance of returns of agricultural commodity prices. See
Bakas and Triantafyllou (2018, 2020) for an analysis of
the implications of uncertainty shocks and uncertainty
due to pandemics for the volatility of commodity prices.

As far as the econometric model is concerned, we fore-
cast weekly realized variance (RV) using an extended ver-
sion of the heterogeneous autoregressive (HAR)-RV
model of Corsi (2009). Our extended HAR-RV model
incorporates the role of not only the El Niño and La Niña
events associated with the ENSO but also a rich array of
control variables, including cross-market RVs, realized
jumps, realized tail risks, realized skewness, and realized
kurtosis, over the sample period from 9/30/2009 to
5/13/2020. We measure RV by computing the sum of
squared 5-min intraday returns of the various agricultural
commodity prices over a week (following Andersen &
Bollerslev, 1998). In this regard, it is essential to note that
using RV to measure the variance of returns of agricul-
tural commodity prices has the advantage that we can
build our empirical analysis on an observable and
unconditional metric of “volatility” (unlike in the case of
generalized autoregressive conditional heteroscedastic
[GARCH] and stochastic volatility [SV]) models that
researchers have traditionally used to model and forecast
agricultural commodity price volatility),3 which is a latent
process. Besides this, as pointed out by McAleer and
Medeiros (2008), because intraday data contain rich infor-
mation, studying RV leads to more accurate estimates and
forecasts of (weekly) realized variance. At the same time,
our decision to study the HAR-RV model extended to
include various additional control variables is based on
much significant recent research on forecasting RV of
returns of agricultural commodity prices (see, for example,
Degiannakis et al., 2022; Luo et al., 2022; Marfatia et al.,
2022; Tian et al., 2017a, 2017b; Yang et al., 2017).4 The
popularity of the HAR-RV model stems from the fact that,
while its basic structure is rather simple, it can capture
long-memory and multi-scaling properties of the returns
of agricultural commodity RV, which have been reported
by Gil-Alana et al. (2012) and Živkov et al. (2019). In addi-
tion, the HAR-RV model, which uses RV from different
time resolutions to forecast the RV of the returns of agri-
cultural commodity prices, has a solid theoretical founda-
tion in the form of the so-called heterogeneous market
hypothesis (Müller et al., 1997) according to which
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different groups of participants who differ in their sensi-
tivity to information flows at different time horizons pop-
ulate the markets for agricultural commodities.

Econometrically, for our forecasting application, we
use a machine learning technique known as random
forests (Breiman, 2001) to compute forecasts of overall RV,
as well as “good” (weekly sum of squared positive intraday
returns) and “bad” (weekly sum of squared negative intra-
day returns) RV, given the observation made by Giot et al.
(2010) that market agents care not only about the level of
volatility but also of its nature, with traders typically
making the distinction between upside and downside
volatilities. The use of random forests in our forecasting
application has several advantages. First, in a completely
data-driven way, random forests are tailored to capture the
links between RV and an arbitrarily large number of pre-
dictors. In our forecasting experiment, we study as many as
26 predictors, given that combination of information from
predictors tends to matter in this literature (Tian et al.,
2017b). Second, random forests automatically capture not
only linear but also potential nonlinear links between RV
and El Niño and La Niña phases (which is likely to be a
pertinent feature of the data given the nonlinear evolution
of the ENSO in itself Hall et al., 2001) besides the other
predictors (Luo et al., 2022; Tian et al., 2017a), as well as
any interaction effects among the predictors. Finally,
unlike the ordinary-least-squares (OLS) technique com-
monly used to estimate HAR-RV models, random forests
always produce forecasts of RV that are non-negative.

In earlier studies on forecasting the RV of the returns
of agricultural commodity prices based on variants and
extensions of the HAR-RV model, researchers have pri-
marily used derived metrics from intraday data associated
with the price of agricultural commodities itself5; to the
best of our knowledge, ours is the first paper to analyze,
in addition, the role of weather- and climate-related risks
emanating from the ENSO in forecasting the RV of
16 important agricultural commodities using a machine
learning approach. One must realize that accurate fore-
casts of agricultural commodity prices and their RV is of
tremendous importance from the perspective of both
investors and policymakers. As pointed out by Girardi
(2015), Bruno et al. (2016), Aït Youcef (2019), and
(Ouyang & Zhang, 2020), agricultural markets have
become increasingly financialized since 2008, resulting in
increased holdings of institutional investors. In light of
this, proper modeling and forecasting of RV is required
as a key input to investment decisions, portfolio
allocation, risk management, and evaluation of hedging
performance. At the same time, because agricultural
commodities represent a major component of household
consumption, volatility of their prices is likely to have a
pronounced impact on food security, which affects

primarily the poorer part of the population (Ordu et al.,
2018). Hence, it is necessary to develop models that accu-
rately forecast the RV of the returns of agricultural com-
modity prices, such that policy institutions can prepare
for periods of large price fluctuations, and, in turn, to
design preventative policies.

We organize the remainder of our paper as follows. In
Section 2, we describe the data and methodologies used
in our empirical analysis. In Section 3, we describe our
methods. In Section 4, we summarize our empirical
results. In Section 5, we conclude.

2 | DATA

2.1 | Agricultural commodities and
realized variance

Intraday commodity futures prices are obtained from
https://www.kibot.com/. Futures data are in continuous
format: close to expiration of a contract the position is
rolled over to the next available contract provided that
activity has increased. Intraday prices are sampled at a
5-min frequency. Three groups of agricultural commodi-
ties are covered in our dataset: grains, softs, and livestock,
and, in general, are considered to fall within the category
of highly traded agricultural commodities, as identified
by the Food and Agriculture Organization (FAO) of the
United Nations (UN).6 Individual commodities along
with ticker and trading exchange are reported in Table 1.

We use the classical estimator of RV , that is, the sum
of squared intraday returns (Andersen and Bollerslev,
1998), expressed as

RVd
t ¼

XM
i¼1

r2t,i, ð1Þ

where rt,i denotes the intraday M�1 return vector and
i¼ 1,…,M is the number of intraday returns. We calcu-
late the weekly RV by aggregating the daily RVd

t over a
trading week (i.e., from Monday to Friday):

RVt ¼
XFriday

i¼Monday

RVi
t ð2Þ

Table 2 reports summary statistics of the weekly RV
for the 16 agricultural commodities in our sample. The
start and end dates of our sample period are 9/30/2009
and 5/13/2020. After matching all dates across the 16
commodities, which are trading over different exchanges
and different features, for example, open out cry versus
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globex, we are left with 459 observations.7 Figure 1 plots
the realized variances. A noticeable feature of the
realized variances, a feature that is well-known from the
volatilities of other financial-market returns data, is that
the time series display occasional large peaks.

We also study whether El Niño and La Niña events
help to predict downward (“bad,” RVB) and upward
(“good,” RVG) realized variance (that is, the semi-
variances). The bad and good RV are statistics that cap-
ture a potential sign asymmetry in the realized-variance
process. Like Barndorff-Nielsen et al. (2010), we estimate
bad and good realized variance as follows:

RVBt ¼
XM
i¼1

r2t,i1½ðrt,iÞ<0�, ð3Þ

RVGt ¼
XM
i¼1

r2t,i1½ðrt,iÞ>0�, ð4Þ

where 1 denotes the indicator function.

2.2 | ENSO data

As far as the weekly observations on the measure of the
ENSO intensity are concerned, we use sea surface tem-
perature anomalies (SSTA) for the “Niño 3.4” region—
the region between 5�N–5�S and 120�W–170�W. While
other measures of ENSO intensity, such as the Southern
Oscillation Index (SOI) or the Equitorial SOI (EQSOI)
anomalies, have sometimes been used in the literature,
the use of SSTA is more prevalent (Atems & Sardar, 2021;
Atems et al., 2020) and is in line with the metric of the
ENSO used by Ubilava (2018) in his forecasting exercise.
This metric of the ENSO intensity also renders it possible
to perform the analysis at a high frequency, that is,
weekly, because SOI and EQSOI are only available as
monthly data for the period of our empirical exercise.
The data on weekly SSTA come from the National
Weather Service Climate Prediction Center (National
Oceanic and Atmospheric Administration [NOAA]).8

An El Niño event is defined as three consecutive
months of SSTA of 0.5�C (0.9�F) or higher, for which we
define a dummy that take on a value of 1 during such
months, and 0 otherwise. A La Niña episode, in turn, is
defined as three consecutive months of SSTA of �0:5 ∘C
(�0:9 ∘ F) or less. Again, we define a dummy that take on
a value of 1 in such months, and 0 otherwise.9 Finally, we
multiply the SSTA data with these dummies to create two
series that separate out the El Niño and La Niña events,
both of which we consider in our forecasting analyses.
Figure 2 plots the resulting El Niño and La Niña events.

TABLE 2 Summary statistics of realized variances

Commodity Ticker Mean Median Max

Soybean oil BO 0.0008 0.0007 0.0044

Corn C 0.0012 0.0009 0.0122

Cocoa CC 0.0012 0.0011 0.0071

Cotton CT 0.0013 0.0009 0.0134

Feeder cattle GF 0.0006 0.0005 0.0090

Lean hogs HE 0.0016 0.0009 0.0405

Coffee KC 0.0017 0.0014 0.0094

Lumber LB 0.0021 0.0017 0.0135

Live cattle LE 0.0005 0.0004 0.0076

Oats O 0.0028 0.0023 0.0176

Orange juice OJ 0.0022 0.0018 0.0089

Rough rice RR 0.0013 0.0010 0.0236

Soybean S 0.0008 0.0006 0.0137

Sugar SB 0.0017 0.0015 0.0106

Soybean meals SM 0.0011 0.0009 0.0127

Chicago wheat W 0.0015 0.0013 0.0133

TABLE 1 Commodity futures traded in the United States

(sectors, tickers, and exchanges)

Commodity Ticker Exchange

Grains

Corn C CME Group

Soybeans S CME Group

Chicago wheat W CME Group

Soybean oil BO CME Group

Soybean meal SM CME Group

Rough rice RR CME Group

Oats O CME Group

Softs

Coffee KC ICE

Cotton CT ICE

Sugar SB ICE

Cocoa CC ICE

Lumber LB CME Group

Orange juice OJ ICE

Livestock

Feeder cattle GF CME Group

Lean hogs HE CME Group

Live cattle LE CME Group

Abbeviations: CME, Chicago Mercantile Exchange Group; ICE,
Intercontinental Exchange.
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3 | METHODS

3.1 | Random forests

In order to study the predictive role of extreme
weather events (that is, in our case, El Niño and La
Niña events) for the realized variance of the returns
of agricultural commodity prices, we use random
forests. Random forests have the advantage that they
account in a completely data-driven way for potential

nonlinear links between realized variance and El
Niño and La Niña events. In addition, random forests
account for potential interaction effects between
predictors, and they provide a natural modeling
platform the number of predictors is relatively large.
In our case, the number of predictors is relatively large
because we account for the potential interconnected-
ness of agricultural commodity markets in the form of
spillover effects of realized variance from other agricul-
tural commodities.

FIGURE 1 Realized variances
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The nucleus of a random forest is an individual
regression tree (for a textbook exposition, see the text-
book by Hastie et al. (2009); our notation follows the
notation they use in their textbook). The basic idea of a
regression tree, T, is to form branches that partition the
space of predictors, x¼ðx1, x2,…Þ, into l non-overlapping
regions, Rl. At the top level, a regression tree selects the
first partition by searching across the set of predictors
and corresponding potential partitioning points, p, to
form two half-planes, R1ðs, pÞ¼ fxsjxs ≤ pg and R2ðs, pÞ¼
fxsjxs > pg to find the minimum of the standard squared-
error loss objective function:

min
s, p

min
RV1

X
xs � R1 s, pð Þ

RVi�RV1
� �28<

:
þ min

RV2

X
xs � R2 s, pð Þ

RVi�RV 2
� �29=;,

ð5Þ

where the subscript i denotes those observations of real-
ized variance, RV , that belong to a half-plane (we have
dropped for convenience the time index), and RVk ¼
meanfRVijxs �Rkðs, pÞg, k¼ 1, 2 is a short-hand notation
for the half-plane-specific mean of RV . Finding the mini-
mum of the objective function defined in Equation (5)
can be achieved by searching over all combinations of s
and p, and, for any given combination, computing the
loss-minimizing half-plane-specific means of realized var-
iance. Once the solution to the minimization problem
has been found, a researcher is equipped with informa-
tion on the top-level optimal splitting predictor, its corre-
sponding optimal splitting point, and the two half-plane
specific means of realized variance (simple regression
tree has two terminal nodes).

Next, the same minimization problem as given in
Equation (5) for the top level of the regression tree is
applied to find the optimal splitting predictors and split-
ting points for the two top-level half-planes. Solving these
minimization problems gives up to two second-level opti-
mal splitting predictors along with the corresponding
optimal splitting points and four second-level region-
specific means of realized variance. Upon recursively
applying this partitioning scheme in a top-down and
binary way, one obtains an increasingly complex,
pyramid-like, hierarchical regression tree. The resulting
regression tree is grown until it reaches a maximum
number of terminal nodes set in advance by a researcher,
or the terminal nodes contain a minimum number of
observations.

Having grown a regression tree, a researcher can use
its nodes, branches, and terminal leaves to trickle down
the predictors of realized variance from the top level of
the regression tree to its terminal leaves. Depending on
which terminal leave is reached, the corresponding
region-specific mean of realized variance forms the pre-
diction of realized variance. Hence, when a regression
tree has L regions, this prediction of realized variance
simply can be computed as

T xi, fRlgL1
� �

¼
XL
l¼1

RVl1ðxi �RlÞ, ð6Þ

where 1 denotes the indicator function.
While growing a large regression tree renders it possi-

ble to form increasingly granular predictions of realized
variance, its increasingly complex hierarchical structure
eventually results in an overfitting and data-sensitivity
problem. This problem can be addressed by growing a
random forest that consists of a large number of individ-
ual regression trees (Breiman, 2001). A random forest is
grown by drawing a large number of bootstrap samples
from the data and fitting a random regression tree to
every bootstrap sample. The characteristic feature of a
random regression tree is that it uses for every splitting
step a random subset of the predictors and, in this way,
mitigates the impact of influential predictors on tree
building. Importantly, the fact that a random forest con-
sists of a large number of random trees reduces the corre-
lation of predictions obtained from the individual
random regression trees. Finally, computing the average
of the decorrelated predictions a researcher obtains from
the individual random regression trees stabilizes the
random-forest-based prediction of realized variance.

In our empirical analysis, we use the R language and
environment for statistical computing (R Core
Team, 2019), where we use the R add-on package

FIGURE 2 El Niño and La Niña events
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“randomForestSRC” (Ishwaran & Kogalur, 2007, 2021;
Ishwaran et al., 2008) to estimate random forests. We use
random forests that consist of 500 individual random
regression trees, where we set the minimum terminal
node size to five observations. Moreover, we randomly
select one third of the total number of predictors for split-
ting (which is the industry standard). We sample without
replacement in our baseline scenario, but also shall pre-
sent results for the case of sampling with replacement as
a robustness check.

3.2 | Forecasting

Bootstrapping random regression trees has the further
advantage that we can use the hold-out data of the boot-
strap (also called out-of-bag data) for testing the predic-
tive value of El Niño and La Niña events for realized
variance. The out-of-bag data are those data that are not
included in a given bootstrap sample. It follows that the
out-of-bag data, which are not used for growing the ran-
dom regression tree corresponding to a given bootstrap
sample, render it possible to form out-of-sample forecasts
of realized variance from that random regression tree.
Because we draw a large number of bootstrap samples to
grow a random forest, and any given bootstrap sample
gives us a different sample of out-of-bag data, we can
average the out-of-sample forecasts of realized variance
across the various sampled out-of-bag data. The averaged
out-of-bag forecasts form our final out-of-sample fore-
casts of realized variance.

Our approach to compute out-of-sample forecasts of
realized variance based on the bootstrap-based out-of-bag
data differs from the classic approach to use, for example,
a recursive or rolling estimation window to compute out-
of-sample forecasts. The logic underlying such a classic
approach is to estimate a forecasting model on data
included in a recursive or rolling estimation window,
then to update the data to obtain an out-of-sample fore-
cast, and finally to expand or shift the estimation window
until the end of the sample period is reached. Such a clas-
sic approach, however, most likely will fail to detect a
predictive value of El Niño and La Niña events for real-
ized variance in the case of our data. The plot of our data
in Figure 2 demonstrates that El Niño and La Niña
events are relatively rare weather events (relative to the
length of the sample period that we study) and that these
events are, in case of La Niña, mostly centered at the
beginning of our sample period. Hence, if we used a clas-
sic recursive or rolling estimation-window approach to
forecast realized variance, a forecasting model that fea-
tures La Niña events as a predictor would give, almost by
construction, forecasts that are hardly discernible from

forecasts obtained from a model that does not include La
Niña events in the vector of predictors. In contrast, using
out-of-bag data to compute out-of-sample predictions of
realized variance has the advantage that we can use all El
Niño and La Niña events, including those at the very
beginning of our sample period, to form out-of-sample
forecasts of realized variance. A forecasting experiment
based on out-of-bag data, thus, has a greater power to
recover a predictive value of El Niño and La Niña events
for forecasting the realized variance of the returns of the
agricultural commodity prices in our sample of data.

In order to formally study the predictive value of El
Niño and La Niña events for realized variance, we use
the test proposed by Clark and West (2007). In order to
implement their test, we compute the quantity
f tþh ¼ðRVtþh�dRV2

A,tþhÞ � ½ðRVtþh�dRVB,tþhÞ�ðdRVA,tþh�dRVB,tþhÞ�,
where a hat denotes a forecast or realized variance at
some forecast horizon h and the subscripts A and B
denote to competing forecasting models. We shall present
results for several short- and long-term forecast horizons
by setting h¼ 1, 4, 8, 12, 16.10 Model B is the larger model,
that is, the model that features, in our case, El Niño and
La Niña events as additional predictors of realized vari-
ance. We then regress the quantity f tþh on a constant.11

The Clark–West test rejects the null hypothesis of no dif-
ference in forecasting performance of Models A and B if
the t statistic of the constant in this regression model is
significantly positive (one-sided test; we use Newey-West
robust standard errors to study the significance of the
t statistic).

In addition, we use variants of the R2-statistic to study
fit of the estimated models. To this end, we report an in-
sample R2 statistic and an out-of-bag R2 statistic. In addi-
tion, we use the out-of-bag R2 statistic to compare the
forecasting performance of the estimated models. Specifi-
cally, we compute the out-of-bag statistic
R2
A,B ¼ 1�PðRVtþh�dRVB,tþhÞ

2
=
PðRVtþh�dRVA,tþhÞ

2
,

where we use the out-of-bag forecasts to compute the
sums. Model B (the larger model) outperforms Model A
when we observe R2

A,B >0.

3.3 | Predictors

In addition to El Niño and La Niña events, we consider
three groups of predictors. In total, our prediction model
features 26 predictors, and random forests are ideally
suited to capture the potentially complex links between
the realized variance of movements of agricultural com-
modity prices and such a relatively large number of
predictors.

Our first group of predictors consists of the current
realized variance, the monthly realized variance, RVm,
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and the quarterly, RVq realized variance. The monthly
realized variance is computed as the average realized var-
iance from period t�4 to period t�1, and the quarterly
realized variance is computed as the average realized var-
iance from period t�13 to period t�1. The predictors in
our first group form the constituent elements of the so-
called heterogeneous autoregressive realized variance
(HAR-RV) model of Corsi (2009). The HAR-RV model is
one of the most popular models in the literature on
modeling and forecasting realized variance.

Our second group of predictors consists of the real-
ized variances of the respective 15 other agricultural com-
modities. We use this group of predictors to control for
volatility spillovers across the markets for agricultural
commodities. Cross-market volatility spillovers have been
extensively studied (see, for example, Lahiani et al.,
(2013); Beckmann & Czudaj, (2014); Hernandez et al.,
(2014); Al-Maadid et al., (2017); Etienne et al., (2017);
Chen & Wang, (2018); Bonato, (2019)).

Our third group of predictors consists of other predic-
tors that have been widely studied in the literature on the
modeling of realized variance: realized jumps, JUMPS,
realized upside and downside tail risks, TRu and TRd,
and realized skewness, RSK , as well as realized kurtosis,
RKU. Following Amaya et al. (2015), we use RSK to cap-
ture the asymmetry of the returns distribution of agricul-
tural commodity prices, while RKU accounts for
extremes. We compute RSK as

RSKd
t ¼

ffiffiffiffiffi
M

p PM
i¼1rði,tÞ3

RV3=2
t

, ð7Þ

and RKU as

RKU2
t ¼

M
PM

i¼1rði,tÞ4

RV 2
t

: ð8Þ

The scaling of RSK and RKU by ðMÞ1=2 and M pro-
vides the corresponding daily skewness and kurtosis
values. Weekly realized skewness and kurtosis are
derived as weekly averages over the Monday to Friday
aggregation.

In order to calculate the realized jumps, we
utilize the formula derived by Barndorff-Nielsen and
Shephard (2004) suggesting that realized variance
converges into discontinuous (jump) and permanent
components as

lim
M!∞

RV 2
t d¼

Z t

t�1
σ2ðsÞdsþ

XNt

j¼1

k2t,j, ð9Þ

where Nt is the number of jumps within day t and kt,j is
the jump size. Equation (9) shows that RVt is a
consistent estimator of the jump contribution plus the
integrated variance

R t
t�1σ

2ðsÞds. Using the asymptotic
properties, Barndorff-Nielsen and Shephard ((2004),
(2006)) further demonstrate that

lim
M!∞

BV 2
t d¼

Z t

t�1
σ2ðsÞds, ð10Þ

where BVd
t is the daily realized bipolar variation defined

as

BVd
t ¼ μ�2

1
M

M�1

� �XM
i¼2

jrt,i�1jjri,tj ¼ π

2

XM
i¼2

jrt,i�1jjri,tj,

ð11Þ

where

μa ¼EðjZjaÞ,Z�Nð0, 1Þ, a>0: ð12Þ

Hence, using the continuous component of realized
variance, we define the consistent estimator of the pure
daily jump contribution as the following equation:

Jdt d¼RVd
t �BVd

t : ð13Þ

By applying the formal test estimator proposed
by Barndorff-Nielsen and Shephard (2006), we test
the significance of the jumps using the following test
statistic:

JTt ¼ RVd
t �BVd

t

ðvbb� vqqÞ 1
NTP

d
t

, ð14Þ

where TPd
t is the daily Tri-Power Quarticity

TPd
t ¼M

M
M�2

Γð0:5Þ
22=3Γð7=6Þ

� �XM
i¼3

jrt,ij4=3jrt,i�1j4=3jrt,i�2j4=3,

ð15Þ

which converges to Integrated Quarticity

IQd
t !

Z t

t�1
σ4ðsÞds, ð16Þ

even in the presence of jumps. We use the notation vbb ¼
π
2

� �þπ�3 and vqq ¼ 2. It should also be noted that, for
each t, JTt �Nð0, 1Þ as M!∞.
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As can be seen in Equation (13), the jump contribu-
tion to RVd

t is either positive or null. In order to avoid
obtaining negative empirical contributions, we redefine
the jump measure as (see also Zhou & Zhu, (2012)):

RJdt ¼ max ðRVd
t �BVd

t ;0Þ: ð17Þ

The weekly jump contribution is obtained as average
over the trading week (Monday to Friday) of the daily
jump contribution. Last, we consider the Hill tail risk
estimator (Hill, 1975). We consider Xt,i the set of reor-
dered intraday returns rt,i in such a way that

Xt,i ≥Xt,j for i< j: ð18Þ

The Hill positive tail risk estimator (that is, our pre-
dictor TRu) is then defined as

Hup
t ¼ 1

k

Xk
j¼1

lnðXt,iÞ� lnðXt,kÞ ð19Þ

and the negative tail risk estimator (our predictor TRd) as

Hdown
t ¼ 1

k

Xn
j¼n�k

lnðXt,iÞ� lnðXt,n�kÞ ð20Þ

where k the observation denoting the chosen α tail inter-
val. We calculate the weekly tail risk as usual by averag-
ing the daily tail risk over the Monday–Friday
trading week.

4 | EMPIRICAL RESULTS

In order to illustrate the mechanics of a regression tree,
we begin our empirical analysis by presenting in the
upper left panel of Figure 3 an example of a stylized
regression tree estimated on data for soybean oil (BO),
where the forecast horizon is h¼ 1. The regression tree is
particularly simple because it features only three levels
(in addition to the top level).

The example regression tree uses as its top-level split-
ting variable the realized monthly variance RVm, where
the optimal splitting point is shown next to the arrows.
The arrow that points to the left applies in case the real-
ized monthly variance takes on a value smaller than the
splitting point. The arrow points in the direction of the
lagged realized variance, RVm, which in this example is
one of the second-level splitting variables. The arrow that
points in the right direction applies in case the realized
monthly variance, RVm, exceeds the splitting point. In
this case, the arrow points in the direction of El Niño,
which is used as the other second-level splitting variable.

For the optimal half-planes identified for the two
second-level splitting variables, the third-level splitting
variables and the third-level splitting points are identi-
fied. In this example, the third-level splitting variables
are the realized variance of oats (O), the realized quar-
terly realized variance of BO (RVq), and the downward
tail risk. In the left-hand branch of the tree, the realized
variance of oats is used twice as a splitting variable,
which one is the relevant one depends on whether the
realized variance of soybean oil assumes a value above or
below its second-level splitting value. Hence, this exam-
ple nicely illustrates the potentially complicated “path-
dependency” that arises due to the hierarchical structure
of a regression tree.

Finally, the regression tree in this stylized example
reaches its terminal nodes, which are shown as green-
colored cells in the figure, where the number of observa-
tions associated with a terminal node is also shown in
the figure. Summing up across the terminal nodes gives
the number of observations that are assigned to the vari-
ous terminal nodes (that is, 72þ28þ68þ :::þ1¼ 272).
The observations that are trickled down to the terminal
nodes are the out-of-bag data, which for sampling with-
out replacement are sampled using a 0.632 bootstrap of
the total number of observations.

The upper right panel of Figure 3 plots the cumulated
error rate (in this example, for soybean oil) implied by a
random forest as a function of the number of random
regression trees. The key point to take home from the plot
is that the cumulated error rate attains a bottom plateau
way before the maximum number of trees is reached.
Hence, our decision to set the maximum of random regres-
sion trees that form a random forest to 500 should suffice
to capture the key properties of the data.

The middle and lower panels of Figure 3 plot exam-
ples of partial dependence functions. The partial depen-
dence functions in the two middle panels visualize the
dependence of the realized variance of soybean oil at a
forecast horizon of h¼ 1 on El Niño (right-hand panel)
and La Niña (left-hand panel) periods. Similarly, the
lower panels plot partial dependence function for the
realized variance of cocoa, in this example for a forecast
horizon of h¼ 8. The thin red lines are the smoothed
plus/minus two-standard errors bands. The partial
dependence functions illustrate a clear nonlinear depen-
dence of the realized variance in the case of soybean oil
on El Niño events and on La Niña events in the case of
cocoa. The realized variance is more or less insensitive to
small realizations of the two extreme weather events and
starts increasing (decreasing) as an El Niño (a La Niña)
weather event becomes more pronounced. At high reali-
zations of El Niño and La Niña, in turn, the partial
dependence functions tend flatten again. The partial
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dependence functions further show that the data do not
support a nonlinear dependence of the realized variance
on El Niño and La Niña events in all cases. In the plotted
example, the partial dependence function with respect to
La Niña events is more or less flat in the case of soybean
oil, while the partial dependence function of the realized
variance of cocoa with respect to El Niño events shows a
marked albeit insignificant U-shaped pattern.

Table 3 informs about the fit of the estimated random
forests, where we measure the model fit in terms of the
familiar R2 statistic. We present, however, two versions of
the R2 statistic. The first version (panel A) informs about
the in-sample model fit. The second version (panel B), in
contrast, informs about the more interesting out-of-bag
model fit, that is, how the out-of-bag predictions of the
model fit the corresponding out-of-bag realizations of the

FIGURE 3 Illustration of tree mechanics. Note: Top-left panel: Example of a single tree estimated on data for BO. Top-right panel:

Cumulative error rate as a function of the number of trees in a random forest estimated on data for BO. Middle-left panel: Partial-

dependence function showing the dependence of RV of BO on El Niño. Middle-right panel: Partial-dependence function showing the

dependence of RV of BO on La Niña. Lower-left panel: Partial-dependence function showing the dependence of RV of CC on El Niño.

Middle-right panel: Partial-dependence function showing the dependence of RV of CC on La Niña. Red points/black dashed lines: partial

values. Dashed red lines: smoothed error band (plus/minus two-standard errors)
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realized variance of our agricultural commodities. We
report results for five different forecast horizons. Three
key results emerge. First, the model fit shows a noticeable

extent of cross-sectional heterogeneity, that is, “not all
agricultural commodities are alike.” Second, the in-
sample and out-of-sample R2 statistic tend to increase in
the forecast horizon; that is, the random forests seem to
have a stronger predictive power for the realized variance
of agricultural commodity price movements at the longer
forecast horizons. And, third, the out-of-bag R2 statistic is
smaller than the in-sample R2 statistic, a result that is
reminiscent of the well-known argument, as outlined ear-
lier, that the ultimate test of a forecasting model is pri-
marily its out-of-sample performance.

It is for this reason that we focus in the following on
the contribution of El Niño and La Niña events to the
out-of-bag/out-of-sample of the random forest models.
To this end, we use the test developed by Clark and
West (2007). Table 4 summarizes the results. Because
random forests are random by construction, we re-
estimate the random forests for every agricultural com-
modity in our sample 25 times and then average over
the resulting p-values. The key result of applying the
Clark–West test is that the significance of the test results
tends to strengthen as the forecast horizon increases.
While the test results are insignificant for the majority of
agricultural commodities for the two short forecast hori-
zons, h¼ 1 and h¼ 4, almost all test results are signifi-
cant for the three longer forecast horizons. Hence, a
prediction model that includes El Niño and La Niña
events in the vector of predictors tends to produce sys-
tematically more accurate forecasts then a prediction
model that does not take into account the predictive
value of El Niño and La Niña events for the subsequent
realized variance of movements of agricultural commod-
ity prices at approximately a quarterly and longer forecast
horizon. In other words, our results suggest that El Niño
and La Niña events, for the majority of agricultural com-
modities, do not have a systematic effect in the short term
on the subsequent realized variance, but rather that they
unfold their impact and predictive value in the medium
to long term.

Another result that emerges from eye-balling Table 4
is that, as already witnessed by the results summarized in
Table 3, there is again a certain extent of cross-sectional
heterogeneity of the results in that the Clark–West test
yields insignificant results even for h¼ 16 for lean hogs
(HE) and coffee (KC). In contrast, for some agricultural
commodities like sugar (SB), we observe significant test
results already for an intermediate forecast horizon
(h¼ 8), and for few agricultural commodities like rough
rice (CC), the test result is even significant for h¼ 4. Fur-
thermore, tests are significant, for example, for soybean
oil (BO) for all forecast horizons. The reason might be
that El Niño conditions bring dry weather to the Pacific
Rim, threatening palm oil crop conditions in countries

TABLE 3 In-sample and out-of-bag R2 statistics

Commodity h¼ 1 h¼ 4 h¼ 8 h¼ 12 h¼ 16

Panel A: In-sample results

BO 0.7855 0.8694 0.8685 0.8653 0.8591

C 0.7234 0.8343 0.8480 0.8492 0.8563

CC 0.8322 0.9273 0.9417 0.9443 0.9412

CT 0.7636 0.8913 0.8972 0.8915 0.8931

GF 0.8302 0.8772 0.8890 0.8507 0.8421

HE 0.4213 0.6730 0.7620 0.8080 0.8323

KC 0.8033 0.8543 0.8704 0.8890 0.8947

LB 0.8279 0.9084 0.9317 0.9313 0.9318

LE 0.6669 0.8414 0.8501 0.7386 0.7424

O 0.7445 0.8004 0.8135 0.8310 0.8372

OJ 0.7647 0.8461 0.8574 0.8632 0.8854

RR 0.5637 0.8110 0.8561 0.9103 0.9223

S 0.6596 0.7745 0.8299 0.8580 0.8679

SB 0.7940 0.9134 0.9331 0.9391 0.9403

SM 0.7213 0.8249 0.8516 0.8555 0.8693

W 0.7407 0.8522 0.8654 0.8837 0.8772

Panel B: Out-of-bag results

BO 0.2563 0.5370 0.5160 0.4965 0.4832

C 0.1733 0.4372 0.4432 0.4418 0.4503

CC 0.4736 0.7424 0.7787 0.7890 0.7732

CT 0.3799 0.6188 0.6349 0.6461 0.6396

GF 0.4349 0.5490 0.5704 0.4739 0.4149

HE �0.1136 0.0593 0.1691 0.2517 0.3319

KC 0.3977 0.5232 0.5418 0.5475 0.6034

LB 0.4124 0.6636 0.7412 0.7397 0.7430

LE 0.1998 0.4373 0.4309 0.2461 0.1746

O 0.1119 0.3171 0.3547 0.3833 0.3676

OJ 0.2451 0.4586 0.5233 0.5588 0.5781

RR 0.1372 0.4052 0.5667 0.6749 0.7098

S 0.1033 0.2654 0.3656 0.4644 0.4867

SB 0.3692 0.6936 0.7605 0.7757 0.7701

SM 0.1187 0.3641 0.4501 0.4719 0.5029

W 0.1687 0.4754 0.5127 0.5585 0.5257

Note: Panel A depicts the in-sample R2 statistic computed as

R2
in ¼ 1�P

tðRVt � dRVtÞ
2
=
P

tðRVt �RVtÞ2, where byt denotes an
in-sample forecast of RV and RVt denotes the mean of RV .

Panel B depicts the out-of-bag R2 statistic computed as

R2
oob ¼ 1�P

tðRVt � dRVt
oobÞ

2
=
P

tðRVt �RVtÞ2, where dRVt
oob

denotes an

out-of-bag forecast of RV . Forecasts are computed using 500 regression trees,
where sampling is done without replacement.
Abbreviations: BO, soybean oil; C, corn; CC, cocoa; CT, cotton; GF, feeder
cattle; HE, lean hogs; KC, coffee; LB, lumber; LE, live cattle; O, oats; OJ,
orange juice; RR, rough rice; S, soybeans; SB, sugar; SM, soybean meal; W,
Chicago wheat.
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such as Indonesia and Malaysia. Hence, this reduction in
global vegetable oil supplies increases the demand for
soybean oil, and eventually results in larger fluctuations
in soybean oil prices. Taken together, our results demon-
strate again that “not all agricultural commodities are
alike.”

Table 5 summarizes the results that we obtain
when we use the out-of-bag R2 statistic to compare the
estimated forecasting models. As for the Clark–West test,
we re-estimate 25 times the random forests for our
agricultural commodities and then average the out-of-bag
R2 statistics across simulations. We observe that the
overwhelming majority of the statistics is positive, and
we find cross-sectional heterogeneity with regard to
the magnitude of the statistic. Moreover, the statistics
take on small values for the short forecast horizon,
but their magnitude tends to increase in the
forecast horizon, thus corroborating the results for the
Clark–West test.

The next step is to assess the robustness of our results.
Table 6 summarizes the results of two robustness checks.
As a first robustness check, we switch from sampling
without replacement to sampling with replacement when
bootstrapping the data. As second robustness check, we
consider the case of random splitting. Random splitting
implies that not all possible splitting points for a candi-
date splitting predictor are used for tree building, but
rather that only a random subsample of splitting points is
considered. Random splitting speeds up tree building and
is a popular alternative to the “classic” (that is, determin-
istic) approach to tree building. The key message to take
home from the two robustness checks is that, as in our
baseline scenario laid out in Table 4, the predictive value
of El Niño and La Niña events for the subsequent real-
ized variance tends to strengthen when we move from a
shorter to a longer forecast horizon and that for some
agricultural commodities, the test results already are sig-
nificant at the short forecast horizons.

TABLE 4 Results of the Clark–West test

Commodity h¼ 1 h¼ 4 h¼ 8 h¼ 12 h¼ 16

BO 0.0115 0.0193 0.0406 0.0412 0.0187

C 0.0969 0.1665 0.0562 0.0214 0.0148

CC 0.0226 0.0101 0.0036 0.0029 0.0008

CT 0.1348 0.0477 0.0148 0.0124 0.0190

GF 0.0604 0.0200 0.0350 0.0297 0.0223

HE 0.2791 0.2308 0.1191 0.1075 0.0942

KC 0.1123 0.0765 0.1439 0.1414 0.0990

LB 0.1344 0.0878 0.0269 0.0136 0.0076

LE 0.1220 0.0396 0.0199 0.0264 0.0656

O 0.1464 0.1082 0.0690 0.0544 0.0304

OJ 0.0732 0.0156 0.0064 0.0078 0.0013

RR 0.2098 0.1386 0.0599 0.0020 0.0014

S 0.1134 0.1300 0.0994 0.0670 0.0290

SB 0.0859 0.0021 0.0018 0.0038 0.0015

SM 0.1904 0.1088 0.0591 0.0398 0.0108

W 0.1117 0.1144 0.0840 0.0487 0.0171

Note: This table depicts the results (p-values; based on robust standard
errors) of the Clark–West test for an equal mean-squared prediction error
(MSPE). The alternative hypothesis is that the rival model has a smaller
MSPE than the benchmark model. The benchmark model does not
include El Niño and La Niña as predictors. Out-of-bag forecasts are
computed using 500 regression trees. The random forests are re-estimated
25 times, and the p-values are averages over the 25 p-values obtained in
this way.
Abbreviations: BO, soybean oil; C, corn; CC, cocoa; CT, cotton; GF, feeder
cattle; HE, lean hogs; KC, coffee; LB, lumber; LE, live cattle; O, oats; OJ,
orange juice; RR, rough rice; S, soybeans; SB, sugar; SM, soybean meal; W,
Chicago wheat.

TABLE 5 Results of model comparisons based on the out-of-

bag R2 statistic

Commodity h¼ 1 h¼ 4 h¼ 8 h¼ 12 h¼ 16

BO 0.0105 0.0668 0.0923 0.0667 0.0404

C �0.0019 �0.0016 0.0030 0.0141 0.0008

CC 0.0002 0.1208 0.1224 0.1232 0.0883

CT 0.0105 0.0548 0.1012 0.1409 0.1807

GF 0.0018 0.0386 0.1222 0.1009 0.1156

HE �0.0043 �0.0042 �0.0102 0.0033 0.0122

KC 0.0010 0.0119 0.0121 �0.0061 0.0186

LB 0.0000 �0.0001 0.0245 0.0149 0.0327

LE �0.0111 0.0214 0.0544 0.0362 0.0480

O 0.0032 �0.0076 0.0082 0.0039 0.0153

OJ 0.0066 0.0200 0.0527 0.0408 0.0685

RR �0.0001 0.0102 0.0389 0.0935 0.1090

S 0.0021 0.0015 �0.0073 0.0245 0.0061

SB 0.0023 0.0745 0.1315 0.1201 0.0964

SM �0.0069 �0.0033 0.0115 0.0133 0.0300

W �0.0148 0.0051 0.0021 0.0176 0.0295

Note: This table depicts the results of model comparisons based on the out-
of-bag R2 statistic. A positive value of the statistic shows that the rival
model outperforms the benchmark model. The benchmark model does not
include El Niño and La Niña as predictors. Out-of-bag forecasts are
computed using 500 regression trees. The random forests are re-estimated
25 times, and the out-of-bag R2 statistics are averaged across the 25
simulation runs.
Abbreviations: BO, soybean oil; C, corn; CC, cocoa; CT, cotton; GF, feeder
cattle; HE, lean hogs; KC, coffee; LB, lumber; LE, live cattle; O, oats; OJ,
orange juice; RR, rough rice; S, soybeans; SB, sugar; SM, soybean meal; W,
Chicago wheat.
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As a final exercise, we study in Table 7 the predictive
value of El Niño and La Niña events for the realized bad
and realized good variance of movements of agricultural

commodity prices. Corroborating the results reported in
Tables 4 and 6, we observe a general tendency that,
despite a certain extent of cross-sectional heterogeneity,

TABLE 6 Results of robustness checks

Commodity h¼ 1 h¼ 4 h¼ 8 h¼ 12 h¼ 16

Panel A: Sampling with replacement

BO 0.0280 0.0118 0.0234 0.0203 0.0208

C 0.0750 0.0363 0.0486 0.0120 0.0339

CC 0.0642 0.0073 0.0022 0.0014 0.0009

CT 0.1433 0.0245 0.0167 0.0101 0.0144

GF 0.1092 0.0258 0.0306 0.0275 0.0205

HE 0.2347 0.1555 0.1069 0.1009 0.0691

KC 0.0898 0.0867 0.0945 0.0849 0.1151

LB 0.0896 0.0875 0.0088 0.0331 0.0054

LE 0.1932 0.0290 0.0208 0.0457 0.0608

O 0.1047 0.0734 0.0325 0.0582 0.0189

OJ 0.0820 0.0129 0.0180 0.0123 0.0012

RR 0.1705 0.1194 0.0992 0.0114 0.0002

S 0.1605 0.1232 0.1366 0.1074 0.0177

SB 0.0310 0.0011 0.0004 0.0030 0.0025

SM 0.1561 0.0951 0.1282 0.0541 0.0137

W 0.1757 0.0513 0.0462 0.0072 0.0196

Panel B: Random splitting (10 random spilts)

BO 0.0561 0.0283 0.0398 0.0310 0.0287

C 0.1399 0.0741 0.0481 0.0329 0.0050

CC 0.0624 0.0138 0.0041 0.0030 0.0011

CT 0.0271 0.0228 0.0261 0.0252 0.0265

GF 0.0745 0.0339 0.0433 0.0474 0.0251

HE 0.0699 0.2254 0.1087 0.1222 0.0709

KC 0.0797 0.1024 0.0480 0.0701 0.0712

LB 0.1397 0.0449 0.0134 0.0291 0.0305

LE 0.0831 0.0859 0.0152 0.0955 0.0563

O 0.0981 0.1431 0.0913 0.0428 0.0122

OJ 0.0740 0.0146 0.0098 0.0067 0.0017

RR 0.1380 0.1233 0.0259 0.0021 0.0006

S 0.1770 0.2157 0.1422 0.0513 0.0326

SB 0.0190 0.0035 0.0011 0.0031 0.0022

SM 0.1304 0.0862 0.0555 0.0263 0.0337

W 0.2004 0.0698 0.0582 0.0269 0.0053

Note: This table depicts the results (p-values; based on robust standard

errors) of the Clark–West test for an equal mean-squared prediction error

(MSPE). The alternative hypothesis is that the rival model has a smaller

MSPE than the benchmark model. The benchmark model does not include

El Niño and La Niña as predictors. Out-of-bag forecasts are computed using

500 regression trees. The random forests are re-estimated 25 times, and the

p-values are averages over the 25 p-values obtained in this way.

Abbreviations: BO, soybean oil; C, corn; CC, cocoa; CT, cotton; GF, feeder

cattle; HE, lean hogs; KC, coffee; LB, lumber; LE, live cattle; O, oats; OJ,

orange juice; RR, rough rice; S, soybeans; SB, sugar; SM, soybean meal; W,

Chicago wheat.

TABLE 7 Bad and good realized volatility

Commodity h¼ 1 h¼ 4 h¼ 8 h¼ 12 h¼ 16

Panel A: Bad realized volatility

BO 0.1354 0.0228 0.0362 0.0225 0.0783

C 0.0782 0.3570 0.2347 0.1415 0.1524

CC 0.1487 0.0102 0.0043 0.0029 0.0005

CT 0.1196 0.1074 0.0427 0.0247 0.0318

GF 0.0936 0.0308 0.0166 0.0130 0.0088

HE 0.2334 0.1487 0.0083 0.0371 0.0264

KC 0.1078 0.0398 0.0608 0.0491 0.0221

LB 0.2104 0.0135 0.0162 0.0195 0.0198

LE 0.2431 0.1705 0.0284 0.0117 0.0619

O 0.1732 0.2671 0.1473 0.0883 0.1237

OJ 0.1099 0.0525 0.0345 0.0523 0.0085

RR 0.1978 0.1870 0.1398 0.0839 0.0212

S 0.1351 0.3515 0.2133 0.1160 0.0713

SB 0.1065 0.0057 0.0036 0.0008 0.0003

SM 0.1203 0.2359 0.2962 0.2307 0.2052

W 0.1570 0.0776 0.0180 0.0420 0.0056

Panel B: Good realized volatility

BO 0.1604 0.1663 0.0536 0.0448 0.0304

C 0.0680 0.0886 0.0859 0.0319 0.0141

CC 0.0994 0.0078 0.0070 0.0048 0.0020

CT 0.0136 0.0268 0.0191 0.0230 0.0191

GF 0.0512 0.0224 0.0222 0.0286 0.0329

HE 0.2015 0.1205 0.0234 0.0405 0.0401

KC 0.2845 0.1687 0.1863 0.0528 0.0874

LB 0.1671 0.0730 0.0637 0.0422 0.0812

LE 0.1569 0.0234 0.0207 0.0990 0.0542

O 0.1034 0.0898 0.1218 0.0835 0.0490

OJ 0.1322 0.0348 0.0294 0.0466 0.0016

RR 0.1084 0.0068 0.0020 0.0006 0.0005

S 0.0668 0.0686 0.0929 0.0393 0.0166

SB 0.1161 0.2308 0.1013 0.1201 0.0144

SM 0.0387 0.0745 0.0336 0.0399 0.0476

W 0.2658 0.0567 0.0442 0.0213 0.0161

Note: This table depicts the results (p-values; based on robust standard

errors) of the Clark–West test for an equal mean-squared prediction error

(MSPE). The alternative hypothesis is that the rival model has a smaller

MSPE than the benchmark model. The benchmark model does not include

El Niño and La Niña as predictors. Out-of-bag forecasts are computed using

500 regression trees. The random forests are re-estimated 25 times, and the

p-values are averages over the 25 p-values obtained in this way.

Abbreviations: BO, soybean oil; C, corn; CC, cocoa; CT, cotton; GF, feeder

cattle; HE, lean hogs; KC, coffee; LB, lumber; LE, live cattle; O, oats; OJ,

orange juice; RR, rough rice; S, soybeans; SB, sugar; SM, soybean meal; W,

Chicago wheat.
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the predictive value of El Niño and La Niña events for
the realized bad and the realized good variance
strengthens as the forecast horizon increases. The test
results for the realized bad and realized good variance,
thereby, underscore the robustness of our main result.

5 | CONCLUDING REMARKS

We have studied the predictive value of El Niño and La
Niña events for the realized variances of movements of
16 agricultural commodity prices. In order to do so, we
have set up an empirical prediction model that includes
in addition to El Niño and La Niña events the main ele-
ments of the popular HAR-RV model, cross-market spill-
over effects of realized variances, and realized jumps,
realized skewness, realized kurtosis, and realized up and
down tail risks. Random forests provide a natural model-
ing platform to estimate a predictive model with such a
relatively large number of predictors. Random forests
capture in a purely data-driven way potential interaction
effects between the various predictors and, importantly, a
potential nonlinear dependence of the subsequent real-
ized variance on a predictor variable. We have shown
how random forests work and how they can be used to
study the predictive role of El Niño and La Niña events
for forecasting the realized variances of movements of
agricultural commodity prices at short- and long-term
forecast horizons. The main result that emerges from our
empirical analysis is that, while “not all agricultural com-
modities are alike” and the test results our significant
already at a short or an intermediate forecast horizon for
some agricultural commodities, there is a general ten-
dency that the evidence of predictive value of El Niño and
La Niña events strengthens at the longer term forecast
horizons that we considered in our empirical research.

The El Niño and La Niña events are global climato-
logical phenomena that occur periodically and are char-
acterized by unusually warm/cold ocean temperatures in
the equatorial pacific. A typical El Niño event causes
heavy rainfall or flooding in the East Pacific (Argentina,
Chile) and drought-like conditions in the west (Australia,
Indonesia, India, and the Philippines). Due to the change
in precipitation patterns, El Niño has important effects
on crop production and, indirectly, on food prices and
inflation. Considering that a significant El Niño effect
would create upside inflation risks, our results suggest
that central banks should analyze in detail any transi-
tory/permanent effects of El Niño and La Niña events on
food prices to adjust their policy stance more timely.
Hence, our results provide useful insights to academics as
well for potential causes of increases in inflation, as is
being currently witnessed worldwide, by identifying

which agricultural commodities have historically been
the most sensitive to El Niño and La Niña events.

Because the variability of price fluctuations is a key
input to investment decisions and portfolio choices in
general, fund managers can generate sophisticated
investment ideas focusing on how the volatility profile of
the returns of agricultural commodity prices changes dur-
ing El Niño and La Niña events, and invest in options
position or structured products to profit from ensuing
volatility patterns. Therefore, understanding which com-
modities are likely to be most affected by El Niño and La
Niña events has the potential to enhance the perfor-
mance of trading and investment strategies by capturing
any El Niño- and La Niña-induced changes in risk pre-
mia ahead of the event.

As part of future analysis, it is interesting to investi-
gate in detail the differential impacts of El Niño and La
Niña events on the forecastability of economic activity
and inflation of major agricultural commodity exporters,
by accounting for historical data on precipitation patterns
across these countries and their agricultural dependen-
cies, given the existence of some in-sample evidence in
this regard (see, for example, Cashin et al., (2017)). Fur-
thermore, given that traditionally, the ENSO is measured
at a monthly frequency, forecasting of daily or weekly
realized variances can be performed based on HAR-RV
models that are estimated using the reverse unrestricted-
MIDAS approach (see, for instance, Foroni et al., (2018)).
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ENDNOTES
1 Of course, the role of the ENSO in affecting yields of agricultural
commodities is also well recognized (see, for instance, Adams
et al., 1999; Cadson et al., 1996; Hansen et al., 1998; Iizumi et al.,
2014; Schlenker & Roberts, 2006; Tack & Ubilava, 2013, 2015;
among others).
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2 The agricultural commodities that we study belong to the categories
of Grains, Softs, and Livestock. Specifically, we study the following
agricultural commodities: soybean oil, corn, cocoa, cotton, feeder
cattle, lean hogs, coffee, lumber, live cattle, oats, orange juice,
rough rice, soybean, sugar, soybean meals, and Chicago wheat.

3 The reader is referred to Giot and Laurent (2003), Egelkraut and
Garcia (2006), Elder and Jin (2007), Anderluh and Borovkova
(2008), Triantafyllou et al. (2015), and Li et al. (2017) in this regard.

4 Chatziantoniou et al. (2021) also use a HAR-RV model to forecast
the monthly RV, rather than daily values of the same derived from
intraday data, of agricultural commodities based on the volatility
of oil. Unlike widespread in-sample evidence of volatility spillovers
between agricultural commodities and the oil market (Luo &
Ji, 2018), the authors could not detect out-of-sample forecasting
gains emanating from both monthly and daily (which involved a
mixed data sampling [MIDAS]) metrics of oil-price volatility.

5 Most of the papers have focused on various forms of realized
jumps as predictors (Luo et al., (2022), also incorporated the role
of speculation), and we also include the role of extreme risks via
the usage of realized skewness, realized kurtosis, and realized tail
risks, which we believe are important controls when analyzing
rare disaster risks as proxied by the ENSO.

6 See https://www.fao.org/faostat/en/#home for details.
7 We consolidate the data across commodities by date because we
account in our empirical analysis for variance-spillover effects
across agricultural commodities (see Section 3.3). In this regard,
it should also be noted that we drop days with less than 20 obser-
vations to obtain meaningful tail risk statistics.

8 Data source: https://www.cpc.ncep.noaa.gov/data/indices/.
9 SSTA between 0.5�C (0.9�F) and �0:5 ∘C (�0:9 ∘ F) are referred to
as neutral ENSO events.

10 We construct the data matrix in a way such that it has the same
dimension for all forecast horizons.

11 It follows that we treat the benchmark model as a restricted version
of the larger model, but we note that comparing forecasts obtained
from different random forests is complicated by their nonlinear
complex structure. We, therefore, do not only use formal tests, but
also out-of-bag R2 statistics to asses relative model performance.
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