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Abstract

Motivated by the recent literature that finds that artificial neural networks

(NN) can efficiently predict economic time-series in general and inflation in

particular, we investigate if the forecasting performance can be improved even

further by using a particular kind of NN—a recurrent neural network. We use

a long short-term memory recurrent neural network (LSTM) that was proven

to be highly efficient for sequential data and computed univariate forecasts of

monthly US CPI inflation. We show that even though LSTM slightly outper-

forms autoregressive model (AR), NN, and Markov-switching models, its

performance is on par with the seasonal autoregressive model SARIMA. Addi-

tionally, we conduct a sensitivity analysis with respect to hyperparameters and

provide a qualitative interpretation of what the networks learn by applying a

novel layer-wise relevance propagation technique.
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1 | INTRODUCTION

Accurate inflation forecasting is essential for many eco-
nomic decisions. Private investors predict future inflation
to adjust their asset holdings, firms forecast the aggre-
gate inflation level to adjust their prices and maximize
profits, and central banks use inflation forecasts to con-
duct an efficient monetary policy. Fiscal authorities need
to forecast inflation dynamics if they use the rate of
inflation to adjust social security payments and income
tax brackets.

Inflation forecasting is an interesting yet challenging
task for both academic researchers and practitioners. As
Stock and Watson (2007) point out, inflation in the

United States has recently become both easier and harder
to predict. On the one hand, since the mid-80s inflation
became less volatile and as a result easier to predict. On
the other hand, it became harder to outperform a naive
univariate random walk-type forecast. For example,
Atkeson and Ohanian (2001) show that averaging over
the last 12 months gives a more accurate forecast of the
12-month-ahead inflation than a backward looking
Phillips curve. Macroeconomic literature replies to this
challenge by arguing that the inflation process might be
changing over time. Consequently, a nonlinear model
would give a more accurate inflation forecast.1

This paper evaluates the performance of a nonlinear
nonparametric method from the machine learning
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literature, that is novel in this context—a long short-term
memory recurrent neural network (LSTM), which is a par-
ticular type of a neural network (NN). We see four main
advantages of this method. First, LSTMs are flexible and
data-driven. It means that the researcher does not have to
specify the exact form of the nonlinearity. Instead the
LSTM will infer it from the data itself. Second, as stated by
the universal approximation theorem (Cybenko, 1989),
under some mild regularity conditions LSTMs and neural
networks of any type in general can approximate any con-
tinuous function arbitrarily accurately. At the same time,
these models are more parsimonious than many other
nonlinear time series models (Barron, 1993). Third, LSTMs
were developed specifically for the sequential data analysis
and were shown to be very successful with this task. In the
machine learning literature, this method is widely applied
in text analysis. For example, smartphones use LSTMs to
predict the last word in the sentence and help the user
while she is typing a message. Finally, the recent develop-
ment of the optimization routines for NNs and the librar-
ies that employ computer GPUs2 made the training of NNs
and recurrent neural networks (RNNs) significantly more
feasible. Our main goal is to investigate if one can improve
upon the accuracy of traditional forecasting models by
using machine learning methods such as neural networks
and, in particular, recurrent neural networks such as the
LSTM. Out of all deep learning methods we decided to test
the recurrent LSTM model because it is developed for the
sequential data (time series) and because it can effectively
find patterns even in long input sequences (when many
data lags are used as input). Moreover, in contrast to classi-
cal time-series models, LSTM does not suffer from data
instabilities and unit root problems. It can be applied to
forecasting of any macroeconomic time-series in any coun-
try, provided that there is enough observations to estimate
the model.3

Theoretically Convolutional Neural Networks—
originally developed and successful in the domain of
images—could also be used for time series forecasting if
one treats the input as a one-dimensional image. We did
not consider this method, because, similar to the presented
simple NN, it does not take into account the input order
explicitly like RNNs and LSTMs do. Very recently, new
deep learning models for various forecasting scenarios
have been introduced. DeepAR (Salinas et al., 2020) works
well for situations with multiple time series with slightly
different distributions, while here we only deal with infla-
tion. The Spacetimetransformer (Grigsby et al., 2021) takes
advantage of spatiotemporal data. In that case, the data
points are not only related over time but also have neigh-
bors in space like some measured values for cities. The
Temporal Fusion Transformer model (Lim et al., 2021)
also works with multiple time series for multiple horizon

forecasting. These successful models have not been consid-
ered here as they deal with more complex data in different
situations and are therefore more difficult to directly com-
pare with the standard time-series models.

We compare the performance of an LSTM with a sim-
ple fully connected NN model as well as with several
benchmark models that are frequently used for economic
forecasting: a linear autoregressive model (AR), a random
walk-type model (RW), a seasonal autoregressive model
SARIMA and a Markov-switching autoregressive model
(MS-AR). All our models are univariate (we leave multi-
variate forecasts for future research). We use monthly
CPI inflation data for the US and compute indirect roll-
ing forward monthly forecasts for up to 1 year ahead.

Neural networks are often criticized for their “black
box” structure. Because NNs are nonlinear in parameters,
it is difficult to interpret what they actually learn and how
the input affects the output. We attempt to access the rele-
vant importance of the model inputs for the final predic-
tion by applying a layer-wise relevance propagation
algorithm (LRP). The idea of this novel method is to
decompose the final predicted value into the sum of the
positive and negative values coming from the activated
hidden units. The outcomes of the hidden units can in turn
be decomposed into the contributions of the input neu-
rons. This allows us to track how the value of a particular
input contributes to the final prediction of the network.

One must note that the performance of neural net-
works is determined by several hyperparameters such as
the number of hidden units or the learning rate. To pro-
vide some guidance on how to choose these parameters,
we conduct an extensive sensitivity analysis. In total we
train about 4300 different models.

According to our results, it is possible to systemati-
cally outperform the random walk forecasts. Mean
squared forecast error (MSFE) of all tested models is
approximately one third of the corresponding measure
for the RW model at 1 to 12 months ahead. LSTM outper-
forms AR and NN models on the nonseasonally adjusted
data but performs on par with the seasonal autoregressive
model SARIMA. On the revised seasonally adjusted data
all models—AR, SARIMA, MS-AR, NN, and LSTM—
perform very similar. The exact ranking of the models
varies depending on the deseasonalization procedure and
the start of the forecast. We conclude from our analysis
that LSTM is an efficient nonlinear model for forecasting
inflation. Its usage, however, might not be justified in a
univariate forecasting setting.

Our LRP analysis sheds some light on the differences
between deseasonlized and nonseasonally adjusted data.
For the nonseasonally adjusted data, LSTM seems to be
able to learn the seasonal pattern on its own. For the
adjusted data instead, LSTM learns a pattern that is very
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similar to the pattern learned by the AR model. We also
note that LSTM and NN models are better at predicting
the dynamics after large shocks that bring inflation far
away from its mean value. LSTM and NN correctly pre-
dict the magnitude of the mean reversion while SARIMA,
AR and MS-AR models usually mistakenly expect infla-
tion to stay away from its mean for a longer period.

One might wonder how difficult it is to set up a
proper neural network model given that these models are
very rich in hyperparameters.4 It turns out that only a
few of them meaningfully affect the performance of the
neural networks on the inflation data. Based on our sen-
sitivity analysis, we can conclude that the simple NN per-
forms the best when Bayesian information criterion
(BIC) is used for the lag length selection and when the
maximum number of lags to select from is large. The per-
formance of the NN is insensitive to the number of hid-
den units as long as there are more hidden units than the
number of lags. The accuracy of the LSTM initially
increases with the number of hidden units and then pla-
teaus at around 100. For both models, the results are
highly insensitive to the learning rate parameter. It is also
important to train the LSTM for at least 500 epochs. In
other words, when setting up an LSTM model for a fore-
casting exercise, the researcher should bear in mind two
aspects: First, she should not include too few hidden
units or allow for too few lags; second, she should train
the model for a sufficient amount of time. Other hyper-
parameters appear not to be much of a concern.

This paper is not alone in applying deep learning
methods to macroeconomic forecasting. Ahmed et al.
(2010) and Stock and Watson (1998) compared linear and
nonlinear methods for macroeconomic forecasting by
averaging their performance over a large number of
macro time series. Similar to our results, these studies
find that simple NNs perform well at short forecasting
horizons. However, they use a different optimization
algorithm to train the NNs and a different procedure to
select the test set. Other examples include Kuan and Liu
(1995), who demonstrated the success of simple and
recurrent NNs for the exchange rate forecasting in several
countries; Swanson and White (1997b) and Swanson and
White (1997a), who evaluated the advantage of the NNs
with time varying coefficients in a real-time forecasting
setup; and Kock and Teräsvirta (2011), who discuss direct
versus indirect forecasts with NNs.

Chen et al. (2001), Nakamura (2005), and McAdam
and McNelis (2005) discuss the inflation forecasting with
neural networks. These studies show that NNs outper-
form benchmark linear models for shorter horizons based
on various performance measures.

Our paper is different from the above mentioned litera-
ture in that, to the best of our knowledge, this is the first

work that applies an LSTM recurrent neural network to
inflation forecasting. Makridakis et al. (2018) do look at
LSTM in their large study of the machine learning
methods. They, however, consider an average performance
across a large number of the data series and do not look
on inflation in isolation. Their study indicates that
machine learning methods do not outperform standard
statistical methods on average. One of the most straightfor-
ward reasons for why their conclusion is in contrast with
our findings might be the fact that nonlinear methods are
not beneficial for all macro time-series. They, however,
might be superior when one wants to forecasts inflation.
For example, Stock and Watson (1999) found that at
12 months ahead horizon nonlinear methods perform the
best for some macrovariables, including consumer prices,
but not all of them. Another work that is closely related to
our study is Elger et al. (2006) who consider a recurrent
neural network but of a different class than the LSTMs
analyzed here. They show that for shorter horizons, recur-
rent NNs are comparable with Markov switching autore-
gressive models and at longer horizons Markov switching
models are more accurate. However, they apply a different
type of RNN, different cross-validation and forecast evalu-
ation procedures. Moreover, their study uses GDP inflation
data while we focus on CPI inflation forecasting.

We also use a different optimization algorithm to fit
the NN and RNN models than the existing literature—
the Adam optimizer. Our choice of the optimization rou-
tine is based on its success in machine learning applica-
tions. While many of the existing papers decide on a
particular architecture of the NN a priori, this study, on
the contrary, carefully investigates how our conclusions
about the comparison of different methods are affected
by the hyperparameters of the NN and the LSTM.
Finally, our LRP computation is novel to the macro fore-
casting literature. The discussion of LRP in the machine
learning context can be found in Lapuschkin et al. (2016)
and Arras et al. (2017). In a broader sense, this paper con-
tributes to the literature on the nonlinear time-series
forecasting. Teräsvirta (2006) and Teräsvirta and Case
(2017) provide an overview of these methods.

We consider our work to be different from the usual
“horse-race” exercise. Our goal is rather to investigate the
novel machine learning method in more details. We com-
ment on the specification selection and try to understand
the mechanism behind the successful performance of the
LSTM models. In this regard, our work is in line with the
recent paper of Medeiros et al. (2018) that argues that
machine learning methods offer a very promising toolkit
for inflation predictions. They focus on multivariate ran-
dom forest models. Conclusions similar to ours are also
found in Smalter Hall and Cook (2017), who show that
different types of NN outperform an autoregressive
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model and perform better than the survey of professional
forecasters for unemployment predictions.

The rest of the paper is organized as follows. Section 2
describes our set up and the forecasting models. It also
gives a brief data description. Results are discussed in
Section 3. Section 4.2 lays out the sensitivity analysis, and
Section 4.3 presents the layer-wise relevance propagation
analysis. Section 5 concludes.

2 | METHODOLOGY

We rank the forecasting methods based on the mean
squared forecast error (MSFE) for out-of-sample fore-
casts on the test set. The forecast period starts in January
1990 and the observations from January 1960 until
January 1990 are included into the training and valida-
tion set. Test set includes data from January 1990 until
June 2020 and is never used for training or parameter
tuning.

For the sensitivity analysis, we allocate a part of the
training set as a validation set. The break point between
training and validation set was chosen such that the
number of observations in the validation set Nval is equal
to 10% of the total number of observations in the whole
training set.

We consider indirect (iterrolling forward) h-step-
ahead forecasts. While in theory direct forecasts are
more robust to model misspecifications, they are less
efficient if the model is correctly specified. Marcellino
et al. (2006) showed that in the linear forecasting setup,
indirect forecasts typically perform better than direct
ones. Kock and Teräsvirta (2011) address the same issue
for nonlinear prediction methods. They conclude that
iterated and direct forecast often have similar perfor-
mance and their exact ranking is problem- and data-spe-
cific. Direct forecasts also require a separate model for
each forecasting horizon and are thus more complex
computationally. We focus on the indirect forecasts in
this study and leave the extension to direct forecasts for
our future research.

We are interested in the conditional forecast, which is
made at date t�1. We start from the following model:

yt ¼ f Zt,p;W
� �þut, withZt,p ¼ ½yt�1, :::yt�p� ð1Þ

where yt is a variable of interest, f ð�Þ is an unknown,
potentially nonlinear function, W is the matrix of model
parameters (weights), Z collects the lags of y, and the
number of lags p is chosen by an information criterion.

One and two step-ahead forecasts based on the infor-
mation set Ft�1 can be computed as

ŷtjt�1 ¼E ytjFt�1½ � ¼ f Zt,p;W
� � ð2Þ

ŷtþ1jt�1 ¼E ytþ1jFt�1
� �¼E f ŷtjt�1,Zt,p�1;W

� �
jFt�1

h i
¼

¼E f f ðZt,p;WÞþut,Zt,p�1;W
� �jFt�1

� �
ð3Þ

Because the function f ð�Þ is nonlinear, we cannot take
the error term ut out of the expectation operator as in the
linear case. Ideally, one would need to estimate the
expectation term by numerical integration. However,
moving beyond the two-step-ahead forecast would
require evaluating multiple integrals. Moreover, the
assumption about the distribution of the ut could matter
for the result, and it would be hard to justify what this
distribution should be. Finally, numerical integration or
integration by bootstrap could introduce additional
inefficiency.

We overcome this problem by assuming that the error
term is zero in all states ut ¼ 0. It implies that our forecast
is not an unbiased conditional mean estimator.5 In other
words, our nonlinear models receive solely the informa-
tion about the first moment of the one-step-ahead fore-
cast when they compute the h≥ 2 forecasts. It means that
if anything, we only harm the performance of the non-
linear estimators. Our results can be seen as the lower
bound of potential forecasting performance of the non-
linear methods.

2.1 | Overall procedure

The overall methodology of the paper is presented in the
diagram below (Figure 1). Whenever the lag length needs
to be selected for a particular model on a particular data-
set, it is done in an AR model build with all the same
parameters and on the same dataset.

2.2 | Forecasting models

1. RW: random walk-type forecasts are constructed as a
simple average over the n previous periods
(Atkeson & Ohanian, 2001; Stock & Watson, 2007).

ŷtjt�1 ¼
1
n

Xn
i¼1

yt�i ð4Þ

The results are presented for the standard random
walk model that is n¼ 1. We also tried all n≤ 12 and
obtain very similar results in terms of model
comparison.
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2. AR(p): univariate autoregession model of an order p.

ŷtjt�1 ¼AþBZt,p, with Zt,p ¼ ½yt�1, :::yt�p� ð5Þ

3. NN: simple fully connected neural network
(Swanson & White, 1997b) with one hidden layer:

ŷtjt�1 ¼ bþ
XN
n¼1

wn �σ bnþ
XP
τ¼1

wn
τ yt�τ

 !
ð6Þ

where σð�Þ is a nonlinear activation function,6b is a
bias of the output and bn is a bias of the hidden units
n, wn is a weight from the hidden unit n to the output,
wn
τ is a weight from the lag τ to the hidden unit n.

Figure 2 sketches the structure of a simple NN model
(biases are ignored).

4. LSTM: Long short-term memory recurrent neural net-
work.
LSTM represents a particular type of a recurrent neu-
ral network (RNN), which is in turn a specific type of
neural network (Figure 3). The difference between the
NN and the recurrent neural network comes from the
recurrent nature of the latter. An RNN represents an

NN model that receives one data lag as an input at a
time and not all the lags at once as a vector. The pre-
diction is computed and updated sequentially after
seeing each of the data lags. Intermediate output,
which is called the “state” of the network, is used as
an additional input at the next time step. A represen-
tation of a standard recurrent neural network is given
in Figure 4. Recurrent propagation of the state is

FIGURE 2 Fully connected neural network (p¼ 2) with no

biases

FIGURE 1 Flow diagram of

the methodology
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represented by the horizontal arrows. Note that the
weights of the network stay the same, that is, the
“RNN” block on the figure is identical for every time
step. See also Smalter Hall and Cook (2017).
The RNN's structure has two important implications.
First, the network is explicitly informed that the input
lag yt�2 comes before the lag yt�1. More recent lags are
likely to be more important for the final prediction.
This stands in contrast to the simple fully connected
NN that treats all the lags equally such that the
sequence of lags does not matter. Second, the network
remembers information about the distant input lags
when computing the final output. In text analysis, for
example, if an RNN is used to predict the last word in
the sentence, the first few words can inform the net-
work about whether the sentiment of the sentence is
positive or negative. In our application, the state of
the RNN can potentially infer the information about

trend, cycle, or seasonality. Another appealing feature
of the RNN, which is, however, less relevant in our
application, is that the input sequences fyt�τgpτ¼1 do
not have to be all of the same length, that is, p can be
variable.
The LSTM network (Figure 5) is used in a sequence
similar to the aforementioned RNN of which it is a
special kind. It is distinct through its internal struc-
ture consisting of so called “gates.” These allow the
network to decide on its own what part of the network
state and the input it wants to remember on the next
iteration and what part it can forget. Such architecture
leads to a better empirical performance (Hochreiter &
Schmidhuber, 1997). A representation of an LSTM cell
is given in Figure 6. This cell is used recursively as
many times as there are data lags in the model.
Here, yt�1 represents the input at the time step t
(e.g., a lagged inflation value). c is the “state” of the

FIGURE 3 Classification of artificial neural networks

FIGURE 4 Basic representation of a

recurrent neural network (p¼ 3)

FIGURE 5 Basic

representation of an LSTM

recurrent neural network (p¼ 3)

FIGURE 6 LSTM cell representation
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network that represents its memory about the past. ht
denotes the output of the LSTM at the step t. σð�Þ and
tanhð�Þ represent the gates that are small neural net-
works that have the sigmoid function or the hyper-
bolic tangent function as activations at the output. On
the left of the diagram, one can see that the prediction
of the network for the period t�1 (ht�1) and the input
value at this step (yt�1) are combined and then filtered
through the four gates. These determine what part of
the state ct�1 should be forgotten, what and how
much information should be added to the state and
how the prediction for the step t should be adjusted
based on the state. On the right side of the diagram,
the output of the cell is presented: It is a new updated
value ht, and ŷ that is computed from it. For a detailed
description of the LSTM architecture, we refer the
reader to Appendix A as well as Hochreiter and
Schmidhuber (1997).

5. Other nonlinear models: SARIMA ðp, d, qÞðP,D,QÞS
and MS-AR.
We additionally looked at two nonlinear time-series
methods: A seasonal autoregressive model (SARIMA)
and a Markov switching autoregressive model
(MS-AR). The choice of the SARIMA model
(Lütkepohl, 2005) is motivated by the fact, that the
performance of the nonlinear neural network models
might be resulting from their ability to capture sea-
sonality and it is interesting to compare their perfor-
mance with a linear seasonal model. Based on the
ACF and PACF analysis, we select the SARIMA(1,1,1)
(0,0,1)[12] model. We set the number of seasons to be
12 because we use monthly data.

The choice of the Markov switching model is moti-
vated by the findings of Elger et al. (2006) that the
Markov switching model is superior to the neural net-
work in inflation forecasting at longer horizons. We use
the same model specification, which is a two-state dis-
crete Markov chain with regime-switching volatility and
constant across regimes autoregressive parameters.

Both methods are trained with the maximum likeli-
hood method implemented in the statsmodels library in
Python.7 Note that the SARIMA and MS-AR models are
trained with a different training procedure than the rest
of the models. Consequently, the differences in the fore-
casting performance of these two models result from
both the optimization routine and the model structure.
We would also like to stress that even though these
models are more common than the neural networks,
they are neither simple nor easy to fit. A number of
issues such as model specification, selection of the
hyperparameters and local optima are applicable to
SARIMA and MS-AR.

2.3 | Optimization algorithm

All models (except the RW, SARIMA, and MS-AR) are
trained by backpropagation with an adaptive stochastic
gradient descent optimizer—Adam—whose success was
largely documented in the machine learning literature
(Kingma & Ba, 2014). Adam is different form the stan-
dard stochastic gradient descent algorithm in that it
updates each parameter θ separately and changes the
speed of the adjustment η depending on the “momen-
tum” mt or approximated first-order moment and the
“friction” vt or approximated second-order moment of
the gradient gt.

mt ¼ β1mt�1þð1�β1Þ �gt ð7Þ

vt ¼ β2vt�1þð1�β2Þ � g2t ð8Þ

m̂t ¼ mt

1�β1
t ð9Þ

v̂t ¼ vt
1�β2

t ð10Þ

θtþ1 ¼ θt�η � m̂tffiffiffiffi
v̂t

p þϵ
ð11Þ

Here β1 and β2 are tuning parameters of the estimator.
Typical values are: β1 ¼ 0:9, β2 ¼ 0:999.

An early stopping rule is not employed at training
time. The grid search over the hyper-parameter space
includes the number of training epochs as one of the
dimensions. Thus, the choice of the best model there pre-
vents overfitting in a similar way as an early stopping
rule would. Because the standard frequentist procedure
of fitting AR models does not include any regularization,
we rewrite our AR in a simple NN form and train it in
the same way as NN and LSTM models.8 More specifi-
cally, we represent the AR model as a special case of a
simple NN with a linear activation function and no hid-
den layer.

2.4 | Data

We use data on monthly US CPI inflation from the FRED
database of the Federal Reserve Bank of St. Louis for
1960:01–2020:06 which constitutes 726 observations.
Inflation rates are calculated as percentage change. The
data is seasonally adjusted which is standard for the infla-
tion forecasting literature. However, seasonally adjusted
series are computed by the Bureau of Labor Statistics
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with the help of seasonality filters that can favor non-
linear methods. More specifically, the seasonal adjust-
ment is a two-sided nonlinear data transformation.
Nonlinear methods can, potentially, achieve a good fit by
simply unraveling the seasonal transformation. Addition-
ally, the seasonally adjusted data is subject to annual
revisions and thus cannot be used for our real-time fore-
casting exercise. We therefore, repeat our analysis for
nonseasonally adjusted monthly and annual inflation
rates as well as for the data with naive seasonal-
adjustment (subtraction of historic monthly averages).
Nonseasonally adjusted data allows testing the hypothe-
sis that neural networks can learn the seasonality of the
data on their own. Stock and Watson (1998) and Teräs-
virta et al. (2005) are examples of forecasting exercise on
a nonseasonally adjusted inflation data.

3 | RESULTS

We conduct a counterfactual exercise to answer the ques-
tion “What would have happened if forecasters were
using LSTM models instead of AR to predict inflation
since the year 1990?” This question is particularly rele-
vant from the policymakers' perspective since she has to
make decisions in real-time and therefore needs forecasts
based on the data available in real-time.

We iteratively compute inflation forecasts month by
month. For example, estimations for the year 2001 are
based solely on the data up until 2000. Forecasts for h≥ 2

are computed by iterating forward the one-step-ahead
forecast.

Our findings for the real-time forecast for the nonsea-
sonally adjusted data are presented in the Table 1 and
can be summarized as follows.9 First, all models outper-
form the naive random walk model. This holds true for
using any number of lags between 1 and 12 for the com-
putation of the RW forecast. Second, LSTM improves
upon the performance of the regularized AR and of the
NN models. It is however, on par with the SARIMA
model for all horizons except for 1 and for 10–12 steps
ahead where it is outperformed by SARIMA.

Table 2 contains the results for the seasonally
adjusted data. On the deseasonalized data (upper panel
of the table), forecast errors become smaller in absolute
terms for all methods. In general, the performance of all
methods becomes very close to each other. SARIMA
uniformly outperforms other methods, although the
improvement is not always statistically significant. This
result is also not robust to the deseasonalizing procedure,
data preprocessing and the start of the forecasting period.
If we remove the season with monthly dummies (lower
panel of the table), work with data in first differences or
start the forecast at a date different from 01-1990, the dif-
ferences in the performance of AR, LSTM, and SARIMA
become negligible. Depending on the forecast horizon
AR, LSTM, or SARIMA show the best performance. It is
worth to keep in mind that seasonally adjusted CPI data
is revised and thus the analysis do not represent a real-
time forecasting exercise.

TABLE 1 Real-time forecasts errors, NA monthly inflation data

MSFE MAFE

h RW AR NN LSTM MS S AR NN LSTM MS S

1 0.321 0.119 0.118 0.107 0.102 0.089 0.255 0.255 0.236 0.239 0.221

2 0.374 0.117 0.121 0.115 0.138 0.113 0.249 0.253 0.238 0.274 0.244

3 0.396 0.110 0.111 0.107 0.144 0.115 0.237 0.235 0.227 0.28 0.243

4 0.397 0.110 0.107 0.105 0.141 0.112 0.235 0.23 0.224 0.275 0.237

5 0.403 0.110 0.11 0.104 0.137 0.110 0.235 0.235 0.225 0.265 0.232

6 0.402 0.110 0.113 0.104 0.134 0.109 0.237 0.239 0.228 0.263 0.232

7 0.399 0.111 0.112 0.105 0.131 0.108 0.237 0.237 0.231 0.261 0.231

8 0.398 0.109 0.112 0.103 0.131 0.107 0.236 0.239 0.229 0.263 0.234

9 0.384 0.107 0.109 0.103 0.126 0.104 0.235 0.233 0.229 0.262 0.23

10 0.363 0.105 0.106 0.102 0.12 0.099 0.231 0.231 0.227 0.255 0.226

11 0.338 0.108 0.108 0.106 0.119 0.099 0.234 0.234 0.231 0.252 0.224

12 0.349 0.115 0.114 0.111 0.122 0.104 0.246 0.244 0.239 0.256 0.229

Note: Mean squared forecast error (MSFE) and mean absolute forecast error (MAFE) are computed for real-time forecasts starting from January 1990 for
nonseasonally adjusted monthly CPI inflation. The first column shows the forecast horizon, h. MS stands for Markov-switching model, S for seasonal SARIMA
model, NN for neural network, LSTM for long short-term memory recurrent neural network. The lowest error in each row is highlighted in bold. MAFE for

random walk model is not presented.
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The reason why all methods perform very similar on
the deseasonalized data, while LSTM and SARIMA
being more accurate on row data, might lie in the fact
that SARIMA and LSTM learn the season on their own.
In a univariate forecasting framework the ability to learn
a season undoubtedly affects the model performance.
We investigate this question further in the next
section when we interpret what the LSTM networks
have learned.

Figures 7–10 provide more insight into our results for
seasonally adjusted data. Figure 7 depicts the errors of
different models computed as MSFE. We see that all
models behave similar and all of them have difficulties in
predicting rare events such as the rapid spike in inflation
after the Hurricane Katrina in 2005, the large decline in

inflation in the second part of 2008 or in the first months
of 2020.

As can be seen from the example on Figure 8, NN
and LSTM tend to produce a forecast path (predictions
for 1 to 12 months ahead) which is more nonlinear and
more volatile than SARIMA and Markov-switching
models. This nonlinearity can improve the forecasting
performance but can also result in an extremely inaccu-
rate “wild” forecast, as shown on Figure 9. Another
observation is that NN, LSTM, and sometimes AR more
accurately predict the magnitude of the mean reversion
when starting the forecast from an extremely low or an
extremely high level of inflation. Figure 10 demonstrates
this point. MS-AR and SARIMA tend to underestimate
the rise or decline in the first months and mistakenly

TABLE 2 Real-time forecasts

errors, SA monthly inflation data
MSFE MAFE

h AR NN LSTM MS S AR NN LSTM MS S

1 0.076 0.081 0.075 0.064 0.06 0.183 0.192 0.183 0.172 0.163

2 0.077 0.076 0.105 0.085 0.075 0.181 0.187 0.200 0.195 0.179

3 0.08 0.082 0.103 0.087 0.075 0.184 0.192 0.202 0.197 0.177

4 0.081 0.081 0.086 0.085 0.073 0.186 0.190 0.196 0.192 0.171

5 0.08 0.082 0.081 0.084 0.074 0.186 0.192 0.188 0.191 0.174

6 0.079 0.083 0.08 0.084 0.074 0.188 0.196 0.191 0.192 0.173

7 0.081 0.081 0.089 0.082 0.072 0.188 0.196 0.198 0.194 0.177

8 0.081 0.081 0.09 0.081 0.072 0.189 0.193 0.199 0.195 0.179

9 0.08 0.081 0.081 0.08 0.07 0.190 0.195 0.195 0.192 0.175

10 0.08 0.083 0.078 0.079 0.068 0.190 0.197 0.19 0.191 0.172

11 0.085 0.087 0.082 0.081 0.07 0.194 0.199 0.198 0.193 0.174

12 0.082 0.08 0.089 0.085 0.074 0.189 0.191 0.203 0.198 0.179

1 0.099 0.099 0.096 0.084 0.079 0.226 0.226 0.221 0.215 0.205

2 0.1 0.102 0.106 0.106 0.098 0.225 0.227 0.229 0.235 0.221

3 0.095 0.1 0.107 0.113 0.1 0.214 0.222 0.227 0.245 0.223

4 0.095 0.099 0.107 0.111 0.098 0.213 0.220 0.225 0.24 0.217

5 0.095 0.099 0.104 0.108 0.097 0.214 0.220 0.224 0.234 0.213

6 0.095 0.099 0.101 0.107 0.096 0.216 0.222 0.224 0.236 0.213

7 0.095 0.098 0.1 0.106 0.094 0.216 0.220 0.223 0.238 0.212

8 0.093 0.094 0.094 0.107 0.093 0.215 0.217 0.219 0.239 0.213

9 0.091 0.09 0.093 0.103 0.09 0.213 0.211 0.217 0.234 0.209

10 0.09 0.09 0.097 0.1 0.086 0.211 0.212 0.219 0.23 0.206

11 0.094 0.093 0.095 0.1 0.087 0.214 0.213 0.219 0.23 0.207

12 0.096 0.096 0.095 0.102 0.091 0.220 0.219 0.219 0.233 0.211

Note: Mean squared forecast error (MSFE) and mean absolute forecast error (MAFE) are computed for real-
time forecasts starting from January 1990 for seasonally adjusted monthly CPI inflation. The upper panel

corresponds to the standard seasonal filter, the lower panel corresponds to removing the season with
monthly dummies. The first column shows the forecast horizon, h. MS stands for Markov-switching model,
S for seasonal SARIMA model, NN for neural network, LSTM for long short-term memory recurrent neural
network. The lowest error in each row is highlighted in bold.
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predict that inflation would stay close to an extreme
value for an extended period of time.

Robustness Checks. The results presented in this
section might be affected by the choice of data or
methods. We repeated the analysis on the annual infla-
tion data and gained analogous results. We also tried to
use forecast trimming as in Stock and Watson (1998)
and replaced the forecast that induced a change in infla-
tion larger than ever observed before by a no-change

forecast. This did not affect the results. We also experi-
mented with using an ensemble of models with different
hyperparameters for NN and LSTM. This did not change
the results either because as it will be shown in the next
session, the hyperparameters do not significantly affect
the performance of these network models. We also tried
to vary the specification of the SARIMA model, the one
presented here is the model version that delivers the best
forecasting performance. Results for non-regularized AR

FIGURE 7 MSFE over time for different models

FIGURE 8 Real-time forecast 2007-03
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models, trained with OLS were insignificantly different
from regularized AR models reported in the tables
above. Finally, we evaluated the sensitivity of the fore-
casting performance of the neural network models—NN,

AR, and LSTM—to the random initialization of the
parameters before training and concluded that random
initialization does not affect the performance on the
test set.

FIGURE 10 Real-time forecast 1996-02

FIGURE 9 Real-time forecast 2010-07
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4 | MODEL SELECTION AND
INTERPRETATION

This section presents knowledge about general neural
network model performance, convergence characteristics,
the impact of random initialization (Section 4.1), parame-
ter choice (Section 4.2), and interpretation of trained
models (Section 4.3), which was gained in this work.

4.1 | Initialization and convergence

Because our networks are trained by a local optimizer,
multiple optima might be a concern. For example, the
loss function of the used LSTM model is high-
dimensional and highly nonlinear. It contains 4090110

parameters and is hard to optimize.

We followed the literature of Stock and Watson
(1998) and looked at the distributions of the forecast
errors after training the networks on the same training
and estimating on the same validation sets but with ran-
domly chosen initial values for the parameters. This exer-
cise did not show any significant variance with regard to
the random initialization. Low variance of the attained
performance in this random initialization experiment
indicates that the models converge to approximately
equal forecast in terms of RMSFE in each optimization
chain.11

In a similar exercise, we randomly draw different vali-
dation sets together with random initialization. In this
case, standard deviations of the RMSFE increased, but
their value remained one order of magnitude below the
absolute value of RMSFE itself. Network performance,
thus, varies slightly over the dataset.

TABLE 3 Top best models of AR with parameters

Test error h¼ 2 h¼ 3 h¼ 6 h¼ 12 infc p Lag LR Epochs

1 0.20 0.22 0.22 0.23 0.25 None 24 24 0.003 500

2 0.20 0.24 0.26 0.28 0.27 bic 12 24 0.001 10000

3 0.21 0.22 0.23 0.24 0.26 None 24 24 0.100 18000

4 0.21 0.21 0.23 0.22 0.24 None 24 24 0.010 9000

5 0.21 0.22 0.23 0.23 0.25 None 24 24 0.300 1500

6 0.21 0.24 0.24 0.30 0.27 bic 12 24 0.050 9000

7 0.21 0.23 0.26 0.29 0.28 bic 12 12 0.003 1500

8 0.21 0.23 0.22 0.23 0.25 None 24 24 0.100 14000

9 0.21 0.20 0.22 0.23 0.26 None 24 24 0.050 1000

10 0.21 0.21 0.21 0.23 0.24 None 24 24 0.050 16000

Note: Selection is based on the average one-step-ahead RMSFE on SA data. h—number of forecast steps; infc—information criterion; p is either the optimally
selected number of lags or the max lag; Lag—maximum number of lags.

TABLE 4 Top best models of NN with parameters

Test error h¼ 2 h¼ 3 h¼ 6 h¼ 12 n infc p Lag LR Epochs

1 0.21 0.23 0.24 0.28 0.28 20 bic 12 12 0.001 500

2 0.21 0.23 0.26 0.28 0.29 10 bic 12 12 0.001 500

3 0.22 0.23 0.25 0.26 0.28 10 hqic 12 12 0.001 1500

4 0.22 0.23 0.24 0.29 0.27 10 hqic 12 12 0.001 1000

5 0.22 0.23 0.25 0.29 0.29 10 aic 12 12 0.001 1000

6 0.22 0.23 0.23 0.27 0.27 50 bic 12 12 0.001 500

7 0.22 0.21 0.24 0.30 0.28 50 bic 12 24 0.001 500

8 0.22 0.22 0.21 0.24 0.25 50 hqic 15 24 0.001 500

9 0.22 0.22 0.23 0.30 0.28 50 None 12 12 0.001 500

10 0.22 0.20 0.20 0.22 0.25 10 None 24 24 0.003 500

Note: Selection is based on the average one-step-ahead RMSFE on SA data. h—number of forecast steps; n—number of hidden units; infc—information

criterion; p is either the optimally selected number of lags or the max lag; L—maximum number of lags; LR—learning rate.
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4.2 | Sensitivity analysis

The performance of neural networks often depends cru-
cially on the selected hyperparameters. It can also depend
on the lag selection criterion and maximum number of
lags that this criterion is allowed to choose from. To

access the sensitivity of our forecasting models to the
parameter choices, we take a closer look at the hyper-
parameter sets, which resulted in the lowest forecast
error for each model type.

Tables 3–5 present the top 10 performers among AR
models, top 10 among NNs, and top 10 among LSTMs,

TABLE 5 Top best models of LSTM with parameters

Test error h¼ 2 h¼ 3 h¼ 6 h¼ 12 n infc p Lag LR Epochs

1 0.17 0.20 0.18 0.21 0.22 50 None 24 24 0.001 2000

2 0.17 0.21 0.21 0.25 0.26 20 None 24 24 0.001 1500

3 0.18 0.21 0.21 0.24 0.23 100 None 24 24 0.300 500

4 0.18 0.22 0.21 0.24 0.25 50 None 24 24 0.050 1000

5 0.18 0.19 0.20 0.22 0.24 50 None 24 24 0.010 2000

6 0.18 0.20 0.22 0.22 0.24 50 None 24 24 0.100 1000

7 0.18 0.20 0.20 0.21 0.25 100 None 24 24 0.050 2000

8 0.18 0.20 0.20 0.21 0.24 50 None 24 24 0.050 1500

9 0.19 0.20 0.20 0.21 0.22 100 None 24 24 0.300 1500

10 0.19 0.21 0.21 0.24 0.23 20 None 24 24 0.050 1500

Note: Selection is based on the average one-step-ahead RMSFE on SA data. h—number of forecast steps; n—number of hidden units; infc—information
criterion; p is either the optimally selected number of lags or the max lag; L—maximum number of lags; LR—learning rate.

FIGURE 11 Sensitivity analysis, simple NN. Dots indicate mean RMSFE and black bars indicate 90% credible sets after 20 runs of

Monte-Carlo cross-validation
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respectively, as measured by the RMSFE for seasonally
adjusted data. The ranking of their performance was
done after cross-validation over 10 random splits
between training and validation data. Note that this
training procedure differs from the earlier real-time
exercise, where a cross-validation would not be possible
since the test set is fixed for each step. For the results
in this section, the validation data consists of a few ran-
domly chosen nonoverlapping intervals within the
training dataset.12

All models are very close in terms of their validation
errors and the exact ranking is not highly informative.
Another observation is that the top 10 AR and top 10 NN
models perform very similarly to each other while the
performance of the LSTM is affected slightly more
strongly by the selected hyperparameters.

Figures 11 and 12 present the sensitivity of the best
performing NN and LSTM models, respectively. To create
these plots, we took the top performing NN or LSTM
model, varied one hyperparameter of interest at a time—
the number of hidden units, initial learning rate for the
optimizer, or the number of training epochs—and docu-
mented the changes in the model's performance.

Based on these plots and the tables above, we now
mention some recommendations regarding the hyper-
parameters for each model type.

AR model. The AR model performs well, when the
number of lags is not selected by information criteria, but
instead is fixed at a maximum number. Although the
Bayesian information criterion (BIC) can be a good
choice as well, based on the results in Table 3. A wide
variety of learning rate choices lead to equally performing
well. The same is true for the number of training
epochs—as long as it is at least 500.

NN model. As can be seen in Table 4 the simple NN
performs best when Bayesian information criterion is
used for the lag length selection and when the maximum
number of lags to select from is large. The performance
of the NN is insensitive to the number of hidden units,
but has a bit more stable results when the number is
below 80. Initial learning rate is also mostly irrelevant for
the NN's performance. Best results are achieved with
smaller learning rates below 0.05. The bottom plot on the
Figure 11 indicates that the test error of the NN achieves
minimum at around 1000 epochs and slightly increases
afterwards.13

FIGURE 12 Sensitivity analysis, LSTM. Dots indicate mean RMSFE and black bars indicate 90% credible sets after 20 runs of Monte-

Carlo cross-validation
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LSTM model. The results for the LSTM suggest that
the information criteria cannot improve performance.
Instead, the maximum number of input lags should be
given (we tested a maximum of 24). The forecast error is
hardly impacted by the number of hidden units. Already
as few as 20 can give peak results. As for the NN, the
LSTM results are highly insensitive to the learning rate
parameter and for both models it is essential to allow for
a reasonable number of the training epochs. The best
LSTMs are normally trained for 1000–2000 epochs,
whereas the biggest gain in performance is already done
within the first 200 epochs.

In summary, a researcher should bear in mind two
aspects when deciding on the neural networks architec-
ture: First, the maximum number of lags for the infor-
mation criterion should not be too small; second, the
researcher should train the model for a sufficient

amount of time. Other hyperparameters appear not to
be much of a concern for the task of inflation forecast-
ing. This findings confirm the general conclusion in
Bengio (2012).

4.3 | Understanding the mechanism:
Layer-wise relevance propagation

After fitting NN and LSTM models, one is naturally inter-
ested in interpreting what the networks learned from the
data and understanding what features of the input
(in our applications different lags) are the most important
for the network prediction. In contrast to linear models,
it is not possible to directly interpret the weights of the
neural networks because the final prediction is a non-
linear function of the network parameters.

FIGURE 13 LRP plots for

NN (top row), LSTM (middle),

and AR (bottom row) for

SA data
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Lapuschkin et al. (2016) suggest to access the impor-
tance of model inputs by layer-wise relevance propaga-
tion (LRP). A detailed description of the LRP algorithm
lies beyond the scope of this paper and we will only
sketch the main idea. The LRP procedure attaches a
value to every neuron (including the input neurons—
data lags in our case) that quantifies its contribution to
the network output. This value is called “relevance.” It is
computed layer-wise by aggregating the signals that a
neuron contributes to its successors. The signal's value
depends on the weights attached to the connections
between a given neuron and its successors. Relevance of
the input “neurons” give an estimation of their relative
importance for the final prediction.

Figures 13 and 14 each depict two examples of the
LRP measurement for the top performing NN (top row),

top performing LSTM (middle row), and top-performing
AR model (bottom row) for seasonally adjusted and non-
adjusted data, respectively. These were chosen as repre-
sentative examples and illustrate, what lags the methods
pay attention to given an input sequence. The black solid
line depicts the actual data. Each bar represents the rele-
vance of a particular lag, which was fed into the model as
an input. The LSTM has 24 lags and the NN has 12. The
rightmost value of each plot depicted with a dashed line
is the one-step-ahead prediction of the corresponding
network. Red bars indicate the lags that contribute posi-
tively to the predicted values and blue bars imply that the
value at the corresponding lag tells the network to
decrease the final prediction. Intensity of the color mea-
sures the magnitude of the relevance so white bars repre-
sent zero relevance.

FIGURE 14 LRP plots for

NN (top row), LSTM (middle),

and AR (bottom row) for

NA data
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Several observations are worth pointing out. Very
common in these plots is, that the most recent lags con-
tribute most strongly to the result, that is, have the high-
est relevance. The sign and weight of this contribution
can differ between models even on the same input.

For seasonally adjusted data, LRP-plots for LSTM and
AR look very similar. These models make similar deci-
sions, which is reflected in their performance. LSTM and
AR models are especially sensitive to recent lags, that
contribute positively (red) if they correspond to positive
values of inflation and negatively (blue) if they corre-
spond to negative values. The NN model on the other
hand looks for and reacts to extrema (minima and max-
ima) in the input.

For non-adjusted data, the LSTM model seems to
learn a pattern that is closer to what the NN model
learns. The LRP-plot of the LSTM is now very different
from the one for the AR. The AR model learns that the
most recent lag contributes rather positively, lags further
into the past contribute less and/or negatively. Because
the AR model does not know about the time component
of the data, it simply gives the highest weight to the most
recent lag.

In contrast to the AR, for the LSTM model the very
recent lag as well as the 10–12th lags are important. The
LSTM network realizes that the 12th lag contains sea-
sonal information, which is important for the prediction.
Additionally, the LSTM learns a flexible pattern for the
remaining lags, where positive and negative relevance
alternates.

In summary, the nonadjusted data lead to the LSTM
and NN models attributing relevance to three parts of the
input: the most recent lags, the lags one year ago and the
lags of extreme values in the input sequence. This last
part allows to adjust a forecasted value if some extreme
turns in the trend were observed. It could be interpreted
as a combination of nonlinearity and a “nonsparsity” of
the model in a sense that the LSTM pays equal attention
to all data lags. This conclusion is in accordance with
Medeiros et al. (2018), who argue that machine learning
methods select non-sparse model specifications in a mul-
tivariate forecasting set-up. We can also understand why
performance of the LSTM is closer to the SARIMA on
nonseasonally adjusted data. It turns out, that LSTM
learns a seasonal pattern in the data without being explic-
itly constructed to do so.

5 | CONCLUSION

This paper evaluates the performance of a nonlinear
machine learning method—the long short-term memory
recurrent neural network (LSTM)—for univariate

inflation forecasting and compares it to the standard fully
connected neural network as well as to classical
methods—the random walk model, linear autoregression
models, seasonal ARIMA model, and the Markov switch-
ing model. Performance was tested in a real-time fore-
casting exercise by computing predictions in a rolling-
window setting.

Our findings suggest that if one is using neural net-
works for prediction of economic time-series, an addi-
tional improvement in performance can be achieved by
using a particular type of neural network that is designed
for sequential data. We show that LSTM is an efficient
method for inflation prediction that allows to improve
forecasting accuracy upon other all other classical and
machine learning models except SARIMA on the non
seasonally adjusted data. For seasonally adjusted data our
results are mixed. We find that all models perform very
similar to each other and the exact ranking is unstable
across different starting dates of the forecast and seasonal
filters.

Our layer-wise relevance propagation analysis sug-
gests that LSTM is able to outperform simple NN and
regularized AR models because it takes into account the
entire lag structure given as an input. It pays attention
especially to the highest and lowest values of the lagged
inflation—that is, turning points. Simple NN and AR
models, in contrast, focus mostly on recent lags and, in
the case of nonadjusted data, on the lags 1 year ago. We
also noted that LSTM is more efficient in predicting the
mean-reversion of the time-series after turning points
than SARIMA or MS-AR. The performance of the LSTM
is on par with the seasonal SARIMA on nonseasonally
adjusted data because, as we show with the help of the
layer-wise relevance propagation technique, the LSTM
learns something very close to a seasonal pattern with-
out being explicitly instructed to do so. It is perhaps not
surprising that seasonal variation drives most of the
results in a univariate forecasting exercise. Performance
of LSTMs in computation of multivariate forecasts
would be a natural next question that we hope to fur-
ther explore in future research. It also remains an open
question whether the efficiency of long-term forecasts
can be further improved by explicitly optimizing the
models for a particular forecast horizon (direct fore-
casts) or for an average inflation rate over the next
12 months. We leave this question for our future pro-
jects as well.

We additionally show that the LSTM models are
rather insensitive to hyperparameter choices in the infla-
tion prediction task. The number of hidden units and the
number of training epochs should not be chosen too
small—apart from that performance does not vary greatly
when changing different hyperparameters.
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We want to stress that our goal is not to compare
LSTM with all models that can potentially be used for
inflation prediction in a large-scale “horse race” exercise.
We believe that any forecaster makes her judgment based
on several models anyway. We thus suggest that the per-
formance of the LSTM is on par or better than of some
standard forecasting models and that the LSTM should
thus be included in the ensemble of methods applied.
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ENDNOTES
1 For example Stock and Watson (2007) fit an integrated moving
average (time-varying trend-cycle) model to the GDP-deflator
data, and show that the coefficients in this model changed in the
beginning of 70s and then again in the mid 80s. The authors con-
clude that “…if the inflation process has changed in the past, it
could change again.”

2 We use Python TensorFlow on 4 NVIDIA K20m GPUs.
3 In practice it means that the data is available at monthly fre-
quency and for an extended period of time.

4 MS-AR and SARIMA models have hyperparameters as well,
however, much fewer.

5 All the models are fit under the early-stopping rule (see
Section 2.3) for a better generalization. As a result, the estimators
are biased by construction in any case.

6 We use rectified linear unit (ReLU), which is defined as
σðxÞ¼ max ð0, xÞ. Our choice is motivated by the computational
efficiency of this nonlinear function (Nair & Hinton, 2010).

7 Available on https://www.statsmodels.org/stable/index.html.
8 Alternatively, one can use a Bayesian AR model with a prior that
imposes shrinkage.

9 The overall magnitude of the MSEs lies in the ballpark that is
reported in the literature. For example, Stock and Watson (1999)

find that a univariate RW has an MSE of 0.39% and the MSE of a
univariate AR model is 0.16% when forecasting inflation
12 months ahead for for 1984–1996. In our analysis for 1960-2020
this errors are respectively 0.35 and 0.11 for NA data, and 0.34
and 0.08 SA data.

10 This LSTM model has 100 hidden units, at each time step each of
its 4 gates transforms 100 states from the previous step and a
1-dimensional input into 100 updated states. Each update also
contains a bias parameter. The final state of the network is trans-
formed into the final 1-dimensional output by multiplying the
state by a (100x1) matrix. A bias is added at this final step. As a
result the LSTM has 4�ðð101�100Þþ100Þþ100þ1¼ 40901
parameters.

11 This, of course, does not guarantee that models with different ini-
tializations would attain an equal performance in real-life appli-
cations, see (D'Amour et al., 2020) for a discussion.

12 Consequently, the cross-validated test errors imply lower MSFE
than shown in the Table 2.

13 Note that the training error is strictly decreasing in the number of
training epochs while the test error is not—the problem called over-
fitting. Training of the networks can therefore be stopped at the
point of the test error minimum and before the train error reaches
its minimum. This represents the “early-stopping” principle.
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APPENDIX A: LSTM CELL

The LSTM cell at time t receives three input vectors: the
cell state ct�1, the hidden state ht�1 and the new lag of
the data yt�1. The cell state is altered at each time step
and then handed over to the next one. The two alter-
ations to it are computed through small fully connected
neural networks taking the concatenation of the hidden
state and the current lag as input. The first adjustment to
the cell state is a forget operation, where every value of
ct�1 is multiplied by a number between 0 (forgetting the
information) and 1 (keeping the value entirely). This
number is computed by the σ-gate, that is depicted on
the left of Figure 6. It is a small neural network, that has
a sigmoid function as activation at the output. The

second adjustment to the cell state follows thereafter. It is
the addition of new information to ct�1. To every of its
values, a number between �1 and 1 is added. These
numbers are computed by first running ht�1 and yt�1

through a small neural network having a tanh function
as activation at the output. These transformed values are
then multiplied by the output of another σ-gate, which
again has the ability to forget some of the newly com-
puted information. After the forget and add operations,
the new cell state ct is complete and is handed to the next
time step. Finally, the updated hidden state is computed.
This is done by transforming the cell state with a tanh
activation and forgetting parts of it again through
another σ-gate having once again the previous ht�1 and
yt�1 as input. The final prediction ŷtjt�1 is a copy of the
last ht .
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