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Abstract
Avellaneda et al. (2002, 2003) pioneered the pricing
and hedging of index options – products highly sensi-
tive to implied volatility and correlation assumptions –
with large deviations methods, assuming local volatility
dynamics for all components of the index.We present an
extension applicable to non-Markovian dynamics and in
particular the case of rough volatility dynamics.

1 INTRODUCTION

Given 𝑁 assets, whose discounted price has risk-neutral dynamics

𝑑𝑆𝑖𝑡∕𝑆
𝑖
𝑡 = 𝜎𝑖(𝑡, 𝜔) 𝑑𝐵

𝑖
𝑡,

with Brownian driving noise, we consider an index of the form

𝐼𝑡 ∶=

𝑁∑
𝑖=1

𝑤𝑖𝑆
𝑖
𝑡

where the 𝑤𝑖 are positive constants. From standard Itô rules, assuming ⟨𝐵𝑖,
𝐵𝑗⟩𝑡∕𝑑𝑡 = 𝜌𝑖𝑗 ,

𝑑⟨𝐼⟩𝑡∕𝑑𝑡
𝐼2𝑡

=

𝑁∑
𝑖,𝑗=1

𝑝𝑖𝑡𝑝
𝑗
𝑡 𝜌𝑖𝑗𝜎𝑖(𝑡, 𝜔)𝜎𝑗(𝑡, 𝜔) =∶ 𝜎

2
𝐼 (𝑡, 𝜔),
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with 𝑝𝑖𝑡 = 𝑤𝑖𝑆
𝑖
𝑡∕𝐼𝑡. Taking 𝑡 = 0, we have today’s (deterministic) spot volatilities 𝜎𝑖,0 ∶= 𝜎𝑖(0, 𝜔),

with similar notation being used for the index. One then has the standard formula that relates
spot volatilities of the index and its components:

𝜎2𝐼,0 =

𝑁∑
𝑖,𝑗=1

𝜌𝑖𝑗𝜎𝑖,0𝜎𝑗,0𝑝
𝑖
0𝑝

𝑗
0. (1)

In Avellaneda et al. (2002, 2003) we asked the question how to integrate volatility skew infor-
mation for index components more explicitly into (1) and proposed a method for relating the
implied volatility skew of the index to the implied volatility skew of the components. Practical
motivation, much related to Marco’s activity at the time as head of the options research team
at Gargoyle Strategic Investments, comes from dispersion trading: the strategy of selling (buy-
ing) index options, while buying (selling) options on the index components. The topic stayed
close to Marco’s heart and dispersion trading remained a topic in his NYU classes for years to
come.
The basic idea of these works was the use of short-time large deviations from diffusion pro-

cesses, pioneered by Varadhan (1967). This topic also stayed close to the heart of the first author
of this note, as witnessed by De Marco et al. (2013), Deuschel et al. (2014), Friz et al. (2015), Bayer
et al. (2015), De Marco and Friz (2018), Friz et al. (2021b), Friz et al. (2021a).
The starting point of Avellaneda et al. (2002, 2003) is the familiar relation1

𝜎2
𝐼,loc(𝑡, 𝐼𝑡) = 𝔼

[
𝜎2
𝐼,stoch(𝑡, 𝜔)

|||𝐼𝑡] (2)

together with assumed local volatility dynamics for the components of the index, that is

𝜎𝑖(𝑡, 𝜔) = 𝜎𝑖(𝑡, 𝑆
𝑖), 𝑖 = 1, … ,𝑁.

Setting 𝜎̃𝑖(𝑥) = 𝜎𝑖
(
0, 𝑆𝑖0𝑒

𝑥𝑖
)
and also 𝜎̃𝐼,loc(𝑥̄) = 𝜎𝐼,loc(0, 𝐼0𝑒

𝑥̄) it holds in the short-time limit
that

𝜎̃2
𝐼,loc(𝑥̄) =

𝑁∑
𝑖,𝑗=1

𝜌𝑖𝑗𝜎̃𝑖(𝑥
∗
𝑖
)𝜎̃𝑗(𝑥

∗
𝑗
)𝑝𝑖(𝐱

∗)𝑝𝑗(𝐱
∗).

where 𝐱∗ ∈ Γ𝑥̄ = {𝐱 ∶
∑𝑁

𝑖=1
𝑤𝑖𝑆

𝑖
0𝑒
𝑥𝑖 = 𝑒𝑥̄} minimizes the distance to the origin 𝐱 = 0, relative to

the associated Riemannian metric, cf. Varadhan (1967). It is generically true (and here assumed –
but see, e.g., Bayer et al. (2015)) that 𝐱∗ is unique. We also set

𝑝𝑖(𝐱) =
𝑤𝑖𝑆

𝑖
0𝑒
𝑥𝑖∑𝑁

𝑗=1
𝑤𝑗𝑆

𝑗
0
𝑒𝑥𝑗

,

1 Inwhat followswe assumebasic familiaritywith stochastic, local and implied volatility, as found, for example, inGatheral
(2006); Bergomi (2016). Formula (2) goes back to Gyöngy (1986), Dupire (1994); Derman and Kani (1994), also revisited in
(Brunick & Shreve, 2013; Bentata & Cont, 2015).
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which represents the percentage of the stock 𝑖 in the index with 𝑆𝑖 = 𝑆𝑖0𝑒
𝑥𝑖 . Furthermore 𝐱∗ solves

the non-linear system

∫
𝑥∗
𝑖

0

𝑑𝑢

𝜎̃𝑖(𝑢)
= 𝜆

𝑁∑
𝑗=1

𝜌𝑖𝑗𝑝𝑗(𝐱
∗)𝜎̃𝑗(𝑥

∗
𝑗
), ∀𝑖 = 1,… ,𝑁

𝑒𝑥̄ =

𝑁∑
𝑖=1

𝑤𝑖𝑆
𝑖(0)𝑒𝑥

∗
𝑖 .

Here 𝜆 corresponds to the Langrange multiplier of the price constraint Γ𝑥̄.
Using approximate relations between local and implied volatility, notably the 1∕2-rule, valid in

the short-time and ATM regime (see also Gatheral (2006); Gatheral et al. (2012) and references
therein), this led us to

𝜎̃𝐼,loc(𝑥̄) =

√√√√√ 𝑁∑
𝑖,𝑗=1

𝜌𝑖𝑗𝑝𝑖(𝐱∗)𝑝𝑗(𝐱∗)
(
2𝜎

impl
𝑖

(𝑥∗
𝑖
) − 𝜎

impl
𝑖

(0)
)(

2𝜎
impl
𝑗

(𝑥∗
𝑗
) − 𝜎

impl
𝑗

(0)
)
;

together with a first order approximation for the most likely configuration x∗ from (Avellaneda
et al., 2002, Eq.(15))

𝑥∗
𝑖
=

𝑥̄

𝜎2𝐼 (0)

𝑁∑
𝑗=1

𝜌𝑖𝑗, 𝑤𝑗𝜎𝑖(0)𝜎𝑗(0), 𝑖 = 1, .., 𝑁. (3)

Keep in mind, that 𝜎̃𝐼,loc corresponds to the local volatility at time 𝑡 = 0, hence equality holds
above, despite using approximations.
With the harmonic average formula that expresses 𝜎impl𝐼 (𝑥̄) in terms of 𝜎̃𝐼,loc(𝑥̄), this essen-

tially concludes the task of refining (1) in a tractable way that allows to integrate volatility
skew information.
These (index) results were revisited and extended by various authors, including (Henry-

Labordère, 2008, Sec.7.2) and (Guyon andHenry-Labordère, 2014, Sec.12.9), notably towards local
correlation models. The purpose of the present note is to revisit Avellaneda et al. (2002) in a way
that makes it clear that one can do, in fact, without the Markovian structure that seemed rather
crucial in Avellaneda et al. (2002, 2003); Henry-Labordère (2008); Bayer et al. (2015) and related
works. While in a diffusion setting, short-time can be considered as special case of small noise, cf.
Osajima (2015); Deuschel et al. (2014)), this is not so in a rough volatility setting and we should
emphasize that we work in a small noise setting here, rather than the short-time regime of Forde
and Zhang (2017). Last not least, following Avellaneda et al. (2002, 2003) and to illustrate our
approach we have kept the constant correlation structure, leaving any extension to stochastic and
local correlations to future work.

2 INDEX OPTIONS UNDER ROUGH VOLATILITY

2.1 Rough volatility index dynamics

We consider the model case where components follow rough volatility dynamics. For this let(
𝑊1,… ,𝑊𝑁,𝑊

1
,… ,𝑊

𝑀)
be independent Brownian motions and consider for 𝑖 = 1, … ,𝑁 a
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model of the form

𝑑𝑆𝑖𝑡∕𝑆
𝑖
𝑡 = 𝑓𝑖(𝑊

𝑖
𝑡) 𝑑𝐵

𝑖
𝑡, (4)

𝐵𝑖 = 𝑐𝑖𝑊
𝑖 + 𝑐𝑖𝑊

𝑖
, 𝑐2

𝑖
+ 𝑐2

𝑖
= 1,

𝑊𝑖
𝑡 = ∫

𝑡

0

𝐾𝐻𝑖 (𝑡, 𝑠) 𝑑𝑊𝑖
𝑠, 𝐾𝐻(𝑡, 𝑠) = 𝐶(𝐻)|𝑡 − 𝑠|𝐻−1∕2.

Here𝑊𝑖 is a Riemann-Liouville fractional Brownian motion with Hurst parameter𝐻𝑖 ∈ (0, 1∕2].
The constant 𝐶(𝐻) is usually chosen such that𝑊 has unit variance. Furthermore, the 𝑐𝑖 quantify
the correlation between𝐵𝑖 and𝑊𝑖 , that is, between the respective driving factors of the underlying
and the stochastic volatility process. In general, one would need to specify the full correlation
structure of (

𝐵1, … , 𝐵𝑁;𝑊1,… ,𝑊𝑁
)
.

To keep things simple, we assume 𝑐𝑖 = −1, which is not an unreasonable assumption at all in
equity. Here the sign of 𝑐𝑖 does not matter, as one could redefine 𝑓𝑖 accordingly. We are led to a
path-dependent one factor stochastic volatility model,

𝑑𝑆𝑖𝑡∕𝑆
𝑖
𝑡 = 𝑓𝑖(𝑊

𝑖
𝑡) 𝑑𝑊

𝑖
𝑡,

somewhat similar in spirit to Hobson and Rogers (1998) and Guyon and Henry-Labordère (2014).
As before we set

𝑑⟨𝑊𝑖,𝑊𝑗⟩𝑡∕𝑑𝑡 = 𝑑⟨𝐵𝑖, 𝐵𝑗⟩𝑡∕𝑑𝑡 = 𝜌𝑖𝑗.

2.2 Small noise LDP for the index under rough volatility

We introduce the small noise problem

𝑑𝑆
𝑖,𝜀
𝑡 ∕𝑆

𝑖,𝜀
𝑡 = 𝑓𝑖

(
𝜀𝑊𝑡

𝑖)
𝑑(𝜀𝑊𝑖

𝑡)

𝐼𝜀𝑡 ∶=

𝑁∑
𝑖=1

𝑤𝑖𝑆
𝑖,𝜀
𝑡

(5)

Assume (w.l.o.g.) that 𝑆𝑖,𝜀0 ≡1 and∑𝑁

𝑖=1
𝑤𝑖 = 1, so that 𝐼𝜀0 = 1. Introduce the index log-price process

𝐽𝜀 = log(𝐼𝜀), such that 𝐼𝜀 = 𝑒𝐽
𝜀
.

Write 𝑁 for the absolutely continuous paths from [0, 1] → ℝ𝑁 , started at zero, with 𝐿2-
derivative. Writing ⟨., .⟩ for the 𝐿2-inner product of both ℝ𝑁 and ℝ valued paths, we have the
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usual Cameron-Martin inner product

⟨ℎ, ℎ⟩𝑁 = ⟨ℎ̇, ℎ̇⟩ = 𝑁∑
𝑖=1

⟨ℎ̇𝑖 , ℎ̇𝑖⟩.
For invertible 𝜌, we also define

⟨ℎ, ℎ⟩𝜌 ∶= ⟨ℎ̇, 𝜌−1ℎ̇⟩ = 𝑁∑
𝑖,𝑗=1

⟨ℎ̇𝑖 , (𝜌−1)𝑖𝑗ℎ̇𝑗⟩.
If𝑊 denotes a 𝑁-dimensional Brownian motion with covariance matrix 𝜌, then 𝜀𝑊, viewed as
𝐶([0, 1], ℝ𝑁)-valued random variable, satisfies a LDPwith good rate function ⟨ℎ, ℎ⟩𝜌∕2whenever
ℎ ∈ 𝑁 , and +∞ otherwise. One can also treat non-invertible 𝜌, at the price of working with
degenerate inner products, so that only a proper subspace𝜌 ⊂  has a finite rate function.

Theorem 2.1. Assume 𝑓𝑖 is smooth for 𝑖 = 1, … ,𝑁. Assume 𝜌 is invertible. Then 𝐽𝜀1 = log(𝐼𝜀1)

satisfies a LDP with speed 𝜀2 and good rate function

Λ(𝑥) = inf
ℎ∈𝑁

{
1

2
⟨ℎ, ℎ⟩𝜌 ∶ 𝜙(ℎ) = 𝑥

}
=
1

2
⟨ℎ𝑥, ℎ𝑥⟩𝜌,

called energy function, where

𝜙(ℎ) = log

( 𝑁∑
𝑖=1

𝑤𝑖 exp
(
𝜙𝑖(ℎ

𝑖)
))

, 𝜙𝑖(ℎ
𝑖) = ∫

1

0

𝑓𝑖(ℎ̂
𝑖) 𝑑ℎ𝑖.

The infimum is attained at some not necessarily unique ℎ𝑥 ∈ 𝑁 .

Proof. If we had 𝐽𝜀1 = 𝜙(𝜀𝑊1,… , 𝜀𝑊𝑁) for a continuous map 𝜙, this would be a plain conse-
quence of Schilder’s theorem (LDP for Brownian motion) and the contraction principle. There
are many ways to show that the results still hold. A standard method is by means of the so-
called extended contraction principle, as in Forde and Zhang (2017), see also Jacquier and Pannier
(2022); Gulisashvili (2022). An alternative and arguably quite elegant argument was put forward
in Bayer et al. (2020), see also Fukasawa and Takano (2022). Namely 𝐽𝜀1 is the continuous image of
(𝜀𝑊1,… , 𝜀𝑊𝑁) plus certain iterated (Itô) integrals, in the spirit of rough paths. For this enhanced
noise, Schilder type large deviations are known and the result follows. □

Remark 2.2. Note that𝑁 ∋ ℎ = (ℎ1, … , ℎ𝑁) ↦ 𝜙(ℎ) ∈ ℝ is smooth, to the extend the 𝑓𝑖 permit,
and maps 0 ∈ 𝑁 to 𝜙(0) = 0 ∈ ℝ. The function ℎ̂𝑖 is given by ℎ̂𝑖𝑡 = ∫ 𝑡

0
𝐾𝐻𝑖 (𝑡, 𝑠) 𝑑ℎ𝑖𝑠.

2.3 Expansion of abstract energy function

Motivated by numerous papers on large deviations for stochastic and rough volatility we make
the following definition.
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Definition 2.3. (i) Call 𝐶𝑘-reasonable anymap 𝜙 ∶ 𝑁 → ℝwhich is weakly continuous and 𝐶𝑘
in Fréchet sense with 𝑘 ≥ 0, further to

𝜙(0) = 0 ∈ ℝ, 𝐷𝜙(0) ≠ 0 ∈ 𝑁.

(ii) Call Λ ∶ ℝ → [0,∞] a 𝐶𝑘-good energy function if, for some 𝐶𝑘-reasonable 𝜙, it is a good rate
function of the form

Λ(𝑥) = inf
ℎ∈𝑁

{
1

2
⟨ℎ, ℎ⟩𝜌 ∶ 𝜙(ℎ) = 𝑥

}
.

Note Λ(0) = 0, with infimum trivially attained by ℎ0 = 0 ∈ 𝑁 .

Proposition 2.4. Any 𝐶1-good energy function is continuous and increasing (resp. decreasing) on
ℝ+ (resp.ℝ−).

Proof. Follows from Proposition 6.1 and Proposition 6.6. □

Remark 2.5. In the special case of the rough Bergomi model, monoticity of the rate functions is
shown in (Gulisashvili, 2018, Lemma 15), with proof attributed to C. Bayer.

The following “abstract” theoremgives an expansion of the rate functionΛ(𝑥) and only involves
the Fréchet derivatives

𝜙′0 ∶= 𝐷𝜙(0) ∈ 𝑁, 𝜙′′0 ∶= 𝐷2𝜙(0) ∈ (𝑁 ×𝑁)⋆.

As usual (𝑁 ×𝑁)⋆ denotes the topological dual space of𝑁 ×𝑁 .

Theorem 2.6. Assume Λ is a 𝐶3-good energy function. Then, as 𝑥 → 0,

Λ(𝑥) =
1

2
⟨ℎ𝑥, ℎ𝑥⟩𝜌 = (

𝑥2

2
−

𝑥3

2𝜎40
𝜙′′0

(
𝜌𝜙′0, 𝜌𝜙

′
0

))/
𝜎20 + 𝑜(𝑥3)

where

𝜎2
0
∶= ⟨𝜌𝜙′

0
, 𝜌𝜙′

0
⟩𝜌 = ⟨𝜙′

0
, 𝜌𝜙′

0
⟩𝑁 .

2.4 Consequences for implied volatility in the small noise regime

The following result has nothing to do with indices, and only assumes that the asset price process
𝐼𝜀𝑡 comes with a parameter 𝜀 > 0, so that log(𝐼𝜀1), the log-price at time 1, satisfies a LDP with a
good rate function Λ = Λ(𝑥). Λ is assumed to be continuous and such that Λ(𝑥) = 0 iff 𝑥 = 0; cf.
Assumption (A1) in Friz et al. (2021a).
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The following theorem can be seen as variation of the “BBF formula”, Berestycki et al.
(2004) (short time) and also appears in Osajima (2015) (small noise). Remark that in short-time
asymptotics for diffusion models, also discussed in Deuschel et al. (2014), the energy function
Λ has the interpretation as geodesic point-subspace distance. Continuity and monotonicity of
Λ is then clear. In absence of this structure, authors including Forde and Zhang (2017) and
Gulisashvili (2022) express their large deviations in terms of Λ⋆(𝑥) = inf𝑦>𝑥 Λ(𝑦) whenever
𝑥 ≥ 0 andΛ⋆(𝑥) = inf𝑦<𝑥 Λ(𝑦) for 𝑥 < 0. As will be pointed out in the proof, this is not necessary
in our setting, despite dealing with a somewhat generic non-Markovian small noise situation.

Theorem 2.7 (Implied volatility). Under the above assumption it follows that

(𝜎𝜀impl)
2(𝑥, 1) ∼𝜀↓0

𝑥2

2Λ(𝑥)
.

Corollary 2.8 (Spot variance and skew). Let Λ have the local expansion of Theorem 2.6. Then

(𝜎𝜀impl)
2(𝑥, 1) ∼𝜀↓0

𝑥2

2Λ(𝑥)
∼𝑥↓0 𝜎

2
0 + 𝑥0 + 𝑜(𝑥)

with spot variance implied variance skew given by, respectively,

𝜎2
0
=⟨𝜙′

0
, 𝜌𝜙′

0
⟩𝑁 ,

0 =𝜙′′0 (𝜌𝜙′0, 𝜌𝜙′0)∕𝜎20.
Proof of Theorem 2.7. We content ourselves with a sketch of the argument. The LDP together with
Proposition 2.4 give directly OTM binary call price aymptotics,

ℙ[𝑋𝜀
1 > 𝑥] ≈ exp

{
−
Λ(𝑥)

𝜀2

}
.

Matching exponents with OTM Bachelier prices and their Gaussian tail behavior,

ℙ[𝜎𝜀𝑊1 > 𝑥] ≈ exp
{
−

𝑥2

2𝜎2𝜀2

}
.

For the effective normal implied volatility, as 𝜀 ↓ 0, we see that

(𝜎𝜀norm)
2(𝑥, 1) ∼

𝑥2

2Λ(𝑥)
.

The same asymptotics is valid for 𝜎𝜀impl, the Black-Scholes implied volatility. This follows from the
fact that large asymptotics for binary and classical (OTM) option are identical. The only caveat
here is a 1+moment assumption to treat call options, cf. Friz et al. (2021a). □
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Proof of Corollary 2.8. We only need to give a simple expansion for small 𝑥. Due to Theorem 2.6:

𝑥2

2Λ(𝑥)
= 𝜎20

(
1

1 − 𝑥𝜎−40 𝜙′′0 (𝜌𝜙
′
0, 𝜙

′
0) + 𝑜(𝑥)

)

= 𝜎20

(
1 + 𝑥𝜎−40 𝜙′′0 (𝜌𝜙

′
0, 𝜙

′
0) + 𝑜(𝑥)

)
.

□

2.5 Index spot variance and skew

We now re-introduce, step-by-step, the structure of interest to us. We start with a general index
result, that applies, for instance to the index with local volatility components considered in
Avellaneda et al. (2002). In this case 𝜙𝑖(ℎ𝑖) = 𝑦𝜀

1
is the time-1 solution map of the ODE

𝑑𝑦𝑖 = 𝑓𝑖(𝑦
𝑖) 𝑑ℎ𝑖,

with initial value 𝑦𝑖 = 0. For Lipschitz 𝑓𝑖 this solution map is well-posed. This result also applies
to rough volatility, with

𝜙𝑖(ℎ
𝑖) = ∫

1

0

𝑓𝑖(ℎ̂
𝑖) 𝑑ℎ𝑖.

Note that in this case ⟨𝜙′
𝑖0
, 𝑘𝑖⟩ = ∫ 1

0
𝑓𝑖(0)𝑑𝑘

𝑖 implying that 𝜙′
𝑖0
≡ 𝐷𝜙𝑖(0) ∈  has, as element of

the Cameron-Martin space, constant velocity 𝜎𝑖 = 𝑓𝑖(0). A similar statement holds in the local
volatility example. This motivates our condition (6) below. The following result is a consequence
of the general Corollary 2.8, injecting the additional information of weights and correlations.

Proposition 2.9 (Index energy). Assume that
∑𝑁

𝑖=1
𝑤𝑖 = 1 and let 𝜙𝑖 ∶  → ℝ be 𝐶3-reasonable2

with 𝑖 = 1, … ,𝑁. Let

exp
(
𝜙(ℎ1, … , ℎ𝑁)

)
∶=

𝑁∑
𝑖=1

𝑤𝑖 exp
(
𝜙𝑖(ℎ

𝑖)
)
.

Set 𝜙′
𝑖0
= 𝐷𝜙𝑖(0) ∈  as well as 𝜙′′

𝑖0
= 𝐷2𝜙𝑖(0) ∈ ( ×)⋆ and assume

𝜙′
𝑖0
= 𝜎𝑖Id ∈ , Id ∶ 𝑡 ↦ 𝑡. (6)

Then

(𝜎𝜀impl)
2(𝑥, 1) ∼𝑥↓0 𝜎

2
𝐼 + 𝑥𝐼 + 𝑜(𝑥),

2 In the sense of Definition 2.3 with 𝑁 = 1.
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with

𝜎2𝐼 =

𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗,

𝐼 = −𝜎2𝐼 +

( 𝑁∑
𝑖=1

𝑤𝑖Σ
2
𝑖

(
𝜙′′
𝑖0
(Id, Id) + 𝜎2

𝑖

))/
𝜎2𝐼 , Σ𝑖 ∶=

𝑁∑
𝑗=1

𝑤𝑗𝜌𝑖𝑗𝜎𝑗. (7)

Remark 2.10. (i) Assumption (6) is satisfied in large classes of examples. However, as the proof
shows one candowithout but the formulae are a bit less pretty. (ii) The expression for spot variance
𝜎2𝐼 is consistentwith the classical formula for IndexOptions thatwe gave in (1), cf. Avellaneda et al.
(2002) or Guyon and Henry-Labordère (2014). The expression for 𝐼 can be seen an answer to the
problem, first tackled in Avellaneda et al. (2002), of how to integrate volatility skew information
into such a classical formula.

Remark 2.11 (Most-likely configuration). Consider, up to first order, 𝑥̄ = 𝜙(ℎ̄) ∶=
∑𝑁

𝑖=1
𝑤𝑖𝜙𝑖(ℎ̄

𝑖)

where ℎ̄ = (ℎ̄1, … , ℎ̄𝑁) is the minimizer for the constraint 𝑥̄ = 𝜙(ℎ̄). We then know ℎ̄ = 𝑥̄𝑎, as
well as 𝜙(ℎ̄) ∶= 𝑥̄⟨𝜙′0, 𝑎⟩𝐻𝑁 with

𝑎𝑖 ∶=
(𝜌𝜙′0)

𝑖

⟨𝜌𝜙′0, 𝜌𝜙′0⟩𝜌 =
(𝜌𝜙′0)

𝑖

𝜎2𝐼 (0)
⇒ ℎ̄𝑖 =

𝑥̄

𝜎2𝐼 (0)
(𝜌𝜙′

0
)𝑖 𝑖 = 1, … ,𝑁.

We thus have that 𝑥̄𝑖 = 𝜙𝑖(ℎ̄
𝑖) equals, to first order and in agreement with (3),

⟨𝜙′
𝑖0
, ℎ̄𝑖⟩𝐻 =

𝑥̄

𝜎2𝐼 (0)
⟨𝜙′

𝑖0
, (𝜌𝜙′0)

𝑖⟩𝐻 =
𝑥̄

𝜎2𝐼 (0)

𝑁∑
𝑗=1

𝜌𝑖𝑗𝑤𝑗⟨𝜙′𝑖0, 𝜙′𝑗0⟩𝐻
=

𝑥̄

𝜎2𝐼 (0)

𝑁∑
𝑗=1

𝜌𝑖𝑗𝑤𝑗𝜎𝑖(0)𝜎𝑗(0),

where we used 𝜙′
0
=

∑𝑁

𝑗=1
𝑤𝑗𝜙

′
𝑗0
⇒ (𝜌𝜙′

0
)𝑖 =

∑𝑁

𝑗=1
𝜌𝑖𝑗𝑤𝑗𝜙

′
𝑗0
.

Proof of Proposition 2.9. Let 𝑘 = (𝑘1, … , 𝑘𝑁) ∈ 𝑁 . We apply the function exp
(
𝜙(ℎ)

)
=∑𝑁

𝑖=1
𝑤𝑖 exp

(
𝜙𝑖(ℎ

𝑖)
)
with ℎ = 𝜀𝑘. The l.h.s. of exp(𝜙(𝜀𝑘)) then expands to

1 + 𝜙(𝜀𝑘) + 𝜙2(𝜀𝑘)∕2 + 𝑜(𝜀2) = 1 + 𝜀⟨𝜙′0, 𝑘⟩𝑁 +
𝜀2

2

(
𝜙′′0 (𝑘, 𝑘) + ⟨𝜙′0, 𝑘⟩2𝑁

)
+ 𝑜(𝜀2).

The r.h.s. expands to the weighted sum of the same expression with 𝜙(𝜀𝑘) replaced by 𝜙𝑖(𝜀𝑘𝑖),
namely

1 + 𝜀

𝑁∑
𝑖=1

𝑤𝑖⟨𝜙′𝑖0, 𝑘𝑖⟩ +
𝜀2

2

𝑁∑
𝑖=1

𝑤𝑖

(
𝜙′′
𝑖0
(𝑘𝑖, 𝑘𝑖) + ⟨𝜙′

𝑖0
, 𝑘𝑖⟩2)

+ 𝑜
(
𝜀2
)
.
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Power matching gives

⟨𝜙′0, 𝑘⟩𝑁 =

𝑁∑
𝑖=1

𝑤𝑖⟨𝜙′𝑖0, 𝑘𝑖⟩ ,
implying that 𝜙′0 =

(
𝑤1𝜙

′
10, … ,𝑤𝑁𝜙

′
𝑁0

)
∈ 𝑁 . For the second order

𝜙′′0 (𝑘, 𝑘) = −⟨𝜙′0, 𝑘⟩2𝑁 +

𝑁∑
𝑖=1

𝑤𝑖

(
𝜙′′
𝑖0
(𝑘𝑖, 𝑘𝑖) + ⟨𝜙′

𝑖0
, 𝑘𝑖⟩2)

.

We note that

(
𝜌𝜙′0

)𝑖
=

𝑁∑
𝑗=1

𝜌𝑖𝑗𝑤𝑗𝜙
′
𝑗0
.

We enter this expression into 𝐼 = 𝜙′′0 (𝜌𝜙
′
0, 𝜌𝜙

′
0)∕𝜎

2
𝐼 , see Corollary 2.8. This gives

𝐼 = (1 + 2 + 3)∕𝜎2𝐼 ,
with

1 = −

(
𝑁∑

𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗⟨𝜙′𝑖0, 𝜙′𝑗0⟩
)2

= −𝜎4𝐼

and

2 =
𝑁∑
𝑖=1

𝑤𝑖𝜙
′′
𝑖0
(𝑘𝑖, 𝑘𝑖) =

𝑁∑
𝑖,𝑗,𝓁=1

𝑤𝑖𝑤𝑗𝑤𝓁𝜌𝑖𝑗𝜌𝑖𝓁𝜙
′′
𝑖0
(𝜙′

𝑗0
, 𝜙′

𝓁0
)

=

𝑁∑
𝑖=1

𝑤𝑖𝜙
′′
𝑖0
(Id, Id)

( 𝑁∑
𝑗=1

𝑤𝑗𝜌𝑖𝑗𝜎𝑗

)2

.

where the last equality holds under the assumption of (6). Here Id denotes the scalar Cameron–
Martin path 𝑡 ↦ 𝑡 with velocity 1. At last,

3 =
𝑁∑
𝑖=1

𝑤𝑖

( 𝑁∑
𝑗=1

𝜌𝑖𝑗𝑤𝑗⟨𝜙′𝑖0, 𝜙′𝑗0⟩)2

=

𝑁∑
𝑖=1

𝑤𝑖𝜎
2
𝑖

( 𝑁∑
𝑗=1

𝑤𝑗𝜌𝑖𝑗𝜎𝑗

)2

,

where the last equality again holds if we assume (6).
Set Σ𝑖 =

∑𝑁

𝑗=1
𝑤𝑗𝜌𝑖𝑗𝜎𝑗 and note, always under the assumption of (6),

2 =
𝑁∑
𝑖=1

𝑤𝑖𝜙
′′
𝑖0
(Id, Id)Σ2

𝑖
, 3 =

𝑁∑
𝑖=1

𝑤𝑖𝜎
2
𝑖
Σ2
𝑖
.
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In summary, we conclude by writing

𝐼 = 1 + 2 + 3
𝜎2𝐼

= −𝜎2𝐼 +

( 𝑁∑
𝑖=1

𝑤𝑖Σ
2
𝑖

(
𝜙′′
𝑖0
(Id, Id) + 𝜎2

𝑖

))/
𝜎2𝐼 .

□

Remark 2.12. Consider the case𝑁 = 1. In this case𝑤1 = 1, Σ1 = 𝜎1 and 𝜎𝐼 = 𝜎1. Hence𝐼 reduces
to 𝜙′′

10
(Id, Id) in agreement with the skew expression of Corollary 2.8, applied with 𝜌 = ±1.

3 RETURN TO ROUGH VOLATILITY

We now return to the model defined by (5), that is, dynamics of the form

𝑑𝑆
𝑖,𝜀
𝑡 ∕𝑆

𝑖,𝜀
𝑡 = 𝑓𝑖

(
𝜀𝑊𝑡

𝑖)
𝑑(𝜀𝑊𝑖

𝑡)

𝐼𝜀𝑡 =

𝑁∑
𝑖=1

𝑤𝑖𝑆
𝑖,𝜀
𝑡

Given 𝐻 ∈ (0, 1∕2] we choose the kernel 𝐾𝐻(𝑡, 𝑠) =
√
2𝐻(𝑡 − 𝑠)𝐻−1∕2, such that 𝑊1 =

∫ 1

0
𝐾𝐻(1, 𝑠)𝑑𝑊𝑠 has unit variance, cf. Bayerq et al. (2019). With this kernel we define the operator

𝐻 ∶  →  such that
(𝐻ℎ

)
(𝑡) = ∫ 𝑡

0
ℎ(𝑠)𝐾𝐻(𝑡, 𝑠) 𝑑𝑠. Note that a short calculation shows

⟨𝐻1, 1⟩ = √
2𝐻(

𝐻 +
1

2

)(
𝐻 +

3

2

) .

3.1 Single asset, one-factor rough volatility dynamics

As as warm-up, we consider the case of 𝑁 = 1 asset, with trivial correlation “matrix” 1. By
Corollary 2.8,

𝜎0
2 = ⟨𝜙′

0
, 𝜙′

0
⟩ , = 𝜙′′

0
(𝜙′

0
, 𝜙′

0
)∕𝜎2

0
.

We can therefore find all relevant terms by expanding 𝜙(𝜀𝑘) to order 𝑜(𝜀2):

𝜙(𝜀𝑘) = ∫
1

0

𝑓(𝜀𝑘̂)𝑑(𝜀𝑘)

≈ 𝜀

(
∫

1

0

𝑓(0)𝑑𝑘

)
+ 𝜀2 ∫

1

0

𝑓′(0)𝑘̂𝑑𝑘 = 𝜀𝑓0⟨1, 𝑘̇⟩ + 𝜀2

2
2𝑓′0⟨𝐻𝑘̇, 𝑘̇⟩.
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From this we read off ⟨𝜙′0, 𝑘⟩ = 𝑓0⟨1, 𝑘̇⟩ as well as 𝜙′′0 (𝑘, 𝑘) = 2𝑓′0⟨𝐻𝑘̇, 𝑘̇⟩. In particular 𝜙′0 has
constant velocity

𝜙̇′0 ≡ 𝑓0.

If 𝑓 ∈ 𝐶2 and 𝑓0 ≠ 0, then 𝜙 is also 𝐶𝑘-reasonable, see Definition 2.3. By Corollary 2.8 we see

𝜎2
0
= ⟨𝜙′

0
, 𝜙′

0
⟩ = ⟨𝜙̇′

0
, 𝜙̇′

0
⟩ = 𝑓2

0
,

0 = 𝜙′′0 (𝜙
′
0, 𝜙

′
0)∕𝜎

2
𝐼 = 2𝑓′0⟨𝐻1, 1⟩.

By the chain-rule,

0 ∶= 𝜕𝑥
(
𝜎0impl

)2
(𝑥, 1)|𝑥=0 = 2𝑓0𝜕𝑥𝜎

0
impl(𝑥, 1)|𝑥=0.

Hence in the small noise regime we have the following ATM implied volatility skew:

𝜕𝑥𝜎
0
impl(𝑥, 1)|𝑥=0 = 0

2𝑓0
=
𝑓′0
𝑓0

⟨𝐻1, 1⟩.
Remark 3.1. This result is consistent with the skew formula in Bayerq et al. (2019), see equation (8)
below.

𝜎impl
(
𝑦𝑡1∕2−𝐻+𝛽, 𝑡

)
− 𝜎impl

(
𝑧𝑡1∕2−𝐻+𝛽, 𝑡

)
(𝑦 − 𝑧)𝑡1∕2−𝐻+𝛽

∼ 𝜌
𝜎′0
𝜎0

⟨𝐻1, 1⟩𝑡𝐻−1∕2. (8)

Since we deal with small noise rather than short time, there is no extra 𝑡𝐻−1∕2 blowup factor here!

3.2 Index with one-factor rough volatility components

Consider now 𝑁 ∈ ℕ assets, with (non-degenerate) correlation matrix 𝜌. Using notation from
Proposition 2.9, we can recycle the single asset computations. For 𝑖 = 1, … ,𝑁,

𝜎𝑖0 = 𝑓𝑖0 ∶= 𝑓𝑖(0), 𝜙′′
𝑖0
= 2𝑓′

𝑖0
⟨𝐻𝑖1, 1⟩.

The proof of Proposition 2.9 shows that 𝜙′0 ≠ 0 if 𝑓𝑖0 ≠ 0 for some 𝑖, which together with 𝐶2-
regularity of 𝑓 implies that 𝜙 is 𝐶3-reasonable, see Definition 2.3. Application of the second part
of Proposition 2.9 gives index spot variance and skew

𝜎2𝐼 =

𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝑓𝑖0𝑓𝑗0,

𝐼 = −𝜎2𝐼 +

( 𝑁∑
𝑖=1

𝑤𝑖Σ
2
𝑖

(
2𝑓′

𝑖0
⟨𝐻𝑖1, 1⟩ + 𝑓2

𝑖0

))/
𝜎2𝐼 ,

(9)
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where Σ𝑖 =
∑𝑁

𝑗=1
𝑤𝑗𝜌𝑖𝑗𝑓𝑗0.

Example 3.2 (Index with One-factor rough Bergomi components). For 𝑖 = 1, … ,𝑁 consider com-
ponent dynamics of “rough Bergomi” type, following the terminology of Bayer et al. (2016), that
is,

𝑑𝑆𝑖𝑡∕𝑆
𝑖
𝑡 = 𝜎𝑖𝑒

𝜂𝑖𝑊
𝑖
𝑡
(
𝑐𝑖 𝑑𝑊

𝑖 + 𝑐𝑖 𝑑𝑊
𝑖)
,

with vvol 𝜂𝑖 > 0 and spot volatility 𝜎𝑖 . We consider the “fully correlated” case, 𝑐𝑖 = −1, hence
𝑐𝑖 = 0. In law, this is the same as

𝑑𝑆𝑖𝑡∕𝑆
𝑖
𝑡 =

(
𝜎𝑖𝑒

−𝜂𝑖𝑊
𝑖
𝑡

)
𝑑𝑊𝑖

𝑡 ≡ 𝑓𝑖
(
𝑊𝑖

𝑡

)
𝑑𝑊𝑖

𝑡.

In the notation of this section we have 𝑓𝑖0 ∶= 𝑓𝑖(0) = 𝜎𝑖 and 𝑓′𝑖0 = −𝜂𝑖𝜎𝑖 . Thus the spot volatility
and skew are given by

𝜎𝑖0 = 𝜎𝑖,
𝑖0
2𝜎𝑖

= −𝜂𝑖⟨𝐾𝐻𝑖1, 1⟩ = −𝜂𝑖

√
2𝐻𝑖(

𝐻𝑖 +
1

2

)(
𝐻𝑖 +

3

2

) .
Concerning the index 𝐼 =

∑𝑁

𝑖=1
𝑤𝑖𝑆

𝑖 , we have the usual spot volatility

𝜎𝐼 =

√√√√√ 𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗.

For the implied variance skew we leave it to the reader to substitute 𝑓𝑖0 = 𝜎𝑖 and 𝑓′𝑖0 = −𝜂𝑖𝜎𝑖 into
the formula in Equation (9). Of course, 𝐼∕(2𝜎𝐼) then gives the implied volatility skew (at unit
time, in the small noise limit).

4 PROOF OF THEOREM 2.6

To emphasize the generality of the argument, we write
(
𝐻, ⟨., .⟩𝐻)

instead of 𝑁 with the
Cameron-Martin inner product. The abstract minimization then concerns ⟨ℎ, 𝜌−1ℎ⟩𝐻∕2 for some
invertible (linear) operator 𝜌 ∶ 𝐻 → 𝐻 subject to a constraint 𝜙(ℎ) = 𝑥, where 𝜙 ∶ 𝐻 → ℝ is
weakly continuous and thrice Fréchet differentiable. The optimization problem can be written
as

Λ(𝑥) = inf

{
1

2
⟨ℎ, 𝜌−1ℎ⟩𝐻 ∶ 𝜙(ℎ) = 𝑥

}
.

Proof of Theorem 2.6. Define 𝜓 ∶ ℝ × ℝ × 𝐻 → ℝ ×𝐻 via

𝜓(𝑥, 𝜆, ℎ) =
(
𝜙(ℎ) − 𝑥, 𝜌−1ℎ − 𝜆𝐷𝜙(ℎ)

)
.
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Wewant ℎ𝑥, 𝜆𝑥 s.t. 𝜓(𝑥, 𝜆𝑥, ℎ𝑥) = (0, 0), which corresponds to the first order condition of themin-
imization problem. Regularity of 𝑥 ↦ ℎ𝑥 implies regularity of 𝑥 ↦ Λ(𝑥) in which case we know
Λ′ = 𝜆. By the implicit function theorem

(
𝜆′(𝑥)

ℎ′(𝑥)

)
= −

(
𝜕𝜆𝜓1 𝜕𝜆𝜓2
𝜕ℎ𝜓1 𝜕ℎ𝜓2

)−1

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=∶𝐽−1

(
𝜕𝑥𝜓1
𝜕𝑥𝜓2

)

A simple calculation tells us, evaluated at ℎ𝑥,

𝐽 =

(
0 −𝐷𝜙(ℎ𝑥)

𝐷𝜙(ℎ𝑥) 𝜌−1 − 𝜆𝑥
(
…
)
.

)

Here the bracket term has no contribution because 𝜆𝑥 = 0 for 𝑥 = 0. Note that(
𝜕𝑥𝜓1
𝜕𝑥𝜓2

)
=

(
−1

0

)
∈ ℝ × 𝐻.

Therefore, we only care about the first column of 𝐽. Note that for a block matrix it follows that

(
0 𝐵

𝐶 𝐷

)−1

=

⎛⎜⎜⎜⎝
−
(
𝐵𝐷−1𝐶

)−1 (
𝐵𝐷−1𝐶

)−1
𝐵𝐷−1

𝐷−1𝐶
(
𝐵𝐷−1𝐶

)−1
…

⎞⎟⎟⎟⎠
−1

Using the block form of 𝐽 we see that

𝐽−1 =

⎛⎜⎜⎜⎝
(
𝐷𝜙(ℎ𝑥) 𝜌 𝐷𝜙(ℎ𝑥)

)−1 (
𝐷𝜙(ℎ𝑥) 𝜌 𝐷𝜙(ℎ𝑥)

)−1
𝜌𝐷𝜙(ℎ𝑥)

−
(
𝐷𝜙(ℎ𝑥) 𝜌 𝐷𝜙(ℎ𝑥)

)−1
𝜌𝐷𝜙(ℎ𝑥) …

⎞⎟⎟⎟⎠
implying that

(
𝜆′(0)

ℎ′(0)

)
=

⎛⎜⎜⎝
1⟨𝜙′

0
,𝜌𝜙′

0
⟩𝐻

−
1⟨𝜙′

0
,𝜌𝜙′

0
⟩𝐻 𝜌𝜙′0

⎞⎟⎟⎠ . (10)

For the second derivative we start with a short calculation. Let 𝑔(𝑥) = (𝜆𝑥, ℎ𝑥) such that
𝜓(𝑥, 𝑔(𝑥)) = 0. Then

0 = 𝜕2𝑥𝜓(𝑥, 𝑔(𝑥)) = 𝜕𝑥𝜕1𝜓(𝑥, 𝑔(𝑥)) + 𝜕𝑥

(
𝜕2𝜓(𝑥, 𝑔(𝑥))𝑔

′(𝑥)
)

= 𝜕21𝜓(𝑥, 𝑔(𝑥)) + 2𝜕1𝜕2𝜓(𝑥, 𝑔(𝑥))𝑔
′(𝑥) + 𝜕22𝜓(𝑥, 𝑔(𝑥))𝜕𝑥𝑔(𝑥)𝜕𝑥𝑔(𝑥)

+ 𝜕2𝜓(𝑥, 𝑔(𝑥))𝜕
2
𝑥𝑔(𝑥).
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Note that

𝜕21𝜓(0, 𝑔(0)) = 0 = 2𝜕1𝜕2𝜓(0, 𝑔(0))𝑔
′(0),

and 𝜕2𝜓(𝑥, 𝑔(𝑥)) = 𝐽. We therefore only need to calculate the ℝ2 ×
(
ℝ ×𝐻

)∗
×
(
ℝ ×𝐻

)∗
-tensor

𝜕22𝜓(0, 𝑔(0)), which we do component wise.
For this we see 𝜕2

𝜆
𝜓1 = 𝜕𝜆𝜕ℎ𝜓1 = 𝜕2

𝜆
𝜓2 = 0. Also 𝜕2

ℎ
𝜓2 = 0 at 𝑥 = 0. At last 𝜕2

ℎ
𝜓1 = 𝐷2𝜙(ℎ𝑥)(., .)

and 𝜕𝜆𝜕ℎ𝜓2 = −𝐷2𝜙(ℎ𝑥)(., .).
Evaluating the tensor 𝜕22𝜓(0, 𝑔(0)) at 𝜕𝑥𝑔(𝑥) as well as 𝜕𝑥𝑔(𝑥) and using that 𝜕2𝜓(𝑥, 𝑔(𝑥)) = 𝐽

we see (
𝜆′′(𝑥)

ℎ′′(𝑥)

)
= −𝐽−1

(
𝐷2𝜙(ℎ𝑥)(ℎ′(𝑥), ℎ′(𝑥))

−2𝐷2𝜙(ℎ𝑥)(ℎ′(𝑥), .)𝜆′(𝑥)

)
Finally, by substituting back we get by (10) that

𝜆′′(0) =
−3⟨𝜙′0, 𝜌𝜙′0⟩𝐻 𝜙′′0

( 1⟨𝜙′0, 𝜌𝜙′0⟩𝐻 𝜌𝜙′0, 1⟨𝜙′0, 𝜌𝜙′0⟩𝐻 𝜌𝜙′0
)
.

□

5 EXTENSION TO STOCHASTIC VOLATILITY

We return to the setting where each component of the index has rough volatility dynamics, as
specified in (4), with 2 Brownian factors. An index with𝑁-components thus involves a total of 2𝑁
Brownians, which we assume given as 2𝑁-dimensional Brownian motion𝑊 with non-singular
correlation matrix

𝔼(𝑊1 ⊗𝑊1) = 𝜌 ∈ ℝ2𝑁×2𝑁.

As before, in a small noise regime, the precise form of the model (4) is not so important – what
matters are the rate functions. To this end, we have

Proposition 5.1 (Correlated Index energy). Assume that
∑𝑁

𝑖=1
𝑤𝑖 = 1 and let 𝜙𝑖 ∶  → ℝ be 𝐶𝑘-

reasonable according to Definition 2.3. Let

exp
(
𝜙(ℎ1, … , ℎ2𝑁)

)
∶=

𝑁∑
𝑖=1

𝑤𝑖 exp
(
𝜙𝑖(ℎ

𝑖, ℎ𝑁+𝑖)
)
.

Then 𝜙 is also 𝐶𝑘-reasonable. Set 𝜙′
𝑖0
= 𝐷𝜙𝑖(0) ∈ 2 as well as 𝜙′′

𝑖0
= 𝐷2𝜙𝑖(0) ∈ (2 ×2)⋆ and

assume

𝜙′
𝑖0
=

(
𝜎𝑖
0

)
Id ∈ 2, Id ∶ 𝑡 ↦ 𝑡, (11)
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Then

(𝜎𝜀impl)
2(𝑥, 1) ∼𝑥↓0 𝜎

2
𝐼 + 𝑥𝐼 + 𝑜(𝑥),

with

𝜎2𝐼 =

𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗,

𝐼 = −𝜎2𝐼 +

𝑁∑
𝑖=1

𝑤𝑖

(( 𝑁∑
𝑗,𝓁=1

𝑤𝑗𝑤𝓁𝜎𝑗𝜎𝓁𝑃𝑖𝓁 ⋅ Φ𝑖𝑃𝑖𝑗

)
+

(
𝜎𝑖Σ𝑖

)2)/
𝜎2𝐼 ,

Σ𝑖 ∶=

𝑁∑
𝑗=1

𝑤𝑗𝜌𝑖𝑗𝜎𝑗, 𝑃𝑖𝓁 =

(
𝜌𝑖𝓁

𝜌(𝑖+𝑁)𝓁

)
,

Φ𝑖 =

(
𝜙′′
𝑖0

(
(Id, 0); (Id, 0)

)
𝜙′′
𝑖0

(
(Id, 0); (0, Id)

)
𝜙′′
𝑖0

(
(Id, 0); (0, Id)

)
𝜙′′
𝑖0

(
(0, Id); (0, Id)

)) .

Proof. We only sketch the proof, because all calculations are similar to the one in the proof of
Proposition 2.9. Similar to before, by power matching we get

⟨𝜙′
0
, 𝑘⟩𝑁 =

𝑁∑
𝑖=1

𝑤𝑖⟨𝜙′𝑖0, (𝑘𝑖, 𝑘𝑁+𝑖)⟩2 ,

implying that

𝜙′0 =
(
𝑤1(𝜙

′
10)

1
, … ,𝑤𝑁(𝜙

′
𝑁0)

1
; 𝑤1(𝜙

′
10)

2
, … ,𝑤𝑁(𝜙

′
𝑁0)

2
)
∈ 2𝑁.

For the second order similar calculations show

𝜙′′0 (𝑘, 𝑘) = −⟨𝜙′0, 𝑘⟩22𝑁 +

𝑁∑
𝑖=1

𝑤𝑖

(
𝜙′′
𝑖0

(
𝑘𝑖, 𝑘𝑁+𝑖; 𝑘𝑖, 𝑘𝑁+𝑖

)
+ ⟨𝜙′

𝑖0
, (𝑘𝑖, 𝑘𝑁+𝑖)⟩22

)
.

We note that

(
𝜌𝜙′0

)𝑖
=

2𝑁∑
𝑗=1

𝜌𝑖𝑗
(
𝜙′0

)𝑗
=

𝑁∑
𝑗=1

𝜌𝑖𝑗𝑤𝑗

(
𝜙′
𝑗0

)1
+

𝑁∑
𝑗=1

𝜌𝑖(𝑗+𝑁)𝑤𝑗

(
𝜙′
𝑗0

)2
.

Under the assumption of (11) we thus see

𝜎2𝐼 = ⟨𝜌𝜙′0, 𝜙′0⟩𝑁 =

𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗.

We split up 𝐼 = 𝜙′′0 (𝜌𝜙
′
0, 𝜌𝜙

′
0)∕𝜎

2
𝐼 into

𝐼 = (1 + 2 + 3)∕𝜎2𝐼 .
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Under assumption (11) a calculation shows that

1 = −

( 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

)2

= −𝜎4𝐼

Doing similar calculations as in Proposition 2.9, under the assumption of (11) it follows that

2 =
𝑁∑
𝑖=1

𝑤𝑖

( 𝑁∑
𝑗,𝓁=1

𝑤𝑗𝑤𝓁𝜎𝑗𝜎𝓁𝑃𝑖𝓁Φ𝑖𝑃𝑖𝑗

)
.

as well as

3 =
𝑁∑
𝑖=1

𝑤𝑖

(
𝜎𝑖

𝑁∑
𝑗=1

𝑤𝑗𝜌𝑖𝑗𝜎𝑗

)2

=

𝑁∑
𝑖=1

𝑤𝑖

(
𝜎𝑖Σ𝑖

)2
.

The formula for 𝐼 then follows from summing up. □

Remark 5.2. As before, the proof shows that one can do without assumption (11) at the expense of
less appealing formulae. Yet, this assumption is satisfied in the exampleswe have inmind. Indeed,
let us show that equation (11) is satisfied in the rough volatility case, that is, when 𝜙𝑖 is given by3

𝜙𝑖(ℎ
1, ℎ2) = ∫

1

0

𝑓𝑖(ℎ̂
2) 𝑑ℎ1.

In that case

𝐷𝜙𝑖(ℎ
1, ℎ2)(𝑔1, 𝑔2) = ∫

1

0

𝑓𝑖(ℎ̂
2) 𝑑𝑔1 + ∫

1

0

𝑓′
𝑖
(ℎ̂2)𝑔̂2 𝑑ℎ1.

This implies that 𝜙′
𝑖0
satisfies Assumption (11) with 𝜎𝑖 = 𝑓𝑖(0).

6 TECHNICAL RESULTS

In the main text we have used the classical Cameron–Martin Hilbert space. Taking a general
separable Hilbert space𝐻 instead, we here consider, in this Hilbert generality,

Λ(𝑥) = inf

{
1

2
⟨ℎ, ℎ⟩𝐻 ∶ 𝜙(ℎ) = 𝑥

}
∈ [0,∞].

Call 𝑥-admissible any ℎ ∈ 𝐻 with 𝜙(ℎ) = 𝑥. Set 𝐷Λ = {𝑥 ∈ ℝ ∶ Λ(𝑥) < ∞}.

6.1 Monotonicity of energy

We now discuss monotonicity of Λ.

3 No need for a correlation parameter here, contained in Hilbert structure of2 ∋ (ℎ1, ℎ2).



36 FRIZ and WAGENHOFER

Proposition 6.1. Assume 𝜙 ∶ 𝐻 → ℝ is continuous and 𝜙(0) = 0. Let 0 < 𝑥 < 𝑦. Then 0 = Λ(0) ⩽

Λ(𝑥) ⩽ Λ(𝑦).

Proof. If Λ(𝑦) = +∞ there is nothing to show, else have, for every 𝜀 > 0, some 𝑦-admissible ℎ𝑦 ∈
𝐻: 1

2
⟨ℎ𝑦, ℎ𝑦⟩

𝐻
< Λ(𝑦) + 𝜀. The real function [0, 1] ∋ 𝑐 ↦ 𝜙(𝑐ℎ𝑦) ∈ ℝ is continuous, by continuity

of 𝜙, with end-points 𝜙(0) = 0 and 𝜙(ℎ𝑦) = 𝑦, respectively. By the intermediate value theorem, for
every 𝑥 ∈ (0, 𝑦), there is 𝑐0 ∈ (0, 1) such that 𝜙(𝑐0ℎ𝑦) = 𝑥 and so

Λ(𝑥) ⩽
1

2
⟨𝑐0ℎ𝑦, 𝑐0ℎ𝑦⟩𝐻 <

1

2
⟨ℎ𝑦, ℎ𝑦⟩𝐻 < Λ(𝑦) + 𝜀.

Conclude by taking 𝜀 ↓ 0. □

6.2 Existence of a minimizer

Proposition 6.2. Assume 𝜙 ∶ 𝐻 → ℝ is weakly continuous (hence continuous).

(i) Let 𝑥 ∈ 𝜙(𝐻). Then there exists an 𝑥-admissible ℎ𝑥 s.t. Λ(𝑥) = 1

2
⟨ℎ𝑥, ℎ𝑥⟩𝐻 .

(ii) The map Λ is LSC.

Proof. We only consider 𝑥 > 0. (i) Fix 𝑥 ∈ 𝜙(𝐻), so that Λ(𝑥) < ∞ and pick 𝑥-admissible ℎ𝑛 ∈ 𝐻

so that 1
2
⟨ℎ𝑛, ℎ𝑛⟩

𝐻
↓ Λ(𝑥). By weak compactness, there exists ℎ ∈ 𝐻 and a subsequence (𝑛𝑘) such

thatℎ𝑛𝑘 → ℎweakly in𝐻. Hence 𝑥 = 𝜙(ℎ𝑛) → 𝜙(ℎ)which shows thatℎ is 𝑥-admissible. If follows
that

Λ(𝑥) ⩽
1

2
‖ℎ‖2𝐻 ⩽ lim inf

𝑘→∞

1

2
‖ℎ𝑛𝑘‖2𝐻 = Λ(𝑥).

(ii) Consider 𝑥𝑛 → 𝑥.We need to seeΛ(𝑥) ≤ lim inf𝑛 Λ(𝑥𝑛).Wemay assume that lim inf𝑛 Λ(𝑥𝑛) <

∞ and that all 𝑥𝑛 ∈ 𝐷Λ as otherwise it is inconsequential to remove all 𝑛 with Λ(𝑥𝑛) = ∞. Con-
sider (ℎ𝑥𝑛)𝑛, then there is a subsequence (𝑛𝑘) such that (ℎ𝑥𝑛𝑘 ) is bounded in 𝐻 and therefore
weakly compact. By weak continuity any weak limit point ℎ is 𝑥-admissible, implying thatΛ(𝑥) ≤
1

2
‖ℎ‖2𝐻 . We conclude with lower semi-continuity of the norm in𝐻 under weak convergence. □

We give a general criterion for weak continuity.

6.3 Rough path type continuity implies weak continuity

Consider a Banach space𝐖 = 𝑊⊕ 𝑊̃ which is a direct sum of two Banach spaces𝑊, 𝑊̃. Write
𝜋 ∶ 𝐖 → 𝑊 for the canonical projection on the first component. Let 𝐻 be a Hilbert space, with
compact embedding 𝜄 ∶ 𝐻 ↪ 𝑊, and further consider a lift, that is a map

 ∶ 𝐻 →𝐖
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so that 𝜋◦ = 𝜄. Assume that the function

𝐼(𝐰) =

{ 1

2
⟨ℎ, ℎ⟩𝐻 when𝐰 = (ℎ),

+∞ otherwise.

is a good rate function on𝐖, that is, LSCwith compact level sets. This situation is typical for small
noise large deviations of Gaussian rough paths.

Theorem 6.3. Assume 𝐼 is a good rate function, then is weakly continuous. As a consequence, any
map

𝜙 ∶ 𝐻 → ℝ, 𝜙 = 𝜙̄◦, 𝜙̄ ∈ 𝐶(𝐖,ℝ)

is also weakly continuous.

Remark 6.4. (i) We do not (want to) assume that 𝜙 = 𝜙̂◦𝜄 for 𝜙̂ ∈ 𝐶(W,ℝ)

(ii) Consider

Λ(𝑥) = inf
{
𝐼(𝐰) ∶ 𝜙̄(𝐰) = 𝑥

}
∈ [0,∞].

The contraction principle then tells us that Λ is LSC, has compact levels sets, and also gives the
existence of ℎ𝑥. Our presentation highlights the role of weak continuity, which may (or may not)
be checked with rough path type continuity arguments.

Proof. Consider ℎ𝑛 → ℎ weakly in 𝐻. Such a sequence is necessarily bounded, as a consequence
of the uniform boundedness principle. By goodness of the rate function,(ℎ𝑛𝑘 ) = 𝐰𝑘 → 𝐰 in𝐖,
for some𝐰 = (𝑤, 𝑤̃) ∈ 𝐖 and some subsequence (𝑛𝑘). LSC implies

𝐼(𝐰) ⩽ lim inf
𝑘→∞

𝐼(𝐰𝑘) ⩽ sup
𝑘

1

2
⟨ℎ𝑘, ℎ𝑘⟩𝐻 < ∞.

It follows that𝐰 = (𝑤)with𝑤 ∈ 𝐻. To identify𝑤, note ℎ𝑛𝑘 → 𝑤 inW and sinceW⋆ ⊂ 𝐻⋆ ≅ 𝐻,
we see ⟨𝜃, ℎ𝑛𝑘⟩𝐻 → ⟨𝜃,𝑤⟩𝐻 for 𝜃 ∈ W. But by weak convergence we also have ⟨𝜃, ℎ𝑛𝑘⟩W →⟨𝜃, ℎ⟩W = ⟨𝜃, ℎ⟩𝐻 . This implies 𝑤 = ℎ. We have shown that ℎ𝑛 → ℎ weakly implies (ℎ𝑛) →
(ℎ) in𝐖 along a subsequence. By a standard argument this also shows convergence (without
subsequence). □

6.4 Continuity of rate function

We start with an explicit example where one has discontinuities.

Example 6.5. Assume 𝜙(ℎ) = 𝐹(⟨𝑔, ℎ⟩𝐻) for some continuous 𝐹 with 𝐹(0) = 0 and a fixed unit
vector 𝑔 ∈ 𝐻. By scaling, this applies to any non-zero 𝑔 ∈ 𝐻 and the case 𝑔 = 0 is trivial anyway.
Such 𝜙 is obviously weakly continuous on 𝐻. Assume 0 ⩽ 𝑥 ∈ 𝜙(𝐻) and 𝐹 strictly increasing,
then 𝜙(ℎ) = 𝑥 iff ⟨𝑔, ℎ⟩𝐻 = 𝐹−1(𝑥). Obviously the minimal ℎ is colinear to 𝑔 and explicitly
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ℎ = 𝐹−1(𝑥) 𝑔. Then

Λ(𝑥) =
1

2
(𝐹−1(𝑥))2,

which is in fact continuous since 𝐹−1 is. If 𝐹 is only assumed to be increasing (in sense of
non-decreasingness), we write 𝐹− for the generalized-inverse of 𝐹 which is defined on the
interval 𝐹(ℝ) by

𝐹−(𝑦) = inf {𝑡 ∈ ℝ ∶ 𝐹(𝑡) = 𝑦}, 𝑦 ∈ 𝐹(ℝ).

Such 𝐹− is also increasing and left-continuous, hence LSC. Flat parts of 𝐹 precisely correspond
to jumps in 𝐹−. As above, ℎ𝑥 = 𝐹−(𝑥)𝑔 and hence

Λ(𝑥) =
1

2

(
𝐹−(𝑥)

)2
.

This function need not be continuous because 𝐹− may have jumps.
If 𝐹 is not increasing, this form of the rate function in general fails and one can only say

Λ(𝑥) = min

{
1

2
|𝑦|2 ∶ 𝐹(𝑦) = 𝑥

}
.

Proposition 6.6. Assume 𝑥 ∈ 𝐷Λ admits an 𝑥-admissible minimizer ℎ𝑥 ∈ 𝐻. Assume 𝜙 ∶ 𝐻 →

ℝ has no local maximum at ℎ𝑥 . Then Λ is continuous at 𝑥. This holds in particular, if 𝜙 is 𝐶1-
reasonable, see Definition 2.3.

Proof. We already know that Λ is monotone and LSC, implying that Λ is left-continuous. Thus,
the only possible disconuity can be a jump at some point 𝑥 ∈ 𝐷Λ.
Let 𝑥 ∈ 𝐷Λ, 𝑥 > 0 and 𝜀 > 0 be arbirtray. By Assumption there is some 𝑥-admissible ℎ𝑥 ∈ 𝐻

minimizing Λ(𝑥). Choose 𝛿 so small that

|||12⟨ℎ, ℎ⟩𝐻 −
1

2
⟨ℎ𝑥, ℎ𝑥⟩𝐻||| < 𝜀

2

for all ℎ ∈ 𝑈𝛿(ℎ
𝑥). By assumption ℎ𝑥 is not a local maxima therefore there is some ℎ̃ ∈ 𝑈𝛿(ℎ

𝑥)

such that 𝑥 = 𝜙(ℎ𝑥) < 𝜙(ℎ̃) =∶ 𝑦̃. But by monotonicity of Λ and by construction

Λ(𝑥) < Λ(𝑦̃) ≤ 1

2
⟨ℎ̃, ℎ̃⟩ ≤ 1

2
⟨ℎ𝑥, ℎ𝑥⟩ + 𝜀

2
= Λ(𝑥) +

𝜀

2

As 𝜀 was arbitrary we see that lim𝜆→0Λ(𝑥 + 𝜆) = Λ(𝑥) implying that Λ is continuous at point 𝑥
and therefore in 𝐷Λ. □

Even if the energy function is continuous, it need not be smooth. Similar facts for
(sub)Riemannian square-distance are well-known. In the context of Example 6.5 we can exhibit
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this directly via the function 𝐹(𝑦) = |𝑦|𝛼, 𝛼 > 0 with inverse ±|𝑦|1∕𝛼. Then
Λ(𝑥) =

1

2

(
𝐹−1(𝑥)

)2
=
1

2
|𝑥|2∕𝛼.

Note that 𝜙 ∶ ℎ ↦ 𝐹(⟨𝑔, ℎ⟩) is weakly continuous and inherits Fréchet regularity from 𝐹. For
instance, 𝐹(𝑦) = 𝑦2 makes 𝜙 Fréchet smooth, but Λ fails to be 𝐶1 at 𝑥 = 0; the problem, as seem
below, is that 𝐷𝜙(0) = 𝐹′(0)𝑔 = 0 in this example.

6.5 Smoothness of energy function

The following is a consequence of a more general statement that can be found in the appendix of
Friz et al. (2021a).

Theorem 6.7. Assume 𝜙 ∶ 𝐻 → ℝ is 𝐶𝑛-reasonable, see Definition 2.3. Then for all sufficiently
small 𝑥, there exists a unique 𝑥-admissible minimizer ℎ𝑥 , such that 𝑥 ↦ ℎ𝑥 ∈ 𝐻 is 𝐶𝑛−1. Moreover,
𝑥 ↦ Λ(𝑥) is 𝐶𝑛 near 𝑥 = 0, hence

Λ(𝑥) = Λ′′(0)𝑥2∕2! + Λ′′′(0)𝑥3∕3! +⋯+ Λ(𝑛)(0)𝑥𝑛∕𝑛! + 𝑜(|𝑥|𝑛).
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