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Abstract
Research apps allow to administer survey questions and
passively collect smartphone data, thus providing rich
information on individual and social behaviours. Agree-
ing to this novel form of data collection requires mul-
tiple consent steps, and little is known about the effect
of non-participation. We invited 4,293 Android smart-
phone owners from the German Panel Study Labour
Market and Social Security (PASS) to download the
IAB-SMART app. The app collected data over six months
through (a) short in-app surveys and (b) five passive
mobile data collection functions. The rich informa-
tion on PASS members from previous survey waves
allows us to compare participants and non-participants
in the IAB-SMART study at the individual stages of
the participation process and across the different types
of data collected. We find that 14.5 percent of the
invited smartphone users installed the app, between
12.2 and 13.4 percent provided the different types of
passively collected data, and 10.8 percent provided all
types of data at least once. Likelihood to participate
was smaller among women, decreased with age and
increased with educational attainment, German citizen-
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ship, and PASS tenure. We find non-participation bias in
substantive variables, including overestimation of social
media usage and social network size and underestima-
tion of non-working status.

K E Y W O R D S

bias, mobile web surveys, non-participation, passive mobile data
collection, research app, smartphones

1 INTRODUCTION

Smartphone usage continues to increase around the world (Taylor & Silver, 2019). Two features
of smartphones make them especially interesting as data collection devices (Harari et al., 2016;
Link et al., 2014; Onnela, 2021; Raento et al., 2009): (a) many users carry their phones around
with them throughout the day allowing for in situ survey data collection; (b) the technological
capabilities of smartphones offer an entirely new way of collecting a variety of data from indi-
viduals in the background. For the latter, the terms ‘passive mobile data collection’ (Keusch &
Conrad, 2021), ‘mobile sensing’ (Harari et al., 2015), and ‘digital phenotyping’ (Torous et al., 2016)
have been used in different strands of the literature. Combining self-reports and passive data col-
lection using built-in sensors (e.g. GPS, accelerometer) and log files automatically recorded by
the device’s operating system (e.g. no. of calls and text messages, Internet browsing, app usage)
has been used to study, among others, mobility patterns (Elevelt et al., 2019; Lynch et al.,
2019; Scherpenzeel, 2017), the influence of physical surroundings and activity on psychologi-
cal well-being and health (Goodspeed et al., 2018; Lathia et al., 2017; MacKerron & Mourato,
2013; York Cornwell & Cagney, 2017), student well-being over the course of an academic term
(Ben-Zeev et al., 2015; Harari et al., 2017; Wang et al., 2014), integration efforts of refugees
(Keusch, Leonard, et al., 2019), and job search of men recently released from prison (Sugie, 2018;
Sugie & Lens, 2017).

To collect both self-reports and sensor data from smartphones requires users to download a
designated research app that administers survey questions to participants and provides access
to different sensors and log files on the phone. Depending on the scope of the study, partici-
pants will need to go through multiple steps of consenting to the different data collection features
of the research app (e.g. self-reports, sensor data, log files) making the classic view of survey
non-response as a binary outcome no longer sufficient (Couper, 2019). This also has an effect
on the calculation of participation rates, which can be much more complex compared to what
is reported in traditional surveys (see AAPOR (2016) Standard Definitions for calculation and
reporting of outcome rates in surveys). While some individuals might be unwilling to participate
in such a study altogether, others might consent to all types of data collection involved. Again
other individuals could be selective in their participation decision agreeing to some but not all
features of data collection. If the participants in such studies differ from the invited sample in the
variable(s) of interest, then bias arises (Groves et al., 2009). For example, if, in a study that collects
measures on employment and poverty via smartphones, groups who are more likely to suffer from
unemployment and poverty are less willing to participate, then the data collected from this study
and the policy decisions made based on the data would be biased. Differential non-participation
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within a study that collects multiple types of data from the same participants might thus make it
necessary to consider non-participation bias individually for each type of data collection.

Against this background, we investigate non-participation in the IAB-SMART study that
combined self-reports with passive data collection on smartphones (Kreuter et al., 2020). We
invited German-speaking Android smartphone owners in the Panel Study Labour Market and
Social Security (PASS), an annual German mixed-mode study on the labour market and poverty
(Trappmann et al., 2019), to download a research app. The app collected data over six months
through short surveys administered in the app and passive mobile measurement using differ-
ent groups of sensors and log files on the smartphone. We take advantage of the rich auxiliary
information on PASS members from previous waves of the panel to extend the small but grow-
ing literature on smartphone data collection in three directions. First, we study non-participation
at the different stages of the participation process and for the different types of data collected
as part of the IAB-SMART study. Doing so allows us to better understand the phenomenon of
non-participation in complex smartphone studies. Second, we identify the correlates of study
participation. With this analysis we contribute to the understanding of why people decide to
participate in smartphone studies that conduct both surveys and passive data collection on
the same device. Third, we estimate non-participation bias for substantive PASS measures on
self-reported social embeddedness, personality, employment and social media usage that could
be measured with smartphone sensors. Doing so allows us to directly measure the effect of differ-
ential non-participation when using a research app for data collection on the variables of interest
in such a study.

In the next section of this paper, we review the existing literature on non-participation in
smartphone data collection. We then present the design of the IAB-SMART study and how we
analyse the data to answer our research questions. We report the findings of our study and discuss
their implications for data collection practice and future research.

2 BACKGROUND

While smartphones are increasingly used by respondents to complete web surveys (Couper et al.,
2017), the administration of surveys and passive data collection on smartphones in the same study
is still in its infancy, especially in general population surveys. In this section, we review the exist-
ing literature on smartphone data collection along three methodological dimensions, in line with
our three research questions: (a) participation rates, (b) correlates of non-participation, and (c)
non-participation bias.

2.1 Participation rates in studies administering surveys and
passively collecting data on smartphones

Most studies that collect smartphone data via a research app have recruited volunteers from
non-probability samples (Beierle et al., 2020; Ben-Zeev et al., 2015; Eckman, Chew, et al., 2020;
Goodspeed et al., 2018; Harari et al., 2017; Lathia et al., 2017; MacKerron & Mourato, 2013;
Wang et al., 2014; York Cornwell & Cagney, 2017) making the analysis of participation behaviour
impossible. Only a few studies have implemented passive smartphone data collection with
research apps in probability samples. For example, the Smartphone Time Use Study administered
survey questions and passively collected data (GPS, log files) on two days from members of
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the LISS panel, a large-scale probability panel representing the Dutch national population
(Scherpenzeel, 2017). Out of more than 7,000 invited LISS panel members, 75 percent completed
the invitation questionnaire. Thirty-seven percent of them indicated their willingness to partici-
pate, and 68 percent of the willing panelists actually participated for an overall participation rate of
19 percent.

Struminskaya et al. (2021) asked smartphone users in the general Dutch population who pre-
viously had participated in at least one of Statistics Netherlands’ surveys to share their current
GPS location once. Sixty-seven percent of the survey respondents said they were willing to do so,
and 69 percent of those who reported willingness actually did share the data in a subsequent step,
for an overall participation rate of 46 percent.

The Newark Smartphone Reentry Project invited randomly selected men recently released
from prison to participate in a study about job search and employment experiences of parolees
(Sugie, 2018). A research app pre-installed on the provided smartphones collected geoloca-
tion estimates and encrypted phone numbers as well as characteristics of calls and texts. In
addition, the app administered daily questions on emotional well-being, job search, work, and
social interactions. Out of the 152 eligible individuals, 141 (93% of 152) agreed to partici-
pate, and 135 (89% of 152) completed the initial interview, received the smartphone, and sent
data. By the end of the 12-week field period, 63 percent of eligible individuals were still in
the study.

The diverse participation rates in the described studies could be driven by various factors. For
example, compared to the other studies, the relatively high participation rate reported in Sugie
(2018) might be explained by the specific target population—parolees recently released from
prison—who might be more acquiescent as well as the fact that participants received an Android
smartphone, which they could keep after the study, and plans with unlimited call, text, and data
for the duration of the data collection. Struminskaya et al. (2021) asked the survey participants
to share their geoposition only once, which might be perceived as less intrusive than continuous
collection of GPS data. For a study like the one described in this paper that does not provide a
smartphone and data plan as incentives and that continuously collects different types of data over
a longer period, we expect to find a lower participation rate.

In addition, what type of data is collected in a study appears to be a factor. For example, Elevelt
et al. (2019) found in the Dutch Smartphone Time Use Study higher participation rates for the
self-reported part of the study compared to the passive data collection. This finding is further
supported by several studies finding significantly lower stated willingness to participate in passive
tracking (e.g. GPS, app usage logs) compared to actively completing tasks on the smartphone (e.g.
taking photos, completing online questionnaires, scanning barcodes) (Revilla et al., 2016, 2019;
Wenz et al., 2019). We thus expect that the participation rate for the different components of a
smartphone study will differ by type of data that is collected. In particular, we hypothesize that
participation in self-reports through a smartphone research app will be higher than participation
in passive measurement.

2.2 Reasons for non-participation

There are different reasons why people might not participate in smartphone data collection
(Jäckle et al., 2019). First, access to a smartphone is required, thus creating a problem of coverage:
while some of the sociodemographic differences between owners and non-owners of smartphones
seem to have decreased over time (Baier et al., 2018; Fuchs & Busse, 2009; Metzler & Fuchs, 2014;
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Taylor & Silver, 2019), smartphone owners are younger and more affluent than non-owners and
also differ on substantive variables (Antoun et al., 2019; Couper et al., 2018; Jäckle et al., 2019;
Keusch et al., 2020).

Second, even if smartphone penetration were universal, some smartphone users might
be more likely than others to participate in research on their mobile device. For example,
when randomly assigning smartphone owners to participate in a web survey on their phone
or a PC, smartphone respondents are shown to be younger (de Bruijne & Wijnant, 2014;
Mavletova, 2013; Wells et al., 2014), more likely to be female (de Bruijne & Wijnant,
2014; Keusch & Yan, 2017; Tourangeau et al., 2017; Wells et al., 2014), have higher educational
attainment (Keusch & Yan, 2017), are heavier mobile web users (Mavletova, 2013; Mavletova &
Couper, 2016), and rely primarily on smartphones to access the Internet (Wells et al., 2014).

Recently, several studies have investigated the correlates of willingness to allow passive data
collection on smartphones, both hypothetical and actual. Studying hypothetical willingness, Di
Matteo et al. (2018) asked patients whether they would be willing to download an app to their
smartphone that allowed researchers to track their mental health through, among others, GPS,
accelerometer, SMS, and the microphone. They found that willingness to share audio data via the
smartphone’s microphone was positively correlated with age.

Wenz et al. (2019) asked members of the UK Understanding Society Innovation Panel whether
they would be willing to engage in a number of different research-related tasks on their smart-
phone. Older individuals and people with higher educational attainment reported significantly
higher willingness to download an app that would collect data about how they use their smart-
phone, but age and educational attainment played no role in the willingness to share GPS location
or activity data. In addition, respondents who reported a higher number of different activities on
their smartphone and those who reported fewer security concerns when using the smartphone
for data collection were significantly more likely to be willing to share data on smartphone usage,
geolocation, and physical activity.

Another study of hypothetical willingness asked members of a Spanish opt-in online panel
about their willingness to do 20 research-related tasks that went beyond answering survey
questions (Revilla et al., 2019). Men, respondents who posted more frequently on Facebook,
respondents with higher trust in their anonymity, those who liked answering surveys, and those
who had responded to more surveys in the online panel showed significantly higher levels of will-
ingness to engage in different types of passive behaviour tracking (e.g. sharing mobile GPS data,
Internet browsing information, and Facebook data).

Keusch, Struminskaya, et al. (2019) asked German smartphone users about their hypothet-
ical willingness to download an app that would collect technical characteristics of the phone,
telephone network information, current location, app and Internet usage, and call and text logs.
Male smartphone users, users with lower security and privacy concerns, users with higher trust
in researchers, and users who reported more different smartphone activities also reported a
significantly higher willingness to download such an app.

Struminskaya et al. (2020) asked members of a Dutch probability-based online panel (LISS)
about their willingness to use their smartphone to share their current geolocation, to take a
photo of their house, to take a video of their surroundings, and to take a photo of themselves.
They found that willingness significantly differed by the type of data requested. In addition,
older users, users who more frequently engaged in certain smartphone activities (e.g. taking pic-
tures, using geolocation features), those with lower general privacy concerns, and those who
believed a questionnaire guarantees anonymity were more likely to be willing to share data via
the smartphone.
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So far, only few studies have identified correlates of actual participation behaviour in smart-
phone data collection involving research apps. Elevelt et al. (2019) found that younger and
higher educated people and those who had previously participated in surveys were significantly
more likely to complete the diary and pop-up surveys in the LISS Smartphone Time Use Sur-
vey app. The propensity to share GPS locations on the smartphone was significantly higher
for people who used their own smartphones and for those who had completed the diary and
the pop-up surveys. Keusch, Leonard, et al. (2019) report that in a smartphone study among
refugees in Germany, individuals with higher educational attainment and with higher reading
proficiency as well as those who reported regularly using the Internet on their smartphone were
significantly more likely to participate in mobile web surveys as part of the study. Refugees
with low reading proficiency were also significantly less likely to download an app that pas-
sively collected data from participants’ smartphones. Jäckle et al. (2019) found that women and
younger age groups were significantly more likely to participate in an app-based UK spend-
ing study, which asked people to take pictures of their shopping receipts, than men and older
age groups. Beierle et al. (2020) reported a relationship between the number of permissions
volunteers who had downloaded a research app granted with gender and age; women and
younger participants were more likely to give no permission at all and less likely to provide all
permissions.

Based on this earlier research, there appear to be three groups of individual characteristics that
correlate with the willingness to provide self-reports and share passively collected data on smart-
phones with researchers: (a) sociodemographic characteristics, (b) attitudes on privacy, security,
and trust, and (c) behaviour related to Internet and smartphone use. The data used in our study
allows us to test for differences in sociodemographics and trust in the research organization. Based
on earlier findings, we anticipate that users with higher educational attainment and those who
show higher trust are more likely to participate in smartphone data collection via self-reports and
passive measurements.

2.3 Non-participation bias in smartphone data collection

Regardless of the reason for non-participation, if participants and non-participants in a study
using a research app differ in the variable of interest that could be measured using the data
collected through the app, then bias will arise (Groves et al., 2009). Given the novelty of the
data collection approach and the fact that auxiliary information from both participants and
non-participants is needed to study non-participation bias, it is not surprising that we know
relatively little about the effect of non-participation on substantive measures of interest in
smartphone studies. For a mobile web survey in the Dutch LISS panel, Antoun et al. (2019)
reported significant but relatively small (<3 percentage points) non-response bias in two out
of 19 substantive variables on technology, lifestyle, and politics. Elevelt et al. (2019) found in
the Dutch Smartphone Time Use Study that people who participated in all parts of the study
(i.e. pre-questionnaire, diary, pop-up surveys, and GPS tracking) had reported spending signifi-
cantly more time working and less time watching television than people who were not willing to
participate.

Given that earlier studies find non-participation bias in various substantive measures of inter-
est, we explore whether similar effects exist in a study conducting surveys and passive data
collection on smartphones about employment and social embeddedness.
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3 METHODS AND DATA

To answer our research questions, we use data from the IAB-SMART study (Kreuter et al., 2020),
an app-based data collection effort among Android smartphone owners recruited from the Panel
Study Labour Market and Social Security (PASS) in Germany.

3.1 Panel study labour market and social security (PASS)

PASS is an annual, probability-based household panel survey of the German residential popula-
tion aged 15 and older conducted by the Institute for Employment Research (IAB) (Trappmann
et al., 2019). The primary goal of PASS is to provide a data source for research on the labour
market, poverty, and the welfare state in Germany. A dual sampling frame (population regis-
ters and welfare benefit recipient registers) is used to oversample welfare benefit recipients. The
data collection mode of PASS is a sequential mixed-mode combination of computer-aided per-
sonal and telephone interviews. Extensive non-response studies show rather small biases for
a range of PASS variables, for example, benefit receipt, employment status, income, age, and
disability (Kreuter et al., 2010; Levenstein, 2010; Sakshaug & Kreuter, 2012; Trappmann et al.,
2015).

3.2 IAB-SMART

The goal of the IAB-SMART study is to extend the traditional PASS survey effort measuring
effects of long-term unemployment on social integration and re-integration into the labour mar-
ket using a new data collection approach, namely a smartphone app that collects both self-reports
via mobile surveys and passive measurement using sensors and log files. In January 2018, a
random sample of 4,293 German-speaking PASS respondents aged 18 to 64 who had reported
owning an Android smartphone in Wave 11 (2017) was invited via mail to participate in the
IAB-SMART study. We restricted the study to Android devices because extensive passive data
collection is limited under Apple iOS (Harari et al., 2016), and other operating systems had too
low of a market share to justify additional programming effort. To participate in the study, smart-
phone owners needed to visit the Google Play store, install the IAB-SMART app on their phone,
and decide if they want to activate several data collection functions. The downloading of the app
included a multi-step consent process that was designed to make all data collection through the
app GDPR-compliant. Data collection procedures and consent process were developed in close
cooperation with and approved by the legal counsel of the German Federal Employment Agency,
IAB’s parent organization (see Kreuter et al. (2020) for a detailed description). The field period of
the study was six months.

Participants received incentives in the form of points for downloading the app, allowing pas-
sive data collection, and responding to survey questions in the app. The points could be redeemed
for Amazon.de vouchers directly in the app. The study design included an incentive experiment
with four groups. Invited sample members either received a 10- or a 20-Euro incentive for down-
loading and installing the app. Within these two groups, sample members were further assigned
to either receive one Euro per passive data collection function per month (i.e. a maximum of five
Euros per month; ‘no bonus’ group) or one Euro per data collection function plus a five-Euro
bonus if they provided all five types of passively collected data in a month (i.e. a maximum of 10
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Euros per month; ‘bonus’ group). Depending on the experimental group, participants could gain
a maximum amount of between 60 and 100 Euros worth of points throughout the field period.
Details about the experiment are reported in Haas et al. (2021).

Once installed on a smartphone and after the participant had consented to data collection, the
IAB-SMART app could collect data in two ways: (a) through short surveys (up to ten questions
at a time) administered by the app at predefined times and when a participant’s phone entered
and left a predefined geolocation (geofencing; Haas et al., 2020) and (b) through passive data
collection using sensors and log files on the smartphone. Five different passive data collection
functions were available in the app, and participants could consent individually to any or all of
them and revoke consent at any point during the field period:

1. Mobile phone network quality and location information were collected every 30 min together
with information on network providers and network technology.

2. Paradata of participants’ incoming and outgoing calls and text messages (i.e. time
stamps and hashed numbers, not the content of text messages or phone calls) were
logged.

3. Information on characteristics of the social network were collected by matching the first name
of each contact stored in the device’s phone book with information from the website Genderize
(https://genderize.io) to identify likely gender and first and last names with information from
the website NamePrism (http://www.name-prism.com; see Ye et al. (2017)) to identify likely
nationality. Only the ping results were saved and transmitted as classification probabilities for
gender and nationality together with the hashed names.

4. Activity data came from built-in sensors (accelerometer and pedometer) and are used to create
measures of means of transportation (e.g. walking, biking, in a motorized vehicle) and periods
of activity every two minutes.

5. Smartphone usage information on which apps are installed on the participant’s smartphone
and the frequency of their usage were collected as well. No information was collected on what
is done within an opened app.

3.3 Analysis plan

To answer our first research question on what proportion of invited smartphone owners are will-
ing to participate in the different parts of the smartphone study, we identify multiple participation
patterns depending on the extent of compliance with our study protocol:

1. Verified Installers are all invited sample members who downloaded the IAB-SMART app from
the app store, went through the installation process, completed the short welcome survey in
the app, and could be verified as eligible PASS Wave 11 participants.

2. Function Participants are all Verified Installers who provided data at least once in a
given data collection function of the research app. There are six groups of participants,
one for each of the five passive data collection functions (Network and Location Partic-
ipants, Call and Text Message Log Participants, Social Network Participants, Activity Par-
ticipants, Smartphone Usage Participants) and one for the in-app surveys (In-app Survey
Participants).

3. Full Participants are all Function Participants who provided data at least once in all of the five
functions and answered at least one question in an in-app survey.

https://genderize.io
http://www.name-prism.com
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Note that the definition of these participation pattern groups is increasingly restrictive, and the
groups become smaller with each stage, that is, all participants in later groups are also included
in earlier groups.

To assess whether participation patterns correlate with characteristics of the invited smart-
phone owners, we explain non-participation in the three stages described above using a set of
covariates from our initial sample of 4,293 invited PASS members. To do so, we specify mul-
tivariate logistic regression models with participation in a given stage (0 = non-participation,
1 = participation) as the dependent variable. Based on findings of earlier research on correlates
of non-participation in smartphone studies, we include two sets of covariates measured in earlier
waves of PASS as predictors into our models. The first set of covariates comprises sociodemo-
graphic characteristics (i.e. gender, age, educational attainment, nationality, region, community
size, marital status, household size, presence of own children in the household, household
income, employment status, and welfare receipt). Second, we include panel tenure with the PASS
and whether the participants had given consent to data linkage of PASS survey data with admin-
istrative records of the Federal Employment Agency as part of the panel as a proxy for trust in
the research organization. While earlier studies had found that Internet and smartphone usage
behaviour correlates with the willingness to participate in smartphone studies as well, we do not
have such variables available from PASS. In addition, we included a variable for the incentive
experiment. Table A1 in the Online Supplementary Materials presents the variables used in this
analysis and how they were operationalized.

Finally, we investigate non-participation bias for five substantive measures that were
self-reported in PASS. The selected measures could be enhanced using the passively collected
data from the IAB-SMART study. As part of the annual PASS survey, respondents were asked to
report (1) the size of their personal network and (2) their degree of social inclusion. Social inclusion
was measured on a 10-point end-labelled scale ranging from 1 = ‘excluded’ to 10 = ‘included’.
We use the following categories for our analysis: ‘low’ = 1–3, ‘medium’ = 4–7, ‘high’ = 8–10.
The questions on social embeddedness could be complemented with the passively collected call
and text message log file data and the number of contacts in the address book in the future. We
also study the effect of non-participation on psychographic variables, specifically (3) the Big Five
personality traits (McCrae & John, 1992). The German version of the 21-item Big Five Inven-
tory (BFI-K) (Rammstedt & John, 2005) was implemented in Wave 5 of the PASS study. For the
analysis, we created tertiles of each factor, that is, ‘low’, ‘medium’, and ‘high’. Recent studies
have found that personality traits can be predicted using log file data of smartphone usage (Chit-
taranjan et al., 2013; de Montjoye et al., 2013; Stachl et al., 2017, 2020; Xu et al., 2016). Next, we
study non-participation bias in the labour market variable (4) working hours. In the future, par-
ticipants’ working hours could be inferred from geolocation data for people who usually work
at the same location. Finally, we estimate non-participation bias in (5) social media usage. The
question on social media network usage was last asked in Wave 8 of the PASS. The following
social media networks were included in the question: Facebook, StudiVZ, MeinVZ, Xing, Twitter,
LinkedIn, Lokalisten, Wer-kennt-wen, MySpace, Google Plus, other. From the smartphone usage
data collected as part of IAB-SMART, we could directly measure how many social media apps
participants use.

We estimate these substantive PASS survey outcomes based on the full sample of all invited
PASS Android smartphone owners (f) and compare them to the estimates that come from the
participants (p) in the individual stages of the IAB-SMART study. By comparing the estimates
from survey questions that could also be measured using smartphone sensors across the differ-
ent participation groups, we can assess how large the bias in these measures would be if passive
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measurement were used. To determine the magnitude of non-participation bias in the substantive
PASS variables, we calculate the difference between the two as

bias(y) = yp − yf (1)

Next, we calculate the standard error of the estimated bias following the formula used by Lee
(2006) as

s.e.
(

yp − yf
)
=

nf − np

nf
×
√

var
(

yp
)
+ var

(
ynp

)
(2)

As a robustness check, we also calculate standard errors for non-participation bias using
the replication method described in Eckman, Unangst, et al. (2020). Since the results do not
substantially differ from the original analysis, we only present these results here.

To test the significance of a given bias, we use a z-test. To calculate a test statistic, we divide
the estimate of the difference by the standard error of the difference.

We use Stata 15.1 for all our analyses, and we apply case-wise deletion for multivariate models.
PASS’s design uses a geographically clustered and stratified sample based on primary sampling
units (Trappmann, 2013). To account for this complex design in our analyses (Eckman & West,
2016), we correct our estimates by acknowledging clusters, stratification characteristics, and
finite population corrections for sampling without replacement using Stata’s survey-set command
(svyset psu, strata(strpsu)).

4 RESULTS

4.1 Participation rates in the different parts of the study

Figure 1 presents the different participant groups in the IAB-SMART study. Out of the 4,293 PASS
Wave 11 respondents who had reported owning an Android smartphone and were randomly
assigned to receive an invitation for the IAB-SMART study, 685 installed the app and entered a
valid registration code (16.0% of the invited sample). Five of them did not respond to the welcome
survey in the app nor did they provide any other type of data, and for another 57, the age or gen-
der provided as part of the welcome survey did not match the PASS records. In the latter cases, the
IAB-SMART app might have collected data during the field period, but the person providing the
data was not the invited PASS member but someone else in the household or a third person who
potentially received the invitation and verification code from the invited person. Since we cannot
link the data from these cases with existing PASS data, we would drop these cases from any sub-
stantive analysis and count them as non-participants. This leaves us with 623 Verified Installers,
14.5 percent of our invited sample.

The number of Function Participants who provided data at least once varies across
the five passive data collection functions. While 577 participants or 13.4 percent of the
invited sample provided information on network quality and location (F1), only 525 partic-
ipants (12.2%) provided data about the characteristics of their social network (F3) at least
once. Per definition, all Verified Installers are also Function Participants for the in-app
surveys (Qx).
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F I G U R E 1 Flowchart of participation behaviour in the IAB-SMART study (Note: F1 = Network and
location; F2 = Call and text message logs; F3 = Social network; F4 = Activity; F5 = Smartphone usage;
Qx = In-app surveys)

Finally, 465 individuals are Full Participants: they provided data at least once in all of the five
functions and answered at least one question of the in-app surveys. This is 10.8 percent of the
sample invited to participate in the IAB-SMART study.

4.2 Correlates of participation

Figure 2a,b show the average marginal effects (AMEs) from multivariate logistic regression mod-
els predicting participation in the IAB-SMART study based on sociodemographic characteristics
of the invited PASS members, variables describing their relationship with the IAB as the research
organization conducting the study, and the experimental incentive groups (detailed results for
all models can be found in Table A2 in the Online Supplementary Materials). Of the sociode-
mographic variables used in our models, gender, age, education, nationality and region have a
consistently significant effect on study participation. Women are two percentage points less likely
than men to install the IAB-SMART app, to consent to network and location data collection, and to
answer to in-app surveys. There is a negative relationship between age and IAB-SMART participa-
tion with the three oldest age groups (50 to 54 years, 55 to 59 years, 60–64 years) being significantly
less likely to participate than the reference group (15–19 years). PASS members in the three oldest
age groups are 11 percentage points, 16 percentage points, and 13 percentage points less likely to
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F I G U R E 2 (a) Average marginal effects (points) and 95%-confidence intervals (bars) from models
predicting participation in different stages of the IAB-SMART study (Part 1) (b) Average marginal effects (points)
and 95%-confidence intervals (bars) from models predicting participation in different stages of the IAB-SMART
study (Part 2)

be Verified Installers compared to the youngest group. Interestingly, this effect is relatively con-
sistent across the different stages of participation and the different types of data collected in the
IAB-SMART study. Participation increases with educational attainment; PASS members with a
post-secondary degree are six percentage points more likely to participate in any stage of the study
compared to primary school degree holders. We also find that PASS members who hold the Ger-
man citizenship are five to seven percentage points more likely to participate than non-citizens,
and that PASS members who live in the former East German states are three to five percentage
points more likely to participate than residents in former West German states. Community size,
marital status, household size, presence of own children in the household, household income,
employment status, and welfare receipt are not significantly correlated with participation in the
IAB-SMART study (p > 0.05).

Turning to the relationship between the invited PASS members and the IAB, we find, as expected,
that the longer a person is part of the PASS, the more likely they are to participate in the
IAB-SMART study. Compared to PASS members who had been in the PASS for one or two waves
before the invitation to IAB-SMART, PASS members with a panel tenure of three to seven waves
and eight to 12 waves were three to four and four to five percentage points more likely to partici-
pate, respectively. The correlation between consenting to linking administrative data as part of the
PASS survey and participating in IAB-SMART was slightly positive but did not reach statistical
significance (p > 0.05).

We also find that sample members who received a 10-Euro incentive without a bonus were
less likely to participate in all stages of the study compared to the other three incentive groups.
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4.3 Non-participation bias in substantive variables

Table 1 presents the estimates for substantial PASS variables based on the full invited sample in
Column 1. The other columns present the absolute non-participation biases in percentage points
as the difference between the percentage in the full invited sample and the percentage in the
sample at the individual stages in the participation process (see Formula (1) above).

For the measures of social embeddedness, we find that among the Verified Installers the share
of PASS members who report a personal network of 3–9 people is 5.7 percentage points higher
than in the invited sample (p< 0.001). This bias is relatively consistent across the stages of partici-
pation and the different types of data collected in the IAB-SMART study. The bias in the measures
for self-reported social inclusion are small and not significant (p > 0.05).

While some of the bias estimates for the Big 5 personality are up to 5 percentage points, none
of them is statistically significant (p > 0.05).

In terms of working hours, we see that IAB-SMART participants are less likely to report that
they are not working compared to the invited sample. The bias estimate varies between −4.2
percentage points for F2 Participants (p > 0.05) and −5.9 percentage points for Full Participants
(p < 0.01). Note that this finding is not comparable to the AME results of Figure 2b, because
these were operationalized as employment status and estimates from a multiple regression (i.e.
employment status under control of welfare benefit receipt).

We find the largest absolute bias for the measure on social media usage. PASS members who
report not using any social media network are 8.3 percentage points underrepresented among
Verified Installers compared to the invited sample (p < 0.001). In contrast, the share of PASS
members reporting that they use three or more social media networks is 9.0 percentage points
higher than in the invited sample (p < 0.001). Again, the bias is relatively stable across the stages
of participation and for the different types of data collected.

5 DISCUSSION

Smartphone data collection using research apps allows to administer mobile surveys and pas-
sively collect data from sensors and log files. While these data can provide researchers with
valuable information about individual and social behaviours on a very fine-grained level over a
longer time, the success of such a data collection depends heavily on smartphone users’ will-
ingness to download a research app and consent to sharing data. In the IAB-SMART study, we
found that out of the 4,293 German Android smartphone owners invited to the study, 14.5 percent
downloaded the app, went through the installation process, completed the welcome survey, and
were verified as eligible participants. This participation rate is somewhat lower than what other
studies reported when recruiting participants from the general population (Elevelt et al., 2019;
Scherpenzeel, 2017; Struminskaya et al., 2021).

While the relatively low participation rate seems disappointing on first sight, one has to con-
sider that most earlier studies have collected one type of sensor data only (e.g. geolocation),
usually over short periods (e.g. two days). In contrast, our study asked participants to provide
extensive access to a variety of passively collected data, including geolocation, call and text mes-
sage logs, characteristics of the social network, activity data, and app usage, over six months. Our
results show that the majority in the general public still seems to be rather skeptical about this
form of data collection, and researchers probably need to develop better ways of explaining why
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the collection of these data are important as well as how the data are collected, processed, and
analysed in a privacy-preserving way.

A low participation rate does not necessarily mean that the results of the IAB-SMART study
are biased. We thus investigated differences between participants and the invited sample. As
shown in earlier studies using smartphones for survey and passive data collection (e.g. Elevelt
et al., 2019; Wenz et al., 2019), participation in the IAB-SMART study is strongly correlated with
several sociodemographic characteristics of the invited individuals, including age, education,
nationality, and region. Given that especially older people and people with lower educational
attainment in Germany are also less likely to own a smartphone (Keusch et al., 2020), the findings
presented in this paper show that existing coverage error in these groups is further exacerbated by
non-participation error. Researchers who want to collect data from the general population using
research apps will need to adjust their estimates, for example, by weighting, to account for the
differences in participants and non-participants.

One limitation of our study is that we do not have data on specific attitudes about privacy and
data sharing from participants and non-participants. We thus cannot directly estimate the effects
privacy concerns have on the participation decision, and we hope that future studies will provide
more evidence on this issue. However, we found that the longer a person was part of the longitu-
dinal offline panel they were recruited from, the more likely they were to participate in our smart-
phone study. We interpret this finding as an indication of trust that has been built up over time
between long-term panel members and the research organization. Given the extensive amount of
potentially sensitive data that our app collected, we assume that recruiting participation from a
fresh sample of the general population using a similar app will yield a lower participation rate.

To study the effect of non-participation on substantive variables that could be measured
through the sensor and log file data that our app collected, we analysed the differences in point
estimates between the full sample and the study participants. Out of the nine measures of social
embeddedness, personality, labour market, and social media use, we found significant biases for
the self-reported size of the social network, the number of working hours, and the number of
social media networks used. The fact that non-working sample members were underrepresented
by four to six percentage points among the study participants is especially worrisome in the con-
text of a study that collects employment-related measures. Even larger was the bias for social
media use. Among the IAB-SMART study participants, people who reported using three or more
social media networks were around nine to 10 percentage points overrepresented compared to the
initial sample invited to the study. While we do not have information on other types of Internet
and smartphone usage from both the participants and the non-participants in our study, we can
assume that we would find similar biases for such related measures. Compared to self-reports in
surveys, passive measurement produces more precise estimates of smartphone usage behaviour,
such as mobile Internet use in general and engagement with social media platforms in partic-
ular (Araujo et al., 2017; Boase & Ling, 2013; Jones-Jang et al., 2020), and self-reports on these
behaviours are thus most likely to be substituted by passive measurement in the future. We thus
caution researchers not to provide unadjusted point estimates for these types of behaviours based
merely on the samples from studies using research apps. In general, our findings show once more
how important it is to study non-participation bias on a variable-specific level that goes beyond
mere sociodemographic differences.

We also found that once the IAB-SMART app was downloaded there was, as expected, higher
participation in the self-reported portion than the passive measurement. However, we see rel-
atively little variation in what specific types of passively measured data participants provided
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through the app, which is in line with previous research (Beierle et al., 2020); function participa-
tion ranged between 13.4 percent for data on network quality and location and 12.2 percent for
information from the participants’ phonebooks about the characteristics of their social networks.
In addition, the relationship between sample member characteristics (i.e. socio-demographics
and trust) and participation is highly comparable across the individual stages of participation
and for the different types of passively collected data. Similarly, the bias in substantive variables
stays relatively stable.

Although there is relatively little variation in the absolute numbers of participants who pro-
vided data through the five passive data collection functions of the IAB-SMART app, less than
11 percent of all invited sample members provided all types of data at least once during the six
months field period. On the one hand, setting a more strict definition of participation neither
affects the relationship between participation and panel member characteristics nor the bias esti-
mates in substantive variables. On the other hand, this finding has practical implications, showing
the complexity of calculating participation rates in such studies. This result suggests the need
for a more standardized way of reporting participation metadata in studies that combine survey
data collection with passive measurement on smartphones and other devices, such as wearables,
smart watches, and activity trackers, along the lines of the AAPOR (2016) Standard Definitions.
In a study that collects multiple types of data through a research app, the same person might be
counted as a participant for some parts of the study and as a non-participant for others, depending
on the research question and what type of data is used in the analysis.

The length of the field period might add even more complexity. For this paper, we defined
participation as providing data through the app at least once during the six month field period.
However, the full potential of this data collection approach lies in the continuous collection of
high-frequent measurements to study behaviour and change thereof over time. As reported in
Kreuter et al. (2020), almost 90 percent of sample members who downloaded the app did not
change their consent settings once the app was up and running, and less than 20 percent of par-
ticipants had fewer than 180 days of data at the end of the field period. Nevertheless, missing data
due to device-related errors (e.g. manufacturer and OS settings, third party apps) and participants’
behaviour (e.g. temporarily turning device off) can accumulate over time, and over 50 percent of
the originally scheduled network and geolocation measurements (F1) were missing (Bähr et al.,
2020). In some settings, even short field periods (e.g. less than a week) might reveal interesting
patterns, for example, about repetitive, daily behaviours. In other cases, long, uninterrupted mea-
surement is necessary to understand changes over time. Thus the length of time a case must be
part of the study in order to count as a participant may differ across studies.

The findings from the IAB-SMART study reported here are certainly only generalizable to
studies conducted in a similar context (i.e. recruiting from a sample of Android smartphone own-
ers out of an existing longitudinal study in Germany, using a quite elaborate incentive scheme,
collecting specific types of data). In particular, we restricted our sample to Android smartphone
owners, deliberately excluding owners of Apple iPhones and smartphones with other operat-
ing systems. In an earlier study using PASS data (Keusch et al., 2020), we found that around
two-thirds of German smartphone owners have an Android smartphone and less than one third
own an iPhone. We found significant differences in various sociodemographic, attitudinal, and
behavioural characteristics depending on the operating system of the smartphone. While we
consider this an issue of coverage bias, and not non-participation, we do not know whether
iPhone owners would show similar or different participation behaviour compared to the Android
smartphone owners in our study. Nevertheless, we see our study as a valuable contribution to a
growing body of literature on novel ways of collecting different types of social and behavioural
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data from smartphone users. In the future, we hope to see more studies that investigate the effect
of non-participation on the outcome measures that are supposed to be collected with smartphone
sensors and log files, taking into account regional differences in smartphone use and norms when
it comes to sharing smartphone data.
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